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Hamiltonian dynamics of a charged particle

Osamu IKAWA\star

(Received May 7, 2002; Revised June 19, 2002)

Abstract. We study the Hamiltonian dynamics of a charged particle using a noncanon-
ical symplectic structure on the tangent bundle. We show that if the motion of a charged
particle in a homogeneous space satisfying a certain condition intersects itself, then it is
simply closed.
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Introduction

Let F be a closed 2-form and U a function on a connected semi-
Riemannian manifold (M, \langle. \rangle) . We denote by \iota(X) :\wedge^{m}(M) – \wedge^{m-1}(M)

the interior product operator induced from X , and by \mathcal{L} : T(M) – T^{*}(M) ,
the Legendre transformation defined by

\mathcal{L} : T(M)arrow T^{*}(M);u\mapsto \mathcal{L}(u) , \mathcal{L}(u)(v)=\langle u, v\rangle (v\in T(M)) .

A curve x(t) in M is called the motion of a charged particle under electrO-
magnetic field F and potential energy U. if it satisfies the following differ-
ential equation

\nabla_{\dot{x}}\dot{x}=- grad U-\mathcal{L}^{-1}(\iota(\dot{x})F) ,

where \nabla is the Levi-Civita connection of M . This equation originated in
the theory of general relativity (see [6, \S 1] or [10, p. 112, (19.15)]). When
F=0 and U=0, then x(t) is merely a geodesic. If x(t) is the motion of a
charged particle under F and U , then the total energy

\frac{1}{2}\langle\dot{x},\dot{x}\rangle+U(x(t)) (0.1)

is a constant. If F has an electromagnetic potential A , that is F=dA, then
we define a functional E by
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E(x)= \int_{0}^{1}(\frac{1}{2}\langle\dot{x},\dot{x}\rangle+\frac{1}{2}A(\dot{x})-U(x(t)))dt .

The Euler-Lagrange equation of E is the motion of a charged particle under
F and U .

We denote by \pi : T(M) – M the tangent bundle over M . Based on
(0.1), we define a function H on T(M) as

H(u)= \frac{1}{2}\langle u, u\rangle+U(\pi(u)) (u\in T(M)) .

In this paper, we show that, even if F does not have an electromagnetic
potential, the motion of a charged particle is a Hamiltonian system using H
and a noncanonical symplectic structure on T(M) (Theorem 2.1). We here
mention some fundamental definitions concerning symplectic geometry. A
symplectic structure on a manifold is a closed 2-form which is nondegenerate
at each point. A symplectic manifold is a manifold possessing a symplectic
structure. A symplectic manifold is even-dimensional and orientable. A
diffeomorphism on a symplectic manifold is called a symplectic transforma-
tion if it preserves the symplectic structure, though, in old literatures, a
symplectic transformation was called a canonical transformation.

In general it is an interesting question whether a given equation of
motion has a periodic solution or not. In relation to this problem, we study
the simpleness of the motion of a charged particle under electromagnetic
field F and U=0 in a homogeneous space satisfying a certain condition.
Here a curve in a manifold is simple if it is either a simply closed periodic
curve or if it does not intersect itself. Our main purpose in this paper is
to show that every motion of a charged particle under an electromagnetic
field associated with G-homogeneous semi-Riemannian manifold is simple,
if the Lie algebra \mathfrak{g} of G satisfies [\mathfrak{g}, \mathfrak{g}]

=\mathfrak{g} (see Theorem 2.4). Other
sufficient conditions for the simpleness of the motion of a charged particle
in a homogeneous space and its application are found in [6, Th. 2.3, Cor. 2.4,
Cor 2.5, Th. 3.9]. We refer to [1], [2], [3] and their references for studies of
the motion of charged particles.

The author would like to thank the referee for his useful suggestions.

