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On solutions of x”=t^{\alpha\lambda-2}x^{1+\alpha} starting at some positive t
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Abstract. In this paper we shall consider an initial value problem of the second order
nonlinear differential equation written in the title and get asymptotic behavior of the
solution in terms of obtaining its analytical expressions valid in neighborhoods of both
end points of a domain of the solution. Since we shall treat all initial conditions, all
solutions will be investigated.
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1. Introduction

As in the papers [2], [3], let us consider a second order nonlinear differ-
ential equation

x”=t^{\beta}x^{1+\alpha} (” =d/dt) (1.1)

which is worth solving, because this contains the famous Thomas-Fermi
differential equation

x”=t^{-1/2_{X}3/2}

in atomic physics. In (1.1) we suppose

0<t<\infty , 0<x<\infty

and that \alpha , \beta are real parameters and \alpha>0 . Throughout this paper, we
also suppose any real power of a positive variable takes its positive branch.

First let us review contents of [2], [3] briefly. In [2], it was concluded
that (1.1) had a bounded solution with its bounded first derivative defined
for 0\leq t<\infty if and only if \beta>-1 , and analytical expressions of the
bounded solution valid near t=0 and t=\infty were obtained. The analytical
expression valid near t=0 was got in [2] under an assumption that \alpha\lambda was
not an integer, but in [3] this was obtained without supposing so. Moreover
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in [3], \beta>-1 was supposed and under this, existence and asymptotic
behavior of the solution satisfying “an initial condition”

\lim_{tarrow 0}x=a , \lim_{tarrow 0}x’=b

was shown. Namely the solutions starting at t=0 were obtained.
So in this paper we shall consider the solutions starting at some positive

t . For this purpose we shall treat an initial value problem of (1.1) whose
initial condition is

x(T)=A, x’(T)=B (0<T<\infty) (1.2)

and investigate asymptotic behavior of the solutions. This will enable us to
get new solutions we did not discover in the previous papers [2], [3].

As was done in [2], [3], in addition to \alpha>0 we put

\beta=\alpha\lambda-2 , \lambda>0 ,

for convenience. In [3] we assumed \alpha\lambda>1 but does not here, since the
discussions will be carried out in the same way whether \alpha\lambda>1 or 0<
\alpha\lambda\leq 1 . However it will be found later that if 0<\alpha\lambda\leq 1 , then there exists
no bounded solution of (1.1) with its bounded first derivative, since the first
derivative of the solution loses the boundedness at t=0 .

Now as a beginning of discussing the initial value problem (1.1), (1.2)
we use a transformation

y=\psi(t)^{-\alpha}\phi(t)^{\alpha} , z=ty’ (1.3)

used in [2], [3]. Here \phi(t) is an arbitrary solution of (1.1) and

\psi(t)=\{\lambda(\lambda+1)\}^{1/\alpha}t^{-\lambda}

is a particular solution of (1.1). Note that we always have y>0 , since \phi(t)>

0 . The transformation (1.3) transforms (1.1) into a first order rational
differential equation

\frac{dz}{dy}=\frac{-\lambda(\lambda+1)\alpha^{2}y^{2}+(2\lambda+1)\alpha yz-(1-\alpha)z^{2}+\lambda(\lambda+1)\alpha^{2}y^{3}}{\alpha yz} .

(1.4)

Here the case y’=0 corresponds to the singularities of (1.4) with z=
0 . Using a parameter s , we rewrite (1.4) as an autonomous system of
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dimension 2

\frac{dy}{ds}=\alpha yz

(1.5)
\frac{dz}{ds}=-\lambda(\lambda+1)\alpha^{2}y^{2}+(2\lambda+1)\alpha yz-(1-\alpha)z^{2}+\lambda(\lambda+1)\alpha^{2}y^{3} .

A solution z=z(y) of (1.4) represents an orbit of a solution (y(s), z(s)) of
(1.5).

From (1.3) we get

z= \alpha y(\lambda+\frac{t\phi’(t)}{\phi(t)}) (1.6)

Therefore from (1.2), an initial condition

z(yo)=z_{0} (1.7)

where

y_{0}=\psi(T)^{-\alpha}A^{\alpha} . z_{0}= \alpha y_{0}(\lambda+\frac{TB}{A}) (1.8)

is naturally given to (1.4) and from a solution x=\phi(t) of (1.1), (1.2) we
obtain a solution z=z(y) of (1.4), (1.7) or a solution (y(s), z(s)) of (1.5)
passing (y_{0}, z_{0}) and vice versa.

