Notes on commutators and Morrey spaces

Yasuo Komori and Takahiro Mizuhara

(Received December 17, 2001; Revised May 24, 2002)

Abstract

We show that the commutator $\left[M_{b}, I_{\alpha}\right]$ of the multiplication operator M_{b} by b and the fractional integral operator I_{α} is bounded from the Morrey space $L^{p, \lambda}\left(R^{n}\right)$ to the Morrey space $L^{q, \lambda}\left(R^{n}\right)$ where $1<p<\infty, 0<\alpha<n, 0<\lambda<n-\alpha p$ and $1 / q=1 / p-\alpha /(n-\lambda)$ if and only if b belongs to $\operatorname{BMO}\left(R^{n}\right)$.

Key words: commutator, fractional integral, Morrey space.

1. Introduction

Let $I_{\alpha}, 0<\alpha<n$, be the fractional integral operator defined by

$$
I_{\alpha} f(x)=\int_{R^{n}} \frac{f(y)}{|x-y|^{n-\alpha}} d y
$$

We consider the commutator

$$
\left[M_{b}, I_{\alpha}\right] f(x)=b(x) I_{\alpha} f(x)-I_{\alpha}(b f)(x), \quad b \in L_{\mathrm{loc}}^{1}\left(R^{n}\right)
$$

Chanillo [1] and the first author [7] obtained the necessary and sufficient condition for which the commutator $\left[M_{b}, I_{\alpha}\right]$ is bounded on $L^{p}\left(R^{n}\right)$. Di Fazio and Ragusa [4] obtained the necessary and sufficient condition for which the commutator $\left[M_{b}, I_{\alpha}\right]$ is bounded on Morrey spaces for some α.

In this paper we refine their results in [4] by using the duality argument and the factorization theorem for $H^{1}\left(R^{n}\right)$ (Theorem 2). Our proof is different from the one in [4].

2. Definitions and Notations

For a set $E \subset R^{n}$ we denote the characteristic function of E by χ_{E} and $|E|$ is the Lebesgue measure of E.

We denote a ball of radius t centered at x by $B(x, t)=\{y ;|x-y|<t\}$.
Definition 1 Let $1 \leq p<\infty, \lambda \geq 0$. We define the classical Morrey space by

$$
\begin{aligned}
& L^{p, \lambda}\left(R^{n}\right)=\left\{f \in L_{\mathrm{loc}}^{p}\left(R^{n}\right)\right. \\
&\left.\|f\|_{L^{p, \lambda}}=\sup _{\substack{x \in R^{n} \\
t>0}}\left(\frac{1}{t^{\lambda}} \int_{B(x, t)}|f(y)|^{p} d y\right)^{1 / p}<\infty\right\}
\end{aligned}
$$

The classical Morrey spaces $L^{p, \lambda}, 0<\lambda<n$, on some bounded region, were originally introduced by Morrey [11] in 1938, and used by himself and the others in the problems related to the calculus of variations and the theory of elliptic PDE's.

For the classical Morrey space $L^{p, \lambda}\left(R^{n}\right)$, the next results are wellknown.

If $1 \leq p<\infty$, then we have $L^{p, 0}\left(R^{n}\right)=L^{p}\left(R^{n}\right)$ and $L^{p, n}\left(R^{n}\right)=$ $L^{\infty}\left(R^{n}\right)$ (isometrically), and if $n<\lambda$, then we have $L^{p, \lambda}\left(R^{n}\right)=\{0\}$. So we consider the case $0 \leq \lambda \leq n$.

Chiarenza and Frasca [2] showed that the Hardy-Littlewood maximal operator is bounded on Morrey spaces and consequently gave a proof of the boundedness of the Calderón-Zygmund singular integral operators on Morrey spaces.

We introduce the blocks and the spaces generated by blocks following Taibleson and Weiss [12] and Long [9]. See also Lu, Taibleson and Weiss [10].