1. Hamiltonian dynamics of a geodesic

In this section, we review the Hamiltonian dynamics of a geodesic, which
is defined by \nabla_{\dot{x}}\dot{x}=0 , in a semi-Riemannian manifold (M, \langle, \rangle) , in order to
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contrast it with the Hamiltonian dynamics of a charged particle discussed
in the next section. The results obtained in this section will be used in the
next section. Define a function H on T(M) by

H(u)= \frac{1}{2}\langle u, u\rangle (u\in T(M)) ,

which corresponds to the kinetic energy. We denote by X_{H} the Hamiltonian
vector field of the Hamiltonian H with respect to the canonical symplectic
structure \omega on T(M) , that is, dH=\iota(X_{H})\omega . We denote by \{ , \} the
Poisson bracket on C^{\infty}(T(M)) with respect to \omega , which is defined by

\{f, g\}=X_{f}(g)=\omega(X_{g}, X_{f}) for f, g\in C^{\infty}(T(M)) .

It is known that each orbit of the geodesic flow on T(M) coincides with
the integral curve of X_{H}([4]) . We define a mapping

P : X(M)arrow(C^{\infty}(T(M)), \{. \}) ; Y\mapsto P_{Y}

by P_{Y}(u)=\langle u, Y\rangle . It is clear that P is injective. It is known that if Y is
a Killing vector field, then P_{Y} is a conservative constant for geodesies ([7,
Lemma 9.26]). In other words,

\{H, P_{Y}\}=0 (1.1)

for any Killing vector field Y

Proposition 1.1 ([4, p. 222]) \{P_{Y}, P_{Z}\}=P_{[Y,Z]}(Y, Z\in X(M)) .

Proof. This result is well-known. But we give a proof for completeness.
Let (x^{1}, \ldots, x^{n}) be a local coordinate system in M. The components g_{ij} of

\langle . \rangle with respect to (x^{1}, ., x^{n}) are given by g_{ij}= \langle\frac{\partial}{\partial x^{i}}, \frac{\partial}{\partial x^{j}}\rangle . We denote
by (g^{ij}) the inverse matrix of (g_{ij}) . We introduce a local coordinate system
(x^{1}, , x^{n}, u^{1}, \ldots, u^{n}) in T(M) by setting

u= \sum_{i=1}^{n}u^{i}(u)\frac{\partial}{\partial x^{i}} (u\in T(M)) .

The local expression for the canonical symplectic structure \omega is then given
by

\omega=\sum_{i,j,k}\frac{\partial g_{ij}}{\partial x^{k}}u^{j}dx^{i}\wedge dx^{k}+\sum_{i,j}g_{ij}dx^{i}\Lambda du^{j}=-d(\sum g_{ij}u^{j}dx^{i})



664 O. Ikawa

We use these notations throughout this paper. The vector fields Y and Z
can be written as Y= \sum Y^{i}\frac{\partial}{\partial x^{i}} , Z= \sum Z^{i}\frac{\partial}{\partial x^{i}} , so

P_{Z}= \sum g_{ij}Z^{i}u^{j} , and P_{[Y,Z]}= \sum g_{jk}(Y^{i}\frac{\partial Z^{j}}{\partial x^{i}}-Z^{i}\frac{\partial Y^{j}}{\partial x^{i}})u^{k} .

Since dP_{Y}=\iota(X_{P_{Y}})\omega , we have

X_{P_{Y}}= \sum Y^{i}\frac{\partial}{\partial x^{i}}-\sum(Y^{k}\frac{\partial g_{ij}}{\partial x^{k}}+\frac{\partial Y^{k}}{\partial x^{i}}gjk)g^{il}u^{j}\frac{\partial}{\partial u^{l}} . (1.2)

Hence we obtain

\{P_{Y}, P_{Z}\}=X_{P_{Y}}(P_{Z})

