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Hamiltonian dynamics of a charged particle

Osamu IKAWA*
(Received May 7, 2002; Revised June 19, 2002)
Abstract. We study the Hamiltonian dynamics of a charged particle using a noncanon-
ical symplectic structure on the tangent bundle. We show that if the motion of a charged

particle in a homogeneous space satisfying a certain condition intersects itself, then it is
simply closed.
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Introduction

Let F' be a closed 2-form and U a function on a connected semi-
Riemannian manifold (M, (, )). We denote by ¢«(X) : A™(M) — A™ (M)
the interior product operator induced from X, and by £ : T(M) — T*(M)
the Legendre transformation defined by

L:T(M)—T"(M);u— L(u), L(u)(v)=(u,v) (veT(M)).

9

A curve z(t) in M is called the motion of a charged particle under electro-

magnetic field F' and potential energy U, if it satisfies the following differ-
ential equation

Vit = —gradU — L7 (u(2)F),

where V is the Levi-Civita connection of M. This equation originated in
the theory of general relativity (see [6, §1] or [10, p.112, (19.15)]). When
F =0and U =0, then z(t) is merely a geodesic. If z(¢) is the motion of a
charged particle under F' and U, then the total energy

%(:t, )+ U(a(t)) (0.1)

is a constant. If F' has an electromagnetic potential A, that is F' = dA, then
we define a functional E by
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E(z) = /0 1 (%(j:,d:) + %A(a’:) _ U(a:(t))) dt.

The Euler-Lagrange equation of E is the motion of a charged particle under
Fand U.

We denote by 7 : T(M) — M the tangent bundle over M. Based on
[0.1), we define a function H on T'(M) as

H(u) = 5 (wu) + Uln(u)) (ue T(M))

In this paper, we show that, even if F' does not have an electromagnetic
potential, the motion of a charged particle is a Hamiltonian system using H
and a noncanonical symplectic structure on T'(M) (Theorem 2.1). We here
mention some fundamental definitions concerning symplectic geometry. A
symplectic structure on a manifold is a closed 2-form which is nondegenerate
at each point. A symplectic manifold is a manifold possessing a symplectic
structure. A symplectic manifold is even-dimensional and orientable. A
diffeomorphism on a symplectic manifold is called a symplectic transforma-
tion if it preserves the symplectic structure, though, in old literatures, a
symplectic transformation was called a canonical transformation.

In general it is an interesting question whether a given equation of
motion has a periodic solution or not. In relation to this problem, we study
the simpleness of the motion of a charged particle under electromagnetic
field F' and U = 0 in a homogeneous space satisfying a certain condition.
Here a curve in a manifold is simple if it is either a simply closed periodic
curve or if it does not intersect itself. Our main purpose in this paper is
to show that every motion of a charged particle under an electromagnetic
field associated with G-homogeneous semi-Riemannian manifold is simple,
if the Lie algebra g of G satisfies [g,g] = g (see [Theorem 2.4)). Other
sufficient conditions for the simpleness of the motion of a charged particle
in a homogeneous space and its application are found in [6, Th. 2.3, Cor. 2.4,
Cor 2.5, Th. 3.9]. We refer to [1], [2], [3] and their references for studies of
the motion of charged particles.

The author would like to thank the referee for his useful suggestions.

1. Hamiltonian dynamics of a geodesic

In this section, we review the Hamiltonian dynamics of a geodesic, which
is defined by V;z = 0, in a semi-Riemannian manifold (M, (, )), in order to
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contrast it with the Hamiltonian dynamics of a charged particle discussed
in the next section. The results obtained in this section will be used in the
next section. Define a function H on T'(M) by

1

3¢
which corresponds to the kinetic energy. We denote by Xy the Hamiltonian
vector field of the Hamiltonian H with respect to the canonical symplectic

structure w on T'(M), that is, dH = «(Xy)w. We denote by { , } the
Poisson bracket on C*°(T(M)) with respect to w, which is defined by

{f,9} = Xs(9) = w(Xg, Xy) for f,g € CP(T(M)).

It is known that each orbit of the geodesic flow on T'(M) coincides with
the integral curve of Xy ([4]). We define a mapping

P:X(M) — (C*(T(M)),{, }); Y — Fy

H(u) = =(u,u) (ue€T(M)),

by Py(u) = (u,Y). It is clear that P is injective. It is known that if Y is
a Killing vector field, then Py is a conservative constant for geodesics ([7,
Lemma 9.26]). In other words,

{H,Py} =0 (1.1)
for any Killing vector field Y.
Proposition 1.1 ([4, p.222]) {Py,Pz} = Pyz (Y,Z € X(M)).

