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Special representations and the two-dimensional
McKay correspondence
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Abstract. The geometric McKay correspondence establishes a bijection between the
set of nontrivial irreducible representations of a finite subgroup \Gamma of SL(2, \mathbb{C}) and the set
of irreducible components of the exceptional divisor in a minimal resolution of the Klein
singularity \mathbb{C}^{2}/\Gamma . Recently, Y ITO and I. NAKAMURA found a new interpretation of this
fact via a certain Hilbert scheme by which one can construct the minimal resolution in
terms of invariant theory of the group \Gamma . In the case of finite subgroups of GL(2, \mathbb{C})

containing no reflections there exists a generalized McKay correspondence if we only
consider s0-called special representations. Also the Hilbert scheme picture remains true as
was conjectured by the author and proven by A. ISHII. In this paper, we demonstrate that
the conjecture is –in the case of cyclic quotient singularities-an immediate consequence
of an explicit description of the Hilbert scheme given by RIE KIDOH in this journal, and
add a proof for some characterizations of special representations and special reflexive
sheaves.

Key words: (Cyclic) quotient surface singularities, reflexive sheaves, special representa-
tions, McKay correspondence, Hilbert schemes.

Introduction

The theory of KLEIN singularities establishes a 1-1-correspondence be-
tween the conjugacy classes offinite subgroups of SL(2, \mathbb{C}) (also called binary
polyhedral groups by abuse of language) and the COXETER-DYNKIN-WITT
diagrams (or Dynkin-diagrams, as they are usually called) of type ADE
via the following scheme:

Here, the symbol\sim in the last row denotes complex-analytic equivalence.
The arrow in the second column is given in the upward direction by ass0-
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These notes contain part of my lecture at the Hayama Conference on Several Complex
Variables in December 2000; they form an actualized and expanded version of [21].
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(.i_{\dot{c}}\iota f,i_{Il}g t() a minimal rcso1\iota ltion\overline{X}_{\Gamma} of X_{1^{\urcorner}} the dual graph of its exceptional
sct E\subset\overline{X}_{I}\urcorner .

Ill 1979, McKay [16] constructed directly via representation theory
t_{1}11t^{\backslash } resulting }) i.iee\cdot tion in the first row of this diagram (see Section 1). In
1)artie\cdot\iota 1lar , according to this so called McKay correspondence, each (non-
frioial) irreducible complex representation of \Gamma corresponds uniquely to arl
,\cdot rrcduc?,\cdot ble component of the exceptional set E .

Of c()1lrsc , geometers wanted to understand this phenomenon geomet-
r\cdot ir\cdot all?/ , and the first who succeeded in this attempt were GONZALES-
SPRINBERG and VERDIER [8] in 1983. They associated to each nontriv-
ial irreducible representation of \Gamma a vector bundle \mathcal{F} on \overline{X}_{I}\urcorner whose first
CllcrIl c1as_{\iota}s^{1}c_{1}(\mathcal{F}) hits precisely one component of E transversally. Their
1)roof was 1lot completely satisfying since they had to check the details case
1)ye^{1a}1s^{1}c . But in 1985, ARTIN and VERDIER [1] gave a conceptual proof using
()I11y standard facts on rational singularities, and in combination with the so
(.allecl multiplication formula contained in the paper [6] of H\’EL\‘ENE ESNAULT
allel KN\"ORRER from the same year it became clear how to understand the
full (str\cdot e\underline{n}gth of the correspondence, i.e. how to reconstruct the dual graph
of E\subset X_{I^{\urcorner}} from the representations of \Gamma . completely in geometrical terms.

Research then followed different directions. One trend (from 1992 on)
proposed to treat the higher dimensional case \Gamma\subset SL(n, \mathbb{C}) under the
slogan: if X_{\Gamma} has a crepant resolution \overline{X}_{\Gamma} , i.e. if the canonical sheaf of \overline{X}_{\Gamma}

is_{1}^{\tau} trivial, the n there should be a bijection

{nontrivial irreducible representations of \Gamma } rightarrow basis of H^{*}(\overline{X}_{\Gamma}, \mathbb{Z})

which in case n=2- is just a rephrasing of the result for finite subgroups
in SL(2, \mathbb{C}) . (Cf. the notes [18] of REID).

