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On singular solutions of implicit second-order
ordinary differential equations
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Abstract. In this note we discuss the notion of singular solutions of completely inte-
grable implicit second-0rder ordinary differential equations. After restricting the class
of admissible equations we give conditions under which singular solutions occur in 1-
parameter families and as isolated objects.
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1. Introduction

Consider an implicit second-0rder ordinary differential equation

F(x, y, y’, y’)=0 , (1)

where F is a smooth function of the independent variable x and of the
“unknown” function y and its first and second derivatives y’=dy/dx , y’=
d^{2}y/dx^{2} . Replacing y’ by p and y’ by g , it is natural to consider F as being
defined on an open subset O\subset J^{2}(\mathbb{R}, \mathbb{R})\cong \mathbb{R}^{4} of the space of 2-jets of
functions of one variable. We will assume that F:Oarrow \mathbb{R} is a submersion.
It follows that the set S=F^{-1}(0) is a hypersurface of O . We shall denote
by \xi\subset TJ^{2}(\mathbb{R}, \mathbb{R}) the canonical second-0rder contact structure on J^{2}(\mathbb{R}, \mathbb{R}) .
This, by definition, is the tangent 2-plane field given as the common zero
set of the two l-forms

\alpha_{1}=dy-pdx , \alpha_{2}=dp-qdx .

Let z_{0}=(x_{0}, y_{0},p_{0}, q_{0}) be a point in S . A solution of (1) from the jet bundle
point of view corresponds to a regular integral curve \gamma : ((a, b) , t_{0}) – (S, z_{0})

of \xi that can be parametrised by x . By a geometric solution of (1) we shall
mean any regular integral curve \gamma : ((a, b) , t_{0})arrow(S, z_{0}) of \xi . We say that
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(1) is completely integrable around z_{0} if there exists a diffeomorphism

\Gamma : ((\alpha_{1}, \beta_{1})\cross(\alpha_{2}, \beta_{2})\cross(a, b) , (0, 0, t_{0})) -(S, z_{0})

such that for each pair (c_{1}, c_{2})\in(\alpha_{1}, \beta_{1})\cross(\alpha_{2}, \beta_{2}) , \Gamma(c_{1}, c_{2}, \cdot):((a, b), t_{0}) –

(S, z_{0}) is a geometric solution of (1). We call such a diffeomorphism \Gamma a com-
plete solution around z_{0} . We say that a geometric solution \gamma : ((a, b) , t_{0})arrow

(S, z_{0}) is a singular solution of (1) around z_{0} if for any open subinterval
(c, d)\subset(a, b) , \gamma|_{(c,d)} is never contained in a leaf of a complete solution
( c.f. Izumiya [2], Izumiya and Yu [3], M. and T. Fukuda [1]).

Around points z\in S such that the contact plane \xi_{z} intersects T_{z}S

transversally, it is easy to see that a complete solution exists simply by
integrating the line field \xi\cap TS . Around points where transversality fails
the situation is more complicated. As we shall see, there may not be a
complete solution around such points. We call points where transversality
fails to hold contact singular points and denote by \Sigma_{C}=\Sigma_{C}(F) the set of
contact singular points. It is easy to check that the set of contact singular
points is given by

\Sigma_{c}=\{z\in O|F(z)=0, F_{x}(z)+pF_{y}(z)+qF_{p}(z)=0, F_{q}(z)=0\}

From the definition of singular solutions, it is easy to see that a geometric
solution \gamma : ((a, b) , t_{0}) – (S, z_{0}) is a singular solution only if it is contained
in \Sigma_{c}(F) .

We present an example illustrating the notions of complete integrability
and singular solutions. This example was observed by Izumiya. Consider
the second-0rder Clairaut equation F(x, y, p, q)=p-qx-f(q)=0 , where

f is a smooth function of one variable. In this example F_{x}+pF_{y}+qF_{p}\equiv 0

and F_{q}=-x-f’(q) . Thus the contact singular set is given by

\Sigma_{c}=\{(x, y, p, q)|x=-f’(q), p=-qf’(q)+f(q)\} .

Notice that F(x, y, p, q)=0 admits the solution

y’=c_{1}x+f(c_{1})

for each c_{1}\in \mathbb{R} and thus

y= \frac{1}{2}c_{1}x^{2}+f(c_{1})x+c_{2}

for c_{1} , c_{2}\in \mathbb{R} is a general solution which gives rise to the complete solution
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\Gamma:\mathbb{R}\cross \mathbb{R}\cross \mathbb{R}arrow S given by

\Gamma(c_{1}, c_{2}, t)=(t, \frac{1}{2}c_{1}t^{2}+f(c_{1})t+c_{2} , c_{1}t+f(c_{1}) , c_{1})

Also observe that the map

\Phi:\mathbb{R}\cross \mathbb{R}arrow\Sigma_{C}

given by

\Phi(c, t)=(-f’(t), \int(tf’(t)f’(t)-f(t)f’(t))dt+c , -tf’(t)+f(t) , t)

gives a 1-parameter family of geometric solutions (depending on c) lying in
\Sigma_{c} . Clearly each member of this family is not a member of the complete
solution and thus we have a 1-parameter family of singular solutions foliating
\Sigma_{C} .

We will also need to consider the subset \triangle=\triangle(F)\subset\Sigma_{c} which is
defined to be the set of points z\in\Sigma_{C} such that T_{z}(F^{-1}(0)) coincides with
the kernel of \alpha_{1}(z) . Explicitly, this set is given by \triangle=\{z\in\Sigma_{c}|F_{p}(z)=0\} .
Around points z\in\triangle , assuming that \triangle is nonempty, the presence of a
complete solution is not sufficient to ensure that the set \Sigma_{c} is a manifold
(see Section 2 for examples). To exclude this possibility, for simplicity, we
make assumption that 0 is regular value of F_{q}|s . We can now state our
results regarding the relation between complete solutions and the set \Sigma_{c} .

Theorem 1.1 Suppose that 0 is a regular value of F_{q}|_{S} . Then (1) is
completely integrable around a point z_{0}\in S if and only if z_{0}\not\in\Sigma_{C} or \Sigma_{c} is
a 2-dimensional manifold around z_{0} .

