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Smooth unique solutions for a modified Mullins-Sekerka
model arising in diblock copolymer melts

Joachim ESCHER and Yasumasa NISHIURA

(Received June 12, 2000; Revised November 15, 2000)

Abstract. Of concern is a modified Mullins-Sekerka model arising in diblock copolymer
melts. As the new feature of this system a nonlocal inhomogeneous term is introduced.
It is shown that the corresponding moving boundary problem is classically well posed.
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1. Introduction

In [18] a modified Cahn-Hilliard equation is proposed to study micr0-
phase separation of diblock copolymer. Let \Omega be a bounded domain in \mathbb{R}^{n}

with a smooth boundary \partial\Omega and consider the following parabolic initial
boundary value problem

\{\begin{array}{l}u_{t}+\triangle(\epsilon^{2}\triangle u+W’(u))-\sigma(u-\overline{u}_{0})=0\partial_{\nu}u=\partial_{\nu}\triangle u=0u(0,\cdot)=u_{0}\end{array} oninin\Omega,\cross\Omega\partial\Omega\cross[0, \infty(0,\infty)) (1.1)

where \epsilon and \sigma are positive contants and W stands for a double-well potential
with global minima at \pm 1 . Moreover, \overline{u}_{0}:=\frac{1}{|\Omega|}\int_{\Omega}u_{0}dx , with |\Omega| being
the Lebesgue measure of \Omega , and \partial_{\nu}u stands for the derivative of u with
respect to the outer unit normal \nu on \partial\Omega . In the case \sigma=0 system
(1.1) reduces to the usual Cahn-Hilliard model, cf. [21]. However, if one
considers separation of diblock copolymer, the effect of nonlocality should
be taken into account, which stems from a long-range interaction of diblock
copolymer. The third term of the left-hand side of the first equation above
comes from the nonlocal term associated to Gibbs energy and the parameter
\sigma is inversely proportional to the square of the total chain length of the
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copolymer, cf. [20, 4, 18]. The effect of this term has a strong influence on
the manner of phase separation, in fact there are a variety of stable patterns
of microphase with scale (\sigma/\in)^{1/3} which makes a strong contrast with the
usual macrophase separation realized by the Cahn-Hilliard equation. It
was proven rigorously in [19] for the one-dimensional case that the global
minimizer has such a microphase order.

Introducing the scaling x\mapsto(\sigma/\epsilon)^{1/3}x and t\mapsto\sigma t the formal singular
limit of (1.2) as \epsilonarrow 0 and \sigmaarrow 0 leads to the following moving boundary
problem, cf. [18]: Given a compact embedded hypersurface \Gamma_{0} in \Omega that is
the boundary of an open set \Omega_{0}^{-} such that its closure cl(\Omega_{0}^{-}) is contained in
\Omega , find a family \Gamma=\{\Gamma(t);t \geq 0\} of embedded hypersurfaces and a family
of functions v_{\pm}(t) : \Omega^{\pm}(t)arrow \mathbb{R} satisfying

\{\begin{array}{l}-\triangle v_{\pm}(t)=\pm 1-f(t) in\Omega^{\pm}(t), t\geq 0v_{\pm}(t)=C\kappa(t) on\Gamma(t), t\geq 0V(t)=\frac{1}{2}[\partial_{\nu}v(t)] on\Gamma(t), t>0\partial_{\nu}v_{+}(t)=0 on\partial\Omega, t\geq 0\Gamma(0)=\Gamma_{0}.\end{array} (1.2)

Here \Omega^{-}(t) and \Omega^{+}(t) denote the regions in \Omega separated by \Gamma(t) and being
diffeomorphic to \Omega_{0}^{-} and \Omega_{0}^{+} , respectively. Furthermore we use the notation

f(t):= \frac{1}{|\Omega|}(|\Omega^{+}(t)|-|\Omega^{-}(t)|) , t\geq 0 .