Another path started earlier: to understand the more general 2-
dirnensional case of finite subgroups \Gamma\subset GL(2, \mathbb{C}) . Here, one has to name
ESNAULT with the paper [5] in 1985, a doctoral thesis of WUNRAM written
under my supervision in 1986 (published 1988 in Mathematische Annalen
[23] ) and some unpublished notes of myself [19] from 1987.

In June 1997 I learned from a lecture given by YUKARI ITO at RIMS
in Kyoto that she and I. NAKAMURA constructed in joint work the mini-
mal resolution \overline{X}_{\Gamma} in the case of finite subgroups of the special linear group
SL(2, \mathbb{C}) by invariant theory of \Gamma acting on a certain Hilbert scheme. They
were able, again by checking case by case, to produce the correct represen-
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tations from the irreducible components of E\subset\overline{X}_{\Gamma} (and even more). Yo\iota 1

may find this in the beautiful article [12] (see also [11] and Section 2 of
the present notes). In 1999 CRAWLEY-BOEVEY released a note (cf. [4]) in
which he proved the result of ItO-Nakamura without case by case checking;
he uses the theory of preprojective algebras associated to McKay quivers.
However, these methods are not available for general quotients.

A year later, Nakamura lectured in 1998 on this topic in Hamburg; I
soon became aware of how one should generalize the statement to (small)
subgroups of the general linear group GL(2, \mathbb{C}) and developed some vag\iota 1C^{\backslash }

ideas how to prove this without too many calculations. This conjecture
could be checked in the case of cyclic quotients by a simple computation
which depended on the concrete results in the doctoral thesis of RIE KIDOH,
written under the supervision of Nakamura. I sent her my results and asked
her for inserting them into the version she was preparing for publication in
this journal [14]. However, she decided not to follow my suggestion.

I gave some lectures on this topic in Japan during September 1999 and
was very happy to learn from AKIRA ISHII in August 2000 that he suc-
ceeded in proving the conjecture via rephrasing the multiplication formula
of WUNRAM in terms of a functor between certain derived categories (cf.
[9] and Section 5).

It is the purpose of these notes to give a more detailed introduction to
these results and to present the very easy proof in the case of cyclic quotients
as an appendix to [14]. Besides the general proof of A. Ishii [9] which 11\llcorner s^{r}es

much heavier machinery there exists now another independend proof in
the cyclic case via toric geometry by Y Ito [10]; she doesn’t use Kidoh’\iota c_{)}’

explicit construction but a characterization of special representations (see
Theorem 5) whose (easy) proof, however, was never published in a journal.
I therefore include it here in Section 6 as a benefit to the reader.

I would like to add the remark that it has been and still is one of my
wishes to describe the deformation theory of X_{\Gamma} by using only the repre-
sentation theory of \Gamma This is possible for the infinitesimal deformations
according to a result of PINKHAM [17] which was used by BEHNKE, KAHN
and myself [2] for calculating the vector space T^{1} of first order deformations
yielding a nice dimension formula, but no clear image how to construct
the versal deformation as –to some extent –has been achieved by KRON-
HEIMER [15] in the case of binary polyhedral groups. At least in the cyclic
case, I found a rather strange way to produce the deformation space over
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the ARTIN component combining a quiver construction and some invariant
theoretic ideas [20].