Theorem 1.2 Suppose that 0 is a regular value of F_{q}|_{S} and (1) is com-
pletely integrable.
(i) Leaves of the complete solution which meet \Sigma_{c} away from \triangle intersect

\Sigma_{C} transversally.
(ii) Leaves of the complete solution which meet \triangle meet \Sigma_{c} tangentially.

Assume now that \Sigma_{c}\neq\emptyset . As mentioned above, singular solutions,
if they exist, necessarily lie in \Sigma_{C} . Assuming that 0 is a regular value of
F_{q} , if (1) is completely integrable around a point z_{0}\in\Sigma_{c} , \Sigma_{c} is locally
a 2-dimensional manifold around z_{0} , and thus we may consider geometric
solutions \gamma : ((a, b) , t_{0}) – (S, z_{0}) such that Image(\gamma)\subset\Sigma_{c} . It follows from
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Theorem 1.2 that if the image of \gamma is not contained in \triangle , then such solutions,
if they exist, constitute singular solutions of (1). We call a diffeomorphism

\Phi : ((\alpha, \beta)\cross(a, b) , (0, t_{0}))arrow(\Sigma_{C}, z_{0})

such that for each c\in(\alpha, \beta) , \Phi(c, \cdot):((a, b), t_{0}) – (\Sigma_{C}, z_{0}) is a singular
solution, a complete singular solution around z_{0} .

As before, around points z\in\Sigma_{C} such that \xi_{z} intersects T_{z}\Sigma_{C} transver-
call in T_{z}(F^{-1}(0)) , it is easy to see that a complete singular solution exists
by integrating the line field \xi\cap T\Sigma_{C} . Around points where transversality
does not hold a complete singular solution need not exist. We call such
points second-Order contact singular points and denote by \Sigma_{cc}=\Sigma_{cc}(F) the
set of second-0rder contact singular points. The following result, concerning
the relation between complete singular solutions and the set \Sigma_{cc} , is similar
to the first-0rder case considered by Izumiya and Yu [3].

Theorem 1.3 Suppose that 0 is a regular value of F_{q}|_{S} , (1) is completely
integrable and \Sigma_{c}\neq\emptyset .
(i) Equation (1) admits a complete singular solution around a point z_{0}\in

\Sigma_{C} if and only if z_{0}\not\in\Sigma_{CC} or \Sigma_{CC} is a 1-dimensional manifold around
z_{0} .

(ii) Suppose that (1) admits a complete singular solution, then each leaf of
the complete singular solution intersects \Sigma_{cc} transversely.

If \Sigma_{CC} is a 1-dimensional manifold, it is necessarily a geometric solution
of (1). Also, as we shall see later (Lemma 3.7), \Sigma_{cc} is contained in \triangle . Thus,
in view of Theorem 1.2 (ii), it is not clear a priori whether \Sigma_{cc} is a singular
solution of (1) or not. However we have the following result.

Proposition 1.4 Suppose that 0 is a regular value of F_{q}|s , (1) is com-
pletely integrable and \Sigma_{cc} is a 1-dimensional manifold. Then \Sigma_{CC} is an
isolated singular solution of (1).

2. Geometrical interpretation of implicit second-0rder ordinary
differential equations

In this section we give a brief introduction to the concepts involved in
the geometric interpretation of second-0rder ordinary differential equations.
Further details and examples may be found in, for example, Komrakov and
Lychagin [4]. Let



On singular solutions of implicit second-Order ODEs 627

F(x, y, y’, y’)=0 (2)

be an implicit second-0rder ordinary differential equation. Then a solution
of (2) is a function h:(a, b) –

\mathbb{R} , defined on an interval (a, b)\subset \mathbb{R} , such
that F(x, h(x) , h’(x) , h’(x))=0 for all x\in(a, b) . This can naturally be
interpreted in the language of jet-bundles as follows.

Let f:\mathbb{R}arrow \mathbb{R} be a smooth function and x_{0}\in \mathbb{R} . The 2-jet of f at x_{0}

is, by definition, the 4-tuple

[f]_{x_{0}}^{2}= (x_{0}, f(x_{0}) , f’(x_{0}) , f’(x_{0})) .

The space of all 2-jets of smooth functions, J^{2}(\mathbb{R}, \mathbb{R}) , can naturally be iden-
tified with \mathbb{R}^{4} . The differential equation (2) can now be regarded as a
hypersurface

S=\{(x, y, p, q)\in J^{2}(\mathbb{R}, \mathbb{R})|F(x, y, p, q)=0\}

in J^{2}(\mathbb{R}, \mathbb{R}) . In this language a solution of (2) is a curve lying on S having
the form

\gamma_{h}=\{(x, y, p, q)|y=h(x), p=h’(x), q=h’(x)\}

for some real valued function h:(a, b) –
\mathbb{R} . If we fix a point z_{0}=

(x_{0}, y_{0}, p_{0}, qo) in J^{2}(\mathbb{R}, \mathbb{R}) , then the space spanned by the tangent vectors
to all curves of the form \gamma_{h} through z_{0} has the form

\xi_{z_{0}}=\{(X, Y, P, Q)|Y=p_{0}X, P=q_{0}X\} .

Alternatively, \xi_{z_{0}} is given as the common zero set of the two l-forms

\alpha_{1}=dy-p_{0}dx , \alpha_{2}=dp-q_{0}dx .

We call the family of 2-planes \xi_{z}\subset T_{z}J^{2}(\mathbb{R}, \mathbb{R}) , as z varies, the canonical
second-0rder contact structure on J^{2}(\mathbb{R}, \mathbb{R}) . One can now easily check that
a smooth curve \gamma:(a, b)arrow S , which is regular in the sense that \dot{\gamma}(t)\neq 0 for
every t\in(a, b) , is a solution of (2) if and only if the following two conditions
hold:

(i) \gamma is an integral curve of \xi ;
(ii) \gamma can be parametrised by x .

