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Biharmonic classification of Riemannian spaces

S. I. OTHMAN and V.ANANDAM
(Received March 2, 2001)

Abstract. R is a Riemann surface or a Riemannian manifold of dimension \geq 2 . We
carry out the biharmonic classification of R based on the extension property that given
a biharmonic function b outside a compact set in R there exists a biharmonic function B
on R such that b-B is bounded near infinity.
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1. Introduction

Let R be a Riemannian space, a term that denotes here either a Rie-
mann surface R or a Riemannian manifold R of dimension \geq 2 . In the
harmonic classification of R, we know that R is hyperbolic if and only if
given any harmonic function h outside a compact set in R there exists a
harmonic function H in R such that h-H is bounded near infinity. In this
note we consider a similar result in the biharmonic classification of R .

In a Riemannian manifold R, if \triangle is the Laplace-Beltrami operator,
b is said to be biharmonic if \triangle^{2}b=0 and a positive function Q_{y}(x) is
said to be the biharmonic Green potential with pole \{y\} if \triangle^{2}Q_{y}=\delta_{y} . We
prove here that if R is a radial space, that is a Riemannian manifold like
the n-spaces and the Poincar\’e n-balls endowed with a radial metric ds=
\lambda(|x|)|dx| , and if there exists a biharmonic Green potential on R, then given
any biharmonic function b outside a compact set, there exists a biharmonic
function B on R such that b-B is bounded near infinity. Actually we show
that in an arbitrary Riemannian manifold R, biharmonic Green potentials
exist if and only if given any biharmonic function b outside a compact set,
there exist on R a biharmonic function B and two potentials 9 and p such
that near infinity |b-B|\leq g and |\triangle(b-B)|\leq p .

Also, making precise the definitions of biharmonic functions and bihar-
monic Green potentials in a general Riemannian space R, we investigate this
biharmonic-extension property in R whether it is hyperbolic or parabolic.
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This note studies principally three categories of Riemannian spaces: bip0-
tential spaces, biharmonic-extension spaces and tapered spaces.

2. Preliminaries

In this note, R denotes a Riemann surface or an oriented C^{\infty}
-

Riemannian manifold of dimension n\geq 2;dx denotes the volume element.
If \mu is a Radon measure on an open set \omega in R, we know that (see, for ex-
ample, Theorem 4.2 [1] ) there exists a superharmonic function s on \omega with
\mu as its associated measure in a local Riesz representation. This relation is
denoted by Lu=-\mu . If f is a locally dx-integrable function on \omega , we write

Lu=-f if u is a \delta-superharmonic function on \omega with d\lambda=f(x)dx as its
associated signed measure.

If h is a harmonic function on an open set \omega in R, a function b such
that Lb=-h is said to be biharmonic on \omega . For y\in R , if G_{y}(x)=G(x, y)

is the Green potential on R (resp. E_{y}(x)=E(x, y) is the Evans function
on R) if R is hyperbolic (resp. if R is parabolic), we write LQ_{y}=-G_{y}

(resp. LQ_{y}=-E_{y} ). If Q_{y}(x) is a potential on R , we say that Q_{y}(x) is the
biharmonic Green potential on R with pole \{y\} . R is termed a bipotential
space if there are biharmonic Green potentials on R.

We remark that if R is a Riemannian manifold and if \triangle is the Laplace-
Beltrami operator on R (see Sario et al. [8]) then L\equiv-\triangle . We use the
symbol L to cover the case when R is a Riemann surface also where the
Laplacian is not invariant under a parametric change.

3. Biharmonic extension in hyperbolic spaces

In this section, R stands for a hyperbolic Riemann surface or a hyper-
bolic Riemannian manifold of dimension \geq 2 .

Definition 3.1 In a hyperbolic Riemannian space R, a function b that is
biharmonic outside a compact set is said to have the biharmonic-extension
property if there exists a biharmonic function B on R such that b-B is
bounded near infinity. R itself is said to be a biharmonic-extension space if
every b on R that is biharmonic outside a compact set has the biharmonic-
extension property.

Theorem 3.1 In a hyperbolic Riemannian space R , the following are
equivalent:
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1. R is a biharmonic-extension space.
2. For any fifinite continuous potential p with compact harmonic support,

if Lg=-p then g has the biharmonic-extension property.

Proof. 1 ) \Rightarrow 2 ): This is obvious since g is a biharmonic function outside
a compact set in R.

