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Notes on commutators and Morrey spaces

Yasuo KOMORI and Takahiro MIZUHARA
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Abstract. We show that the commutator [M_{b}, I_{\alpha}] of the multiplication operator M_{b}

by b and the fractional integral operator I_{\alpha} is bounded from the Morrey space L^{p,\lambda}(R^{7\iota})

to the Morrey space L^{q,\lambda}(R^{n}) where 1 <p<\infty , 0<\alpha<n , 0<\lambda<n-\alpha p and
1/q=1/p-\alpha/(n-\lambda) if and only if b belongs to BMO(Rn) .
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1. Introduction

Let I_{\alpha} , 0<\alpha<n , be the fractional integral operator defined by

I_{\alpha}f(x)= \int_{R^{n}}\frac{f(y)}{|x-y|^{n-\alpha}}dy .

We consider the commutator

[M_{b}, I_{\alpha}]f(x)=b(x)I_{\alpha}f(x)-I_{\alpha}(bf)(x) , b\in L_{1oc}^{1}(R^{n}) .

Chanillo [1] and the first author [7] obtained the necessary and suffi-
cient condition for which the commutator [M_{b}, I_{\alpha}] is bounded on L^{p}(R^{n}) .
Di Fazio and Ragusa [4] obtained the necessary and sufficient condition for
which the commutator [M_{b}, I_{\alpha}] is bounded on Morrey spaces for some \alpha .

In this paper we refine their results in [4] by using the duality argu-
ment and the factorization theorem for H^{1}(R^{n}) (Theorem 2). Our proof is
different from the one in [4].

2. Definitions and Notations

For a set E\subset R^{n} we denote the characteristic function of E by \chi_{E} and
|E| is the Lebesgue measure of E .

We denote a ball of radius t centered at x by B(x, t)=\{y;|x-y|<t\} .

Definition 1 Let 1\leq p<\infty , \lambda\geq 0 . We define the classical Morrey space
by
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L^{p,\lambda}(R^{n})=\{f\in L_{1oc}^{p}(R^{n}) ;

||f||_{L^{p,\lambda}}= \sup_{x\in R^{n},t>0},(\frac{1}{t^{\lambda}}\int_{B(x,t)}|f(y)|^{p}dy)^{1/p}<\infty\} .

The classical Morrey spaces L^{p,\lambda} . 0<\lambda<n , on some bounded region,
were originally introduced by Morrey [11] in 1938, and used by himself and
the others in the problems related to the calculus of variations and the
theory of elliptic PDE’s.

For the classical Morrey space L^{p,\lambda}(R^{n}) , the next results are well-
known.

If 1 \leq p<\infty , then we have L^{p,0}(R^{n})=L^{p}(R^{n}) and L^{p,n}(R^{n})=

L^{\infty}(R^{n}) (isometrically), and if n<\lambda , then we have L^{p,\lambda}(R^{n})=\{0\} . So we
consider the case 0\leq\lambda\leq n .

Chiarenza and Frasca [2] showed that the Hardy-Littlewood maximal
operator is bounded on Morrey spaces and consequently gave a proof of
the boundedness of the Calder\’on-Zygmund singular integral operators on
Morrey spaces.

We introduce the blocks and the spaces generated by blocks following
Taibleson and Weiss [12] and Long [9]. See also Lu, Taibleson and Weiss
[10].

Definition 2 Let 1 \leq q<r\leq\infty . A function b(x) on R^{n} is called a
(q, r) -block, if there exists a ball B(x_{0}, t) such that

supp b\subset B(x_{0}, t) , ||b||_{L^{r}}\leq t^{n(1/r-1/q)} .

Definition 3 Let 1\leq q<r\leq\infty . We define the space generated by
blocks by

h_{q,r}(R^{n})= \{f=\sum_{j=1}^{\infty}m_{j}b_{j} ; b_{j} are (q, r) blocks

||f||_{h_{q,r}}= \inf\sum_{j=1}^{\infty}|m_{j}|<\infty\} ,

where the infimum extends over all representations f= \sum_{j=1}^{\infty}m_{j}b_{j} (see [9]).

We note that each (q, r) -block b_{j} belongs to L^{q}(R^{n}) and ||b_{j}||_{q}\leq 1 .
So the series of blocks \sum_{j}m_{j}b_{j} converges in L^{q}(R^{n}) and absolutely almost
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everywhere provided \sum_{j}|m_{j}|<\infty . Hence each space h_{q,r}(R^{n}) is a function
space and a Banach space (see [9], p. 17).