We write V(t) for the normal velocity of \Gamma at time t and \kappa(t) stands for
the mean curvature of \Gamma(t) , with the sign convention that V(t)\geq 0 if \Gamma is
expanding locally \Omega_{-}(t) and \kappa(t)\geq 0 for a surface \Gamma(t) being locally convex
with respect to \Omega_{-}(t) . Finally,

[\partial_{\nu}v(t)]:=\partial_{\nu}v_{+}(t)-\partial_{\nu}v_{-}(t)

denotes the jump of the normal derivatives of v_{\pm}(t) across \Gamma(t) , where \nu

denotes the outer normal with respect to \Omega_{-}(t) and C is a positive constant.
If the first two equations in (1.2) are replaced by \triangle v_{\pm}(t)=0 the re-

sulting system
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\{\begin{array}{l}\triangle v_{\pm}(t)=0 in\Omega^{\pm}(t), t\geq 0v_{\pm}(t)=C\kappa(t) on\Gamma(t), t\geq 0V(t)=\frac{1}{2}[\partial_{\nu}v(t)] on\Gamma(t), t>0\partial_{\nu}v_{+}(t)=0 on\partial\Omega, t\geq 0\Gamma(0)=\Gamma_{0}\end{array} (1.3)

is known as the tw0-phase Mullins-Sekerka problem, cf. [5]-[10] , [16], [17],
[21]. The Mullins-Sekerka system (1.3) is a widely used model for phase
separation and coarsening phenomena in a melted binary alloy. The non-
local inhomogeneities \pm 1-f(t) in (1.2) issued from the additional term
-\sigma(u-\overline{u}_{0}) in the first equation of (1.1) and takes care of the fact that we
are dealing with diblock polymer.

As for the Mullins-Sekerka model, system (1.2) preserves the volume.
More precisely, assume that (1.2) possesses smooth solutions and let

vol(t):=|\Omega_{-}(t)| for t>0 ,

be the volume inclosed by \Gamma(t) . Then the function vol is smooth with

\frac{d}{dt}vol(t)=\int_{\Gamma(t)}V(t)d\sigma(t) ,

where \sigma(t) denotes the surface measure on \Gamma(t) . Using (1.2) and Gauss’
theorem we obtain

2 \int_{\Gamma}Vd\sigma=\int_{\Gamma}\partial_{\nu}v_{+}d\sigma-\int_{\Gamma}\partial_{\nu}v_{-}d\sigma

=- \int_{\Omega}+\triangle v_{+}dx-\int_{\Omega^{-}}\triangle v_{-}dx

= \int_{\Omega}+(1-f(t))dx+\int_{\Omega^{-}}(-1-f(t))dx=0 ,

so that the flow induced by (1.2) preserves the volume of \Omega^{-}(t) and of
\Omega^{+}(t) . This particularly implies that the term f , which depends a priori on
the time variable, is (at least for smooth solutions) in fact constant in time.

In contrast to the classical Mullins-Sekerka model, it cannot be expected
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that (1.2) decreases the area A(t):= \int_{\Gamma(t)}d\sigma(t) of \Gamma(t) . Indeed, one has

\frac{d}{dt}A(t)=(n-1)\int_{\Gamma(t)}\kappa(t)V(t)d\sigma(t) ,

see [14], [9], and we find

\frac{C}{2}\int_{\Gamma}\kappa Vd\sigma=\int_{\Gamma}v_{+}\partial_{\nu}v_{+}d\sigma-\int_{\Gamma}v_{-}\partial_{\nu}v_{-}d\sigma

=- \int_{\Omega+}div(v_{+}\nabla v_{+})dx-\int_{\Omega^{-}}div(v_{-}\nabla v_{-})dx

=- \int_{\Omega}+|\nabla v_{+}|^{2}dx-\int_{\Omega^{-}}|\nabla v_{-}|^{2}dx

+(1-f) \int_{\Omega\dagger}v_{+}dx-(1+f)\int_{\Omega^{-}}v_{-}dx .

so that there is no reason to expect that dA{t)/dt is non-positive.
A further significant difference between (1.2) and (1.3) is concerned

with the equilibria of these flows. Indeed, it follows from Alexandrovs char-
acterization of Euclidean spheres (cf. [1]) that (1.3) admits only spheres as
embedded equilibria. In contrast, spheres are in general not equilibria to
(1.2). To see this, let \Gamma_{0} be a sphere of radius R and assume that \Gamma(t)=\Gamma_{0} ,
t>0 is a stationary solution to (1.2). Then the corresponding chemical p0-
tentials -v\pm have to satisfy the following elliptic boundary value problems

-\triangle v_{\pm}(t)=\pm 1-f(t) in \Omega^{\pm}

v_{\pm}(t)=C/R on \Gamma_{0}

\partial_{\nu}v_{+}(t)=0 on \partial\Omega , t\geq 0 .