= \sum Y^{i}\frac{\partial(g_{jk}Z^{j})}{\partial x^{i}}u^{k}-\sum(Y^{k}\frac{\partial g_{ij}}{\partial x_{k}}+\frac{\partial Y^{k}}{\partial x^{i}}gjk)g^{il}u^{j}g_{pl}Z^{p}

= \sum Y^{i}\frac{\partial(g_{jk}Z^{j})}{\partial x^{i}}u^{k}-\sum(Y^{j}\frac{\partial gik}{\partial x_{j}}+\frac{\partial Y^{j}}{\partial x^{i}}gjk)Z^{i}u^{k}

= \sum g_{jk}(Y^{i}\frac{\partial Z^{j}}{\partial x^{i}}-Z^{i}\frac{\partial Y^{j}}{\partial x^{i}})u^{k}

=P_{[Y,Z]} .
\square

A diffeomorphism \varphi of M induces a transformation \varphi_{*} of T(M) . Thus
a vector field Y of M induces vector fields of T(M) in the following two
ways: One is the Hamiltonian vector field X_{P_{Y}} of P_{Y} , and the other is
d\varphi_{t*}(u)

\overline{dt}|t=0(u\in T(M)) , where \varphi_{t} is the one parameter transformation group
of M generated by Y

When Y is a Killing vector field, by (1.1) Noether’s theorem tells us
that the one-parameter transformation group of T(M) generated by X_{P_{Y}} is
a symplectic transformation which preserves H

Lemma 1.2 Let \varphi_{t} be the one-parameter transformation group of M gen-
erated by a vector field Y= \sum Y^{i}\frac{\partial}{\partial x^{i}} . Then the vector field \frac{d\varphi_{t*}}{dt}|t=0 can be
expressed as

\frac{d\varphi_{t*}}{dt}=\sum Y^{i}\frac{\partial}{\partial x^{i}}+\sum\frac{\partial Y^{l}}{\partial x^{j}}u^{j}\frac{\partial}{\partial u^{l}}|t=0^{\cdot}

Proof. For u\in T(M) , set x=\pi(u)\in M .
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Take a curve x(s)=(x^{1}(s), ., x^{n}(s)) in M such that \dot{x}(0)=u=
\sum u^{i}\frac{\partial}{\partial x^{i}} . Then

\frac{d\varphi_{t*}(u)}{dt}=|t=0\frac{d}{dt}(\varphi_{t}(x), \frac{d}{ds}\varphi_{t}(x(s))_{|s=0})_{|t=0}

= \sum Y^{i}\frac{\partial}{\partial x^{i}}+\frac{d}{ds}(Y^{1}(x(s)) , .,_{Y^{n}(x(s)))_{|s=0}}

= \sum Y^{i}\frac{\partial}{\partial x^{i}}+\sum\frac{\partial Y^{i}}{\partial x^{j}}u^{j}\frac{\partial}{\partial u^{i}} .

\square

Proposition 1.3 Let \varphi_{t*} be the one-parameter transformation group of
T(M) induced from the one parameter transformation group \varphi_{t} of M gener-
ated by a Killing vector field Y Then \varphi_{t*} coincides wilh the one-parameter
transformation group generated by the Hamiltonian vector field of P_{Y} .

Proof. Since Y is a Killing vector field,

\sum_{k}Y^{k}\frac{\partial g_{ij}}{\partial x^{k}}=Y(\langle\frac{\partial}{\partial x^{i}},
\frac{\partial}{\partial x^{j}}\rangle)

=\langle[Y, \frac{\partial}{\partial x^{i}}] , \frac{\partial}{\partial x^{j}}\rangle+\langle
\frac{\partial}{\partial x^{i}} , [Y, \frac{\partial}{\partial x^{j}}]\rangle

=- \sum_{k}(\frac{\partial Y^{k}}{\partial x^{i}}g_{kj}+\frac{\partial Y^{k}}{\partial x^{j}}g_{ki})

Applying \sum_{i}g^{il} to the equation above, we have

\frac{\partial Y^{l}}{\partial x^{j}}=-\sum(\frac{\partial Y^{k}}{\partial x^{i}}g_{kj}+Y^{k}\frac{\partial g_{ij}}{\partial x^{k}})g^{il} .