Definition 2 Let $1 \leq q<r \leq \infty$. A function $b(x)$ on R^{n} is called a (q, r)-block, if there exists a ball $B\left(x_{0}, t\right)$ such that

$$
\operatorname{supp} b \subset B\left(x_{0}, t\right), \quad\|b\|_{L^{r}} \leq t^{n(1 / r-1 / q)}
$$

Definition 3 Let $1 \leq q<r \leq \infty$. We define the space generated by blocks by

$$
\begin{aligned}
& h_{q, r}\left(R^{n}\right)=\left\{f=\sum_{j=1}^{\infty} m_{j} b_{j} ; b_{j} \text { are }(q, r)\right. \text {-blocks, } \\
&\left.\|f\|_{h_{q, r}}=\inf \sum_{j=1}^{\infty}\left|m_{j}\right|<\infty\right\},
\end{aligned}
$$

where the infimum extends over all representations $f=\sum_{j=1}^{\infty} m_{j} b_{j}$ (see [9]).
We note that each (q, r)-block b_{j} belongs to $L^{q}\left(R^{n}\right)$ and $\left\|b_{j}\right\|_{q} \leq 1$. So the series of blocks $\sum_{j} m_{j} b_{j}$ converges in $L^{q}\left(R^{n}\right)$ and absolutely almost
everywhere provided $\sum_{j}\left|m_{j}\right|<\infty$. Hence each space $h_{q, r}\left(R^{n}\right)$ is a function space and a Banach space (see [9], p. 17).

Definition $4 H^{1}\left(R^{n}\right)$ is the Hardy space in the sense of Fefferman and Stein [5] and $B M O\left(R^{n}\right)$ is the John-Nirenberg space (see [6] or [13], p. 199). $B M O\left(R^{n}\right)$ is a Banach space, modulo constants, with the norm $\|\cdot\|_{*}$ defined by

$$
\begin{aligned}
& \|b\|_{*}=\sup _{\substack{x \in R^{n} \\
t>0}} \frac{1}{|B(x, t)|} \int_{B(x, t)}\left|b(y)-b_{B}\right| d y \text { where } \\
& b_{B}=\frac{1}{|B(x, t)|} \int_{B(x, t)} b(y) d y .
\end{aligned}
$$

Fefferman and Stein [5] showed that the Banach space dual of $H^{1}\left(R^{n}\right)$ is isomorphic to $B M O\left(R^{n}\right)$, that is,

$$
\|b\|_{*} \approx \sup _{\|f\|_{H^{1}} \leq 1}\left|\int b(x) f(x) d x\right| .
$$

3. Theorems

The L^{p} theory about the commutator $\left[M_{b}, I_{\alpha}\right]$ is as follows;
Theorem A (Chanillo [1] and Komori [7]) The commutator $\left[M_{b}, I_{\alpha}\right]$ is a bounded operator from $L^{p}\left(R^{n}\right)$ to $L^{q}\left(R^{n}\right)$ for $1 / q=1 / p-\alpha / n, 1<p<n / \alpha$ and $0<\alpha<n$, if and only if $b \in B M O\left(R^{n}\right)$.

Theorem A says about the results for the particular Morrey spaces $L^{p, 0}\left(R^{n}\right)$ and $L^{q, 0}\left(R^{n}\right)$.

Recently, Di Fazio and Ragusa [4] obtained the next results corresponding to index $\lambda, 0<\lambda<n$.

Theorem B (Di Fazio and Ragusa [4]) Let $1<p<\infty, 0<\alpha<n, 0<$ $\lambda<n-\alpha p, 1 / q=1 / p-\alpha /(n-\lambda)$ and $1 / q+1 / q^{\prime}=1$.

If $b \in B M O\left(R^{n}\right)$ then $\left[M_{b}, I_{\alpha}\right]$ is a bounded operator from $L^{p, \lambda}\left(R^{n}\right)$ to $L^{q, \lambda}\left(R^{n}\right)$.

Conversely if $n-\alpha$ is an even integer and $\left[M_{b}, I_{\alpha}\right]$ is bounded from $L^{p, \lambda}\left(R^{n}\right)$ to $L^{q, \lambda}\left(R^{n}\right)$ for some p, q, λ as above, then $b \in \operatorname{BMO}\left(R^{n}\right)$.

As we can see easily, the conditions for the converse part of Theorem B are very strong. In fact, when $n=1,2$ there does not exist α satisfying
the conditions. When $n=3$, the assumptions are satisfied only for $\alpha=1$. When $n=4$, the assumptions are satisfied for $\alpha=1,2$.