Definition 4 H^{1}(R^{n}) is the Hardy space in the sense of Fefferman and
Stein [5] and BMO(R^{n}) is the John-Nirenberg space (see [6] or [13], p. 199).
BMO(R^{n}) is a Banach space, modulo constants, with the norm ||\cdot||_{*} defined
by

||b||_{*}= \sup_{x\in R^{n},t>0},

\frac{1}{|B(x,t)|}\int_{B(x,t)}|b(y)-b_{B}|dy where

b_{B}= \frac{1}{|B(x,t)|}\int_{B(x,t)}b(y)dy .

Fefferman and Stein [5] showed that the Banach space dual of H^{1}(R^{n})

is isomorphic to BMO(Rn) , that is,

||b||_{*} \approx||f||_{H^{1}}\leq 1\sup|\int b(x)f(x)dx| .

3. Theorems

The L^{p} theory about the commutator [M_{b}, I_{\alpha}] is as follows;

Theorem A (Chanillo [1] and Komori [7]) The commutator [M_{b}, I_{\alpha}] is a

bounded operator from L^{p}(R^{n}) to L^{q}(R^{n}) for 1/q=1/p-\alpha/n , 1<p<n/\alpha

and 0<\alpha<n , if and only if b\in BMO(Rn) .

Theorem A says about the results for the particular Morrey spaces
L^{p,0}(R^{n}) and L^{q,0}(R^{n}) .

Recently, Di Fazio and Ragusa [4] obtained the next results correspond-
ing to index \lambda , 0<\lambda<n .

Theorem B (Di Fazio and Ragusa [4]) Let 1<p<\infty , 0<\alpha<n , 0<
\lambda<n-\alpha p , 1/q=1/p-\alpha/(n-\lambda) and 1/q+1/q’=1 .

If b\in BMO(R^{n}) then [M_{b}, I_{\alpha}] is a bounded operator from L^{p,\lambda}(R^{n}) to
L^{q,\lambda}(R^{n}) .

Conversely if n-\alpha is an even integer and [M_{b}, I_{\alpha}] is bounded from
L^{p,\lambda}(R^{n}) to L^{q,\lambda}(R^{n}) for some p , q , \lambda as above, then b\in BMO(Rn) .

As we can see easily, the conditions for the converse part of Theorem B

are very strong. In fact, when n=1,2 there does not exist \alpha satisfying
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the conditions. When n=3 , the assumptions are satisfied only for \alpha=1 .
When n=4, the assumptions are satisfied for \alpha=1,2 .

The aim of this paper is to remove this restriction. Our result is the
following.

Theorem 1 Let 1<p<\infty , 0<\alpha<n , 0<\lambda<n-\alpha p , 1/q=1/p-
\alpha/(n-\lambda) and 1/q+1/q’=1 .

If the commutator [M_{b}, I_{\alpha}] is bounded from L^{p,\lambda}(R^{n}) to L^{q,\lambda}(R^{n}) for
some p , q , \lambda as above, then b\in BMO(R^{n}) and ||b||_{*} is bounded by
C_{n}||[M_{b}, I_{\alpha}]||_{L^{p,\lambda}arrow L^{q,\lambda}} where C_{n} is a positive constant depending only on n .

Theorem 1 is a consequence of Theorem 2 below.

Theorem 2 If 1<p<\infty , 0<\alpha<n , 0<\lambda<n-\alpha p , 1/q=1/p-
\alpha/(n-\lambda) , 1/q+1/q’=1 and f\in H^{1}(R^{n}) , then there exist \{\varphi_{j}\}_{j=1}^{\infty}\subset

L^{p,\lambda}(R^{n}) and \{\psi_{j}\}_{j=1}^{\infty}\subset h_{nq/(nq-n+\lambda),q’}(R^{n}) such that

f= \sum_{j=1}^{\infty}(\varphi_{j}I_{\alpha}\psi_{j}-\psi_{j}I_{\alpha}\varphi_{j}) ,

\sum_{j=1}^{\infty}||\varphi_{j}||_{L^{p,\lambda}}||\psi_{j}||_{h_{nq/(nq-n+\lambda),q’}}\leq C_{n}||f||_{H^{1}} .

Remark Uchiyama [14] showed the factorization theorem on H^{p}(X) when
X is the space of homogeneous type, in the sense of Coifman-Weiss [3]. His
result is corresponding to the case \lambda=0 for Morrey spaces L^{p,\lambda}(R^{n}) . Also
he applied his result to the boundedness problem of the commutators of the
Calder\’on-Zygmund singular integral operator T

Applying Uchiyama’s method, the first author [7] showed the bounded-
ness of the commutators of the fractional integral operator I_{\alpha} when X=R^{n}

and \lambda=0 .