2)\Rightarrow 1) : Let b be a function on R, that is biharmonic outside a com-
pact set A . Let Lb=-h on R\backslash A . Since h is harmonic, there exist finite
continuous potentials p_{1} and p_{2} with compact harmonic support and a har-
monic function H on R such that h=p_{1}-p_{2}+H near infinity. Let Lg_{1}=

-p_{1} , Lg_{2}=-p_{2} and LB=-H. so that b=g_{1}-g_{2}+B+(a harmonic func-
tion v ) near infinity. Then v=H_{1}+v_{1} near infinity where H_{1} is harmonic
on R and v_{1} is bounded harmonic near infinity.

Now by the assumption (2), there exist biharmonic functions B_{1} and
B_{2} such that g_{1}-B_{1} and g_{2}-B_{2} are bounded near infinity. Let B_{0}=B_{1}-

B_{2}+B+H_{1} . Then B_{0} is biharmonic on R and b-B_{0} is bounded near
infinity. \square

Search for examples: We have not succeeded in constructing Riemann
surfaces R or Riemannian manifolds R of dimension \geq 2 to establish that
there is no inclusion relation between the two properties of R having bihar-
monic Green potentials and R being a biharmonic-extension space. How-
ever, if we carry out similar classifications of the second order elliptic dif-
ferential operators on a domain \Omega in \mathbb{R}^{n}\backslash we can notice from the following
two examples that the two properties are independent.

1. Let \Omega=(0, \infty) . Let L= \frac{d^{2}}{dx^{2}} define the harmonic sheaf on \Omega . Then,
considering \Omega as a biharmonic space, we can easily show that \Omega is a
biharmonic-extension space but there is no biharmonic Green potential
on \Omega .

2. Let \Omega=\mathbb{R} . Let L= \frac{d^{2}}{dx^{2}}-\frac{d}{dx} define the harmonic sheaf on \Omega . Then
\Omega has biharmonic Green potentials on \Omega , but it is not a biharmonic-
extension space.

In this context, it is of interest to know that if R is a radial Riemannian
manifold having biharmonic Green potentials, then R is a biharmonic ex-
tension space (see the paragraph after Definition 3.2 and also Theorem 3.6);
and if R is an arbitrary Riemannian space with biharmonic Green poten-
tials, then given any biharmonic function b outside a compact set there exist
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on R, a unique biharmonic function B and a potential p such that |b-B|\leq

p near infinity as the following theorem shows.

Theorem 3.2 In a Riemannian space R, the following are equivalent:
1) There are biharmonic Green potentials on R .
2) Given any biharmonic function b outside a compact set, there exist

on R a biharmonic function B and two potentials s_{1} and s_{2} such that near
infifinity, |b-B|\leq s_{1} and |L(b-B)|\leq s_{2} .

Proof 1 ) \Rightarrow 2 ): Let b be a biharmonic function defined outside a com-
pact set in R. Then, as in Remark 2 (a) in [6], b can be represented near
infinity in the form b=g_{1}-g_{2}+p_{1}-p_{2}+B where B is a uniquely deter-
mined biharmonic function on R;g_{1} and g_{2} are potentials on R; and -Lg_{1} ,
-Lg_{2} , p_{1} and p_{2} are finite continuous potentials on R with compact har-
monic support. Set s_{1}=g_{1}+g_{2}+p_{1}+p_{2} and s_{2}=-Lg_{1}-Lg_{2} . Then
s_{1} and s_{2} are two potentials on R such that near infinity, |b-B|\leq s_{1} and
|L(b-B)|\leq s_{2} .

2)\Rightarrow 1) : It is enough to show that for a potential p>0 on R with
compact harmonic support, there exists a potential g such that Lg=-p
on R. Let s be a superharmonic function on R such that Ls=-p. Since
s is biharmonic outside a compact set, by the assumption (2), there exist
a biharmonic function B on R and two potentials s_{1} and s_{2} such that near
infinity |s-B|\leq s_{1} and |L(s-B)|\leq s_{2} . This implies that the subharmonic
function |LB| on R is majorized by the potential p+s_{2} outside a compact
set and hence LB\equiv 0 ; that is B is harmonic on R.

Consequently, s-B is superharmonic on R and majorizes the subhar-
monic function- s_{1} near infinity. Hence we can write s-B=g+h where g

is a potential and h is harmonic on R. Then Lg=-p on R. \square

The following theorem gives a sufficient condition for the hyperbolic R
to be a biharmonic-extension space. Let LQ=-G where G=G(x, y) is
the Green potential on R with pole at \{y\} .

Theorem 3.3 If there exists a biharmonic function B on R such that
LB\geq 0 and Q-B is bounded near infifinity, then R is a biharmonic-
extension space.