The aim of this paper is to remove this restriction. Our result is the following.

Theorem 1 Let $1<p<\infty, 0<\alpha<n, 0<\lambda<n-\alpha p, 1 / q=1 / p-$ $\alpha /(n-\lambda)$ and $1 / q+1 / q^{\prime}=1$.

If the commutator $\left[M_{b}, I_{\alpha}\right]$ is bounded from $L^{p, \lambda}\left(R^{n}\right)$ to $L^{q, \lambda}\left(R^{n}\right)$ for some p, q, λ as above, then $b \in B M O\left(R^{n}\right)$ and $\|b\|_{*}$ is bounded by $C_{n}\left\|\left[M_{b}, I_{\alpha}\right]\right\|_{L^{p, \lambda} \rightarrow L^{q, \lambda}}$ where C_{n} is a positive constant depending only on n.

Theorem 1 is a consequence of Theorem 2 below.
Theorem 2 If $1<p<\infty, 0<\alpha<n, 0<\lambda<n-\alpha p, 1 / q=1 / p-$ $\alpha /(n-\lambda), 1 / q+1 / q^{\prime}=1$ and $f \in H^{1}\left(R^{n}\right)$, then there exist $\left\{\varphi_{j}\right\}_{j=1}^{\infty} \subset$ $L^{p, \lambda}\left(R^{n}\right)$ and $\left\{\psi_{j}\right\}_{j=1}^{\infty} \subset h_{n q /(n q-n+\lambda), q^{\prime}}\left(R^{n}\right)$ such that

$$
\begin{aligned}
& f=\sum_{j=1}^{\infty}\left(\varphi_{j} \cdot I_{\alpha} \psi_{j}-\psi_{j} \cdot I_{\alpha} \varphi_{j}\right) \\
& \sum_{j=1}^{\infty}\left\|\varphi_{j}\right\|_{L^{p, \lambda}}\left\|\psi_{j}\right\|_{h_{n q /(n q-n+\lambda), q^{\prime}}} \leq C_{n}\|f\|_{H^{1}}
\end{aligned}
$$

Remark Uchiyama [14] showed the factorization theorem on $H^{p}(X)$ when X is the space of homogeneous type, in the sense of Coifman-Weiss [3]. His result is corresponding to the case $\lambda=0$ for Morrey spaces $L^{p, \lambda}\left(R^{n}\right)$. Also he applied his result to the boundedness problem of the commutators of the Calderón-Zygmund singular integral operator T.

Applying Uchiyama's method, the first author [7] showed the boundedness of the commutators of the fractional integral operator I_{α} when $X=R^{n}$ and $\lambda=0$.

4. Preliminary Lemmas

We need four lemmas in order to prove our theorems. The first lemma is proved easily from the definitions.

Lemma 1 Let $1 \leq p<\infty, 0 \leq \lambda \leq n$ and $1 \leq q<r \leq \infty$. Then we have

$$
\left\|\chi_{B\left(x_{0}, t\right)}\right\|_{L^{p, \lambda}} \leq C_{n} t^{\frac{n-\lambda}{p}}, \quad\left\|\chi_{B\left(x_{0}, t\right)}\right\|_{h_{q, r}} \leq C_{n} t^{\frac{n}{q}}
$$

where C_{n} is a positive constant depending only on n.
The following two lemmas are proved by Long [9].
Lemma 2 Let X be the whole space R^{n} or the unit cube Q^{n} in R^{n}. If $1 \leq q<p^{\prime}<\infty, q=\frac{n p}{n p-n+\lambda}$ and $1 / p+1 / p^{\prime}=1$, then we have

$$
\|\phi\|_{L^{p, \lambda}(X)}=\sup _{b:\left(q, p^{\prime}\right) \text {-blocks }}\left|\int_{X} \phi(x) b(x) d x\right|
$$

where for the definitions of $L^{p, \lambda}\left(Q^{n}\right)$ and $h_{q, p^{\prime}}\left(Q^{n}\right)$, see Remark (i) in Section 6.