Using (1.2) and Lemma 1.2, we obtain

X_{P_{Y}}= \sum Y^{i}\frac{\partial}{\partial x^{i}}+\sum\frac{\partial Y^{l}}{\partial x^{j}}u^{j}\frac{\partial}{\partial u^{l}}=\frac{d\varphi_{t*}}{dt}|t=0^{\cdot}

\square

2. Hamiltonian dynamics of a charged particle

In this section, we study the Hamiltonian dynamics of the motion of a
charged particle in a connected semi-Riemannian manifold (M, \langle. \rangle) , which
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is defined as

\nabla_{\dot{x}}\dot{x}=- grad U-\mathcal{L}^{-1}(\iota(\dot{x})F) . (2.1)

We define a function H on T(M) by

H(u)= \frac{1}{2}\langle u, u\rangle+U(\pi(u)) (u\in T(M)) ,

corresponding to the total energy. We define a closed 2-form \omega_{F} on T(M)
by

\omega_{F}=\omega-\pi^{*}F.

For each tangent vector u\in T(M) , we denote by x_{u} the motion of a
charged particle (2.1) with the initial vector u . The electromagnetic flow
\Phi_{t} : T(M)arrow T(M) is defined by \Phi_{t}(u)=\dot{x}_{u}(t) .

Theorem 2.1 (1) The closed 2-form \omega_{F} is a symplectic structure on
T(M) .

(2) We denote by X_{H}^{F} the Hamiltonian vector field of the Hamiltonian
H with respect to \omega_{F} . Each orbit of the electromagnetic flow on T(M)
coincides with the integral curve of X_{H}^{F} .

Remark This theorem is well-known when F =0 . The theorem is also
well-known when M =R_{1}^{4} and U =0 ([8], [4, \S 20] and [5, \S 4]).

Proof (1) The components F_{ij} of F with respect to (x^{1}, . ’ x^{n}) are given
by F_{ij}=F( \frac{\partial}{\partial x^{i}}, \frac{\partial}{\partial x^{j}}) . The local expression for the closed 2-form \omega_{F} is given
by

\omega_{F}=\sum_{i,j,k}\frac{\partial g_{ij}}{\partial x^{k}}u^{j}dx^{i}\wedge dx^{k}+\sum_{i,j}g_{ij}dx^{i}\wedge du^{j}-\frac{1}{2}\sum_{i,j}F_{ij}dx^{i}\Lambda dx^{j} .

Hence \omega_{F} is nondegenerate at each point; that is, \omega_{F} is a symplectic struc-
ture on T(M) .

(2) We denote by \Gamma_{ij}^{k} the Christoffel symbols. Let x(t)=(x^{1}(t) , .
x^{n}(t)) be a curve in M. Then

\nabla_{\dot{x}}\dot{x}=\sum_{k}(\dot{x}^{k}+\sum_{i,j}\dot{x}^{i}\dot{x}^{j}\Gamma_{ij}^{k})\frac{\partial}{\partial x^{k}} .
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Since

grad U= \sum_{i,j}g^{ij}\frac{\partial U}{\partial x^{i}}\frac{\partial}{\partial x^{j}} and \mathcal{L}^{-1}(\iota(\dot{x})F)=\sum_{i,j,k}\dot{x}^{k}F_{kig\frac{\partial}{\partial x^{j}}}^{ij} ,

the equation of motion (2.1) of a charged particle is equivalent to

\dot{x}^{k}+\sum_{i,j}\dot{x}^{i}\dot{x}^{j}\Gamma_{ij}^{k}=-\sum_{i}g^{ik}\frac{\partial U}{\partial x^{i}}-\sum_{i,j}\dot{x}^{j}F_{jig}^{ik} . (2.2)

