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Absolute continuity of analytic measures

Hiroshi YAMAGUCHI

(Received February 21, 2002)

Abstract. We give an extension of a result due to Asmar, Montgomery-Smith and
Saeki, which is concerned with absolute continuity of analytic measures. We also discuss
the relation between the space N(\sigma) and absolute continuity of analytic measures.
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1. Introduction

Let G be a LCA group with dual group \hat{G} . Let L^{1}(G) and M(G) be the
group algebra and the measure algebra, respectively. Let \psi be a nontrivial
continuous homomorphism from \hat{G} into \mathbb{R} , and let \phi : \mathbb{R}

– G be the dual
homomorphism of \psi . Defining an action of \mathbb{R} on G by t\cdot x=\phi(t)+x(t\in \mathbb{R} ,
x\in G) , we get a transformation group (\mathbb{R}, G) . Let \sigma be a quasi-invariant,
(positive) Radon measure on G , and set N(\sigma)=\{\mu\in M(G) : \phi(h)*\mu<<\sigma

\forall h\in L^{1}(\mathbb{R})\} . Then N(\sigma) is an L^{1}(\mathbb{R}) -module and an L-subspace of M(G) .
In general, we have

L^{1}(\sigma)\subset N(\sigma)\subset M(G) .

According to choice of G and \sigma , it may happen that N(\sigma)=M(G) and
L^{1}(\sigma)\subsetarrow N(\sigma)\subset M(<G) (cf. [6] and [14]). Any analytic measure in N(\sigma) is
absolutely continuous with respect to \sigma (Corollary 2.1 or [14, Corollary 2.1]).
We show that N(\sigma) is the largest L^{1}(\mathbb{R}) -module, L-subspace of M(G) such
that any its analytic measure is necessarily absolutely continuous with re-
spect to \sigma (Corollary 2.3). Recently, Asmar, Montgomery-Smith and Saeki
obtained a new version of Bochner’s generalization of the F. and M. Riesz
theorem ([3, Theorem 4.5]). We also give another proof of it (Theorem 2.2).

2. Notation and results

Let G be a LCA group with dual group \hat{G} . We denote by \mathfrak{B}(G) the
\sigma-algebra of Borel sets in G . For x\in G , \delta_{x} denotes the point mass at x . We
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denote by Ikig(G) the set of trigonometric polynomials on G . Let C_{o}(G)

be the Banach space of continuous functions on G which vanish at infinity.
Then M(G) is identified with the dual space of C_{o}(G) . Let M^{+}(G) be the
set of nonnegative measures in M(G) . For \mu\in M(G) and f\in L^{1}(|\mu|) , we
often use the notation \mu(f) as \int_{G}f(x)d\mu(x) . For \lambda\in M(G),\hat{\lambda} denotes the
Fourier-Stieltjes transform of \lambda , i.e., \hat{\lambda}(\gamma)=\int_{G}(-x, \gamma)d\lambda(x) for \gamma\in\hat{G} . For
a closed subset E of \hat{G} , M_{E}(G) denotes the space of measures in M(G)
whose Fourier-Stieltjes transform vanish off E , and E is called a Riesz set
if M_{E}(G)\subset L^{1}(G) . Obviously, compact subsets of \hat{G} are Riesz sets.

Let \psi be a nontrivial continuous homomorphism from \hat{G} into IR (the
reals). We may assume that there exists \chi_{0}\in\hat{G} such that \psi(\chi_{0})=1 by
considering a multiplication of \psi if necessary. Let \phi : \mathbb{R}arrow G be the dual
homomorphism of \psi , i.e., (\phi(t), \gamma)=\exp(i\psi(\gamma)t) for t\in \mathbb{R} and \gamma\in\hat{G} .