Recall that |f|<1 . Hence the strong maximum principle and the symmetry
of v_{-} imply that there is a positive constant c such that \partial_{\nu}v_{-}(x)=c for all
x\in\Gamma_{0} . But \Gamma_{0} is an equilibrium. Thus V=(\partial_{\nu}v_{+}-\partial_{\nu}v_{-})/2 vanishes on
\Gamma_{0} , so that

\partial_{\nu}v_{+}(x)=c for all x\in\Gamma_{0} . (1.4)

Observe that (1.4) is independent of the shape and position of \partial\Omega , which
is not possible. Finally, in the forthcoming paper [12] it is shown that the
flow induced by (1.2) does not preserve convexity, in agreement with the
usual Mullins-Sekerka flow, cf. [15].
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The unknowns \Gamma and v_{\pm} are coupled through the system (1.2). However,
if the position and the regularity of the moving boundary \Gamma=\{\Gamma(t);t\in

[0, T)\} is known, the chemical potentials -v_{\pm} are obtained by solving at
each time t\in[0, T) the elliptic boundary value problems

-\triangle v_{\pm}(t)=\pm 1-f(t) in \Omega^{\pm}(t)

v_{\pm}(t)=C\kappa(t) on \Gamma(t)

\partial_{\nu}v_{+}(t)=0 on \partial\Omega , t\geq 0 .

In this sense we call a family \Gamma=\{\Gamma(t);t\in[0, T)\} of hypersurfaces a
solution of (1.2).

To give a precise statement of our results, we have to introduce some
notation. Given \alpha\in(0,1) , m\in \mathbb{N} , and an open bounded subset U of
\mathbb{R}^{n} , let h^{m+\alpha}(U) denote the little H\"older space of order m+\alpha , i.e. the
closure of C^{\infty}(U) in the norm of the usual Banach space C^{m+\alpha} (\overline{U}) . Given
a sufficiently smooth manifold M, the space h^{m+\alpha}(M) is defined by means
of local coordinates.

Theorem 1 Let \Gamma_{0} be a compact, closed, embedded hypersurface in \Omega of
class h^{2+\alpha} . Then there exists a unique classical solution \Gamma=\{\Gamma(t);t\in

[0, T)\} of problem (1.2) emerging from \Gamma_{0} . The mapping [t\mapsto\Gamma(t)] is
smooth on (0, T) with respect to the C^{\infty} -topology and continuous on [0, T)

with respect to the h^{2+\alpha} -topology. Moreover, if \Gamma_{0} is the h^{2+\alpha} -graph in
normal direction over a smooth hyperface \Sigma , then the mapping [(t, \Gamma_{0})\mapsto

\Gamma(t)] defines a local smooth semiflow on some open subset of h^{2+\alpha}(\Sigma) .

There is a different approach to moving boundary problems of type
(1.3) which is based on introducing a regularizing term to get approximate
solutions for these motions. Using energy estimates it is possible to pass
to the limit in the regularized problem and to get the existence of a local
weak solution to (1.3). In certain cases it is possible to prove a posteri-
ori additional regularity of these weak solutions, cf. [5, 7] . However, for
the modified Mullins-Sekerka model (1.2) the area functional fails to be a
Ljapunov function for the corresponding flow, which is an essential task to
get powerful energy estimates. In addition, the approach followed in [5, 7]

does not produce any information about the uniqueness of solutions.
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2. Existence and uniquness of classical solutions

In this section we transform the original problem to a nonlinear problem
on the fixed domains \Omega^{\pm} . After a natural reduction of this transformed
problem we are left to solve a quasi-linear parabolic evolution equation for
the moving boundary involving a nonlocal pseud0-differential operator of
third order. We shall work out a quasi-linear structure of this propagator
and we will see that the corresponding linear part can be represented as an
elliptic pseud0-differential operator of third order. This rather precise linear
analysis allows us then to apply the general theory of quasi-linear parabolic
evolution equation due to H. Amann.