Dropping condition (ii) we arrive at the notion of a geometric solution.
These can be thought of as multivalued solutions of the original differential
equation. We now show how to construct a geometric solution through a
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general point z_{0} in S .
It can be shown that at a general point z_{0} in S the tangent space to

S , T_{z_{0}}S , intersects \xi_{z_{0}} transversally. This is obvious for a general smooth
equation F ; in fact, this is true for every smooth F. this follows from the
complete nonintegrability of contact structures on \mathbb{R}^{3} (as this fact will not
be needed later we omit the proof). Thus in a neighbourhood of z_{0} the
tangent spaces to S intersect the contact planes transversally and thus the
intersections define a tangent line field in a neighbourhood of z_{0} . Finding
an integral curve of this line field that passes through z_{0} now gives our ge-
ometric solution, which is obviously unique up to reparametrisation. Thus,
from the point of view of constructing geometric solutions, the points where
something interesting may occur are those points z\in S where T_{z}S does not
intersect \xi_{z} transversally. The set of such points is the set \Sigma_{c}=\Sigma_{C}(F)

referred to in the previous section. In this note we discuss ideas related to
the existence of certain geometric solutions contained entirely in the set \Sigma_{c} ,
namely singular solutions, under the assumption of complete integrability.

3. Preliminary results

We begin with the following elementary necessary and sufficient condi-
tion for the existence of a local complete solution.

Lemma 3.1 Equation (1) is completely integrable around a point z_{0}\in

S if and only if there exists a neighbourhood \Omega\subset S of z_{0} and functions
\alpha , \beta:\Omegaarrow \mathbb{R} , which do not vanish simultaneously, such that

\alpha(F_{x}+pF_{y}+qF_{p})|_{\Omega}+\beta F_{q}|_{\Omega}\equiv 0 .

Proof Suppose that (1) is completely integrable around z_{0} and let

\Gamma : ((\alpha_{1}, \beta_{1})\cross(\alpha_{2}, \beta_{2})\cross(a, b) , (0, 0, t_{0}))arrow(S, z_{0})

be a complete solution of (1) around z_{0} . Then differentiating \Gamma with respect
to t yields a vector field Z:\Omegaarrow TS , where \Omega=Image(\Gamma) , given by

Z(\Gamma(c_{1}, c_{2}, t))=\Gamma_{t}(c_{1}, c_{2}, t) .

Since Z(z) lies in the contact plane \xi_{z} for each z\in\Omega it has the form

Z=(\alpha, p\alpha, q\alpha, \beta)

for some functions \alpha , \beta:\Omega – IR which do not vanish simultaneously. But
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Z(z) also lies in T_{z}(F^{-1}(0)) for each z\in\Omega . It follows that the identity

\alpha(F_{x}+pF_{y}+qF_{p})|_{\Omega}+\beta F_{q}|_{\Omega}\equiv 0

holds. Reversing the above argument yields the converse. \square

Corollary 3.2 Suppose that (1) is completely integrable around a point
z_{0}\in S . Then either z_{0}\not\in\Sigma_{C} or \Sigma_{C} is a codimension 1 variety around z_{0} in
S .

In addition to the contact singular set \Sigma_{c}(F) , it will also be useful
to think of the the \pi singular set \Sigma_{\pi}(F) . This is defined as follows. Let
\pi:J^{2}(\mathbb{R}, \mathbb{R}) – J^{1}(\mathbb{R}, \mathbb{R}) denote the canonical projection of J^{2}(\mathbb{R}, \mathbb{R}) onto
the space of 1-jets of functions of one variable, given by (x, y, p, q) -

(x, y, p) . We say that a point z\in S is a \pi -singular point of (1) if \pi|_{S}

is not a diffeomorphism at z , that is, F_{q}(z)=0 , and denote by \Sigma_{\pi}=\Sigma_{\pi}(F)

the set of \pi-singular points. In most of our examples this set coincides with
the contact singular set \Sigma_{c} .

We now give some examples of completely integrable equations together
with a description of their contact singular sets. In the first example we also
explicitly describe the singular solutions. The details of the first example
were already substantially known to Izumiya.

Example 3.3 (First-0rder Clairaut equation) Let F(x, y, p, q)=px+
f(p)-y . Then F_{x}+pF_{y}+qF_{p}=q(x+f’(p)) , F_{q}=0 . Thus, by Lemma 3.1,
F(x, y, p, q)=0 is completely integrable with the complete solution being
given by

\Gamma(c_{1}, c_{2}, t)=(c_{2}, c_{1}c_{2}+f(c_{1}), c_{1} , t) .

In this example, the \pi singular set \Sigma_{\pi} is all of S and the contact singu-
lar set \Sigma_{c} decomposes as a union \Sigma_{1}\cup\Sigma_{2} of two 2-dimensional manifolds
intersecting transversely in S , where

\Sigma_{1}=\{(x, y, p, q)|y=px+f(p), q=0\} .

\Sigma_{2}=\{(x, y, p, q)|x=-f’(p), y=-pf’(p)+f(p)\}

Notice that \Sigma_{1} is foliated by a 1-parameter family of geometric solutions

\Phi_{1}(c, t)=(t, ct+f(c), c , 0).



630 M. Bhupal

This family is not contained in the complete solution and thus constitutes a
complete singular solution. The 1-parameter family of geometric solutions

\Phi_{2}(c, t)=(-f’(c), -cf’(c)+f(c), c , t)

foliates \Sigma_{2} , however this family is contained in the complete solution and
thus its members are not singular solutions. This failure is related to the
fact that \Sigma_{2} coincides with \triangle . Also notice that the second-0rder contact
singular set \Sigma_{CC} is contained in \Sigma_{2} and is given by

\Sigma_{CC}=\{(x, y, p, q)|x=-f’(p) , y=-pf’(p)+f(p) ,

q=-(f’(p))^{-1} , f ’(p)\neq 0\} .

Away from values t such that f’(t)=0 ,

\sigma(t)=(-f’(t), -tf’(t)+f(t), t, -(f’(p))^{-1})

defines a geometric solution contained in \Sigma_{cc} . This is an isolated singular
solution and corresponds to the geometric solution arising as the envelope
of the family \Phi_{1} .

The next example shows that even for genuine second-0rder equations
which are completely integrable the set \Sigma_{c} can fail to be a manifold.

Example 3.4 Let F(x, y, p, q)= \frac{2}{3}q^{3}+q^{2}x+px-y . In this case F_{x}+pF_{y}+

qF_{p}=q^{2}+qx , F_{q}=2q^{2}+2qx . Thus, again, by Lemma 3.1, F(x, y,p, q)=
0 is completely integrable. In this example, the contact singular set \Sigma_{C}

coincides with the \pi singular set \Sigma_{\pi} and is given by

\Sigma_{C}=\{(x, y, p, q)|y=px, q=0\}

\cup\{(x, y, p, q)|y=\frac{1}{3}x^{3}+px , q=-x\} .