Since the local expression for the Hamiltonian H is given by

H(x^{1} , . .,^{x^{n}} , .,^{u^{n})}= \frac{1}{2}\sum_{i,j}u^{i}u^{j}g_{ij}+U(x^{1} , . ,^{x^{n})} ,

we have

dH= \frac{1}{2}\sum_{i,j,k}\frac{\partial g_{ij}}{\partial x^{k}}u^{i}u^{j}dx^{k}+\sum_{i,j}g_{ij}u^{i}du^{j}+\sum_{k}\frac{\partial U}{\partial x^{k}}dx^{k}

Since dH=\iota(X_{H}^{F})\omega_{F} , we obtain

X_{H}^{F}= \sum_{i}u^{i}\frac{\partial}{\partial x^{i}}-\sum(\Gamma_{ji}^{l}u^{j}u^{i}+g^{kl}\frac{\partial U}{\partial x^{k}}+g^{kl}F_{ik}u^{i})\frac{\partial}{\partial u^{l}} . (2.3)

Here we mention the meaning of the right-hand side of the above equa-
tion. The vector field X_{H_{0}}= \sum_{i}u^{i}\frac{\partial}{\partial x^{i}}-\sum\Gamma_{ji}^{l}u^{j}u^{i}\frac{\partial}{\partial u^{l}} is the HamiltO-
nian vector field of H_{0}(u)= \frac{1}{2}\langle u, u\rangle with respect to \omega , the vector field
- \sum g^{kl}\frac{\partial U}{\partial x^{k}}\frac{\partial}{\partial u^{l}} is the Hamiltonian vector field of U\circ\pi with respect to \omega , and
Y=- \sum g^{kl}F_{ik}u^{i}\frac{\partial}{\partial u^{l}} is characterized by the equation \iota(Y)\omega=\iota(X_{H_{0}})\pi^{*}F

The integral curve (x^{1}(t), ., x^{n}(t), u^{1}(t), ., u^{n}(t)) of X_{H}^{F} satisfies

\dot{x}^{l}=u^{l} , \dot{u}^{l}=-(\sum\Gamma_{ji}^{l}u^{j}u^{i}+\sum g^{kl}\frac{\partial U}{\partial x^{k}}+\sum g^{kl}F_{ik}u^{i})

by (2.3), which, together with (2.2), yields the assertion. \square

Henceforth, we set U=0. We define a tensor field \phi of type (1, 1) by

\phi X=-\mathcal{L}^{-1}(\iota(X)F) , F(X, Y)=\langle X, \phi Y\rangle ,

which is skew-symmetric with respect to \langle _{\backslash }\rangle . We consider the motion of a
charged particle

\nabla_{\dot{x}}\dot{x}=\phi\dot{x} (2.4)
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under electromagnetic field F. We define a Lie subalgebra I_{\phi}(M) in X(M)
by

I_{\phi}(M)=\{X\in X(M)|L_{X} \langle. \rangle=0, L_{X}\phi=0\} .

For X\in I_{\phi}(M) , we have d(\iota(X)F)=0 .

Proposition 2.2 Lei X and Y be in I_{\phi}(M) . Then

\iota([X, Y])F=-d(F(X, Y)) .

Proof. Let Z be any vector field of M . Since \langle . \rangle is parallel,

Z(F(X, Y))=Z(\langle X, \phi Y\rangle)

=\langle\nabla_{Z}X, \phi Y\rangle-\langle\phi X, \nabla_{Z}Y\rangle+\langle X, (\nabla_{Z}\phi)(Y)\rangle .

Since X and Y are Killing vector fields,

\langle\nabla_{Z}X, \phi Y\rangle-\langle\phi X, \nabla_{Z}Y\rangle=\langle Z, \nabla_{\phi X}Y-\nabla_{\phi Y}X\rangle .