Let \Lambda be a discrete subgroup of \hat{G} generated by \chi_{0} , and let K=\Lambda^{\perp} ,
the annihilator of \Lambda . We define a continuous homomorphism \alpha : \mathbb{R}\oplus Karrow G

by

\alpha(t, u)=\phi(t)+u . (2.1)

Then ker(\alpha)=\{(2\pi n, -\phi(2\pi n)) : n\in \mathbb{Z}\} and ker(\alpha)^{\perp}=\{(\psi(\gamma), \gamma|_{K}) : \gamma\in

\hat{G}\}\cong\hat{G} . For 0< \epsilon<\frac{1}{6} , we define a function \triangle_{\epsilon}(t, \omega) on \mathbb{R}\oplus\hat{K} by

\triangle_{\epsilon}(t, \omega)=\{

max ( 1- \frac{1}{\epsilon}|t| , 0) (\omega=0) ,

0 (\omega\neq 0) .

For \mu\in M(G) , define a function \Phi_{\mu}^{\epsilon}(t, \omega) on \mathbb{R}\oplus\hat{K} by

\Phi_{\mu}^{\epsilon}(t, \omega)=\sum_{\gamma\in\hat{G}}\hat{\mu}(\gamma)\triangle_{\epsilon}((t, \omega)-(\psi(\gamma), \gamma|_{K}))
.

Then \Phi_{\mu}^{\epsilon}\in M(\mathbb{R}\oplus K)^{\wedge} , ||(\Phi_{\mu}^{\epsilon})^{\vee}||=||\mu|| and \alpha((\Phi_{\mu}^{\epsilon})^{\vee})=\mu for \mu\in M(G)

(cf. [14]), where ”\vee ” denotes the inverse Fourier transform. We define an
isometry T_{\psi}^{\epsilon} : M(G)arrow M(\mathbb{R}\oplus K) by

T_{\psi}^{\epsilon}(\mu)=(\Phi_{\mu}^{\epsilon})^{\vee} (2.2)

Defining an action of \mathbb{R} on G by tx=\phi(t)+x , we get a transformation
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group (\mathbb{R}, G) . For \lambda\in M(\mathbb{R}) and \mu\in M(G) , we define \lambda*\mu\in M(G) by

\lambda*\mu(f)=\int_{G}\int_{\mathbb{R}}f(tx)d\lambda(t)d\mu(x)

for f\in C_{o}(G) . When there is a possibility of confusion, we may use the the
notation \lambda*_{\mathbb{R}}\mu instead of \lambda*\mu . We note that \lambda*_{\mathbb{R}}\mu=\phi(\lambda)*\mu (cf. [14,
Proposition 4.1]), where \phi(\lambda)*\mu is the usual convolution in M(G) . For
\mu\in M(G) , its spectrum sp(\mu) is defined by sp(\mu)=\bigcap_{h\in J(\mu)}\hat{h}^{-1}(0) , where
J(\mu)=\{h\in L^{1}(\mathbb{R}) : h*_{\mathbb{R}}\mu=0\} . For \mu\in M(G) and a closed set E in \mathbb{R} , we
note that sp(\mu)\subset E if and only if supp(\hat{\mu})\subset\psi^{-1}(E) (cf. [14, Remark 4.1]).

A (positive) Radon measure \sigma on G is said to be quasi-invariant if
\sigma(F)=0 implies \sigma(tF)(=\sigma(\phi(t)+F))=0 for all t\in \mathbb{R} . For a quasi-
invariant Radon measure \sigma on G , let N(\sigma)=\{\mu\in M(G) : h*\mu<<\sigma\forall h\in

L^{1}(\mathbb{R})\} . N(\sigma) is a closed subspace of M(G) , and L^{1}(\sigma)\subset N(\sigma)\subset M(G)

(cf. [9]). Moreover, N(\sigma) is an L^{1}(\mathbb{R}) -module and an L-subspace of M(G)
(cf. [10, Corollary 5]). For \epsilon>0,\overline{V}_{\epsilon} and V_{\epsilon} denote a closed interval [-\epsilon, \epsilon]

and an open interval (-\epsilon, \epsilon) , respectively. We state our first result.