Assume that \Gamma_{0} is a compact, closed hypersurface in \Omega of class h^{2+\alpha} and
let a_{0}:=dist(\Gamma_{0}, \partial\Omega) . Then we find a smooth hypersurface \Sigma , a positive
constant r>0 , and a function \rho_{0}\in h^{2+\alpha}(\Sigma) such that

X : \Sigma\cross(-r, r)arrow \mathbb{R}^{n} , X(s, \lambda):=s+\lambda\nu(s)

is a smooth diffeomorphism onto its image Y:=im(X) and such that
\theta_{\rho 0}(s):=X(s, \rho_{0}(s)) is a C^{2+\alpha} -diffeomorphism mapping \Sigma onto \Gamma_{0} . Here,
\nu denotes the outer normal at \Sigma . Of course \Sigma separates \Omega in two domains
\Omega^{-} and \Omega^{+} . with \Omega^{-} being enclosed by \Sigma .

Let T>0 be fixed. We are looking for \Gamma=\{\Gamma(t);t\in[0, T]\} in the
form

\Gamma(t):=\{x\in \mathbb{R}^{n};x=X(s, \rho(s, t)), s\in\Sigma\} ,

with a function \rho : \Sigma\cross[0, T]arrow \mathbb{R} to be determined. More precisely, let

A:=\{\hat{\rho}\in h^{2+\alpha}(\Sigma);||\hat{\rho}||_{C^{1}}<a\}

denote a set of admissible parametrizations, where a\in(0, r) will be chosen
later. Given \hat{\rho}\in A , let \theta_{\hat{\rho}}:=id_{\Sigma}+\hat{\rho}\nu and write \Gamma_{\hat{\rho}}:=im(\theta_{\hat{\rho}}) . Obviously,

\theta_{\hat{\rho}}\in Diffff^{2+\alpha}(\Sigma, \Gamma_{\hat{\rho}}) , \hat{\rho}\in A ,

provided r>0 is chosen sufficiently small. With this notation we try to find
\rho\in C([0, T], A) such that \Gamma(t)=\Gamma_{\rho(t)} for t\in[0, T] . Clearly, each surface
\Gamma_{\rho(t)} separates \Omega into an interior domain \Omega_{\rho(t)}^{-} and an exterior domain \Omega_{\rho(t)}^{+} ,
t\in[0, T] . In the following we fix t\in[0, T] and supress it in our notation.
It is convenient to express \Gamma_{\rho} as the level set of an appropriate function
on \mathbb{R}^{n} . For this we decompose the inverse of X into X^{-1}=(S, \Lambda) , where
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S\in C^{\infty}(Y, \Sigma) denotes the metric projection of Y onto \Sigma and \Lambda stands for
the signed distance function with respect to \Sigma . Obviously, we have \Gamma_{\rho}=

N_{\rho}^{-1}(0) with N_{\rho}=\Lambda-\rho\circ S . Since we have to deal with elliptic boundary
value problems in the domains \Omega_{\rho}^{\pm} we need appropriate extensions of the
diffeomorphism \theta_{\rho} to \Omega^{\pm} . For this we introduce the following construction
which was first proposed in [13] to transform Stefan problems on fixed d0-
mains. Fix now a\in(0, r/4) and pick \varphi\in C^{\infty}(\mathbb{R}, [0,1]) such that \varphi(\lambda)=1

if |\lambda|\leq a and \varphi(\lambda)=0 if |\lambda|\geq 3a , and such that sup |\varphi’(\lambda)|<1/a . Given
\rho\in A , let

\Theta_{\rho}(x):=\{

X(S(x), \Lambda(x)+\varphi(\Lambda(x))\rho(S(x))) if x\in Y,

x if x\not\in Y.

Observe that [\lambda -\lambda+\varphi(\lambda)\rho] is strictly increasing since |\varphi’(\lambda)\rho|<1 .
Therefore we conclude that

\Theta_{\rho}\in Diffff^{2+\alpha}(\Omega, \Omega)\cap Diffff^{2+\alpha}(\Omega^{\pm}, \Omega_{\rho}^{\pm}) ,

\Theta_{\rho}|\Sigma=\theta_{\rho} , \Theta_{\rho}|U=id_{U} ,

for some neighbourhood U\subset \mathbb{R}^{n} of \partial\Omega . In order to economize our notation
we use the same symbol \theta_{\rho} for both diffeomorphims \theta_{\rho} and \Theta_{\rho} .