4. Preliminary Lemmas

We need four lemmas in order to prove our theorems. The first lemma
is proved easily from the definitions.

Lemma 1 Let 1\leq p<\infty , 0\leq\lambda\leq n and 1\leq q<r\leq\infty . Then we have

||\chi_{B(x_{0},t)}||_{L^{p,\lambda}}\leq C_{n}t^{\frac{n-\lambda}{p}} ||\chi_{B(x_{0},t)}||_{h_{q,r}}\leq C_{n}t^{\frac{n}{q}}
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where C_{n} is a positive constant depending only on n .

The following two lemmas are proved by Long [9].

Lemma 2 Let X be the whole space R^{n} or the unit cube Q^{n} in R^{n} . If
1\leq q<p’<\infty , q= \frac{np}{np-n+\lambda} and 1/p+1/p’=1 , then we have

|| \phi||_{L^{p,\lambda}(X)}=,\sup_{qb:(,p)- b1ocks}|\int_{X}\phi(x)b(x)dx| .

where for the definitions of L^{p,\lambda}(Q^{n}) and h_{q,p’}(Q^{n}) , see Remark (i) in Sec-
tion 6.

Lemma 3 (Duality between h_{q,p’} and L^{p,\lambda} ) Let 1\leq q<p’<\infty , q=
\frac{np}{np-n+\lambda} and 1/p+1/p’=1 , then the Banach space dual of h_{q,p’}(R^{n}) is
isomorphic to L^{p,\lambda}(R^{n}) .

The last lemma is obtained from the elementary properties of H^{1}(R^{n}) .

Lemma 4 If \int f(x)dx=0 and |f(x)|\leq(\chi_{B(x_{0},1)}+\chi_{B(y_{0},1)}) where N>
10 and |x_{0}-y0|=N . then we have ||f||_{H^{1}}\leq C_{n} log N

5. Proofs of Theorems

First now we shall prove Theorem 2.

Proof of Theorem 2. We use the atomic decomposition of H^{1} (see [8] or
[13], p. 347). First we consider an atom a such that

supp a\subset B(x_{0}, t) , ||a||_{L^{\infty}}\leq t^{-n} and \int a(x)dx=0 .

We apply the method due to Komori [7]. Let N be a large integer and
take y0\in R^{n} such that |x_{0}-y_{0}|=Nt and set

\varphi(x)=N^{n-\alpha}\chi_{B(y_{0},t)}(x) ,
\psi(x)=-a(x)/I_{\alpha}\varphi(x_{0}) .

By Lemma 1, We have

||\varphi||_{L^{p,\lambda}}\leq C_{n}N^{n-\alpha}t^{\frac{n-\lambda}{p}}

||\psi||_{h_{nq/(nq-n+\lambda),q’}}\leq C_{n}t^{-n-\alpha}t^{\frac{nq-n+\lambda}{q}} ,



350 Y. Komori and T. Mizuhara

and

||\varphi||_{L^{p,\lambda}}||\psi||_{h_{nq/(nq-n+\lambda),q’}}\leq C_{n}N^{n-\alpha}- (1)

We write

a-( \varphi\cdot I_{\alpha}\psi-\psi I_{\alpha}\varphi)=\frac{a(I_{\alpha}\varphi(x_{0})-I_{\alpha}\varphi)}{I_{\alpha}\varphi(x_{0})}-\varphi\cdot I_{\alpha}\psi ,

and we have

\int\{a-(\varphi\cdot I_{\alpha}\psi-\psi I_{\alpha}\varphi)\}dx=0 ,

|a-(\varphi I_{\alpha}\psi-\psi I_{\alpha}\varphi)|\leq C_{n}N^{-1}t^{-n}(\chi_{B(x_{0},t)}+\chi_{B(y0,t)}) .

By Lemma 4, we have

||a-(\varphi I_{\alpha}\psi-\psi I_{\alpha}\varphi)||_{H^{1}}\leq C_{n}N^{-1}\log N. (2)

Next for any f\in H^{1} such that ||f||_{H^{1}}\leq 1 , we can write f= \sum_{j}m_{j}a_{j}

where \{a_{j}\} are atoms and \sum_{j}|m_{j}|\leq C_{n} by the atomic decomposition.
Then there exist