1. McKay’s observation

Let me first recall the construction of the McKay quiver associated to
a finite small subgroup \Gamma\subset GL(2, \mathbb{C}) . Let Irr \Gamma:=\{\rho_{0}, \rho_{1}, ., \rho_{r}\} denote
the set of irreducible complex representations of \Gamma . \rho_{0} the trivial one, and
c the natural representation on \mathbb{C}^{2} given by the inclusion \Gamma\subset GL(2, \mathbb{C}) .
Then,

\rho_{i}\otimes c^{*}=\sum_{j}a_{ij}\rho_{j}

where c^{*} denotes the dual representation of c . The McKay quiver is formed
in the following way: Associate to each representation a vertex and join the
ith vertex with the jth vertex by a_{ij} arrows.

For the binary tetrahedral group \mathbb{T} , that is the preimage of the symmetry
group T\subset SO(3, \mathbb{R}) of a regular tetrahedron under the canonical group
epimorphism

(0arrow\{\pm 1\}arrow) SU (2,\mathbb{C})arrow SO (3,\mathbb{R})arrow 1 ,

the resulting quiver looks as on the left side of the following diagram where a
subgraph = stands for a double arrow, i.e. two arrows in opposite
direction. Replacing such subgraphs by a simple line rightarrow , forgetting
\rho_{0} and inserting the ranks of the corresponding representations, yields the
other diagram on the right side which, in fact, is not only the CDW diagram

oftype\mathbb{C}^{2}/\mathbb{T}.E_{6}

but also represents the fundamental cycle Z of the singularity

McKay’s observation may be formulated in the following way:
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For every finite subgroup \Gamma\subset SL(2, \mathbb{C}) , one has a_{ji}=a_{ij}\in\{0,1\} . Re-
placing each double arrow by a line, one finds exactly the ( extended) CDW
diagrams of correct type.

2. The Ito-Nakamura construction

Let Hi1b^{n}(\mathbb{C}^{2}) be the Hilbert scheme of all 0-dimensional subschemes
on \mathbb{C}^{2} of colength n . It is well known that the canonical HILBERT-CHOW-
morphism

Hi1b^{n}(\mathbb{C}^{2})arrow Sym^{n}(\mathbb{C}^{2})=(\mathbb{C}^{2})^{n}/\mathfrak{S}_{n}

is a resolution of singularities (FOGARTY), and Hi1b^{n}(\mathbb{C}^{2}) carries a holomor-
phic symplectic structure (BEAUVILLE). Let \Gamma\subset GL(2, \mathbb{C}) be a finite small
subgroup of order n=ord\Gamma . and take the invariant part of the natural
action of \Gamma on Hi1b^{n}(\mathbb{C}^{2}) . The resulting space Hi1b^{n}(\mathbb{C}^{2})^{\Gamma} is smooth and
maps under the canonical mapping

Hi1b^{n}(\mathbb{C}^{2})^{\Gamma}\mapsto Sym^{n}(\mathbb{C}^{2})^{\Gamma}\cong \mathbb{C}^{2}/\Gamma

to X_{\Gamma} . It may a priori have several components, but there is exactly one
which maps onto X_{\Gamma} and thus constitutes a resolution of X_{\Gamma} which will be
denoted by

\overline{X}_{\Gamma}=Hi1b^{\Gamma}(\mathbb{C}^{2}) .

In fact, Hi1b^{\Gamma}(\mathbb{C}^{2}) is equal to the open subset of s0-called \Gamma invariant n-
clusters in \mathbb{C}^{2} , and the resolution is minimal (cf. [9]). The last fact has
been known before in the case \Gamma\subset SL(2, \mathbb{C}) by ITO-NAKAMURA and for
cyclic subgroups of GL(2, \mathbb{C}) by KiDOH; it has been conjectured for general
finite small subgroups \Gamma\subset GL(2, \mathbb{C}) by GINZBUR\underline{G}-KAPRANOV [7].

Hence, a point on the exceptional set E of X_{\Gamma} may be regarded as a
\Gamma invariant ideal I\subset O_{\mathbb{C}^{2}} with support in 0. Now, let \mathfrak{m} be the maximal
ideal of O_{\mathbb{C}^{2},0} , \mathfrak{m}x that of O_{X,0}=O_{\mathbb{C}^{2},0}^{\Gamma} and \mathfrak{n}=\mathfrak{m}_{X}O_{\mathbb{C}^{2},0} . Put

V(I):=I/(\mathfrak{m}I+\mathfrak{n}) .