2. Solutions of (1.1) obtained from solutions of (1.5) tending to
its singularities

In the yz plane, singularities of (1.5) are points (0, 0) , (1, 0) if \alpha\neq 1 ,
and all points of the z axis and a point (1, 0) if \alpha=1 .

Owing to [2], an orbit z=z(y) of a solution (y(s), z(s)) of (1.5) tending
to (1, 0) is given as either

z=(\mu/\alpha)(y-1)+ (2.1)

or

z=(\mu’/\alpha)(y-1)+ (2.2)

in the neighborhood of y=1 where denotes a uniquely determined
convergent power series starting from a term whose degree is greater than
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that of the previous term and

\mu=\{(2\lambda+1)\alpha-\sqrt{(2\lambda+1)^{2}\alpha^{2}+4\lambda(\lambda+1)\alpha^{3}}\}/2<0 ,

\mu’=\{(2\lambda+1)\alpha+\sqrt{(2\lambda+1)^{2}\alpha^{2}+4\lambda(\lambda+1)\alpha^{3}}\}/2>0 .

Moreover through (1.3) we get a solution x=\phi(t) of (1.1) represented as

\phi(t)=\{\lambda(\lambda+1)\}^{1/\alpha}t^{-\lambda}\{1+\sum_{n=1}^{\infty}\hat{a}_{n}(Ct^{\mu/\alpha})^{n}\} (2.3)

converging in the neighborhood of t=\infty from (2.1) and

\phi(t)=\{\lambda(\lambda+1)\}^{1/\alpha}t^{-\lambda}\{1+\sum_{n=1}^{\infty}\hat{a}_{n}(Ct^{\mu’/\alpha})^{n}\} (2.4)

converging in the neighborhood of t=0 from (2.2). Here \hat{a}_{1}=1/\alpha , \hat{a}_{n} are
constants and C is an arbitrary constant.

Now let z=z_{1}(y) be an orbit of a solution of (1.5) situated in 0<
y<1 , z>0 and represented as (2.1) in the neighborhood of y=1 . Then
z=z_{1}(y) is a solution of (1.4). If (y(s), z(s)) is a solution of (1.5) whose
orbit is z=z_{1}(y) , then from [2], [3] we get

\lim_{sarrow-\infty}(y(s), z(s))=(0,0) , \lim_{sarrow-\infty}z(s)/y(s)=\alpha\lambda

respectively and hence

\lim_{yarrow 0}z_{1}(y)/y=\alpha\lambda .

Let us consider solutions of (1.5) tending to (0, 0) . Then we conclude

Lemma 1 If z=z(y) is an orbit of a solution (y(s), z(s)) of (1.5) and

\lim_{yarrow 0}z(y)=0 ,

then we get

\lim_{yarrow 0}z(y)/y=\alpha\lambda , \alpha(\lambda+1) , \pm\infty .

Proof When (y(s), z(s)) passes a line z=\sigma y , we have

(d/ds)(z-\sigma y)=-y^{2}\{(\sigma-\alpha\lambda)(\sigma-\alpha(\lambda+1))-\lambda(\lambda+1)\alpha^{2}y\}
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which implies

(d/ds)(z-\sigma y)<0 if \sigma<\alpha\lambda , \sigma>\alpha(\lambda+1)

(d/ds)(z-\sigma y)>0 if \alpha\lambda\leq\sigma\leq\alpha(\lambda+1)

in the neighborhood of y=0. However if z(y)/y accumulated to two values
d_{1} , d_{2}(d_{1}<d_{2}) as yarrow 0 , then in the case d_{1}<\sigma<d_{2} the sign of (d/ds)(z-
\sigma y) would not be definite in contradiction to the above inequalities. Hence
we may put

d= \lim_{yarrow 0}z(y)/y .