Proof Let p be a finite continuous potential on R with compact harmonic
support A and let Lg=-p. By Theorem 3.1, it is enough to show that g

has the biharmonic-extension property.
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Let k be an outerregular compact set such that A\subset k0 . Then p=B_{k}p

on R\backslash k where B_{k}p denotes the Dirichlet solution on R\backslash k with boundary
values p on \partial k and 0 at infinity. Since for the assumption in the theorem
the position of the pole \{y\} in G_{y}(x)=G is immaterial, we can assume
y\in A ; as a result, we can find some \lambda>0 such that B_{k}p\leq\lambda G on R\backslash A .
Since p is finite continuous on R, we can suppose p\leq\lambda G on R .

Let Ls=-(\lambda G-p) . Then L(g+s)=\lambda LQ . Hence g+s=\lambda Q+(a

harmonic function h) on R. Since Q-B is, by assumption, a superharmonic
fucntion on R, bounded near infinity, Q-B= (a potential Q_{1} ) +(a bounded
harmonic function h_{1} ) on R. Then, the superharmonic function g-\lambda B=

-s+\lambda(Q_{1}+h_{1})+h majorizes a subharmonic function on R and hence
g-\lambda B= (a potential g_{1} ) + (a harmonic function H) on R .

Similarly, s has a subharmonic minorant outside a compact set and
hence s= (a potential s_{1} ) + (a harmonic function h_{3} ) on R. Consequently,
(g_{1}+H)+(s_{1}+h_{3})=g-\lambda B+s=\lambda(Q-B)+h=\lambda(Q_{1}+h_{1})+h .
Equating the potential parts, we have g_{1}+s_{1}=\lambda Q_{1} . Since Q_{1} is bounded
near infinity, so is g_{1}=g-\lambda B-H . Hence g has the biharmonic-extension
property. \square

Definition 3.2 A hyperbolic Riemannian space R is said to be tapered if
Q (where LQ=-G) is bounded outside a compact set. [6]

At this point, it is useful to remark that from the results in [3] and [6] we
can deduce that there exist biharmonic Green potentials on a Riemannian
space R if and only if there exist potentials p and g on R such that Lg=
-p<0[3] ; and that R is tapered if and only if there exist potentials p and
g on R, g being bounded outside a compact set such that Lg=-p<0[6] .
We have yet to construct a Riemannian manifold R that has biharmonic
Green potentials but is not tapered. However, if R is a radial space like
the n-spaces and the Poincar\’e n-balls, each endowed with a radial metric
ds=\lambda(|x|)|dx| (see p. 311 Sario et al. [8]), it can be proved using Theorem
6 [6] that R is tapered if and only if R has biharmonic Green potentials.
Thus the Euclidean space \mathbb{R}^{n} is tapered if and only if n\geq 5 ; also, using
Theorem 2.4, p. 316 Sario et al. [8] we conclude that the Poincar\’e n-ball
B_{\alpha}^{n}=\{x\in \mathbb{R}^{n}, |x|=r, r<1, ds=(1-r^{2})^{\alpha}|dx|, \alpha\in \mathbb{R}\} is tapered if and
only if \alpha>-\frac{3}{2} when n=2 , -3<\alpha<1 when n=3 and \alpha<\frac{1}{n-2} when
n>3 .
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Now from Theorem 3.3, it is evident that a tapered Riemannian space R
is a biharmonic-extension space. Conversely, the following two propositions
discuss some of the additional conditions required so that a biharmonic-
extension space becomes a tapered space. Recall (Theorem 10 [7]) that if b

is a bounded biharmonic function outside a compact set in \mathbb{R}^{n} , n\geq 2 , then
\triangle b tends to 0 at infinity; hence if n\geq 3 , there exists a potential p on \mathbb{R}^{n}

such that |\triangle b|\leq p near infinity.

Proposition 3.4 Let R be a biharmonic-extension space on which if b is
a bounded biharmonic function outside a compact set, there is a potential p
on R such that |Lb|\leq p near infifinity. Then R is tapered.

Proof. To show that R is tapered, we have to show that if G is the Green
function on R, then there exists a potential Q on R, bounded near infinity
and LQ=-G. Let now LQ_{1}=-G for some superharmonic function
Q_{1} on R. Since Q_{1} is biharmonic near infinity, there exists a biharmonic
function B on R such that Q_{1}-B is bounded near infinity. Then by the
assumption, there exists a potential p on R such that |L(Q_{1}-B)|\leq p near
infinity. Hence |LB|\leq p+G near infinity.