That is, \Sigma_{c} consists of two 2-dimensional manifolds intersecting transversely
in S . Notice that the intersection of these two manifolds is \triangle which in this
case is a 1-dimensional manifold.

In the next proposition we will assume that the contact singular set \Sigma_{c}

is nonempty.

Proposition 3.5 Suppose that (1) is completely integrable around a point
z_{0}\in\Sigma_{C} .
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(i) If z_{0}\in\Sigma_{C}\backslash \triangle , then \Sigma_{c} is a 2-dimensional manifold around z_{0} .
(ii) If z_{0}\in\triangle , then \Sigma_{C} is locally the zero set of a function on S which has

nonzero 2-jet at this point.

This proposition gives us some restriction on the topology of the set \Sigma_{c}

in the completely integrable case. For instance, \Sigma_{c} cannot consist of three
or more 2-dimensional manifolds intersecting at a point.

Proof of Proposition 3.5. (i) It is sufficient to show that one of the func-
thus (F_{x}+pF_{y}+qF_{p})|s , F_{q}|s has nonzero gradient at z_{0} . Since z_{0}\not\in\triangle , we
have F_{p}(z_{0})\neq 0 . Thus, by the implicit function theorem, there exists a func-
tion g:U –

\mathbb{R} , defined on an open set U\subset \mathbb{R}^{3} , such that, in a neighbour-
hood of z_{0} , a point (x, y, p, q)\in O is in S if and only if p=g(x, y, q) . Thus,
without loss of generality, we may assume that F(x, y, p, q)=g(x, y, q)-p .
Let \varphi:U – S denote the map (x, y, q) – (x, y, g(x, y, q), q) . Then it is
sufficient to check that one of the functions g_{x}+gg_{y}-q , g_{q} has nonzero
gradient at u_{0}=\varphi^{-1}(z_{0}) . Now we have either

\frac{\partial}{\partial q}(g_{x}+gg_{y}-q)(u_{0})=g_{xq}(u_{0})+g(u_{0})g_{yq}(u_{0})-1\neq 0

or one of g_{xq}(u_{0})=\partial_{x}g_{q}(u_{0}) , g_{yq}(u_{0})=\partial_{y}g_{q}(u_{0}) is nonzero. This proves
(i).

(ii) Since F_{p}(z_{0})=0 and since \nabla F(z_{0})\neq 0 , from the definition of \Sigma_{c}

we have F_{y}(z_{0})\neq 0 . Thus, again, by the implicit function theorem, there
exists a function h:Varrow \mathbb{R} , defined on an open set V\subset \mathbb{R}^{3} , such that,
in a neighbourhood of z_{0} , a point (x, y, p, q)\in O is in S if and only if
y=h(x, p, q) . Hence, without loss of generality, we may now assume that
F(x, y, p, q)=h(x, p, q)-y . Let \psi:V – S denote the map (x, p, q) -

(x, h(x, p, q),p, q) . Then it sufficient to check that one of the functions
h_{x}-p+qh_{p} , h_{q} has nonzero first or second derivatives at v_{0}=\psi^{-1}(z_{0}) .
Since F_{p}(z_{0})=0 , we have h_{p}(v_{0})=0 . Now it may happen that all first
derivatives of h_{x}-p+qh_{p} and h_{q} vanish at v_{0} . Suppose this is the case,
then, in particular,

\frac{\partial}{\partial p}(h_{x}-p+qh_{p})(v_{0})=h_{xp}(v_{0})-1+qh_{pp}(v_{0})=0

and thus one of h_{xp}(v_{0}) , h_{pp}(v_{0}) is nonzero. Suppose that h_{xp}(v_{0})\neq 0 .
Then either
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\frac{\partial}{\partial q}\frac{\partial}{\partial x}(h_{x}-p+qh_{p})(v_{0})=h_{xxq}(v_{0})+h_{px}(v_{0})+qh_{pxq}(v_{0})\neq 0

or one of h_{xxq}(v_{0})=\partial_{x}\partial_{x}h_{q}(v_{0}) , h_{pxq}(v_{0})=\partial_{x}\partial_{p}h_{q}(v_{0}) is nonzero, as re-
quired. The case h_{pp}(v_{0})\neq 0 is similar. This proves Proposition 3.5. \square

We continue to assume that \Sigma_{c}\neq 0 . When 0 is a regular value of F_{q}|_{S}

we can obtain more precise information about the sets \Sigma_{c} and \triangle in the
completely integrable case.

Proposition 3.6 Suppose that 0 is a regular value of F_{q}|s and (1) is
completely integrable around a point z_{0}\in\Sigma_{C} .
(i) \Sigma_{c} is a 2-dimensional manifold around z_{0} .
(ii) If z\in\triangle , then \triangle is a 1-dimensional manifold around z_{0} .

We point out that, in case \triangle is a 1-dimensional manifold it need not
be a geometric solution (see Example 5.2).

Proof of Proposition 3.6. (i) Follows immediately from Lemma 3.1.
(ii) As in the proof of Proposition 3.5, we may assume, without loss

of generality, that F has the form F(x, y, p, q)=h(x, p, q)-y for some
function h:V –

\mathbb{R} , where V is a open subset of \mathbb{R}^{3} . Now, by assumption, 0
is a regular value of F_{q}|_{S} and hence 0 is also a regular value of h_{q} . It follows
that \psi^{-1}(\Sigma_{C})=h_{q}^{-1}(0) , where \psi:V – F^{-1}(0) is defined in the proof of
Proposition 3.5, and hence \psi^{-1}(\triangle)=h_{q}^{-1}(0)\cap h_{p}^{-1}(0) . Let A\in \mathbb{R}^{2\cross 3} be
the matrix with rows \nabla h_{p}(v_{0}) , \nabla h_{q}(v_{0}) :