On the other hand, we get

\frac{dz}{dy}=-\lambda(\lambda+1)\alpha(1-y)\frac{y}{z}+2\lambda+1-\frac{1-\alpha}{\alpha}\frac{z}{y}

from (1.4). Therefore letting y tend to 0, the limit of dz/dy exists and is
equal to d from l’Hospital’s theorem. Hence we conclude

d=\alpha\lambda , \alpha(\lambda+1)

if d is finite. Now the proof is completed. \square

Following the discussion for obtaining (3.20) of [8] now, from an orbit
z=z(y) of a solution of (1.5) such that

\lim_{yarrow 0}z(y)/y=\alpha\lambda ,

we obtain a solution x=\phi(t) of (1.1) represented as

\phi(t)=a[1+\sum_{m+n>0}\gamma_{mn}\{\frac{a^{\alpha}}{\lambda(\lambda+1)}t^{\alpha\lambda}\}^{m}(\frac{\alpha b}{a}t)^{n}] if \alpha\lambda>1

\phi(t)=a[1+\sum_{m+n>0}\gamma_{mn}(Dt)^{\alpha\lambda m}\{Dt(\hat{h} log t+\hat{\Gamma})\}^{n}] if 0<\alpha\lambda\leq 1

(2.5)

converging in the neighborhoods of t=0. Here \gamma_{mn} , a , b , D , \hat{h} , \hat{\Gamma} are
constants and

\gamma_{01}=1/\alpha , \gamma_{0n}=0 (n=2,3, .) , a=\phi(0)>0 , b=\phi’(0) ,

D=a^{1/\lambda}/\{\lambda(\lambda+1)\}^{1/\alpha\lambda}
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Note that a , b can be taken arbitrarily and that from the final discussion of
[8], \phi’(t) is unbounded if 0<\alpha\lambda\leq 1 . According to the above we get (2.5)
from z_{1}(y) .

Moreover owing to [8], if z=z(y) is an orbit of a solution of (1.5) and

\lim_{yarrow 0}z(y)/y=\alpha(\lambda+1) ,

then z(y) exists uniquely so that in the neighborhood of y=0 we get

z= \alpha(\lambda+1)y\{1+\frac{\lambda}{(\lambda+1)\alpha+1}y+ \} (2.6)

So we denote z(y) by z_{2}(y) . Furthermore from (2.6) or z_{2}(y) we get a
solution x=\phi(t) of (1.1) represented as

\phi(t)=bt\sum_{n=0}^{\infty}\overline{a}_{n}\{\frac{b^{\alpha}}{\lambda(\lambda+1)}t^{\alpha(\lambda+1)}\}^{n} , \overline{a}_{0}=1 (2.7)

converging in the neighborhood of t=0 . Here b , a_{n} are constants.
Finally we show the following:

Lemma 2 If an interval (\omega_{-}, \omega_{+}) is a domain of a solution x=\phi(t) of
(1.1), then as t –

\omega_{+} or \omega_{-} , (y, z) defifined as (1.3) does not tend to a
nonsingular fifinite point of (1.5) situated in y>0 .

Proof Suppose that (y, z) tends to a nonsingular finite point (\hat{y},\hat{z}) (\hat{y}>0)

as tarrow\omega_{+} . Then if \omega_{+}<\infty , \phi(t) can exist even for t>\omega_{+} . Hence \omega_{+}=\infty .
If \hat{z}\neq 0 , then we immediately get a contradiction, since from (1.3) we have

\int(1/z(y))dy=\log t+C

where C is a constant. If \hat{z}=0 , then considering reciprocals of both sides
of (1.4) we get

y-\hat{y}=b_{N}z^{N}+ (b_{N}\neq 0)

where N\geq 2 , since dy/dz=0 if y=\hat{y}. Hence we obtain

z=\overline{b}_{N}(y-\hat{y})^{1/N}+ (\overline{b}_{N}\neq 0)
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and from (1.3)

\frac{(y-\hat{y})^{1-(1/N)}}{1-(1/N)} (1+ )=\overline{b}_{N}\log t+C

which deduces a contradiction as tarrow\omega_{+} .
As tarrow\omega_{-} , the proof is similar. \square

3. The case 0<A\leq\psi(T)

In what follows, let (\omega_{-}, \omega_{+}) be a domain of a solution x=\phi(t) of (1.1),
(1.2).

In this section we first fix A in (1.2) so that 0<A<\psi(T) . Then from
(1.8), y_{0} is fixed so that 0<y_{0}<1 . Moreover let B_{1} denote B satisfying
(1.3) if z_{0}=z_{1}(y_{0}) .