Since X and Y are infinitesimal automorphisms of \phi ,

\nabla_{\phi X}Y-\nabla_{\phi Y}X=\nabla_{Y}(\phi X)+[\phi X, Y]-\nabla_{X}(\phi Y)-[\phi Y, X]

=\phi[X, Y]+(\nabla_{Y}\phi)(X)-(\nabla_{X}\phi)(Y) .

Combining these equations above,

Z(F(X, Y))=\langle Z, \phi[X, Y]\rangle+\mathfrak{S}_{X,Y,Z}\langle X, (\nabla_{Z}\phi)(Y)\rangle

=-F([X, Y], Z) ,

where the last equality derives from dF=0. \square

We apply the above proposition to the study on simpleness of motions
of charged particles (2.4).

Definition 2.3 Let (M, \langle, \rangle) be a semi-Riemannian manifold and \phi a
tensor field of type (1, 1) on M such that \langle\phi X, Y\rangle+\langle X, \phi Y\rangle=0 . A manifold
(M, \langle, \rangle, \phi) of this type is called G-homogeneous (or simply homogeneous)
if a Lie transformation group G of isometries acts transitively and effectively
on M. and \phi is invariant under the action of G .

We refer to T. Adachi [1], T. Sunada [9] and their references for studies
on electromagnetic flows associated with a scalar multiple of K\"ahler forms
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in a complex projective space and a complex hyperbolic space. These spaces
are typical examples of G-homogeneous Riemannian manifolds.

In a manner similar to the proof of [6, Theorem 2.3], we have the
following.

Theorem 2.4 Let (M, \langle , \rangle, \phi) be a G -homogeneous semi-Riemannian
manifold. Assume that the 2-form F defined by F(X, Y)=\langle X, \phi Y\rangle is
closed. If [\mathfrak{g}, \mathfrak{g}]=\mathfrak{g} , then every motion (2.4) of a charged particle is simple,
where \mathfrak{g} is the Lie algebra of G .

Proof. Let x(t) be the motion of a charged particle. For X\in \mathfrak{g} , we also
denote by X the induced Killing vector field of M , which is an infinitesi-
mal automorphism of \phi . Since [\mathfrak{g}, \mathfrak{g}]=\mathfrak{g} , it follows from Proposition 2.2
that there exixts a function f_{X} such that \iota(X)F=df_{X} . Using Proposi-
tion 2.5, (2) and Theorem 2.1, (2), we have

\langle\dot{x}(t), X_{x(t)}\rangle-f_{X}(x(t))=a constant.

More precisely, the left-hand side of the equation above is independent of
t . (See [6], for a more direct proof of the fact using (2.4).) Assuming that
x(O)=x(1)=0, we then have

\langle\dot{x}(0), X_{o}\rangle=\langle\dot{x}(1), X_{o}\rangle .

Since M is homogeneous,

T_{o}(M)=\{X_{o}|L_{X} \langle, \rangle=0, L_{X}\phi=0\} .

Hence we have \dot{x}(O)=\dot{x}(1) . Since (2.4) is an ordinary differential equation
of second order, the theorem is proved. \square

Let Y be in I_{\phi}(M) . Assume that there exists a function f_{Y} such that

\iota(Y)F=df_{Y} .

(For instance, if H^{1}(M)=\{0\} , such a function f_{Y} exists. When M is an
almost \alpha-Sasakian manifold (M, \langle _{\backslash }\rangle, \phi, \eta, \xi) , where \alpha is a nonzero constant,
then such a function exists. See [6, Prop. 3.8] for details.) We define a
function P_{Y}^{F} on T(M) by

P_{Y}^{F}(u)=\langle u, Y\rangle-f_{Y}(\pi(u))=(P_{Y}-f_{Y}\circ\pi)(u) (u\in T(M)) .