We are now prepared to transform problem (1.2) into a problem on the
fixed domains \Omega^{\pm} . Given v_{\pm}\in C(\overline{\Omega}_{\rho}^{\pm}) and u_{\pm}\in C(\overline{\Omega}^{\pm}) , we write

\theta_{\rho}^{*}v_{\pm}:=v_{\pm}\circ\theta_{\rho} and \theta_{*}^{\rho}u_{\pm}:=u_{\pm}o\theta_{\rho}^{-1}

for the pull-back and push-forward operator, respectively, induced by \theta_{\rho} .
We now set

A_{\pm}(\rho)u_{\pm}:=-\theta_{\rho}^{*}(\triangle(\theta_{*}^{\rho}u_{\pm}))

B_{\pm}( \rho)u_{\pm}:=\frac{1}{2}\gamma_{\pm}\theta_{\rho}^{*}(\nabla(\theta_{*}^{\rho}u_{\pm})|\nabla N_{\rho}) ,

for u_{\pm}\in C^{2} (^{\frac{1}{\Omega^{{?}}}}) , where \gamma\pm stands for the restriction operator of C^{1}
-

function on \overline{\Omega}^{\pm} to \Sigma . Furthermore, let

f( \rho):=\frac{1}{|\Omega|}(|\Omega_{\rho}^{+}|-|\Omega_{\rho}^{-}|) and K(\rho):=C\theta_{\rho}^{*}\kappa_{\rho} ,

where \kappa_{\rho} denotes the mean curvature of \Gamma_{\rho} . Finally, the normal velocity V



144 J. Escher and Y. Nishiura

of \Gamma=\{\Gamma_{\rho(t)} ; t\in[0, T]\} can be expressed as

V(s, t)=- \frac{\partial_{t}N_{\rho}(x,t)}{|\nabla N_{\rho}(x,t)|}|_{x=\theta_{\rho(t)}(s)}=\frac{\partial_{t}\rho(s,t)}{|\nabla N_{\rho}(x,t)|}|_{x=\theta_{\rho(t)}(s)} ,

for (s, t)\in\Sigma\cross(0, T] . Observe that the outer unit normal \nu at \Gamma_{\rho} is given
as \nabla_{x}N_{\rho}/|\nabla_{x}N_{\rho}| . Hence, writing u_{\pm}:=\theta_{\rho}^{*}v_{\pm} , problem (1.2) is transformed
into

\{\begin{array}{l}A_{\pm}(\rho)u_{\pm}=\pm 1-f(\rho) in\Omega^{\pm}. t\geq 0u_{\pm}=K(\rho) on\Sigma, t\geq 0\partial_{t}\rho=B_{+}(\rho)u_{+}-B_{-}(\rho)u_{-} on\Sigma, t>0\partial_{\nu}u_{+}=0 on\partial\Omega, t\geq 0\rho(\cdot,0)=\rho_{0}.\end{array} (2.1)

It is not difficult to verify that problem (1.2) and problem (2.1) are equiva-
lent. Note that the unknowns \rho and u_{\pm} are still coupled through (2.1). To
obtain an equation for \rho only, we need the following result. Fix 0<\gamma<
\beta<\alpha<1 and let U:=h^{2+\beta}(\Sigma)\cap A .

Lemma 2.1 Let \sigma\in[\gamma, \beta] be fixed. Then
a) (A_{\pm}, B_{\pm})\in C^{\infty}(U, \mathcal{L}(h^{1+\sigma}(\Omega^{\pm}), h^{\sigma-1}(\Omega^{\pm})\cross h^{\sigma}(\Sigma)) .
b) Given \rho\in U , we have

(A_{\pm}(\rho), \gamma_{\pm}, \partial_{\nu})\in Isom(h^{1+\sigma}(\Omega^{\pm}), h^{\sigma-1}(\Omega^{\pm})\cross h^{1+\sigma}(\Sigma)\cross h^{\sigma}(\partial\Omega))

c) f\in C^{\infty}(U, \mathbb{R}) .