If B>B_{1} , then a solution z=z(y) of (1.4), (1.7) satisfies z(y)>z_{1}(y) .
Indeed from (1.8), z_{0} is increasing in B and uniqueness of a solution holds
for (1.4), (1.7). As was shown in [3] we get

\lim_{yarrow\infty}z(y)=\infty , \lim_{yarrow\infty}y^{-3/2}z(y)=\alpha\sqrt{\frac{2\lambda(\lambda+1)}{\alpha+2}}

and from z(y) and (1.3) a solution x=\phi(t) of (1.1), (1.2) represented as

\phi(t)=(\frac{2(\alpha+2)}{\alpha^{2}\omega_{+}^{\alpha\lambda-2}})^{1/\alpha}(\omega_{+}-t)^{-2/\alpha}

[1+ \sum_{m+n>0}c_{mn}(\omega_{+}-t)^{m}\{(\omega_{+}-t)^{2+4/\alpha}\}^{n}] if 4/\alpha\not\in N ,

\phi(t)=(\frac{2(\alpha+2)}{\alpha^{2}\omega_{+}^{\alpha\lambda-2}})^{1/\alpha}(\omega_{+}-t)^{-2/\alpha}

\{1+\sum_{m>0}(\omega_{+}-t)^{m}p_{m}(\log(\omega_{+}-t))\} if 4/\alpha\in N , (3.1)

which converge in the neighborhoods of t =\omega_{+} . Here 0<\omega_{+}<\infty , c_{mn}

are constants and p_{m}(\xi) are polynomials of \xi whose degrees are at most
[m\alpha/(2\alpha+4)] , [ ] denoting Gaussian symbol.

Since z_{2}(y)>z_{1}(y) from \alpha\lambda<\alpha(\lambda+1) , the above statements are valid
for z_{2}(y) and we have a solution of (1.1), (1.2) represented as (3.1) in the
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neighborhood of t=\omega_{+} from z_{2}(y) . Now let B_{2} denote B satisfying (1.8)
if z_{0}=z_{2}(y_{0}) and let us consider the case tarrow\omega_{-} .

If B_{1}<B<B_{2} , then a solution z=z(y) of (1.4), (1.7) satisfies z_{1}(y)<

z(y)<z_{2}(y) and from Lemma 1

\lim_{yarrow 0}y^{-1}z=\alpha\lambda ,

since z_{2}(y) is a unique solution of (1.4) satisfying

\lim_{yarrow 0}y^{-1}z=\alpha(\lambda+1) .

Hence from z(y) we obtain a solution of (1.1), (1.2) represented as (2.5) in
the neighborhood of t=0 .

If B>B_{2} , a solution z(y) of (1.4), (1.7) can be continued up to y=0
because if this were not true, putting z=1/\zeta in (1.4) we would get

d\zeta/dy=-\{-\lambda(\lambda+1)\alpha^{2}y^{2}\zeta^{2}+(2\lambda+1)\alpha y\zeta

-(1-\alpha)+\lambda(\lambda+1)\alpha^{2}y^{3}\zeta^{2}\}\zeta/\alpha y (3.2)

which implied a contradiciton \zeta\equiv 0 . Therefore it follows from the unique-
ness of z_{2}(y) that concerning a solution z=z(y) of (1.4), (1.7) there exist
the following possibilities:

(i) \lim_{yarrow 0}z=0 , \lim_{yarrow 0}y^{-1}z=\infty

(ii) \lim_{yarrow 0}z=c , 0<c<\infty

(iii) \lim_{yarrow 0}z=\infty .

In every case of these we get

\lim_{yarrow 0}y^{-1}z=\infty .

Therefore as in [3] we put w=yz^{-1} and get a Briot-Bouquet differential
equation

y \frac{dw}{dy}=\frac{w}{\alpha}-(2\lambda+1)w^{2}+\lambda(\lambda+1)\alpha w^{3}-\lambda(\lambda+1)\alpha yw^{3} .

Since 1/\alpha>0 and the righthand side of this is divisible by w , we have

w= \sum_{m+n>0}w_{mn}y^{m}(c_{y}^{1/\alpha})^{n} . w_{01}=1 (3.3)
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where w_{mn} are constants and C is an arbitrary constant. As w\equiv 0 is also
a solution, for some C we obtain

w= \sum_{m+n>0}w_{mn}y^{m}(c_{y}^{1/\alpha})^{n}\equiv 0 .

This implies

w_{m0}=0 (m=1,2, .) , C=0.