Lemma 3 (Duality between $h_{q, p^{\prime}}$ and $L^{p, \lambda}$) Let $1 \leq q<p^{\prime}<\infty, q=$ $\frac{n p}{n p-n+\lambda}$ and $1 / p+1 / p^{\prime}=1$, then the Banach space dual of $h_{q, p^{\prime}}\left(R^{n}\right)$ is isomorphic to $L^{p, \lambda}\left(R^{n}\right)$.

The last lemma is obtained from the elementary properties of $H^{1}\left(R^{n}\right)$.
Lemma 4 If $\int f(x) d x=0$ and $|f(x)| \leq\left(\chi_{B\left(x_{0}, 1\right)}+\chi_{B\left(y_{0}, 1\right)}\right)$ where $N>$ 10 and $\left|x_{0}-y_{0}\right|=N$, then we have $\|f\|_{H^{1}} \leq C_{n} \log N$.

5. Proofs of Theorems

First now we shall prove Theorem 2.
Proof of Theorem 2. We use the atomic decomposition of H^{1} (see [8] or [13], p. 347). First we consider an atom a such that

$$
\operatorname{supp} a \subset B\left(x_{0}, t\right), \quad\|a\|_{L^{\infty}} \leq t^{-n} \text { and } \int a(x) d x=0
$$

We apply the method due to Komori [7]. Let N be a large integer and take $y_{0} \in R^{n}$ such that $\left|x_{0}-y_{0}\right|=N t$ and set

$$
\begin{aligned}
& \varphi(x)=N^{n-\alpha} \chi_{B\left(y_{0}, t\right)}(x) \\
& \psi(x)=-a(x) / I_{\alpha} \varphi\left(x_{0}\right)
\end{aligned}
$$

By Lemma 1, We have

$$
\begin{aligned}
\|\varphi\|_{L^{p, \lambda}} & \leq C_{n} N^{n-\alpha} t^{\frac{n-\lambda}{p}} \\
\|\psi\|_{h_{n q /(n q-n+\lambda), q^{\prime}}} & \leq C_{n} t^{-n-\alpha} t^{\frac{n q-n+\lambda}{q}}
\end{aligned}
$$

and

$$
\begin{equation*}
\|\varphi\|_{L^{p, \lambda}}\|\psi\|_{h_{n q /(n q-n+\lambda), q^{\prime}}} \leq C_{n} N^{n-\alpha} \tag{1}
\end{equation*}
$$

We write

$$
a-\left(\varphi \cdot I_{\alpha} \psi-\psi \cdot I_{\alpha} \varphi\right)=\frac{a \cdot\left(I_{\alpha} \varphi\left(x_{0}\right)-I_{\alpha} \varphi\right)}{I_{\alpha} \varphi\left(x_{0}\right)}-\varphi \cdot I_{\alpha} \psi
$$

and we have

$$
\begin{aligned}
& \int\left\{a-\left(\varphi \cdot I_{\alpha} \psi-\psi \cdot I_{\alpha} \varphi\right)\right\} d x=0 \\
& \left|a-\left(\varphi \cdot I_{\alpha} \psi-\psi \cdot I_{\alpha} \varphi\right)\right| \leq C_{n} N^{-1} t^{-n}\left(\chi_{B\left(x_{0}, t\right)}+\chi_{B\left(y_{0}, t\right)}\right)
\end{aligned}
$$

By Lemma 4, we have

$$
\begin{equation*}
\left\|a-\left(\varphi \cdot I_{\alpha} \psi-\psi \cdot I_{\alpha} \varphi\right)\right\|_{H^{1}} \leq C_{n} N^{-1} \log N \tag{2}
\end{equation*}
$$