Proof. Assertions a) and b) follow from Lemma 2.2 in [9].
To see c), observe that

f( \rho)=\frac{1}{|\Omega|}(\int_{\Omega}+| det D \theta_{\rho}|dx-\int_{\Omega^{-}}| det D\theta_{\rho}|dx)

for \rho\in U . \square

Given \rho\in U , define

S_{\pm}(\rho):=(A_{\pm}(\rho), \gamma_{\pm}, \partial_{\nu})^{-1}(\cdot, 0,0)\in \mathcal{L}(h^{\sigma-1}(\Omega^{\pm}), /l^{1+\sigma}(\Omega^{\pm}))
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and

T_{\pm}(\rho):=(A_{\pm}(\rho), \gamma_{\pm}, \partial_{\nu})^{-1}(0, \cdot, 0)\in \mathcal{L}(h^{1+\sigma}(\Sigma), h^{1+\sigma}(\Omega^{\pm})) .

Observe that, given \hat{f}_{\pm}\in h^{\sigma-1}(\Omega^{\pm}) and \hat{\rho}\in h^{1+\sigma}(\Sigma) , the functions
w_{\pm}(\rho):=S_{\pm}(\rho)\hat{f}_{\pm}+T_{\pm}(\rho)\hat{\rho} are the unique solutions in h^{1+\sigma}(\Omega^{\pm}) of

A_{\pm}(\rho)w_{\pm}=\hat{f}_{\pm} in \Omega^{\pm}

\gamma_{\pm}w_{\pm}=\hat{\rho} on \Sigma

\partial_{\nu}w_{+}=0 on \partial\Omega .

Let us now introduce the operator \Phi : U\cap h^{3+\alpha}(\Sigma) -arrow h^{\alpha}(\Sigma) , defined by

\Phi(\rho):=B_{+}(\rho)[T_{+}(\rho)K(\rho)+S_{+}(\rho)(1-f(\rho))]

-B_{-}(\rho)[T_{-}(\rho)K(\rho)-S_{-}(\rho)(1+f(\rho)] .

Then problem (2.1) and the abstract evolution equation

\frac{d}{dt}\rho=\Phi(\rho) , \rho(0)=\rho_{0} (2.2)

are equivalent in the following sense: Let \rho_{0}\in h^{3+\alpha}(\Sigma) be given and assume
that

\rho\in C([0, T], h^{3+\alpha}(\Sigma)\cap U)\cap C^{1}([0, T], h^{2+\alpha}(\Sigma))

is a solution to (2.2). Then the triple (\rho, u_{\pm}) with

u_{\pm}:=T_{\pm}(\rho)K(\rho)+S_{\pm}(\rho)(\pm 1-f(\rho))

is a solution to (2.1); and vice-versa: if (\rho, u_{\pm}) is a solution to (2.1) then
the above construction shows that \rho is a solution to (2.2).

Although the nonlocal and nonlinear operator \Phi consists already in a
sum of four terms, we shall introduce a further splitting of \Phi . This splitting
is motivated by the fact that the mean curvature operator K carries a
quasi-linear structure in the following sense:

Lemma 2.2 There exist functions
P\in C^{\infty}(U, \mathcal{L}(h^{3+\gamma}(\Sigma), h^{1+\gamma}(\Sigma)) and Q\in C^{\infty}(U, h^{1+\beta}(\Sigma))

such that

K(\rho)=P(\rho)\rho+Q(\rho) for \rho\in U\cap h^{3+\gamma}(\Sigma) .
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A proof of Lemma 2.2 can be found in [9], Lemma 3.1.
We now introduce the quasi-linear principal part II of -\Phi by setting

\Pi(\rho)\rho:=[B_{-}(\rho)T_{-}(\rho)-B_{+}(\rho)T_{+}(\rho)]P(\rho)\rho

and (correspondingly) the lower order part

F(\rho):=[B_{+}(\rho)T_{+}(\rho)-B_{-}(\rho)T_{-}(\rho)]Q(\rho)

+B_{+}(\rho)S_{+}(\rho)(1-f(\rho))+B_{-}(\rho)S_{-}(\rho)(1+f(\rho)) .