Moreover in the same way as in [3], we get from (3.3) a solution x=\phi(t)

of (1.1), (1.2) represented as

\phi(t)=\Gamma(t-\omega_{-}) \{1+\sum_{m+n>0}b_{mn}(t-\omega_{-})^{m}(t-\omega_{-})^{\alpha n}\} , (3.4)

which converges in the neighborhood of t=\omega_{-} . Here \Gamma is an arbitrary
constant, 0<\omega_{-}<\infty and b_{mn} are constants.

Now let us discuss when (i)-(iii) occur. Let (y(s), z(s)) be a solution of
(1.5) whose orbit is z=z(y) . Then we have

\lim_{sarrow s_{0}}y(s)^{-1}z(s)=\infty

for some s_{0}(\geq-\infty) . Hence from (1.5) we obtain

\frac{dz}{ds}=-(1-\alpha)z^{2}\{1+\frac{\lambda(\lambda+1)\alpha^{2}}{1-\alpha}(\frac{y}{z})^{2}-\frac{(2\lambda+1)\alpha}{1-\alpha}\frac{y}{z}

- \frac{\lambda(\lambda+1)\alpha^{2}}{1-\alpha}(\frac{y}{z})^{2}y\}\sim(\alpha-1)z^{2}

as sarrow s_{0} . Therefore for s sufficiently close to s_{0} we conclude that if \alpha>1 ,
then dz/ds>0 and if 0<\alpha<1 , then dz/ds<0 . Namely if \alpha>1 , then
(i) occurs and if 0<\alpha<1 , then (iii) occurs. Indeed we get dy(s)/ds>0
from (1.5) and B>B_{2} , and y tends to 0 as s decreases. If \alpha=1 , then from
(3.3) we get

w=Cy(1+ \cdot) ,

that is

z=C^{-1} (1+ ) ,

since C=0 implies w\equiv 0 . Hence (ii) occurs.
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Next let us consider the case B<B_{1} . In this case, a solution z=z(y)
of (1.4), (1.7) satisfies z(y)<z_{1}(y) . Let z=z_{3}(y) be a solution of (1.4)
represented as (2.2) in the neighborhood of y=1 and situated in 0<y<1 ,
z<0 . Then from the same discussion as in the case B>B_{2} , this can be
continued up to y=0 and satisfies

\lim_{yarrow 0}y^{-1}z=-\infty .

Let B_{3} be B satisfying (1.8) if z_{0}=z_{3}(yo) .
If B_{3}<B<B_{1} , then from Lemma 1 and the uniqueness of z_{1}(y) a

solution (y(s), z(s)) of (1.5) whose orbit is a solution z=z(y) of (1.4), (1.7)
satisfies

\lim_{sarrow-\infty}(y(s), z(s))=(0,0) , \lim_{sarrow-\infty}\frac{z(s)}{y(s)}=\alpha\lambda ,

\lim_{sarrow s_{0}}y(s)=0 , \lim_{sarrow s_{0}}\frac{z(s)}{y(s)}=-\infty

for some s_{0}(\leq\infty) . Therefore from the above discussions we get a solution
x=\phi(t) of (1.1), (1.2) defined for 0<t<\omega_{+} where \omega_{+}<\infty , represented
as (2.5) in the neighborhood of t=0 and

\phi(t)=\Gamma(\omega_{+}-t)\{1+\sum_{m+n>0}b_{mn}(\omega_{+}-t)^{m}(\omega_{+}-t)^{\alpha n}\} (3.5)

in the neighborhood of t=\omega_{+} . Here \Gamma is an arbitrary constant and b_{mn} are
constants. In fact, we have (3.5) in the same way as was used for obtaining
(3.4).

If B=B_{3} , then from the above discussions we get a solution x=\phi(t)

of (1.1), (1.2) defined for 0<t<\omega_{+} where \omega_{+}<\infty , represented as (2.4)
in the neighborhood of t=0 and (3.5) in the neighborhood of t=\omega_{+} .

Now let us suppose B<B_{3} . Then as in the case B_{3}<B<B_{1} the
solution (y(s), z(s)) of (1.5) satisfies

\lim_{sarrow s_{0}}y(s)=0 , \lim_{sarrow s_{0}}\frac{z(s)}{y(s)}=-\infty

for some s_{0}(\leq\infty) and hence we get a solution x=\phi(t) of (1.1), (1.2)
represented as (3.5) in the neighborhood of t=\omega_{+} .