Next for any $f \in H^{1}$ such that $\|f\|_{H^{1}} \leq 1$, we can write $f=\sum_{j} m_{j} a_{j}$ where $\left\{a_{j}\right\}$ are atoms and $\sum_{j}\left|m_{j}\right| \leq C_{n}$ by the atomic decomposition. Then there exist

$$
\left\{\varphi_{j}\right\}_{j=1}^{\infty} \subset L^{p, \lambda} \text { and }\left\{\psi_{j}\right\}_{j=1}^{\infty} \subset h_{n q /(n q-n+\lambda), q^{\prime}}
$$

such that

$$
\left\|\varphi_{j}\right\|_{L^{p, \lambda}}\left\|\psi_{j}\right\|_{h_{n q /(n q-n+\lambda), q^{\prime}}} \leq C_{n} N^{n-\alpha}
$$

and

$$
\left\|a_{j}-\left(\varphi_{j} I_{\alpha} \psi_{j}-\psi_{j} I_{\alpha} \varphi_{j}\right)\right\|_{H^{1}} \leq C_{n} N^{-1} \log N
$$

by (1) and (2). So we have

$$
\begin{aligned}
&\left\|f-\sum_{j}\left\{\left(m_{j} \varphi_{j}\right) I_{\alpha} \psi_{j}-\psi_{j} I_{\alpha}\left(m_{j} \varphi_{j}\right)\right\}\right\|_{H^{1}} \\
& \leq C_{n} N^{-1} \log N \sum_{j}\left|m_{j}\right| \leq 1 / 2
\end{aligned}
$$

if N is sufficiently large and

$$
\sum_{j}\left\|m_{j} \varphi_{j}\right\|_{L^{p, \lambda}}\left\|\psi_{j}\right\|_{h_{n q /(n q-n+\lambda), q^{\prime}}} \leq C_{n} N^{n-\alpha} \sum_{j}\left|m_{j}\right| \leq C_{n, N}
$$

Repeating this process, we get the desired result.

Lastly we shall prove Theorem 1.
Proof of Theorem 1]. We assume that the commutator $\left[M_{b}, I_{\alpha}\right]$ is bounded from $L^{p, \lambda}\left(R^{n}\right)$ to $L^{q, \lambda}\left(R^{n}\right)$ for some p, q, λ in Theorem 1. Let $f \in H^{1}\left(R^{n}\right)$. Then, by Theorem 2 and Lemma 3, we have

$$
\begin{aligned}
|\langle b, f\rangle| & \leq \sum_{j}\left|\int_{R^{n}} b(x)\left[\varphi_{j}(x) I_{\alpha} \psi_{j}(x)-\psi_{j}(x) I_{\alpha} \varphi_{j}(x)\right] d x\right| \\
& =\sum_{j}\left|\int_{R^{n}} \psi_{j}(x)\left[b(x) I_{\alpha} \varphi_{j}(x)-I_{\alpha}\left(b \varphi_{j}\right)(x)\right] d x\right| \\
& \leq C_{n} \sum_{j}\left\|\psi_{j}\right\|_{h_{n q /(n q-n+\lambda), q^{\prime}}}\left\|\left[M_{b}, I_{\alpha}\right] \varphi_{j}\right\|_{L^{q, \lambda}}
\end{aligned}
$$

From the assumption and Theorem 2 again, this is bounded by

$$
\begin{gathered}
C_{n} \sum_{j}\left\|\psi_{j}\right\|_{h_{n q /(n q-n+\lambda), q^{\prime}}}\left\|\varphi_{j}\right\|_{L^{p, \lambda}}\left\|\left[M_{b}, I_{\alpha}\right]\right\|_{L^{p, \lambda} \rightarrow L^{q, \lambda}} \\
\leq C_{n}\left\|\left[M_{b}, I_{\alpha}\right]\right\|_{L^{p, \lambda} \rightarrow L^{q, \lambda}}\|f\|_{H^{1}} .
\end{gathered}
$$

By the duality for $H^{1}\left(R^{n}\right)$ and $B M O\left(R^{n}\right)$, we have that $b \in B M O\left(R^{n}\right)$ and $\|b\|_{*}$ is bounded by $C_{n}\left\|\left[M_{b}, I_{\alpha}\right]\right\|_{L^{p, \lambda} \rightarrow L^{q, \lambda}}$. Thus we complete the proof.

6. Some Remarks

(i) In Definitions 1, 2 and 4 , we can replace a ball $B(x, t)$ by a cube $Q(x, t)$ centered at x with sides parallel to coordinates and sidelength t.