Proof. This result is well-known. But we give a proof for completeness.
Let (z!,...,z™) be a local coordinate system in M. The components gi; of
< ) with respect to (z!,...,z") are given by g;; = <£z, 8x]> We denote

by (g ”) the inverse matrix of (g;;). We introduce a local coordinate system
(:1: , o, ul, ..., u™) in T(M) by setting

u= Zu 833’ (u € T(M)).

The local expression for the canonical symplectic structure w is then given
by

—28” wdz' A da® +ngda: Adu! = d(zgijujd$i>~

’.7) ’J
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We use these notations throughout this paper. The vector fields Y and Z
can be written as Y = ZY’GHZ ZZzal,
x T

o 8Z .0Y7
Py = ZgijZluJ’ and P,z = Zgjk ( 5 > u®

Since dPy = «(Xp, )w, we have

Yo 2 (Y ook T o 9) 9 g (12

Hence we obtain

{Py, Pz} = XPY(P )
Z7) dgij OY*F -
_ Yz Jk k Yk v Hpy il, J P
Z Ozt Z ( Oz, + ozt Gk )9 Y 9p1Z
ngZ o 691]‘; oY’ ik
=) yr2rT J a0
Z ozt Z (Y 3333 oz’ i Gk ) 2w

_ 077 _OYI\
- Zgﬂ“ (Y o' Z ozt ) "

O

A diffeomorphism ¢ of M induces a transformation ¢, of T'(M). Thus
a vector field Y of M induces vector fields of T'(M) in the following two
ways: One is the Hamiltonian vector field Xp, of Py, and the other is
d"f‘l—*t(m' 1—o (u € T(M)), where ¢; is the one parameter transformation group
of M generated by Y

When Y is a Killing vector field, by Noether’s theorem tells us
that the one-parameter transformation group of T'(M) generated by Xp, is

a symplectic transformation which preserves H.

Lemma 1.2 Let ¢, be the one-parameter transformation group of M gen-
erated by a vector field Y = Y Y* 81. Then the vector field %ﬂt:O can be
expressed as

l

dt p=o 2= dr  Ze0w " B
Proof. Foru € T(M), set x = w(u) € M.
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Take a curve z(s) = (z!(s),...,2"(s)) in M such that #(0) = u =

0
Zuza

dpi(u)  d d
Fa o= it (¢ o)

|t=0

0 d, .
=Y Vit = (@(s)), -, Y (2(5))jem0

.0 oYr . 9
— ¢ ——qJ
ZY ort + iju out

g

Proposition 1.3 Let ¢, be the one-parameter transformation group of
T(M) induced from the one parameter transformation group v; of M gener-
ated by a Killing vector field Y. Then ¢ coincides with the one-parameter
transformation group generated by the Hamailtonian vector field of Py .

Proof. Since Y is a Killing vector field,

0g; 0 0
k Z]_ -
ZY - <<8xi’6xj>>
0 0 0 5]
. oyr L ovE
- k 9zt I8 T pgi Ik ) -

Applying >, g% to the equation above, we have

ayl k@g” il
@:-ZQ o it Y 5k )9
Using and Lemma 1.2, we obtain

oz T dri . odl . di t=0

2. Hamiltonian dynamics of a charged particle

In this section, we study the Hamiltonian dynamics of the motion of a
charged particle in a connected semi-Riemannian manifold (M, (, )), which
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is defined as
Vit = —gradU — L71(u(2)F). (2.1)
We define a function H on T'(M) by

H(u) = 3 uu) + Ulr(w) (u€ T(M)),

corresponding to the total energy. We define a closed 2-form wg on T(M)
by

wp=w—m"F.

For each tangent vector u € T(M), we denote by z, the motion of a
charged particle (2.1) with the initial vector u. The electromagnetic flow
&, : T(M) — T(M) is defined by ®4(u) = &,(t).

Theorem 2.1 (1) The closed 2-form wr is a symplectic structure on
T(M).