Before considering the case tarrow\omega_{-} , we note that as in the case B>B_{2}
there exist the following possibilities concerning a solution z=z(y) of (1.4),
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(1.7) in the case B<B_{1} :

(i) \lim_{yarrow 0}z=0 , \lim_{yarrow 0}y^{-1}z=-\infty

(ii) \lim_{yarrow 0}z=c , -\infty<c<0

(iii) \lim_{yarrow 0}z=-\infty

which occur respectively if \alpha>1 , \alpha=1,0<\alpha<1 .
Return to the case B<B_{3} . Then as t – \omega_{-} , there exist the following

possibilities:

(i) \omega_{-}>0 , \lim_{tarrow\omega-}\phi(t)=0

(ii) \omega_{-}>0 , \lim_{tarrow\omega-}\phi(t)=\infty

(iii) \omega_{-}=0 , \lim_{tarrow\omega-}\phi(t)=0

(iv) \omega_{-}=0 , 0< \lim_{tarrow\omega-}\phi(t)<\infty

(v) \omega_{-}=0 , \lim_{tarrow\omega-}\phi(t)=\infty .

Define y , z as (1.3). Then in the cases (i), (iii), (iv) we have a contradiction

\lim_{tarrow\omega-}y=0 .

Indeed dy/dt=z<0 in this case. If (ii) occurs, we obtain

\lim_{tarrow\omega-}y=\infty .

Suppose that (v) occurs. Since from B<B_{3} we get z_{0}<0 and from
(1.5),

\frac{dz}{ds}=\lambda(\lambda+1)\alpha^{2}y^{2}(y-1)>0

on y>1 , z=0, the orbit of (y(s), z(s)) cannot cross the y axis as s
decreases. Therefore z(s)<0 and from (1.3) we have y’<0 . Hence there
exists

\lim_{tarrow 0}y=\lim_{tarrow 0}\{\lambda(\lambda+1)\}^{-1}(\frac{\phi(t)}{t^{-\lambda}})^{\alpha}
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This implies that there exists

c= \lim_{tarrow 0}\frac{\phi(t)}{t^{-\lambda}} .

However owing to l’Hospital’s theorem we have

c= \frac{c^{1+\alpha}}{\lambda(\lambda+1)}

since \lim_{tarrow 0}\phi(t)=\infty implies \lim_{tarrow 0}\phi’(t)=-\infty and \phi’(t)=t^{\alpha\lambda-2}\phi(t)^{1+\alpha} .
Hence we obtain

c=0, \{\lambda(\lambda+1)\}^{1/\alpha} , \infty

and

\lim_{tarrow 0}y=0,1 , \infty

respectively. But we now get dy/dt=z<0 and \lim_{tarrow 0}y=0 is impossible.
If \lim_{tarrow 0}y=1 , then from Lemma 2 we get \lim_{tarrow 0}z=0 , -\infty . If \lim_{tarrow 0}z=

0 , then we have a contradiction B=B_{3} and if \lim_{tarrow 0}z=-\infty , then putting
z=1/\zeta and getting (3.2) we obtain a contradiction \zeta\equiv 0 . Hence we
conclude

\lim_{tarrow 0}y=\infty .

Now we suppose (ii) or (v). Then we put y=1/\eta so that \lim_{tarrow\omega-}\eta=

0 . If z accumulates to a finite value as tarrow\omega_{-} , then we get a contradiction
\eta\equiv 0 from

dz/d\eta=\{\lambda(\lambda+1)\alpha^{2}\eta-(2\lambda+1)\alpha\eta^{2}z

+(1-\alpha)\eta^{3}z^{2}-\lambda(\lambda+1)\alpha^{2}\}/\alpha\eta^{4}z .

Thus

\lim_{tarrow\omega-}z=\lim_{\etaarrow 0}z=-\infty .

So we put \zeta=1/z . Then we have

d\zeta/d\eta=\{-\lambda(\lambda+1)\alpha^{2}\eta\zeta^{3}+(2\lambda+1)\alpha\eta^{2}\zeta^{2}

-(1-\alpha)\eta^{3}\zeta+\lambda(\lambda+1)\alpha^{2}\zeta^{3}\}/\alpha\eta^{4} .
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Moreover if we put w=\eta^{-3/2}\zeta , \xi=\eta^{1/2} . then we obtain

dw/d\xi=\{-(\alpha+2)w+2(2\lambda+1)\alpha\xi w^{2}

+2\lambda(\lambda+1)\alpha^{2}w^{3}-2\lambda(\lambda+1)\alpha^{2}\xi^{2}w^{3}\}/\alpha\xi . (3.6)