This is a (finite-dimensional) \Gamma-module. For a (nontrivial) irreducible re-
presentation \rho\in Irr^{0}\Gamma:=Irr\Gamma\backslash \{\rho_{0}\} with representation space V_{\rho} put

E_{\rho}= {I : V(I) contains V_{\rho} }.
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In the case of KLEIN singularities, i.e. for finite subgroups \Gamma\subset SL(2, \mathbb{C}) ,
one has the following beautiful result of Ito and Nakamura which opened up
a new way to understand the McKay correspondence completely in terms
of the binary polyhedral group \Gamma

Theorem 1 (ItO-Nakamura [11]) For \rho\in Irr\Gamma-E_{\rho}\cong P_{1} . Moreover,
E_{\rho}\cap E_{\rho’} is empty or consists of exactly one point for \rho\neq\rho’ . and

E=\cup E_{\rho}\rho\in Irr^{0}\Gamma^{\cdot}

More precisely, V(I)=V_{\rho} for the ideals I\in E_{\rho} corresponding to smooth
points of E , and

E_{\rho}\cap E_{\rho’}\ni I\Leftrightarrow V(I)=V_{\rho}\oplus V_{\rho’} .

It is natural to ask how this result can be generalized to finite small
subgroups \Gamma\subset GL(2, \mathbb{C}) . The purpose of these notes is to make the following
theorem plausible, in particular by proving it for cyclic quotients.

Theorem 2 (A. Ishii [9]) The Ito-Nakamura construction yields the same
result as above also for finite small subgroups \Gamma\subset GL(2, \mathbb{C}) if the set Irr\Gamma

of all nontrivial irreducible representations is replaced by the subset of s0-

called special ones.

Remark For the definition of special representations, see Section 4. The-
orem 2 has been conjectured by the author in [21]. Some ingredients of the
proof by Akira Ishii will be reviewed in Section 5.

3. Kidoh’s calculation in the cyclic case

We are going to investigate in this section the case of cyclic groups
\Gamma This is merely a simple observation and follows easily by a calculation
using Kidoh’s determination of the invariant ideals in this case in terms of
continued fraction expansions.

Recall that cyclic quotient surface singularities of \mathbb{C}^{2} are determined by
two natural numbers n , q with 1\leq q<n and gcd(n, q)=1 . The cyclic
group C_{n,q} acting is generated by the linear map with matrix

(\begin{array}{ll}\zeta_{n} 00 \zeta_{n}^{q}\end{array}) , \zeta_{n}=\exp(2\pi i/n) an n^{th} primitive root of unity
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that operates on the polynomial ring \mathbb{C}[u, v] by (u, v)\mapsto(\zeta_{n}u, \zeta_{n}^{q}v) . A
monomial u^{\alpha}v^{\beta} is invariant under this action if and only if

\alpha+q\beta\equiv 0 mod n ,

e.g. for (\alpha, \beta)=(n, 0) , (n-q, 1) , (0, n) . The HIRZEBRUCH-JUNG continued

fraction
\frac{n}{n-q}=a_{1}-\frac{1}{a_{2}-1/}=a_{1}-\propto 1a_{2}- a_{\mu}\geq 2

gives a strictly decreasing sequence

\alpha_{0}=n>\alpha_{1}=n-q>\alpha_{2}=a_{1}\alpha_{1}-\alpha_{0}>

stopping with \alpha_{m+1}=0 , and a strictly increasing sequence

\beta_{0}=0<\beta_{1}=1<\beta_{2}=a_{1}\beta_{1}-\beta_{0}< <\beta_{m+1}=n .