A=(\begin{array}{lll}h_{px}(v_{0}) h_{pp}(v_{0}) h_{pq}(v_{0})h_{qx}(v_{0}) h_{qp}(v_{0}) h_{qq}(v_{0})\end{array}) . (3)

where v_{0}=\psi^{-1}(z_{0}) . To show that \triangle is a 1-dimensional manifold, it is
sufficient to show that A has rank 2. Now since \psi^{-1}(\Sigma_{c}) is a 2-dimensi0nal
manifold around z_{0} and \nabla h_{q}(v_{0}) is nonzero, shrinking V if necessary, there
exists a function \rho:V – IR such that

h_{x}-p+qh_{p}\equiv\rho h_{q} . (4)

Now differentiating (4) with respect to p and q and evaluating at v_{0}=

(x_{0}, p_{0}, q_{0}) gives

h_{xp}(v_{0})=\rho(v_{0})h_{qp}(v_{0})+1-q_{0}h_{pp}(v_{0})

h_{xq}(v_{0})=\rho(v_{0})h_{qq}(v_{0})-q_{0}h_{pq}(v_{0}) . (5)
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Substituting in (3) for h_{px}(v_{0})=h_{xp}(v_{0}) and h_{qx}(u_{0})=h_{xq}(u_{0}) now gives

A=(\begin{array}{lllll}\rho(v_{0})h_{qp}(v_{0})+ 1- q_{0}h_{pp}(v_{0}) h_{pp}(v_{0}) h_{pq}(v_{0})\rho(v_{0})h_{qq}(v_{0})- q_{0}h_{pq}(v_{0}) h_{qp}(v_{0}) h_{qq}(v_{0})\end{array})

Now using column operations it follows that rank A=2 if and only if

rank (\begin{array}{lll}1 h_{pp}(v_{0}) h_{pq}(v_{0})0 h_{qp}(v_{0}) h_{qq}(v_{0})\end{array})=2 .

Suppose now for a contradiction that rank A=1 . Then h_{qp}(v_{0})=h_{qq}(v_{0})=

0 . Also, from (5) it follows that h_{qx}(v_{0})=h_{xq}(v_{0})=0 . But this contradicts
our assumption that \nabla h_{q}(v_{0}) is nonzero. Thus rank A=2 and \triangle is a 1-
dimensional manifold around z_{0} as required. \square

Under the same assumptions as those of Proposition 3.6 we can also
obtain the following information about the second-0rder contact singular
set \Sigma_{cc} .

Lemma 3.7 Suppose that 0 is a regular value of F_{q}|_{S} and (1) is com-
pletely integrable. Then \Sigma_{CC} is contained in \triangle .

Proof. Assume that \Sigma_{cc}\neq\emptyset and let z_{0}\in\Sigma_{cc} . We show that z_{0}\in\triangle . Since
\nabla F(z_{0})\neq 0 and z_{0}\in\Sigma_{C} , either F_{y}(z_{0})\neq 0 or F_{p}(z_{0})\neq 0 . First suppose
that F_{y}(z_{0})\neq 0 . Due to the implicit function theorem, we may assume that
F has the form F(x, y, p, q)=h(x, p, q)-y for some function h:V –

\mathbb{R} ,
where V is a open subset of \mathbb{R}^{3} . Also, it follows from our assumptions that
\psi^{-1}(\Sigma_{C}(F))=h_{q}^{-1}(0) and, as in the proof of Proposition 3.6, shrinking V
if necessary, there exists a function \rho:V –

\mathbb{R} such that the identity (4)
holds. Now since z_{0}\in\Sigma_{CC} , from the definition of \Sigma_{CC} we have

h_{qx}(v_{0})+q_{0}h_{qp}(v_{0})=0 , h_{qq}(v_{0})=0 . (6)

Here (x_{0}, p_{0}, q_{0})=v_{0}=\psi^{-1}(z_{0}) . On the other hand, differentiating (4)
with respect to q and evaluating at v_{0} gives

h_{xq}(v_{0})+h_{p}(v_{0})+q_{0}h_{qp}(v_{0})=\rho(v_{0})h_{qq}(v_{0}) . (7)

Comparing (6) and (7) now shows that h_{p}(v_{0})=0 and hence z_{0}\in\triangle , as
required.

Now suppose that F_{y}(z_{0})=0 and hence F_{p}(z_{0})\neq 0 . Again, due
to the implicit function theorem, we may assume that F has the form
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F(x, y, p, q)=g(x, y, q)-p for some function g:Uarrow \mathbb{R} , where U is an
open subset of \mathbb{R}^{3} . Also, it follows from our assumptions that \varphi^{-1}(\Sigma_{C})=

g_{q}^{-1}(0) . As before, shrinking U if necessary, there exists a function \mu:U –

\mathbb{R} such that

g_{x}+gg_{y}-q\equiv\mu g_{q} . (8)

In this case, from the definition of \Sigma_{cc} we have

g_{qx}(u_{0})+g(u_{0})g_{qy}(u_{0})=0 , g_{qq}(u_{0})=0 , (9)

where u_{0}=\varphi^{-1}(z_{0}) . On the other hand, differentiating (8) with respect to
q and evaluating at u_{0} gives

g_{qx}(u_{0})+g(u_{0})g_{qy}(u_{0})-1=g_{qq}(u_{0}) . (10)

The incompatibility of (9) and (10) now shows that this case cannot occur.
This proves Lemma 3.7 \square

Our final example in this section shows that even when the contact
singular set \Sigma_{c} is a 2-dimensional manifold the equation F(x, y, p, q)=0
need not be completely integrable.

Example 3.8 Let F(x, y, p, q)=q^{3}+px-y . In this case F_{x}+pF_{y}+qF_{p}=

qx , F_{q}=3q^{2} . By Lemma 3.1, F(x, y, p, q)=0 does not admit a complete
solution in a neighbourhood of the contact singular point z_{0}=(0,0,0,0) .
Note that the contact singular set \Sigma_{c} coincides with the \pi singular set \Sigma_{\pi}

and is given by \Sigma_{C}=\{(x, y, p, q)|y=px, q=0\} and is thus a 2-dimensi0nal
manifold.

4. Proofs of main results

Theorem 1.1 Suppose that 0 is a regular value of F_{q}|_{S} . Then (1) is
completely integrable around a point z_{0}\in S if and only if z_{0}\not\in\Sigma_{c} or \Sigma_{c} is
a 2-dimensional manifold around z_{0} .