In case of \xi=0 , the numerator of the righthand side vanishes if and only if
w=0 , \gamma where

\gamma=-\frac{1}{\alpha}\sqrt{\frac{\alpha+2}{2\lambda(\lambda+1)}} .

since w\leq 0 .
Here we consider a solution of (3.6) satisfying w(0)=c. If c\neq 0 , \gamma ,

then from (3.6) we get

d\xi/dw=\alpha\xi/\{-(\alpha+2)w+2(2\lambda+1)\alpha\xi w^{2}

+2\lambda(\lambda+1)\alpha^{2}w^{3}-2\lambda(\lambda+1)\alpha^{2}\xi^{2}w^{3}\}

which implies a contradiction \xi\equiv 0 .
If c=0, then from (3.6) we have a Briot-Bouquet differential equation

\xi\frac{dw}{d\xi}=-\frac{\alpha+2}{\alpha}w+2(2\lambda+1)\xi w^{2}+2\lambda(\lambda+1)\alpha w^{3}-2\lambda(\lambda+1)\alpha\xi^{2}w^{3}

If w is a solution of this which accumulates to 0, then applying Painlev\’e’s
theorem (cf. Theorem 3.2.1 of [1]) to reciprocals of both sides we conclude
w converges to 0 as \xi –0. However if w were not identically zero, then
solving this asymptotically we would get

log w=- \frac{\alpha+2}{\alpha} (log \xi ) (1+o(1)) as \xiarrow 0

which is a contradiction, since -(\alpha+2)/\alpha<0 (cf. a lemma of [9] or [10]).
Suppose c=\gamma . Then if we put

\theta=w-\gamma ,

we get the same transformation as

y^{-1/2}=\eta , z^{-1}=\eta^{3}(\gamma+u) .

In [3] we used this transformation and got a differential equation from which
we obtained an analytical expression of z(y)(>z_{1}(y)) in the neighborhood
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of y=\infty . Since we get the same differential equation, we follow the cal-
culation done in [3] and have analytical expressions similar to (3.1) such
as

\phi(t)=(\frac{2(\alpha+2)}{\alpha^{2}\omega_{-}^{\alpha\lambda-2}})1/\alpha(t-\omega_{-})^{-2/\alpha}

[1+ \sum_{m+n>0}c_{mn}(t-\omega_{-})^{m}\{(t-\omega_{-})^{2+4/\alpha}\}^{n}] if 4/\alpha\not\in N

\phi(t)=(\frac{2(\alpha+2)}{\alpha^{2}\omega_{-}^{\alpha\lambda-2}})^{1/\alpha}(t-\omega_{-})^{-2/\alpha}

\{1+\sum_{m>0}(t-\omega_{-})^{m}p_{m}(\log(t-\omega_{-}))\} if 4/\alpha\in N (3.7)

which converge in the neighborhoods of t=\omega_{-} . Here 0<\omega_{-}<\infty and
c_{mn} , p_{m}(\xi) are the same as in (3.1). If c=-\infty , then putting w=1/\theta in
(3.6) we have

d\xi/d\theta=\alpha\xi\theta/\{(\alpha+2)\theta^{2}-2(2\lambda+1)\alpha\xi\theta

-2\lambda(\lambda+1)\alpha^{2}+2\lambda(\lambda+1)\alpha^{2}\xi^{2}\}

which implies a contradiction \xi\equiv 0 . Consequently only (ii) occurs.
Summarizing the above conclusions, we obtain

Theorem I Let x=\phi(t) be a solution of (1.1), (1.2). Then if 0<A<
\psi(T) , there exist numbers B_{1} , B_{2} , B_{3} such that
(i) if B<B_{3} , then \phi(t) is defifined for \omega_{-}<t<\omega_{+} , represented as (3.7)

in the neighborhood of t=\omega_{-} and (3.5) in the neighborhood of t=\omega_{+} ,

(ii) if B=B_{3} , then \phi(t) is defifined for 0<t<\omega_{+} , represented as (2.4)
in the neighborhood of t=0 and (3.5) in the neighborhood of t=\omega_{+} ,

(iii) if B_{3}<B<B_{1} , then \phi(t) is defifined for 0<t<\omega_{+} , represented
as (2.5) in the neighborhood of t=0 and (3.5) in the neighborhood of
t=\omega_{+} ,