Also the Morrey space $L^{p, \lambda}\left(Q^{n}\right)$ on the unit cube Q^{n} in R^{n} is defined by

$$
\begin{aligned}
L^{p, \lambda}\left(Q^{n}\right)=\left\{f \in L^{p}\left(Q^{n}\right)\right. & ; \\
& \left.\|f\|_{L^{p, \lambda}}=\sup _{\substack{x \in Q^{n} \\
0<t<1}}\left(\frac{1}{t^{\lambda}} \int_{Q(x, t)}|f(y)|^{p} d y\right)^{1 / p}<\infty\right\}
\end{aligned}
$$

Similarly we can define the spaces $h_{p, q}\left(Q^{n}\right)$ generated by blocks.
(ii) We obtain the local version of Lemma 3;

Lemma 3^{\prime} [Duality between $h_{q, p^{\prime}}\left(Q^{n}\right)$ and $L^{p, \lambda}\left(Q^{n}\right)$] Let Q^{n} be the unit cube in R^{n}. Let $1 \leq q<p^{\prime}<\infty, q=\frac{n p}{n p-n+\lambda}$ and $1 / p+1 / p^{\prime}=1$, then the

Banach space dual of $h_{q, p^{\prime}}\left(Q^{n}\right)$ is isomorphic to $L^{p, \lambda}\left(Q^{n}\right)$.
(iii) Some problems are open.

Problem 1 Can we get the boundedness or the compactness of the commutators $\left[M_{b}, I_{\alpha}\right]$ from $L^{p, \lambda}\left(R^{n}\right)$ to $L^{q, \mu}\left(R^{n}\right)$ for some p, q, λ, μ ?

Problem 2 Can we get the $H^{p}\left(R^{n}\right)(0<p<1)$ version of Theorem 2?
Problem 3 In the setting of spaces of homogenous type, can we get any results corresponding to Theorems 1 and 2?

References

[1] Chanillo S., A note on commutators. Indiana Univ. Math. J. 31 (1982), 7-16.
[2] Chiarenza F. and Frasca M., Morrey spaces and Hardy Littlewood maximal function. Rend. Mat. (7) 7 5-A (1987), 273-279.
[3] Coifman R. and Weiss G., Extensions of Hardy spaces and their use in analysis. Bull. Amer. Math. Soc. 83 (1977), 569-645.
[4] Di Fazio G. and Ragusa M.A., Commutators and Morrey spaces. Boll. U.M.I 7 5-A (1991), 323-332.
[5] Fefferman C. and Stein E.M., H^{p} spaces of several variables. Acta Math. 129 (1972), 137-193.
[6] John F. and Nirenberg L., On functions of bounded mean oscillation. Comm. Pure Appl. Math. 14 (1961), 415-426.
[7] Komori Y., The factorization of H^{p} and the commutators. Tokyo J. Math. 6 (1983), 435-445.
[8] Latter R.H., A decomposition of $H^{p}\left(R^{n}\right)$ in terms of atoms. Studia Math. 62 (1978), 92-101.
[9] Long R., The spaces generated by blocks. Scientia Sinica Ser. A 27, No. 1 (1984), 16-26.
[10] Lu S., Taibleson M. and Weiss G., Spaces generated by blocks. Beijing Normal Univ. Press, Beijing (1989).
[11] Morrey C.B. Jr., On the solutions of quasi-linear elliptic partial differential equations. Trans. Amer. Math. Soc. 43 (1938), 126-166.
[12] Taibleson M.H. and Weiss G., Certain function spaces connected with almost everywhere convergence of Fourier series. Conference on Harmonic Analysis in Honor of A. Zygmund, Vol. I, Wadsworth, 1983, 95-113.
[13] Torchinsky A., Real-variable methods in harmonic analysis. Academic Press, 1986.
[14] Uchiyama A., The factorization of H^{p} on the space of homogeneous type. Pacific J. Math. 92 (1981), 453-468.

Yasuo Komori
School of High Technology and Human Welfare
Tokai University
317 Nishino Numazu Shizuoka 410-0395
Japan
E-mail: komori@wing.ncc.u-tokai.ac.jp
Takahiro Mizuhara
Department of Mathematical Sciences
Faculty of Science
Yamagata University
Yamagata 990-8560, Japan
E-mail: mizuhara@sci.kj.yamagata-u.ac.jp