Proof. Suppose that (1) is completely integrable around z_{0} . Then, by
Proposition 3.6 (i), if z_{0}\in\Sigma_{c} , then \Sigma_{c} is a 2-dimensional manifold around
z_{0} . Now suppose that \Sigma_{C} is a 2-dimensional manifold around z_{0} . Since
\nabla F(z_{0})\neq 0 and z_{0}\in\Sigma_{C} , either F_{y}(z_{0})\neq 0 or F_{p}(z_{0})\neq 0 . First suppose that
F_{y}(z_{0})\neq 0 . Then, due to the implicit function theorem, we may assume,
without loss of generality, that F has the form F(x, y, p, q)=h(x, p, q)-y
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for some function h:Varrow \mathbb{R} , where V is an open subset of \mathbb{R}^{3} . Now, by
assumption, 0 is a regular value of F_{q}|s and hence 0 is also a regular value
of h_{q} . Thus \psi^{-1}(\Sigma_{c})=h_{q}^{-1}(0) , where \psi:Varrow F^{-1}(0) is defined in the
proof of Proposition 3.5. Also, as in the proof of Proposition 3.6, shrinking
V if necessary, there exists a function \rho:V –

\mathbb{R} such that the identity (4)
holds. A complete solution of (1) in a neighbourhood of z_{0} is now given by
integrating the vector field \psi_{*}X , where X:V – TV is given by

X=(1, q, -\rho) .

Now suppose that F_{p}(z_{0})\neq 0 . Again, due to the implicit function
theorem, we may assume, without loss of generality, that F has the form
F(x, y, p, q)=g(x, y, q)-p for some function g:U – \mathbb{R} , where U is an
open subset of \mathbb{R}^{3} . Also, by assumption, 0 is also a regular value of g_{q} .
Thus \varphi^{-1}(\Sigma_{C})=g_{q}^{-1}(0) , where \varphi:Uarrow F^{-1}(0) is defined in the proof
Proposition 3.5. Also, as before, shrinking U if necessary, there exists a
function \mu:Uarrow \mathbb{R} such that the identity (8) holds. A complete solution
of (1) in a neighbourhood of z_{0} is now given by integrating the vector field
\varphi_{*}Y , where Y:Uarrow TU is given by

Y=(1, g, -\mu) .

This proves Theorem 1.1. \square

Theorem 1.2 Suppose that 0 is a regular value of F_{q}|s and (1) is com-
pletely integrable.
(i) Leaves of the complete solution which meet \Sigma_{C} away from \triangle intersect

\Sigma_{C} transversally.
(ii) Leaves of the complete solution which meet \triangle meet \Sigma_{C} tangentially.

Proof, (i) Fix a point z_{0} in \Sigma_{C}\backslash \triangle , which we assume is nonempty. We show
that the leaf of the complete solution which passes through z_{0} intersects
\Sigma_{C} transversely. Since F_{p}(z_{0})\neq 0 , we may assume that F has the form
F(x, y, p, q)=g(x, y, q)-p for some function g:U – \mathbb{R} , where U\subset \mathbb{R}^{3} .
Also, we may assume that \varphi^{-1}(\Sigma_{C})=g_{q}^{-1}(0) , where \varphi:Uarrow S is defined in
the proof of Proposition 3.5. Let u_{0}=\varphi^{-1}(z_{0}) . Since \nabla g_{q}(u_{0}) is normal to
\varphi^{-1}(\Sigma_{c}) at u_{0} and the vector (\varphi_{*}Y)(z_{0}) , where Y:U –TU is defined in the
proof of Theorem 1.1, is tangent to the leaf of the complete solution passing
through z_{0} , it is sufficient to check that the scalar product of \nabla g_{q}(u_{0}) and
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Y(u_{0}) is nonzero. Now

\langle\nabla g_{q}(u_{0}), Y(u_{0})\rangle=g_{qx}(u_{0})+g(u_{0})g_{qy}(u_{0})-\mu(u_{0})g_{qq}(u_{0}) . (11)

On the other hand, differentiating (8) with respect to q at evaluating at u_{0}

gives

g_{xq}(u_{0})+g(u_{0})g_{yq}(u_{0})-1=\mu(u_{0})g_{qq}(u_{0}) .

Substituting for \mu(u_{0})g_{qq}(u_{0}) on the right hand side of (11) we find that the
scalar product of \nabla g_{q}(u_{0}) and Y(u_{0}) is nonzero as required.

(ii) We now assume that \triangle\neq\emptyset . Let z_{0}\in\triangle . We show that the
leaf of the complete solution passing through z_{0} meets \Sigma_{C} tangentially.
Since F_{y}(z_{0})\neq 0 , we may now assume that F has the form F(x, y, p, q)=
h(x, p, q)-y for some function h:V –

\mathbb{R} , where V\subset \mathbb{R}^{3} . Also, we may
assume that \psi^{-1}(\Sigma_{c})=h_{q}^{-1}(0) , where \psi:V – S is defined in the proof of
Proposition 3.5. Let v_{0}=\psi^{-1}(z_{0}) . In this case, since \nabla h_{q}(v_{0}) is normal
to \psi^{-1}(\Sigma_{C}) at v_{0} and the vector (\psi_{*}X)(z_{0}) , where X:V – TV is defined
in the proof of Theorem 1.1, is tangent to the leaf of the complete solu-
tion passing through z_{0} , it is sufficient to check that the scalar product of
\nabla h_{q}(v_{0}) and X(v_{0}) is 0. Now

\langle\nabla h_{q}(v_{0}), X(v_{0})\rangle=h_{qx}(v_{0})+qh_{qp}(v_{0})-\rho(v_{0})h_{qq}(v_{0}) . (12)

On the other hand, differentiating (4) with respect to q at u_{0} gives

h_{xq}(v_{0})+qh_{pq}(v_{0})=\rho(v_{0})h_{qp}(v_{0}) .

It follows that the right hand side of (12) is 0 as required. \square

Theorem 1.3 Suppose that 0 is a regular value of F_{q}|_{S} , (1) is completely
integrable and \Sigma_{C}\neq\emptyset .
(i) Equation (1) admits a complete singular solution around a point z_{0}\in

\Sigma_{C} if and only if z_{0}\not\in\Sigma_{CC} or \Sigma_{CC} is a 1-dimensional manifold around
z_{0} .

(ii) Suppose that (1) admits a complete singular solution, then each leaf of
the complete singular solution intersects \Sigma_{cc} transversely.