Consequently, LB\equiv 0 and B is harmonic on R. Since Q_{1}-B is
superharmonic on R and bounded near infinity, its g.h.m . h is bounded on
R. If we write Q_{1}-B=Q+h , Q is a potential on R, bounded near infinity
and LQ=-G. Hence R is tapered. \square

Again, a tapered Riemannian space R is a biharmonic-extension space
with biharmonic Green potentials. We do not expect the converse to be true
without any additional hypothesis. We show below that if R is a biharmonic-
extension space of Almansi-type with biharmonic Green potentials, then R
is tapered; we define the Almansi-type (see [7]) as follows: Let \omega_{n} be a
regular exhaustion of R with \rho_{x}^{n} denoting the harmonic measure on \partial\omega_{n} .
R is said to be of Almansi-type if every biharmonic fucntion B on R, for
which h_{n}(x)= \int Bd\rho_{x}n is locally uniformly bounded on R for large n , is
necessarily harmonic on R.

Proposition 3.5 Let R be a biharmonic-extension space having bihar-
monic Green potentials. Suppose R is of Almansi-type. Then R is tapered.

Proof. Let G be a Green potential with point support and LQ=-G. We
have to show that Q is bounded near infinity.
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Since R has biharmonic Green potentials, Q can be assumed to be a
potential on R[3] . Since R is a biharmonic-extension space, there exists a
biharmonic function B on R such that Q-B is bounded near infinity. Hence
|B|\leq Q+c near infinity where c\geq 0 is a constant. Since \int Qd\rho_{x}^{n} tends to
0 uniformly on compact sets on R which is assumed to be of Almansi-type,
we conclude that \int Bd\rho_{x}n is bounded on compact sets for large n . Hence B
is harmonic on R.

Thus, Q-B is superharmonic on R and bounded near infinity. Hence
if h is the g.h.m . of Q-B on R, h is bounded on R. Now, in the equation
Q-B=(Q-B-h)+h, equating the harmonic parts, we obtain B=-h is
bounded harmonic on R. Hence Q=(Q-B)+B is bounded near infinity.
This proves that R is tapered. \square

Remark 3.1 The assumptions in the above two propositions imply that
every bounded biharmonic fucntion on R is harmonic. But in some tapered
spaces we can find nonharmonic bounded biharmonic functions, as in the
case of the Poincare ball B_{\alpha}^{n} for n>4 and -1< \alpha<\frac{1}{n-2} . Other simple
examples of tapered spaces which are not of Almansi-type include \mathbb{R}^{n}\backslash 0 for
n\geq 5 (see [7]).

We give now a necessary and sufficient condition for a hyperbolic space
R to be tapered.

Theorem 3.6 Let R be a hyperbolic Riemannian space. Then R is tapered
if and only if for any biharmonic function b outside a compact set there
exist potentials p and 9 on R, both bounded near infifinity, and a (unique)
biharmonic function B on R such that near infifinity |b-B|\leq g and |L(b-
B)|\leq p .

Proof If R is tapered, any biharmonic function b outside a compact set
has a representation of the form b=g_{1}-g_{2}+p_{1}-p_{2}+B near infinity (see
Theorem 5 and Lemma 8 in [6] ) where g_{1} and g_{2} are potentials on R bounded
near infinity; -Lg_{1} , -Lg_{2} , p_{1} and p_{2} are finite continuous potentials with
compact harmonic support; and B is biharmonic on R. Consequently, with
g=g_{1}+g_{2}+p_{1}+p_{2} and p=-Lg_{1}-Lg_{2} , we have near infinity, |b-
B|\leq g and |L(b-B)|\leq p . Note that under these conditions, B is uniquely
determined.

Conversely, let LQ_{1}=-G . Then Q_{1} being biharmonic near infinity, by
the hypothesis, there exist a biharmonic function B and potentials p and g
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on R such that p and g are bounded near infinity and |Q_{1}-B|\leq g and
|L(Q_{1}-B)|\leq p outside a compact set. Since the harmonic function LB on
R satisfies the condition |LB|\leq p+G near infinity, LB\equiv 0 ; that is, B is
harmonic. Hence Q_{1}-B is a superharmonic function on R bounded near
infinity. Write Q_{1}-B=Q+h where Q is a potential on R bounded near
infinity and h is harmonic on R. Moreover LQ=L(Q_{1}-B)=LQ_{1}=-G .
Hence R is tapered. \square

Corollary 3.7 Let R be a tapered Riemannian space on which every
bounded biharmonic function is harmonic. Let h be a harmonic function
defifined outside a compact set in R. Then the following are equivalent:

1) There exists a bounded biharmonic fucntion u near infifinity such that
Lu=-h .