Theorem 2.1 Let 0< \epsilon<\frac{1}{6} , and let E be a closed set in \mathbb{R} such that
E+\overline{V}_{\epsilon} is a Riesz set in \mathbb{R} . Let \mu be a measure in M(G) with sp(\mu)\subset E .
Then \lim_{tarrow 0}||\mu-\delta_{\phi(t)}*\mu||=0 .

Proof. Since supp(\hat{\mu})\subset\psi^{-1}(E) and T_{\psi}^{\epsilon}(\mu)^{\wedge}=\Psi_{\mu}^{\epsilon} , we have

(1) supp (T_{\psi}^{\epsilon}(\mu)^{\wedge})\subset(E+\overline{V}_{\epsilon})\cross\hat{K} .

Let \pi_{K} : \mathbb{R}\oplus Karrow K be the projection, and put \eta=\pi_{K}(|T_{\psi}^{\epsilon}(\mu)|) . It follows
from [13, Corollary 1.6] that there exists a family \{\lambda_{u}\}_{u\in K}\subset M(\mathbb{R}) with
the following properties:

(2) uarrow(\lambda_{u}\cross\delta_{u})(f) is \eta-measurable for each bounded
Borel function f on \mathbb{R}\oplus K ,

(3) ||\lambda_{u}||=1 , and

(4) T_{\psi}^{\epsilon}( \mu)(f)=\int_{K}(\lambda_{u}\cross\delta_{u})(f)d\eta(u) for each bounded

Borel function f on \mathbb{R}\oplus K .

Then, by (1) and [13, Lemma 2.1], we have

\lambda_{u}\in M_{E+\overline{V}_{\epsilon}}(\mathbb{R}) \eta- a.a . u\in K ,
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which, together with the fact that E+\overline{V}_{\epsilon} is a Riesz set, yields

(5) \lambda_{u}\in L^{1}(\mathbb{R})
\eta- a.a . u\in K .

We note that

\alpha((\delta_{t}\cross\delta_{0})*T_{\psi}^{\epsilon}(\mu))=\delta_{\phi(t)}*\mu .

Hence

(6) ||\delta_{\phi(t)}*\mu-\mu||=||\alpha((\delta_{t}\cross\delta_{0})*T_{\psi}^{\epsilon}(\mu)-T_{\psi}^{\epsilon}(\mu))||

\leq||(\delta_{t}\cross\delta_{0})*T_{\psi}^{\epsilon}(\mu)-T_{\psi}^{\epsilon}(\mu)|| .
By (4), we have

(7) ( \delta_{t}\cross\delta_{0})*T_{\psi}^{\epsilon}(\mu)(f)=\int_{K}\{(\delta_{t}*\lambda_{u})\cross\delta_{u}\}(f)d\eta(u)

for each bounded Borel function f on \mathbb{R}\oplus K . For f\in C_{o}(\mathbb{R}) , we have
\lambda_{u}(f)=(\lambda_{u}\cross\delta_{u})(f) , where, on the right hand side, f is considered as a
bounded continuous function on \mathbb{R}\oplus K . Let A be a countable dense set in
C_{o}(\mathbb{R}) . Then

||\delta_{t}*\lambda_{u}-\lambda_{u}||=||f||_{\infty}\leq 1f\in Asup|(\delta_{t}*\lambda_{u}-\lambda_{u})(f)|

,

which, together with (2), yields that uarrow||\delta_{t}*\lambda_{u}-\lambda_{u}|| is \eta-measurable. It
follows from (4) and (7) that

||( \delta_{t}\cross\delta_{0})*T_{\psi}^{\epsilon}(\mu)-T_{\psi}^{\epsilon}(\mu)||\leq\int_{K}||\delta_{t}*\lambda_{u}-\lambda_{u}||d\eta(u) .

On the other hand, (5) implies

\lim_{tarrow 0}||\delta_{t}*\lambda_{u}-\lambda_{u}||=0 \eta- a.a . u\in K .