(iv) if B=B_{1} , then \phi(t) is defifined for 0<t<\infty , represented as (2.5) in
the neighborhood of t=0 and (2.3) in the neighborhood of t=\infty ,

(v) if B_{1}<B<B_{2} , then \phi(t) is defifined for 0<t<\omega_{+} , represented
as (2.5) in the neighborhood of t=0 and (3.1) in the neighborhood of
t=\omega_{+} ,



On solutions of x” =t^{\alpha\lambda-2}x^{1+\alpha} starting at some positive t 537

(vi) if B=B_{2} , then \phi(t) is defifined for 0<t<\omega_{+} , represented as (2.7)
in the neighborhood of t=0 and (3.1) in the neighborhood of t=\omega_{+} ,

(vii) if B>B_{2} , then \phi(t) is defifined for \omega_{-}<t<\omega_{+} , represented as
(3.4) in the neighborhood of t=\omega_{-} and (3.1) in the neighborhood of
t=\omega_{+} .

Here 0<\omega_{-}<\omega_{+}<\infty .

Similarly we conclude

Theorem II If A=\psi(T) , then there exists a number B_{2} such that
(i) if B<-\lambda A/T . then (i) of Theorem I is valid,
(ii) if B=-\lambda A/T , then \phi(t)=\psi(t) ,
(iii) if -\lambda A/T<B<B_{2} , then (v) of Theorem I is valid,
(iv) if B=B_{2} , then (vi) of Theorem I is valid,
(v) if B>B_{2} , then (vii) of Theorem I is valid.

4. The case A>\psi(T)

In this section we suppose A>\psi(T) in (1.2). Then from (1.8) we get
y_{0}>1 .

First let z=z_{4}(y) be a solution of (1.4), (1,7) represented as (2.2)
in the neighborhood of y=1 and situated in y>1 , z>0 . Then from
z_{4}(y) we have a solution x=\phi(t) of (1.1), (1.2) represented as (2.4) in the
neighborhood of t=0 . Moreover using the discussion of [3] also here, we
conclude that z_{4}(y) can be continued up to y=\infty and get (3.1) in the
neighborhood of t=\omega_{+} from z_{4}(y) . Let B_{4} denote B satisfying (1.8) if
z_{0}=z_{4}(y_{0}) .

Next let z=z_{5}(y) be a solution of (1.4), (1.7) represented as (2.1) in
the neighborhood of y=1 and situated in y>1 , z<0 . From z_{5}(y) we
then obtain a solution x=\phi(t) of (1.1), (1.2) represented as (2.3) in the
neighborhood of t=\infty . Furthermore from the discussion of Section 3, z_{5}(y)

can be continued up to y=\infty and get (3.7) in the neighborhood of t=\omega_{-} .
Now let B_{5} denote B satisfying (1.8) if z_{0}=z_{5}(yo) .

If B>B_{4} , then a solution z=z(y) of (1.4), (1.7) satisfies z(y)>z_{4}(y) .
In the region z>z_{4}(y) , there exists z_{2}(y) appearing in Section 2. Therefore
if B_{2} denotes B satisfying (1.8) for z_{0}=z_{2}(y_{0}) also here, then B_{2}>B_{4} .

Discussing as in Section 3, we now get
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Theorem III If A>\psi(T) , then there exist numbers B_{2} , B_{4} , B_{5} such
that
(i) if B<B_{5} , then (i) of Theorem I is valid,
(ii) if B=B_{5} , then \phi(t) is defifined for \omega_{-}<t<\infty , represented as (3.7)

in the neighborhood of t=\omega_{-} and (2.3) in the neighborhood of t=\infty ,
(iii) if B_{5}<B<B_{4} , then \phi(t) is defifined for \omega_{-}<t<\omega_{+} , represented as

(3.7) in the neighborhood of t=\omega_{-} and (3.1) in the neighborhood of
t=\omega_{+} ,

(iv) if B=B_{4} , then \phi(t) is defifined for 0<t<\omega_{+} , represented as (2.4)
in the neighborhood of t=0 and (3.1) in the neighborhood of t=\omega_{+} ,

(v) if B_{4}<B<B_{2} , then (v) of Theorem I is valid,
(vi) if B=B_{2} , then (vi) of Theorem I is valid,
(vii) if B>B_{2} , then (vii) of Theorem I is valid,

Here 0<\omega_{-}<\omega_{+}<\infty .
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