We denote by \{
-

\}_{F} the Poisson bracket with respect to \omega_{F} .
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Proposition 2.5 Let Y be in I_{\phi}(M) . Assume that there exists a function
f_{Y} such that \iota(Y)F=df_{Y} . Then

(1) The Hamiltonian vector field of P_{Y}^{F} with respect to \omega_{F} coincides
with the Hamiltonian vector field X_{P_{Y}} of P_{Y} with respect to \omega .

(2) \{H, P_{Y}^{F}\}_{F}=0 , where H(u)= \frac{1}{2}\langle u, u\rangle .

Proof. (1) Using \iota(Y)F=df_{Y} and (1.2), we have d(f_{Y}o\pi)=\iota(X_{P_{Y}})\pi^{*}F .
Thus

dP_{Y}^{F}=dP_{Y}-d(f_{Y}\circ\pi)=\iota(X_{P_{Y}})\omega-\iota(X_{P_{Y}})\pi^{*}F=\iota(X_{P_{Y}})\omega_{F} .

(2) \{H, P_{Y}^{F}\}_{F}=-X_{P_{Y}}(H)=\{H, P_{Y}\}=0 ,
where (1) guarantees the first equality, and the last follows from (1.1). \square

Using Noether’s theorem, Propositions 1.3 and 2.5, we see the following:
The one-parameter transformation group of T(M) which is induced from
the one-parameter transformation group of M generated by X\in I_{\phi}(M) is
a symplectic transformation that preserves H .

Assume that there exists a function f_{Y} such that df_{Y}=\iota(Y)F for any
Y\in I_{\phi}(M) . We examine the relation between \{P_{Y}^{F}, P_{Z}^{F}\}_{F} and P_{[Y,Z]}^{F} for
Y, Z\in I_{\phi}(M) . In order to formulate this, we define an equivalence relation
\sim onC^{\infty}(T(M)) by

f_{1}\sim f_{2}\Leftrightarrow f_{2}-f_{1}=a constant function (f_{1}, f_{2}\in C^{\infty}(T(M))) .

We denote by C^{\infty}(T(M))/R the set of equivalence classes of C^{\infty}(T(M)) .
If we set

\{[f_{1}], [f_{2}]\}_{F}=[\{f1, f_{2}\}_{F}] (f_{1}, f_{2}\in C^{\infty}(T(M))) ,

then the induced Poisson bracket \{ . \}_{F} on C^{\infty}(T(M))/R is well-defined,
where we denote by [f] the equivalence class of f\in C^{\infty}(T(M)) .

Proposition 2.6 Assume that there exists a function f_{Y} such that df_{Y}=

\iota(Y)F for any Y\in I_{\phi}(M) . Then the mapping

[P^{F}] : (I_{\phi}(M), [. ])arrow(C^{\infty}(T(M))/R, \{, \}_{F});Y\mapsto[P_{Y}^{F}]

is a Lie homomorphism, that is,

\{[P_{Y}^{F}], [P_{Z}^{F}]\}_{F}=[P_{[Y,Z]}^{F}] (Y, Z\in I_{\phi}(M)) .
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Proof.
\{P_{Y}^{F}, P_{Z}^{F}\}_{F}=-\omega_{F}(X_{P_{Y}}, X_{P_{Z}})

=-(\omega(X_{P_{Y}}, X_{P_{Z}})-(\pi^{*}F)(X_{P_{Y}}, X_{P_{Z}}))

=\{P_{Y}, P_{Z}\}+F(Y, Z)0\pi

=P_{[Y,Z]}+F(Y, Z)0\pi

=P[Y,Z]-f[Y,Z]0\pi+f[Y,Z]0\pi+F(Y, Z)0\pi

=P_{[Y,Z]}^{F}+(f_{[Y,Z]}+F(Y, Z))0\pi ,

where the first equality comes from Proposition 2.5, the third from (1.2)
and the fourth from Propositon 1.1. Taking into account Proposition 2.2
completes the proof. \square
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