Thus, by the Lebesgue convergence theorem, we have

\lim_{tarrow 0}||(\delta_{t}\cross\delta_{0})*T_{\psi}^{\epsilon}(\mu)-T_{\psi}^{\epsilon}(\mu)||=0 ,

which, combined with (6), yields

\lim_{tarrow 0}||\delta_{\phi(t)}*\mu-\mu||=0 .

This completes the proof. \square
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When E=[0, \infty) , Theorem 2.1 is already known (cf. [7] or [2]). We
give another example.

Definition 2.1 Let 0<p<\infty . A subset E of \mathbb{Z} is called a \Lambda(p) set if for
some 0<q<p , there exists a constant C>0 such that

||f||_{p}\leq C||f||_{q}

for all f\in Trig_{E}(\mathbb{T}) , where Rig_{E}(T) is the set of trigonometric polynomials
on \mathbb{T} whose Fourier transforms vanish off E .

Example 2.1 Let \mathbb{Z}_{-} and \mathbb{R}^{+} be the set of nonpositive integers and the
set of nonnegative real numbers, respectively. Let F\subset \mathbb{Z}_{-}\backslash \{0\} be a \Lambda(2) -

set in \mathbb{Z} , and put E=(F+\overline{V}_{\frac{1}{6}})\cup \mathbb{R}^{+} Then, for 0< \epsilon<\frac{1}{6} , E+\overline{V}_{\epsilon} is a
Riesz set in \mathbb{R} .

In fact, let \mu\in M_{E+V_{\epsilon}}(\mathbb{R}) . Let \pi : \mathbb{R}arrow \mathbb{R}/2\pi \mathbb{Z}\cong T be the natural
homomorphism. Put F_{n}(x)= \frac{1}{\pi} [mathring]_{\frac{1-csnx}{nx^{2}}}(n\in \mathbb{N}) . Then \pi(F_{n}*\mu)\in

Trig(T). We note that \hat{F}_{n}(s)=\int_{\mathbb{R}}F_{n}(x)e^{-isx}dx=\max(1-\frac{1}{n}|s|, 0) . Let
P_{-} : Trig(T) arrow Trig(T) be a projection defined by

P_{-}(u)(x)= \sum_{k<0}
\^u (k)e^{ikx} .

Let 0<p<1 . It follows from [12, Theorem 8.7.6] that there exists a
constant A_{p}>0 such that

||P_{-}(\pi(F_{n}*\mu))||_{p}\leq A_{p}||\pi(F_{n}*\mu)||_{1} .

Since P_{-}(\pi(F_{n}*\mu))\in Rig_{F}(T) and F is a \Lambda(2) set, there exists a constant
C_{F}>0 such that

||P_{-}(\pi(F_{n}*\mu))||_{2}\leq C_{F}||P_{-}(\pi(F_{n}*\mu))||_{p} .

Hence

||P_{-}(\pi(F_{n}*\mu))||_{2}\leq A_{p}C_{F}||\pi(F_{n}*\mu)||_{1}

\leq A_{p}C_{F}||\mu|| ,

which yields

\sum_{k\in F}|(F_{n}*\mu)^{\wedge}(k)|^{2}\leq A_{p}^{2}C_{F}^{2}||\mu||^{2}
.



556 H. Yamaguchi

Letting n – \infty , we have

\sum_{k\in F}|\hat{\mu}(k)|^{2}\leq A_{p}^{2}C_{F}^{2}||\mu||^{2}
.

Let x\in\overline{V}_{\frac{i}{6}}+\overline{V}_{\epsilon}=\overline{V}_{\frac{1}{6}+\epsilon} . Considering e^{-ix}.F_{n}*\mu , we similarly get

\sum_{k\in F}|\hat{\mu}(x+k)|^{2}\leq A_{p}^{2}C_{F}^{2}||\mu||^{2}
.