Proof We assume that \Sigma_{cc} is nonempty and fix a point z_{0}\in\Sigma_{CC} . We
first suppose that \Sigma_{cc} is a 1-dimensional manifold around z_{0} and show that
(1) admits a complete singular solution around z_{0} such that each leaf of
this complete singular solution intersects \Sigma_{CC} transversely. As before, since
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F_{y}(z_{0})\neq 0 , we may assume that F has the form F(x, y, p, q)=h(x, p, q)-y
for some function h:Varrow \mathbb{R} , where V\subset \mathbb{R}^{3} . Also, we may assume that
\psi^{-1}(\Sigma_{c})=h_{q}^{-1}(0) , where \psi:V – S is defined in Proposition 3.5. Now
since \nabla h_{q}(v_{0}) is nonzero, from (6) we have h_{qp}(v_{0})\neq 0 , where v_{0}=\psi^{-1}(z_{0}) .
Thus, by the implicit function theorem, there exists a function f:W –

\mathbb{R} ,
defined on some open set W\subset \mathbb{R}^{2} , such that, in a neighbourhood of v_{0} , a
point (x, p, q)\in V is in \psi^{-1}(\Sigma_{c}) if and only if p=f(x, q) . Thus, without
loss of generality, we may assume that h_{q}(x, p, q)=f(x, q)-p and hence

\psi^{-1}(\Sigma_{CC})=\{\theta(w)|w=(x, q)\in W, f_{x}(w)-q=0, f_{q}(w)=0\} .

where \theta:W – \Sigma_{C} is the map (x, q)\mapsto(x, f(x, q), q) . Let w_{0}=\theta^{-1}(v_{0}) .
There are two cases to consider: (a) f_{xq}(w_{0})-1\neq 0 and (b) f_{xq}(w_{0})-1=0 .
First suppose that f_{xq}(w_{0})-1\neq 0 . Then, since \Sigma_{cc} is 1-dimensional and
\nabla(f_{x}-q)(w_{0}) is nonzero, \theta^{-1}(\Sigma_{CC})=(f_{x}-q)^{-1}(0) . Also, shrinking W if
necessary, there exists a function \delta:Warrow 1R such that

f_{q}=\delta(f_{x}-q) . (13)

The required foliation of \Sigma_{c} is now given by integrating the vector field
(\psi\circ\theta)_{*}S , where S:W – TW is given by

S=(\delta, -1) .

To show that each leaf of this foliation is transverse to \Sigma_{cc} it is sufficient to
check that the scalar product of \nabla(f_{x}-q)(w_{0}) and S(w_{0}) is nonzero. Now

\langle\nabla(f_{x}-q)(w_{0}), S(w_{0})\rangle=f_{xx}(w_{0})\delta(w_{0})-(f_{xq}(w_{0})-1)=1 ,

where the second equality follows from differentiating (13) with respect to
x and evaluating at w_{0} .

Now suppose that f_{xq}(w_{0})-1=0 . In this case \theta^{-1}(\Sigma_{cc})=f_{q}^{-1}(0) .
Now, shrinking W if necessary, there exists a function \gamma:Warrow \mathbb{R} such that

f_{x}-q=\gamma f_{q} .

The required foliation of \Sigma_{C} in this case is given by integrating the vector
field (\psi\circ\theta)_{*}T , where T:W – TW is given by

T=(1, -\gamma) .
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Now

\langle\nabla f_{q}(w_{0}), T(w_{0})\rangle=f_{qx}(w_{0})-f_{qq}(w_{0})\gamma(w_{0})=1

shows that each leaf of this foliation intersects \Sigma_{cc} transversely.
Now suppose that (1) admits a complete singular solution around z_{0} .

We show that \Sigma_{cc} is a 1-dimensional manifold around z_{0} . Let

\Phi:(\alpha, \beta)\cross(a, b)arrow\Sigma_{C}

be a complete singular solution around z_{0} . Then, by definition, for each
c\in(\alpha, \beta) , \Phi(c, \cdot):(a, b) – \Sigma_{C} is a geometric solution of (1) and for each
(c, t)\in(\alpha, \beta)\cross(a, b)

rank (\begin{array}{llll}x_{t} y_{t} p_{t} q_{t}x_{c} y_{c} p_{c} q_{c}\end{array})=2 . (14)

Also

\Phi^{-1}(\Sigma_{CC})=\{(c, t)|y_{c}=px_{c}, p_{c}=qx_{c}\}

Since we are assuming F(x, y, p, q)=h(x, p, q)-y , at (c, t)\in\Phi^{-1}(\Sigma_{C}) we
have

y_{c}=h_{x}x_{c}+h_{p}p_{c}+h_{q}q_{c}

=(-qh_{p}+p)x_{c}+h_{p}p_{c} .

Thus if p_{c}=qx_{c} , then y_{c}=px_{c} holds automatically. Thus

\Phi^{-1}(\Sigma_{cc})=\{(c, t)|p_{c}=qx_{c}\}

Now let \lambda(c, t)=p_{c} – qx_{c} . We claim that \lambda_{t}(c_{0}, t_{0})\neq 0 , where (c_{0}, t_{0})=

\Phi^{-1}(z_{0}) . Now

\lambda_{t}=p_{ct}-q_{t}x_{c}-qx_{ct} . (15)

Also p_{t}=qx_{t} , since \Phi(c, \cdot) is a geometric solution. Thus

p_{tc}=q_{c}x_{t}+qx_{tc} . (16)

Substituting (16) into (15) now gives

\lambda_{t}=q_{c}x_{t}-q_{t^{X_{C}}} . (17)

On the other hand, since z_{0}\in\Sigma_{CC} , p_{t}=qx_{t} , y_{t}=px_{t} , p_{c}=qx_{c} , y_{c}=px_{c} .
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Thus (14) holds if and only if

rank (\begin{array}{ll}x_{t} q_{t}x_{c} q_{c}\end{array})=2 .

That is, 0\neq x_{t}q_{c}-x_{c}q_{t}=\lambda_{t} . Thus \Sigma_{CC} is a 1-dimensional manifold around
z_{0} as required. \square

Proposition 1.4 Suppose that 0 is a regular value of F_{q}|s , (1) is com-
pletely integrable and \Sigma_{cc} is a 1-dimensional manifold. Then \Sigma_{cc} is an
isolated singular solution of (1).