2) There is a potential p on R such that |h|\leq p near infifinity.

Proof. 1 ) \Rightarrow 2): Let u be a bounded biharmonic function near infinity
such that Lu=-h. Write h=p_{1}-p_{2}+H where p_{1} and p_{2} are finite
continuous potentials with compact support and H is harmonic on R . Let
Lg_{1}=-p_{1} , Lg_{2}=-p_{2} and LB=-H. Then u=g_{1}-g_{2}+B+(a
harmonic function v ) near infinity. Now v can be written as v=f+v_{1} near
infinity where f is harmonic on R and v_{1} is bounded harmonic near infinity;
moreover, since R is tapered, g_{1} and g_{2} can be assumed to be bounded near
infinity (Theorem 9 [6]). Consequently, the biharmonic function B+f on
R is bounded near infinity and hence is harmonic by the hypothesis. This
implies that H=-LB=-L(B+f)=0 and that h=p_{1}-p_{2} . Hence
|h|\leq p_{1}+p_{2} near infinity.

2)\Rightarrow 1) : Conversely, let h be a harmonic function outside a compact
set such that |h|\leq p near infinity, for a potential p on R. Writing h=p_{1}-

p_{2}+H near infinity, we note that |H|\leq p+p_{1}+p_{2} near infinity and hence
H\equiv 0 . Since R is tapered, we can choose g_{1} and g_{2} on R, both bounded
near infinity, such that Lg_{1}=-p_{1} and Lg_{2}=-p_{2} . Thus, near infinity,
u=g_{1}-g_{2} is a bounded biharmonic function such that Lu=-h. (For
the implication (2)\Rightarrow(1) , the assumption that every bounded biharmonic
function on R is harmonic is redundant.) \square

Remark 3.2 1) Suppose there is a potential >0 on R tending to 0 at
infinity. Let h be harmonic outside a compact set. Then |h|\leq p near
infinity for a potential p on R if and only if h tends to 0 at infinity. This is



Biharmonic classification of Riemannian spaces 465

so, since in this case every potential with compact harmonic support tends
to 0 at infinity.

2) \mathbb{R}^{n} , n\geq 3 , and B_{\alpha}^{n} with \alpha\leq-1 and n\geq 2 are some of the hy-
perbolic Riemannian manifolds in which there exist potentials >0 tending
to 0 at infinity and every bounded biharmonic function is harmonic. Here
\mathbb{R}^{3} and \mathbb{R}^{4} are not tapered and for every bounded biharmonic function u
outside a compact set in \mathbb{R}^{n} , n\geq 2 , \triangle u –0 at infinity, but there is no
bounded biharmonic function u near infinity such that \triangle u=\frac{1}{r^{n-2}}(n=

3,4) . However the above corollary is valid in \mathbb{R}^{n} , n\geq 5 , which are tapered
and in these cases we have a variant of this corollary as follows:

Theorem 3.8 Let h be a harmonic function defifined outside a compact
set in \mathbb{R}^{n} , n\geq 5 . Then h\in L^{p}(\omega) for some p , 1\leq p<\infty and some
neighbourhood \omega of infifinity if and only if there exists a bounded biharmonic
function b near infifinity such that \triangle b=h .

To prove this theorem, we need the following lemmas.

Lemma 3.9 If s is a subharmonic function in L^{p}(\mathbb{R}^{n}) , 1\leq p<\infty and
n\geq 2 , then s\leq 0 on \mathbb{R}^{n} .

Proof For x_{0}\in \mathbb{R}^{n} , let S_{n}=\{x:|x-x_{0}|=1\} and \sigma_{n} be the surface area
of S_{n} . Since t=s^{+}\geq 0 , t^{p} is subharmonic and using the polar coordinates
for x=(r, \omega) , |x-x_{0}|=r , we have t^{p}(x_{0}) \leq\frac{1}{\sigma_{n}}\int_{S_{n}}t^{p}(r, \omega)d\omega .

Since t\in L^{p}(\mathbb{R}^{n}) by hypothesis,

\infty>\int_{0S}^{\infty}\int_{n}t^{p}(r, \omega)r^{n-1}drd\omega\geq\int_{0}^{\infty}\sigma_{n}t^{p}(x_{0})r^{n-1} dr.