Thus

\int_{(-\infty,0]}|\hat{\mu}(x)|^{2}dx=\sum_{k\in F}\int_{\overline{V}_{1}}|\hat{\mu}(k+x)|^{2}dx6^{+\epsilon}

\leq(\frac{1}{3}+2\epsilon)A_{p}^{2}C_{F}^{2}||\mu||^{2}<\infty ,

which, together with [5, Main Theorem], yields \mu\in L^{1}(\mathbb{R}) . This shows that
E+\overline{V}_{\epsilon} is a Riesz set in \mathbb{R} .

Set A= \{\mu\in M(G) : \lim_{tarrow 0}||\delta_{\phi(t)}*\mu-\mu||=0\} . The following
theorem is due to Liu and van Rooij.

Theorem A (cf. [9, Therem 9]) Let \sigma be a quasi-invariant Radon mea-
sure on G. Then A\cap N(\sigma)=L^{1}(\sigma) .

By Theorem 2.1 and Theorem A, we get the following corollary, which
was obtained in [14], by a different method.

Corollary 2.1 (cf. [14, Corollary 2.1]) Let \sigma be a quasi-invariant Radon
measure on G. Let E be as in Theorem 2.1, and let \mu be a measure in N(\sigma)

with sp(\mu)\subset E . Then \mu<<\sigma .

Recently, Asmar, Montgomery-Smith and Saeki ([3]) got significant re-
sults concerned with analytic measures, and they gave the following theorem
as an application.

Theorem B ([3, Theorem 4.5]) Let \mu\in M(G) , and suppose that, for
every s\in \mathbb{R} , \psi^{-1}((-\infty, s])\cap supp(\hat{\mu}) is compact. Then \mu<<m_{G} .

Next we show that Theorem B follows from Corollary 2.1. It is easy to
verify that Therem B and the following Theorem B’ are equivalent.
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Theorem B’ Let \mu\in M(G) be of analytic type, i.e.,\hat{\mu}(\gamma)=0 for \gamma\in\hat{G}

with \psi(\gamma)<0 . Suppose that, for every s\in \mathbb{R} , \psi^{-1}([s-1, s+1])\cap supp(\hat{\mu})

is compact. Then \mu<<m_{G} .

The following is a slight extension of Theorem B’

Theorem 2.2 Let E be as in Theorem 2.1. Let \mu be a measure in M(G)
with sp(\mu)\subset E . Suppose that, for every s\in \mathbb{R} , \psi^{-1}([s-1, s+1])\cap supp(\hat{\mu})

is a Riesz set in \hat{G} . Then \mu<<m_{G} .

Proof. By Corollary 2.1, it is sufficient to prove that \mu\in N(m_{G}) . Let
h\in L^{1}(\mathbb{R}) . For any \epsilon>0 , it follows from [12, Theorem 2.6.6] that there
exists \nu_{\epsilon}\in L^{1}(\mathbb{R}) such that \hat{\nu}_{\epsilon} has a compact support and ||h-h*\nu_{\epsilon}||_{1}<\epsilon .
Since (h*\nu_{\epsilon})^{\wedge} has a compact support, there exist g_{1} , . . ’

g_{m}\in L^{1}(\mathbb{R}) such
that

(1) supp(\hat{g}_{i})\subset[s_{i}-1, s_{i}+1] for some s_{i}\in \mathbb{R}(i=1,2, ., m) , and

(2) h* \nu_{\epsilon}=\sum_{i=1}^{m}h*\nu_{\epsilon}*g_{i} .

Since supp((\phi(h*\nu_{\epsilon}*g_{i})*\mu)^{\wedge})\subset\psi^{-1}([s_{i}-1, s_{i}+1])\cap supp(\hat{\mu}) , we have

(3) \phi(h*\nu_{\epsilon})*\mu=\sum_{i=1}^{m}\phi(h*\nu_{\epsilon}*g_{i})*\mu\in L^{1}(G) .