Clearly, we have \Phi(\rho)=-\Pi(\rho)\rho+F(\rho) , so that problem (2.2) is equivalent
to

\frac{d}{dt}\rho+\Pi(\rho)\rho=F(\rho) , \rho(0)=\rho_{0} . (2.3)

Using Lemma 2.1 and Lemma 2.2 it is not difficult to verify that the map-
pings

\Pi : U – \mathcal{L}(h^{3+\gamma}(\Sigma), h^{\gamma}(\Sigma)) and F : U – h^{\beta}(\Sigma)

are well-defined and smooth. In order to solve equation (2.3) we need pa-
rameter dependent a priori estimates for the principal part \Pi of -\Phi . In
order to formulate these crucial estimates, let us introduce the following
notation. Given two Banach spaces E and F such that E is dense and con-
tinuously embedded in F, let H(E, F) consist of all A\in \mathcal{L}(E, F) such that
-A, viewed as an unbounded operator in F, generates a strongly continu-
ous analytic semigroup on F . It is known that a linear operator A : E\subset

Farrow F belongs to H(E, F) if and only if there exist \omega\in \mathbb{R} and \kappa\geq 1 such
that \omega+A\in Isom(E, F) and the following parameter dependent a priori
estimate

|\lambda|||x||_{F}\leq\kappa||(\lambda+A)x||F , x\in E , \lambda\in \mathbb{C} with Re \lambda\geq\omega ,

holds true. Based on the Mikhlin-H\"ormander Fourier multiplier theorem,
representation formulas of Poisson operators and subtle perturbation tech-
niques the following result can be shown, cf. [9], p.641.

Theorem 2.3 Given \rho\in U , we have

\square (\rho)\in H(h^{3+\gamma}(\Sigma), h^{\gamma}(\Sigma)) .

We are now prepared to prove our main result.
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Proof of Theorem 1. Let \Gamma_{0} satisfy the hypotheses and choose \Sigma and \rho_{0}

as above. Recall that A is open in h^{2+\gamma}(\Sigma) .
a) We first show that equation (2.3) has a unique solution \rho belonging

to

C([0, T), A)\cap C^{\infty}((0, T) , C^{\infty}(\Sigma)) ,

with T=T(\rho 0)>0 being the maximal interval of existence. Indeed, set
E_{0}:=h^{\gamma}(\Sigma) and E_{1}:=h^{3+\gamma}(\Sigma) , and let E_{\theta}:=(E_{0}, E_{1})_{\theta,\infty}^{0} , \theta\in(0,1)

denote the continuous interpolation spaces between E_{0} and E_{1} , cf. [3]. It
is known (cf. [22]) that the scale of small H\"older spaces is stable under
continuous interpolation. Hence letting \theta_{0}:=(2+\beta-\gamma)/3 , \theta_{1}:=(2+\alpha-

\gamma)/3 , and \theta :=(\beta-\gamma)/3 , we find

E_{\theta_{1}}=h^{2+\alpha}(\Sigma) , E_{\theta_{0}}=h^{2+\beta}(\Sigma) , E_{\theta}=h^{\beta}(\Sigma) .

Consequently, Lemma 2.1 and Lemma 2.2 yields (\Pi, F)\in C^{\infty}(U, \mathcal{L}(E_{1}, E_{0})\cross

E_{\theta}) . Due to Theorem 2.3 we can now apply Theorem 12.1 in [2] to obtain
a unique T=T(\rho_{0})>0 and a unique solution

C([0, T), A)\cap C((0, T) , h^{3+\gamma}(\Sigma))\cap C^{1}((0, T) , h^{\gamma}(\Sigma))

of the evolution equation (2.3). The fact that this solution actually be-
longs to C^{\infty} ((0, T) , C^{\infty}(\Sigma)) follows from the same bootstrapping argument
presented in [9], p.634.

b) Let \rho be the above constructed solution to (2.3) and define

\Gamma(t):=\Gamma_{\rho(t)}=\{x\in \mathbb{R}^{n} ; x=X(s, \rho(t)(s)), s\in\Sigma\} , t\in[0, T) ,

and

v_{\pm}(t):=\theta_{*}^{\rho(t)}[S_{\pm}(\rho(t))(\pm 1-f(\rho(t)))+T_{\pm}(\rho(t))K(\rho(t))] ,
t\in[0, T) .

Then it is not difficult to verify that \Gamma=\{\Gamma(t);t\in[0, T)\} together with
v\pm form the unique solution to (1.2). \square
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