This is possible if and only if t^{p}(x_{0})=0 . Since x_{0} is arbitrary t^{p}\equiv 0

on \mathbb{R}^{n} and hence s\leq 0 on \mathbb{R}^{n} . \square

For the statement of the following lemma, we shall say that a subhar-
monic function f defined outside a compact set on \mathbb{R}^{n} extends subharmon-
ically on \mathbb{R}^{n} , if there exists a subharmonic function g on \mathbb{R}^{n} such that g is
not majorized by a harmonic function on \mathbb{R}^{n} and f=g outside a compact
set.

Lemma 3.10 Let u be an L^{p} -subharmonic function, 1\leq p<\infty , defifined
outside a compact set in \mathbb{R}^{n} , n\geq 2 . Then, u cannot be extended subhar-



466 S. I. Othman and V. Anandam

monically on \mathbb{R}^{n} .

Proof. Suppose there exists a subharmonic function v not majorized by a
harmonic function on \mathbb{R}^{n} such that u=v outside a compact set. Then, for
large r , the function s defined as u on |x|\geq r and D_{r}u on |x|<r where D_{r}u

is the Dirichlet solution on |x|<r with boundary values u , is subharmonic
on \mathbb{R}^{n} and s\geq v .

If u(x)\in L^{p} on |x|\geq r , s(x) is in the harmonic Hardy class on |x|<r
(Axler et al. p. 103 [5]) and hence there exists a harmonic function H(x) on
|x|<r such that |s|^{p}<H . Then \int_{|x|<r}|s(x)|^{p}dx\leq c_{n}H(0) for a constant
c_{n} . That is, s belongs to L^{p} on |x|<r , which implies that s\in L^{p}(\mathbb{R}^{n}) since
s(x)=u(x) on |x|\geq r . Then, by Lemma 3.9, s\leq 0 and hence v\leq 0 on
\mathbb{R}^{n} , a contradiction. \square

Lemma 3.11 Let u be a subharmonic function on an open set \omega contain-
inq |x|\geq r on \mathbb{R}^{n} , n\geq 2 . Suppose u\in L^{p}(\omega) for some p , 1\leq p<\infty .
Then u is upper bounded on |x|\geq r .

Proof. By hypothesis, u^{+}(x) is an L^{p_{-}}subharmonic function on the open
set \omega containing |x|\geq r .

1) In \mathbb{R}^{2} , if u^{+} is not upper bounded on |x|\geq r , it can be extended
subharmonically on \mathbb{R}^{2} (Corollary 1 [2]). This is a contradiction (Lemma
3.10) since u^{+}\in L^{p} on |x|\geq r . This means that u^{+} and hence u is upper
bounded on |x|\geq r .

2) In \mathbb{R}^{n} . n\geq 3 , there exists a subharmonic function s(x) on \mathbb{R}^{n} and
some \alpha\leq 0 such that u^{+}(x)=s(x)-\alpha|x|^{2-n} on |x|\geq r (Theorem 1’[2] ).
Hence s(x)\geq\alpha|x|^{2-n} .

Denoting by M(R, s) the mean-value of s(x) on |x|=R , suppose
\lim_{Rarrow\infty}M(R, s)=\infty . Then \lim_{Rarrow\infty}M(R, u^{+})=\infty . Hence u^{+} can be
extended subharmonically on \mathbb{R}^{n} (Theorem 2’[2] ), a contradiction (Lemma
3.10); thus \lim_{Rarrow\infty}M(R, s)<\infty , in which case s has a harmonic majorant
h on \mathbb{R}^{n} . Since h is lower bounded, it is a constant c and c\geq 0 . Hence u^{+}

is bounded on |x|\geq r and u is upper bounded by c-\alpha|x|^{2-n} on |x|\geq r .
Thus, for all n\geq 2 , u is upper bounded on |x|\geq r in \mathbb{R}^{n} . \square

Lemma 3.12 Let h be a harmonic function defifined outside a compact set
in \mathbb{R}^{n} . n\geq 2 . Then h tends to 0 at infifinity if and only if h\in L^{p}(\omega) for
some p , 1\leq p<\infty , and some neighbourhood \omega of infifinity.
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Proof. Suppose h\in L^{p}(\omega) . Then by Lemma 3.11, h is bounded near
infinity and hence tends to a limit l at infinity; l should be 0 since h\in