On the other hand,

||\phi(h)*\mu-\phi(h*\nu_{\epsilon})*\mu||\leq||\phi(h-h*\iota/_{\epsilon})||||\mu||

\leq||h-h*\nu_{\epsilon}||_{1}||\mu||\leq\epsilon||\mu|| .

Since \epsilon is any positive real number, we have, by (3),

\phi(h)*\mu\in L^{1}(G) ,

which shows that \mu\in N(m_{G}) . This completes the proof. \square

As we pointed out before, N(\sigma) is an L^{1}(\mathbb{R}) -module and an L-subspace
of M(G) . Moreover, by Corollary 2.1, every analytic measure in N(\sigma) is
absolutely continuous with respect to \sigma . Finally, we show that N(\sigma) is the
largest L^{1}(\mathbb{R}) -module, L-subspace of M(G) with this property.
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Theorem 2.3 Let \sigma be a quasi-invariant, Radon measure on G. Let V
be an open set in \mathbb{R} with V\cap\psi(\hat{G})\neq\emptyset . Let \mathcal{L}(G) be an L^{1}(\mathbb{R}) -module,
L -subspace of M(G) such that \mathcal{L}(G)\not\subset N(\sigma) . Then there exists \mu\in

\mathcal{L}(G)\backslash N(\sigma) with sp(\mu)\subset V

Proof. We choose \gamma_{0}\in\hat{G} and a symmetric open neighborhood U of 0 in \mathbb{R} ,
with compact closure, so that \psi(\gamma_{0})+\overline{U}\subset V Since \mathcal{L}(G) is an L-subspace
of M(G) , there exists a nonzero measure \nu\in(\mathcal{L}(G)\cap M^{+}(G))\backslash N(\sigma) . Then
there exists a quasi-invariant measure \sigma_{\iota/} in M^{+}(G) and a \sigma-compact subset
X_{1J} of G such that

(1) \sigma_{\nu}<<\sigma ,

(2) \phi(\mathbb{R})+X_{lJ}=X_{IJ}(i.e., \mathbb{R}X_{\nu}=X_{lJ}) ,

(3) \nu(X_{1}^{c},)=\sigma_{\nu}(X_{\nu}^{c})=0 , and

(4) \sigma_{\nu}|x_{\nu} and \sigma|_{X_{\nu}} are mutually absolutely continuous.

(cf. [14, Proposition 4.2]). Then

(5) \nu\not\in N(\sigma_{\nu}) .

It follows from [14, Theorem 5.1] that \pi_{K}(T_{\psi}^{\epsilon}(\nu)) is not absolutely continu-
ous with respect to \pi_{K}(T_{\psi}^{\epsilon}(\sigma_{l/})) , where \pi_{K} : \mathbb{R}\oplus K – K is the projection.
Let \pi_{K}(T_{\psi}^{\epsilon}(\nu))=\eta_{a}+\eta_{s} be the Lebesgue decomposition of \pi_{K}(T_{\psi}^{\epsilon}(\nu)) with
respect to \pi_{K},(T_{\psi}^{\epsilon}(\sigma_{1/})) . Then \eta_{s}\neq 0 . There exists a Borel set K_{s}\subset K such
that \pi_{K}(T_{\psi}^{\epsilon}(\sigma_{1/}))(K_{s})=0 and \eta_{s}(K_{s}^{c})=0 . Put B=\mathbb{R}\cross K_{s} , and define a
measure \omega_{B}\in M^{+}(\mathbb{R}\oplus K) by

\omega_{B}(F)=T_{\psi}^{\epsilon}(\nu)(B\cap F)

for F\in \mathfrak{B}(\mathbb{R}\oplus K) . Then \pi_{K}(\omega_{B})=\eta_{s}\neq 0 . In particular, \omega_{B}\neq 0 . Since
\omega_{B}<<T_{\psi}^{\epsilon}(\nu) ,

\alpha(\omega_{B})<<\alpha(T_{\psi}^{\epsilon}(\nu))=\nu .