It is well known that the monomials

u^{\alpha_{\mu}}v^{\beta_{\mu}} , \mu=0 , , m+1

generate the invariant algebra

A_{n,q}:=\mathbb{C}\langle u, v\rangle^{C_{n,q}}=O_{(j/C_{n,q},0}

minimally. In particular, embdim A_{n,q}=m+2 , hence, mult A_{n,q}=m+1 .
The numbers a_{\mu} are exponents in canonical equations for A_{n,q} . On the other
hand, the continued fraction expansion

\frac{n}{q}=b_{1}-{?} 1b_{2}- -{?} 1b_{r} , b_{k}\geq 2

gives invariants for the minimal resolution of \mathbb{C}^{2}/C_{n,q} whose exceptional
divisor consists of a string of rational curves with selfintersection numbers
-b_{k} .

Define correspondingly the decreasing sequence

i_{0}=n>i_{1}=q>i_{2}=b_{1}i_{1}-i_{0}> >i_{r}=1>i_{r+1}=0

and

j_{0}=0<j_{1}=1<j_{2}=b_{1}j_{1}-j_{0}< <j_{r+1}=n .
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Theorem 3 (R. Kidoh [14]) Let (n, q) be given. Then, Hi1b^{C_{n,q}}(\mathbb{C}^{2}) con-
sisls of the following C_{n,q} -invariant ideals of colength n=ordC_{n,q} :

I_{k}(s_{k}, t_{k})=(u^{i_{k-1}}-s_{k}v^{j_{k-1}}, v^{j_{k}}-t_{k}u^{i_{k}}, u^{i_{k-1}-i_{k}}v^{j_{k}-j_{k-1}}-s_{k}t_{k}) ,
1\leq k\leq r+1 , (s_{k}, t_{k})\in \mathbb{C}^{2} .

Remarks 1. These are in fact C_{n,q}-invariant ideals, since i_{k}\equiv qj_{k} mod
n and the functions u^{i_{k-1}-i_{k}}v^{j_{k}-j_{k-1}} are invariant.

2. The (r+1) copies of \mathbb{C}^{2} patch together to form the minimal resO-

lution of \mathbb{C}^{2}/C_{n,q} , i.e . I_{k}(s_{k}, t_{k})=I_{k+1}(s_{k+1}, t_{k+1})\Leftrightarrow s_{k+1}t_{k}=1 and
t_{k+1}=t_{k}^{b_{k}}s_{k} .

3. The exceptional divisor E equals

I_{1}(0, t_{1})\cup\cup^{r}\{I_{k}(s_{k}k=2, t_{k}) ^{:} s_{k}t_{k}=0\}\cup I_{r+1}(s_{r+1},0) .

4. It is not difficult to deduce Kidoh’s result by induction using the
well known partial resolution of cyclic quotient singularities constructed by
FUJIKI.

What about the representations of C_{n,q} on the V(I_{k}) ? For I_{1}(0, t_{1})

the first generator u^{i_{0}}=u^{n} is an invariant. The third is such in all cases
anyway. So, C_{n,q} acts on V(I_{1}(0, t_{1}))\cong \mathbb{C} as the character \chi_{i_{1}} where

\chi_{i} : z \mapsto\zeta_{n}^{i}z

(recall that qj_{k}\equiv i_{k} mod n). This remains automatically true for I_{2}(s_{2}, t_{2})

with t_{2}=0 , s_{2}\neq 0 . The first normal crossing point of the exceptional set is
the ideal I_{2}(0,0) which is generated by u^{i_{1}} , v^{j_{2}} and an invariant. Therefore,
the corresponding representation is the sum

\chi_{i_{1}}\oplus\chi_{qj_{2}}=\chi_{i_{1}}\oplus\chi_{i_{2}} .

the ideal I_{2}(0, t_{2}) , t_{2}\neq 0 , is generated by u^{i_{1}} , v^{j_{2}}-t_{2}u^{i_{2}} and the invariant
u^{i_{1}-i_{2}}v^{j_{2}-j_{1}} . Now,

t_{2}u^{i_{1}}=v^{j_{1}}(u^{i_{1}-i_{2}}v^{j_{2}-j_{1}})-u^{i_{1}-i_{2}}(v^{j_{2}}-t_{2}u^{i_{2}})\in \mathfrak{m}I_{2}(0, t_{2}) .