Proof Let z_{0}\in\Sigma_{CC} . As before, we can assume that F has the form
F(x, y, p, q)=h(x, p, q)-y for some function h:Varrow \mathbb{R} , where V\subset \mathbb{R}^{3} .
Also, by our assumptions, \psi^{-1}(\Sigma_{c})=h_{q}^{-1}(0) ,

\psi^{-1}(\Sigma_{cc})=\{v=(x, p, q)\in\psi^{-1}(\Sigma_{C})|h_{qx}(v)+qh_{qp}(v)=0, h_{qq}(v)=0\} .

where \psi:V – S is defined in Proposition 3.5. Also, a complete solution of
(1) in a neighbourhood of z_{0} is given by integrating the vector field \psi_{*}X .
where X:Varrow TV is defined in the proof of Theorem 1.1. Now since
\nabla h_{q}(v_{0}) is nonzero we have h_{qp}(v_{0})\neq 0 , where v_{0}=\psi^{-1}(z_{0}) . It follows
that one of \nabla h_{qq}(v_{0}) , \nabla(h_{qx}+qh_{qp})(v_{0}) is nonzero. Suppose first that
\nabla h_{qq}(v_{0}) is nonzero. Then \psi^{-1}(\Sigma_{CC})=h_{q}^{-1}(0)\cap h_{qq}^{-1}(0) . To show that \Sigma_{cc}

is not a leaf of the complete solution around z_{0} it is sufficient to check that
the scalar product of \nabla h_{qq}(v_{0}) and X(v_{0}) is nonzero. Now

\langle\nabla h_{qq}(v_{0}), X(v_{0})\rangle=h_{qqx}(v_{0})+q_{0}h_{qqp}(v_{0})-\rho(v_{0})h_{qqq}(v_{0}) , (18)

where v_{0}=(x_{0}, p_{0}, q_{0}) . On the other hand, differentiating the identity (4)
twice with respect to q and evaluating at v_{0} gives

h_{xqq}(v_{0})+q_{0}h_{pqq}(v_{0})+2h_{pq}(v_{0})=\rho(v_{0})h_{qqq}(v_{0}) .

Thus, since h_{pq}(v_{0})\neq 0 , the right hand side of (18) is nonzero as required.
Now suppose that \nabla(h_{qx}+qh_{qp})(v_{0}) is nonzero. Then \psi^{-1}(\Sigma_{CC})=

h_{q}^{-1}(0)\cap(h_{qx}+qh_{qp})^{-1}(0) . In this case it is sufficient to check that the
scalar product of \nabla(h_{qx}+qh_{qp})(v_{0}) and X(v_{0}) is nonzero. Now

\langle\nabla(h_{qx}+qh_{qp})(v_{0}), X(v_{0})\rangle

=h_{qxx}(v_{0})+q_{0}h_{qpx}(v_{0})+q_{0}(h_{qxp}(v_{0})+q_{0}h_{qpp}(v_{0}))

-\rho(v_{0})(h_{qxq}(v_{0})+h_{qp}(v_{0})+q_{0}h_{qpq}(v_{0})) . (18)
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On the other hand, differentiating (4) with respect to x and then q and
evaluating at v_{0} gives

h_{xxq}(v_{0})+q_{0}h_{pxq}(v_{0})+h_{px}(v_{0})=\rho(v_{0})h_{qxq}(v_{0})+\rho_{q}(v_{0})h_{qx}(v_{0}) .
(20)

Also, differentiating (4) with respect to p and then q and evaluating at v_{0}

gives

h_{xpq}(v_{0})+q_{0}h_{ppq}(v_{0})+h_{pp}(v_{0})=\rho(v_{0})h_{qpq}(v_{0})+\rho_{q}(v_{0})h_{qp}(v_{0}) .

(21)
Comparing (19) with the equality obtained by adding (21) multiplied by q_{0}

to (20), it is now sufficient to check that h_{px}(v_{0})+q_{0}h_{pp}(v_{0})-\rho(v_{0})h_{qp}(v_{0}) is
nonzero. This can be seen to be the case by differentiating (4) with respect
to p and evaluating at v_{0} . This proves Proposition 1.4. \square

5. Further examples

Example 5.1 Let F(x, y,p, q)=- \frac{1}{3}q^{3}+qp-y . In this case F_{x}+pF_{y}+

qF_{p}=q^{2}-p , F_{q}=-q^{2}+p , thus, by Lemma 3.1, F(x, y, p, q)=0 is
completely integrable. Also,

\Sigma_{C}=\Sigma_{\pi}=\{(x, y, p, q)|y=\frac{2}{3}q^{3} , p=q^{2}\}

\Sigma_{CC}=\triangle=\{(x, y, p, q)|y=p=q=0\} .

Thus by Theorem 1.1 and Theorem 1.2, the complete solution of
F(x, y, p, q)=0 intersects \Sigma_{C} transversely away from \triangle and is tangential
to \Sigma_{C} at points in \triangle . In addition, by Theorem 1.3, F(x, y, p, q)=0 admits
a complete singular solution. By Theorem 1.4, \Sigma_{CC} is an isolated singular
solution.

Example 5.2 Let F(x, y, p, q)= \frac{2}{3}q^{3}+q^{2}x+qp+2xp-y . In this case
F_{x}+pF_{y}+qF_{p}=F_{q}=2q2+2qx+p , thus, by Lemma 3.1, F(x, y, p, q)=0
is completely integrable. Also,

\Sigma_{c}=\Sigma_{\pi}=\{(x, y, p, q)|y=-\frac{4}{3}q^{32}-5qx-4qx^{2} , p=-2q-22qx\}

\triangle=\{(x, y, p, q)|y=-\frac{4}{3}x^{3} . p=-4x^{2} . q=-2x\} ,

\Sigma_{CC}=(0,0,0,0) .
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Again, by Theorem 1.1 and Theorem 1.2, the complete solution of
F(x, y, p, q)=0 intersects \Sigma_{c} transversely away from \triangle and is tangential
to \Sigma_{c} at points in \triangle . Note in this example, however, that, by Theorem 1.3,
there is no complete singular solution around the second-0rder contact sin-
gular point (0, 0, 0, 0).
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