It follows from the facts that lJ \in \mathcal{L}(G) and \mathcal{L}(G) is an L-subspace of M(G)
that \alpha(\omega_{B})\in \mathcal{L}(G) . Let h\neq 0 be a nonngative function in L^{1}(\mathbb{R}) such that
supp(\hat{h})\subset\overline{U} . Then \phi(h)*\alpha(\omega_{B})\neq 0 , and

(6) sp(\phi(h)*\alpha(\omega_{B}))=sp(h*_{\mathbb{R}}\alpha(\omega_{B}))\subset\overline{U} .

Since \mathcal{L}(G) is an L^{1}(\mathbb{R})-module and \alpha(\omega_{B})\in \mathcal{L}(G) , we have
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(7) \phi(h)*\alpha(\omega_{B})\in \mathcal{L}(G) .

For any nononegative, nonzero g\in L^{1}(\mathbb{R}) ,

g*_{\mathbb{R}}(\phi(h)*\alpha(\omega_{B}))=\phi(g*h)*\alpha(\omega_{B})

=\alpha((g*h)\cross\delta_{0})*\alpha(\omega_{B}) .

On the other hand, we have

\pi_{K}(((g*h)\cross\delta_{0})*\omega_{B})=\pi_{K}((g*h)\cross\delta_{0})*\pi_{K}(\omega_{B})

=||g*h||_{1}\pi_{K}(\omega_{B})=||g*h||_{1}\eta_{s} ,

hence \pi_{K}(((g*h)\cross\delta_{0})*\omega_{B})\perp\pi_{K}(T_{\psi}^{\epsilon}(\sigma_{\nu})) . Thus

((g*h)\cross\delta_{0})*\omega_{B}\perp T_{\psi}^{\epsilon}(\sigma_{\nu}) ,

which, combined with [14, Lemma 4.1], yields

0\neq g*_{\mathbb{R}}(\phi(h)*\alpha(\omega_{B}))=\alpha(((g*h)\cross\delta_{0})*\omega_{B})\perp\sigma_{\nu} .

This shows that \phi(h)*\alpha(\omega_{B})\not\in N(\sigma_{\nu}) . Since \phi(h)*\alpha(\omega_{B}) is concentrated
on X_{\nu} and \sigma_{\nu}|_{X_{\nu}} and \sigma|x_{U} are mutually absolutely continuous, we have

(8) \phi(h)*\alpha(\omega_{B})\not\in N(\sigma) .

Put \mu=\gamma_{0}\phi(h)*\alpha(\omega_{B}) . Since \psi(\gamma_{0})+\overline{U}\subset V . it follows from (6)-(8) that
sp(\mu)\subset V and \mu\in \mathcal{L}(G)\backslash N(\sigma) . This completes the proof. \square

For a quasi-invariant Radon measure \sigma on G and a closed subset E of
\mathbb{R} , let \mathfrak{F}_{E}(\sigma) be a family of L^{1}(\mathbb{R}) -modules \mathcal{L}(G) , which are L-subspaces of
M(G) , satisfying the following condition:

\mu\in \mathcal{L}(G) , sp(\mu)\subset E\Rightarrow\mu<<\sigma . (2.3)

By Corollary 2.1 and Theorem 2.3, we have the following corollaries.

Corollary 2.2 Let E be as in Theorem 2.1, and suppose that \psi(\hat{G})\cap[mathring]_{E}\neq

o
\emptyset , where E denotes the interior of E. Then N(\sigma) is the largest L^{1}(\mathbb{R})-

module, L -subspace of M(G) in S_{E}(\sigma) . Namely, \mathcal{L}(G)\subset N(\sigma) for every
\mathcal{L}(G)\in S_{E}(\sigma) .

Corollary 2.3 N(\sigma) is the largest L^{1}(\mathbb{R}) -module, L -subspace of M(G) in
S_{[0,\infty)}(\sigma)
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