\{\varphi_{j}\}_{j=1}^{\infty}\subset L^{p,\lambda} and \{\psi_{j}\}_{j=1}^{\infty}\subset h_{nq/(nq-n+\lambda),q’}

such that

||\varphi_{j}||_{L^{p,\lambda}}||\psi_{j}||_{h_{nq/(nq-n+\lambda),q’}}\leq C_{n}N^{n-\alpha}

and

||a_{j}-(\varphi_{j}I_{\alpha}\psi_{j}-\psi_{j}I_{\alpha}\varphi_{j})||_{H^{1}}\leq C_{n}N^{-1}\log N

by (1) and (2). So we have

||f- \sum_{j}\{(m_{j}\varphi_{j})I_{\alpha}\psi_{j}-\psi_{j}I_{\alpha}(m_{j}\varphi_{j})\}||_{H^{1}}

\leq C_{n}N^{-1}\log N\sum_{j}|m_{j}|\leq 1/2

if N is sufficiently large and

\sum_{j}||m_{j}\varphi_{j}||_{L^{p,\lambda}}||\psi_{j}||_{h_{nq/(nq-n+\lambda),q’}}\leq C_{n}N^{n-\alpha}\sum_{j}|m_{j}|\leq C_{n,N}

Repeating this process, we get the desired result. \square
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Lastly we shall prove Theorem 1.

Proof of Theorem 1. We assume that the commutator [M_{b}, I_{\alpha}] is bounded
from L^{p,\lambda}(R^{n}) to L^{q,\lambda}(R^{n}) for some p , q , \lambda in Theorem 1. Let f\in H^{1}(R^{n}) .
Then, by Theorem 2 and Lemma 3, we have

| \langle b, f\rangle|\leq\sum_{j}|\int_{R^{n}}b(x)[\varphi_{j}(x)I_{\alpha}\psi_{j}(x)-\psi_{j}(x)I_{\alpha}\varphi_{j}(x)]dx|

= \sum_{j}|\int_{R^{n}}\psi_{j}(x)[b(x)I_{\alpha}\varphi_{j}(x)-I_{\alpha}(b\varphi_{j})(x)]dx|

\leq C_{n}\sum_{j}||\psi_{j}||_{h_{nq/(nq-n+\lambda),q’}}||[M_{b}, I_{\alpha}]\varphi_{j}||_{L^{q,\lambda}}
.

From the assumption and Theorem 2 again, this is bounded by

C_{n} \sum_{j}||\psi_{j}||_{h_{nq/(nq-n+\lambda),q’}}||\varphi_{j}||_{L^{p,\lambda}}||[M_{b}, I_{\alpha}]||_{L^{p,\lambda}arrow L^{q,\lambda}}

\leq C_{n}||[M_{b}, I_{\alpha}]||_{L^{p,\lambda}arrow L^{q,\lambda}}||f||_{H^{1}} .

By the duality for H^{1}(R^{n}) and BMO(Rn) , we have that b\in BMO(R^{n}) and
||b||_{*} is bounded by C_{n}||[M_{b}, I_{\alpha}]||_{L^{p,\lambda}arrow L^{q,\lambda}} . Thus we complete the proof.

\square

6. Some Remarks

(i) In Definitions 1, 2 and 4, we can replace a ball B(x, t) by a cube
Q(x, t) centered at x with sides parallel to coordinates and sidelength t .

Also the Morrey space L^{p,\lambda}(Q^{n}) on the unit cube Q^{n} in R^{n} is define
by

L^{p,\lambda}(Q^{n})=\{f\in L^{p}(Q^{n}) ;

||f||_{L^{p,\lambda}}=

0^{x\in Q^{n}} \sup_{<t<1},

( \frac{1}{t^{\lambda}}\int_{Q(x,t)}|f(y)|^{p}dy)^{1/p}<\infty\} .

Similarly we can define the spaces h_{p,q}(Q^{n}) generated by blocks.
(ii) We obtain the local version of Lemma 3;

Lemma 3’ [Duality between h_{q,p’}(Q^{n}) and L^{p,\lambda}(Q^{n}) ] Let Q^{n} be the unit
cube in R^{n} . Let 1\leq q<p’<\infty , q= \frac{np}{np-n+\lambda} and 1/p+1/p’=1 , then the
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Banach space dual of h_{q,p’}(Q^{n}) is isomorphic to L^{p,\lambda}(Q^{n}) .

(iii) Some problems are open.

Problem 1 Can we get the boundedness or the compactness of the com-
mutators [M_{b}, I_{\alpha}] from L^{p,\lambda}(R^{n}) to L^{q,\mu}(R^{n}) for some p , q , \lambda , \mu ?

Problem 2 Can we get the H^{p}(R^{n})(0<p<1) version of Theorem 2 ?

Problem 3 In the setting of spaces of homogenous type, can we get any
results corresponding to Theorems 1 and 2 ?
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