(2) We denote by X% the Hamiltonian vector field of the Hamiltonian
H with respect to wg. FEach orbit of the electromagnetic flow on T(M)
coincides with the integral curve of X g

Remark This theorem is well-known when F' = 0. The theorem is also
well-known when M = R} and U = 0 ([8], [4, §20] and [5, §4]).

Proof. (1) The components F;; of F with respect to (z!,...,z") are given
by F;; = F ( a?:i’ %). The local expression for the closed 2-form wg is given
by

Wp = Z 8ng wdzt A dzF + Zgijd:n’ Adu? — 3 Z Fijdz' A da’.
.5,k 1, 1,
Hence wp is nondegenerate at each point; that is, wr is a symplectic struc-
ture on T'(M).
(2) We denote by Ffj the Christoffel symbols. Let z(t) = (z!(¢),.

z™(t)) be a curve in M. Then

Vit = ;(m‘k +1ZJ:$ a:’l“i-?-)%.

.oy
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Since

ou o

gradU = Zg” 5 907 and L1 Zxkazg

1,J 1,5,k

the equation of motion (2.1) of a charged particle is equivalent to
. L OU o
ok iadrk k2~ W R
¥ +Zx$Fij-— Zg e Zx Fjig*". (2.2)
1,7 1 1,7
Since the local expression for the Hamiltonian H is given by
1 o
H(',. .. 2™l . o) = 3 Zu’ujgij +U(2!,...,z"),
1,J
we have
! Z 09:; bl dz + Zg, utdu? + Z —d:c
2 & Oxk J oxk
6.,

Since dH = 1(Xf;)wr, we obtain

; 0 ki OU iy 0
XE-_—Zu 8$i—Z<Fl wlul +g I k+gklﬂku)w- (2.3)

Here we mention the meaning of the right—hand side of the above equa-
tion. The vector field Xy, = > . v arl Znguju 5., s the Hamilto-
nian vector field of Hy(u) = §<u u) with respect to w, the vector field
— S g 38 U 66 is the Hamiltonian vector field of U on with respect to w, and
Y =~ gMEul ai, is characterized by the equation «(Y)w = «(Xp,)7*F.
The integral curve (z'(t),...,z"(t),ul(t),...,u™(t)) of XJ satisfies

o oU |
il = ul, L (Z I‘g-iujuZ + ngl% + nglFikuz>

by (2.3), which, together with [2.2), yields the assertion. O

Henceforth, we set U = 0. We define a tensor field ¢ of type (1,1) by
¢X = —LTH((X)F), F(X,Y)=(X,¢Y),

which is skew-symmetric with respect to (, ). We consider the motion of a
charged particle

Vit = ¢ (2.4)
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under electromagnetic field . We define a Lie subalgebra Z,(M) in X(M)
by
Is(M)={X € X(M) | Lx(, ) =0, Lx¢ = 0}.
For X € Z4(M), we have d(«(X)F) = 0.
Proposition 2.2 Let X and Y be in Zy(M). Then
[X,Y))F = —d(F(X,Y)).
Proof. Let Z be any vector field of M. Since (, ) is parallel,
Z(F(X,Y)) = Z((X, ¢Y))
= (VzX,9Y) — (¢X,VzY) + (X, (Vz9)(Y)).
Since X and Y are Killing vector fields,
(VzX,0Y) = (¢X,VzY) = (Z,VexY — Vyy X).
Since X and Y are infinitesimal automorphisms of ¢,
VexY = Vey X = Vy(0X)+ [¢X,Y] — Vx(9Y) — [9Y, X]
= o[X, Y]+ (Vy¢)(X) = (Vx¢)(Y).
Combining these equations above,
Z(F(X,Y)) =(Z,9[X,Y]) + 6xyz(X, (Vz¢)(Y))
= —F([X,Y],2),
where the last equality derives from dF = 0. O

We apply the above proposition to the study on simpleness of motions
of charged particles (2.4).

Definition 2.3 Let (M, (, )) be a semi-Riemannian manifold and ¢ a
tensor field of type (1,1) on M such that (¢X,Y)+(X, #Y) = 0. A manifold
(M, (, ), ) of this type is called G-homogeneous (or simply homogeneous)
if a Lie transformation group G of isometries acts transitively and effectively
on M, and ¢ is invariant under the action of G.

We refer to T. Adachi [1], T. Sunada [9] and their references for studies
on electromagnetic flows associated with a scalar multiple of Kéhler forms
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in a complex projective space and a complex hyperbolic space. These spaces
are typical examples of G-homogeneous Riemannian manifolds.