L^{p}(\omega) .
Conversely, let h tend to 0 at infinity.
1) In \mathbb{R}^{n} , n\geq 3 , write h=p_{1}-p_{2}+H near infnity where p_{i}(i=1,2) is

a finite continuous potential with compact support on \mathbb{R}^{n} and H is harmonic
on \mathbb{R}^{n} . Since p_{i} and h tend to 0 at infinity, H\equiv 0 . Now, for sufficiently large
r , p_{i}(x)=B_{r}p_{i}(x) for |x|>r where B_{r}p_{i} denotes the Dirichlet solution on
|x|>r with boundary values p_{i}(x) on |x|=r and 0 at infinity. Consequently

p_{i}(x)\leq\alpha_{i}|x|^{2-n} in |x|>r where \alpha_{i}=\max_{|x|=r}p_{i}(x) and hence if \omega is the
open set |x|>r , p_{i}\in L^{p}(\omega) for p> \frac{n}{n-2} . Hence h\in L^{p}(\omega) .

2) In \mathbb{R}^{2} . write h=s_{1}-s_{2}+H near infinity where s_{i}(i=1,2) is
a finite continuous logarithmic potential with compact harmonic support
on \mathbb{R}^{2} and H is harmonic on \mathbb{R}^{2} . Suppose fiux s_{i} at infinty is \alpha_{i} . Then
\alpha_{1}=\alpha_{2}=\alpha since flux h and flux H at infinity are 0; also since h and
s_{i}-\alpha\log|x| tend to 0 at infinity, H\equiv 0 . Now, for sufficiently large r , |s_{i}-

\alpha\log|x||\leq\frac{M}{|x|} when |x|>r . Hence |h(x)| \leq\frac{2M}{|x|} when |x|>r ; consequently
h\in L^{p} on |x|>r , if p>2 . \square

Proof of Theorem 3.8. 1) Suppose h\in L^{p}(\omega) for some finite p\geq 1 . Then
by Lemma 3.12, h tends to 0 at infinity and consequently Corollary 3.7 and
the remarks that follow can be used to assert the existence of a bounded
biharmonic function b near infinity such that \triangle b=h .

2) Conversely, let h be harmonic outside a compact set such that for
a bounded biharmonic function b , \triangle b=h . Then by Corollary 3.7, h tends
to 0 at infinity. Consequently by Lemma 3.12, h\in L^{p}(\omega) for p> \frac{n}{n-2} and
some neighbourhood \omega of the point at infinity. \square

We conclude this section with a remark on the set of nonremovable
singularities for bounded biharmonic functions.

Theorem 3.13 Let R be a biharmonic-extension space. Suppose K is
compact, w is open, K\subset w\subset R and b is a bounded biharmonic funtion on
w\backslash K which does not extend as a biharmonic function on w . Then given
any open set \Omega\supset K , there exists a bounded biharmonic function on \Omega\backslash K

which does not extend biharmonically on \Omega .

Proof. It is enough to prove the theorem assuming \Omega=R . Since b is
bounded biharmonic on w\backslash K , (easily modifying the proof of Theorem 3.1 [4]
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given for \mathbb{R}^{n} to suit the Riemannian space R), we can write b=s-v on
w\backslash K where s is biharmonic on R\backslash K and v is biharmonic on w .

Since R is a biharmonic-extension space, there exists a biharmonic func-
tion B on R such that u=s-B is bounded near infinity; hence we can
assume that for a relatively compact open set \omega_{0} , K\subset\omega_{0}\subset\overline{\omega}_{0}\subset\omega , u is
bounded on R\backslash \omega_{0} . But b=u-(v-B) on \omega\backslash K and b and v-B are bounded
on \omega\backslash K ; hence u is bounded on \omega\backslash K\tau Thus u is a bounded biharmonic fuc-
ntion on R\backslash K . Moreover u cannot be extended as a biharmonic function on
R; for if u extends biharmonically on R, (v-B being biharmonic on \omega ), b

also extends biharmonically on \omega , a contradiction. \square

4. Flux condition

In this section also, R stands for a hyperbolic Riemann surface or a
hyperbolic Riemannian manifold of dimension \geq 2 .

Definition 4.1 R is said to satisfy the flux condition if given any har-
monic function h outside a compact set with flux h at infinity 0, there exist
a biharmonic fucntion B on R and a bounded biharmonic function u outside
a compact set such that L(B+u)=-h near infinity.

Remark 4.1 1) \mathbb{R}^{n} , n\geq 2 , satisfy the flux condition. (See Theorem 12
[6] ) .

2) If R is a biharmonic-extension space, this definition is redundant.
For, in this case, for any harmonic h outside a compact set, there always
exist B and u as in the definition such that L(B+u)=-h near infinity.