In a manner similar to the proof of [6, Theorem 2.3], we have the
following.

Theorem 2.4 Let (M,(, ),®) be a G-homogeneous semi-Riemannian
manifold. Assume that the 2-form F defined by F(X,Y) = (X, ¢Y) is
closed. If [g,g] = g, then every motion (2.4) of a charged particle is simple,
where g is the Lie algebra of G.

Proof. Let x(t) be the motion of a charged particle. For X € g, we also
denote by X the induced Killing vector field of M, which is an infinitesi-
mal automorphism of ¢. Since [g,g] = g, it follows from [Proposition 2.2
that there exixts a function fx such that «(X)F = dfyx. Using Proposi-
tion 2.5, (2) and [Theorem 2.1], (2), we have

(2(t), Xz()) — fx(z(t)) = a constant.

More precisely, the left-hand side of the equation above is independent of
t. (See [6], for a more direct proof of the fact using (2.4).) Assuming that
z(0) = z(1) = o, we then have

(@(0), Xo) = (£(1), Xo).
Since M is homogeneous,
To(M)={X,|Lx(, )=0, Lx¢=0}.

Hence we have £(0) = #(1). Since (2.4) is an ordinary differential equation
of second order, the theorem is proved. O

Let Y be in Z4(M). Assume that there exists a function fy such that
(Y)F = dfy.

(For instance, if H'(M) = {0}, such a function fy exists. When M is an
almost a-Sasakian manifold (M, ( , ), @, 7, £), where « is a nonzero constant,

then such a function exists. See [6, Prop. 3.8] for details.) We define a
function PY on T(M) by

PY(u) = (u,Y) — fy(n(u) = (Py — from)(u) (u€T(M)).
We denote by {, }r the Poisson bracket with respect to wp.
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Proposition 2.5 LetY be in Zy(M). Assume that there exists a function
fy such that «(Y)F = dfy. Then

(1) The Hamiltonian vector field of PL with respect to wp coincides
with the Hamiltonian vector field Xp, of Py with respect to w.

(2) {H,PL}r =0, where H(u) = 2 {u,u).

Proof. (1) Using (Y)F = dfy and [1.2), we have d(fy om) = «(Xp, )n*F.
Thus

dP{ = dPy — d(fy o) = u(Xp, ) — o(Xp, )T F = X p, Jwr.

(2) {H,P{}r=—Xp (H)={H Py} =0,
where (1) guarantees the first equality, and the last follows from [1.1}. O

Using Noether’s theorem, Propositions [.3 and 2.5, we see the following:
The one-parameter transformation group of T'(M) which is induced from
the one-parameter transformation group of M generated by X € Z4(M) is
a symplectic transformation that preserves H.

Assume that there exists a function fy such that dfy = +(Y)F for any
Y € Zy(M). We examine the relation between {Pf, P{}p and P[I;, z) for

Y,Z € Z4(M). In order to formulate this, we define an equivalence relation
~on C®(T(M)) by
fi ~ fa & fa — fi = a constant function (f1, fo € C®(T(M))).

We denote by C*°(T'(M))/R the set of equivalence classes of C®(T'(M)).
If we set

{lAlfal}r = {1 fo} ] (f1, fo € CF(T(M))),

then the induced Poisson bracket { , }r on C®°(T(M))/R is well-defined,
where we denote by [f] the equivalence class of f € C®(T(M)).

Proposition 2.6 Assume that there exists a function fy such that dfy =
UY)F for any Y € Ty(M). Then the mapping

[PF]: (Zg(M), [, ]) = (C®(T(M))/R,{, }r); Y = [PE]
1s a Lie homomorphism, that is,

{[P}E]a[Pg]}F = [P[g,Z]] (Y’Z€I¢(M))'
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Proof.

{P¢,Pf}r = —wr(Xp,, Xp,)
= —(w(Xpy, Xp,) = (" F)(Xp,, Xp,))
= {Py, Pz} + F(Y,Z)on
= Pyy+F(Y,Z)or
=Py,z1— fivz1om+ flyz1on+ F(Y,Z) o
=Py g+ (fy,z + F(Y,Z))o,

where the first equality comes from [Proposition 2.5, the third from
and the fourth from Propositon 1.1. Taking into account [Proposition 2.2

completes the proof. O
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