Theorem 4.1 Let R be hyperbolic but not a biharmonic-extension space,
satisfying the flux condition. Then given a biharmonic function b outside a
compact set, there exists a biharmonic funtion B_{0} on R such that b-B_{0} is
bounded near infifinity if and only if flux Lb at infifinity is 0.

Proof 1) Let h=-Lb and flux h at infinity 0. Since R satisfies the
flux condition, L(B+u)=-h. Hence b=B+u+h_{0} near infinity where
h_{0} is harmonic outside a compact set. Since R is hyperbolic, there exist a
harmonic function H on R and a bounded harmonic function v outside a
compact set such that h_{0}=H+v . Hence if B_{0}=B+H , B_{0} is biharmonic
on R and b-B_{0} is bounded near infinity.

2) Conversely, let b be a biharmonic function outside a compact set
such that for a biharmonic function B_{0} in R, b-B_{0} is bounded near infinity.
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Suppose flux Lb at infinity is \alpha\neq 0 .
Let G be the Green potential on R with pole at some \{y\} and let LQ=

-G. Take flux G at infinity as \beta . Then \beta\neq 0 and flux L(Q+ \frac{\beta}{\alpha}b) at
infinity is 0. Hence from what we have proved in (1) above, there exists a
biharmonic function B_{1} on R such that Q+ \frac{\beta}{\alpha}b+B_{1} is bounded near infinity.
Since we know that b-B_{0} is bounded near infinity, we conclude Q_{1}=Q+
\frac{\beta}{\alpha}B_{0}+B_{1} is bounded near infinity. We shall show that this conclusion leads
to the contradiction that R is a biharmonic-extension space.

For, let s be any biharmonic function outside a compact set in R. Let
flux Ls at infinity is \lambda . Then flux L(s+ \frac{\lambda}{\beta}Q_{1})=0 . Hence by the flux
condition there exists a biharmonic function B_{2} on R such that s+ \frac{\lambda}{\beta}Q_{1} -

B_{2} is bounded near infinity. Since Q_{1} is bounded near infinity, s-B_{2} is
bounded near infinity. This implies that R is a biharmonic-extension space,
a contradiction.

This contradiction arises out of the assumption that \alpha\neq 0 . Thus, we
have proved that flux Lb at infinity is 0. \square

5. Biharmonic extension in parabolic spaces

In this section, R stands for a parabolic Riemann surface or a parabolic
Riemannian manifold of dimension \geq 2 .

Let E=E_{y}(x) be the Evans function on R with pole at some point
\{y\} . Let us denote Q by LQ=-E on R. Since |E_{y}(x)-E_{y1}(x)| is bounded
near infinity for two different poles y and y_{1} , in the context of biharmonic
extension the pole y can be fixed conveniently.

Definition 5.1 A parabolic Riemannian space R is said to be a
biharmonic-extension space if given a biharmonic function b outside a com-
pact set there exist a biharmonic function B on R and a constant \alpha such
that b-B-\alpha E is bounded near infinity.

Theorem 5.1 A parabolic Riemannian space R is a biharmonic-extension
space if and only if for any fifinite continuous logarithmic potential p with
compact harmonic support on R, if Lg=-p, there exist a biharmonic
function B on R and a constant \alpha such that g-B-\alpha E is bounded near
infifinity.

Proof. The proof is similar to that of Theorem 3.1 with the proviso that
any harmonic function h outside a compact set in R can be written as h=
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p_{1}-p_{2}+H near infinity where p_{1} and p_{2} are finite continuous logarithmic
potentials with compact harmonic support on R and H is harmonic on R; or
in another representation h=f+\alpha E+v near infinity where f is harmonic
on R and v is bounded harmonic near infinity. \square

If the parabolic space R satisfies the flux condition (the same as in
Definition 4.1), then as in Section 4 we can prove the following:

Lemma 5.2 Let the parabolic space R satisfy the flux condition. Then any
biharmonic function b outside a compact set is of the form b=B+\alpha Q+

\beta E+u near infifinity where B is biharmonic on R, u is bounded biharmonic
near infifinity, \alpha and \beta are constants and LQ=-E .

Lemma 5.3 If the parabolic space R satisfifies the flux condition and if
Q+B+\beta E is bounded near infifinity for some biharmonic function B on R ,
then R is a biharmonic-extension space.

Theorem 5.4 Let R be a parabolic but not a biharmonic-extension space,
satisfying the flux condition. Then given a biharmonic function b outside
a compact set, there exist a biharmonic function B_{0} on R and a constant
\alpha such that b-B_{0}-\alpha E is bounded near infifinity if and only if flux Lb at
infifinity is 0.
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