Therefore, the representation is just the one-dimensional

\chi_{i_{2}}=\chi_{qj_{2}} .
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It should be clear how this game goes on: We get precisely the r repre-
sentations \chi_{i_{k}} , k=1 , ., r , resp. the correct sum of two of them at the
intersection points.

What is so special about these representations under all representations
\chi_{i} ? The answer is known to me since a long time, although it is still rather
mysterious.

4. Special full sheaves, special reflexive sheaves and special rep-
resentations

Let \Gamma be a finite small subgroup of GL(2, \mathbb{C}) and \rho a representations
of \Gamma on the vector space V=V_{\rho} . \Gamma operates on \mathbb{C}^{2}\cross V via the natural
representation c and \rho , and the quotient is a vector bundle oll (\mathbb{C}^{2}\backslash \{0\})/\Gamma

whose (locally free) sheaf of holomorphic sections extends to a reflexivee sheaf
M_{\rho} on \mathbb{C}^{2}/\Gamma=X_{\Gamma} :

M_{\rho}:=\mu_{*}(O_{\mathbb{C}^{2}}\otimes V_{\rho^{*}})^{\Gamma} ,

where \mu denotes the canonical projection \mathbb{C}^{2}
– X_{I^{\urcorner}} and \rho^{*} is tlle dual

representation. In fact, one gets all reflexive modules M on X_{I^{\urcorner}} in t11i_{\backslash }s’

manner (for more details, see Theorem 12). M is indecomposable if an(l

only if \rho is irreducible.
We can study more generally any rational surface singularity X a11

an arbitrary reflexive module M on it. Let \pi : \overline{X}arrow Xbe^{1} arllillilllal
resolution, and put

\overline{M}:=\pi^{*}M/torsion .

Such sheaves on \overline{X} were baptized full sheaves by ESNAULT. By local d\uparrow\iota ali\dagger.l/ ,
one has the following

Theorem 4 (Esnault [5]) A sheaf \mathcal{F} on \overline{X} is full if and only if tfi()f(Jl-
lowing conditions are satisfied:

1. \mathcal{F} is locally free, i.e . ( the sheaf of holomorphic sections in) a v(^{\supset}e\cdot\uparrow,()r

bundle,
2. \mathcal{F}\dot{l}S generated by global sections, in particular H^{1}(\overline{X}. \mathcal{F})=() ,

3. H^{1} (\overline{X}, \mathcal{F}^{*}\otimes\omega -)=0 , where \omega
- denotes the car1oni(.a1,\backslash ^{1}11(^{Y}\dot{\epsilon}\iota fo7’\overline{X}

Under these assumptions, M=\pi_{*}\mathcal{F} is reflexive and \mathcal{F}=\overline{kI} . Mt ) 1^{\cdot}t^{\backslash }t ) 1^{Y}1^{\cdot} ,

M^{*}=\pi_{*}(\mathcal{F}^{*}) (but, \mathcal{F}^{*} is, in general, \underline{not} a full sheaf).
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Let \mathcal{F}=\overline{M} be of rank r and full. Then one can construct an exact
sequence

0arrow O_{\overline{X}}^{r}arrow \mathcal{F}arrow Narrow 0

with D:=suppN a divisor in a neighborhood of the exceptional set E
which cuts E transversally at regular points only. We call D the CHERN
divisor c_{1}(\mathcal{F}) .

Definition A full sheaf \overline{M}/ reflexive module M/repr\underline{e}sentation \rho is called
special (perhaps better exceptional), if and only if H^{1}(X, (\overline{M})^{*})=0 (where
M:=M_{\rho} in case of a representation \rho).

Special full sheaves have been characterized in [23], special reflexive
modules and representations in [19]. Notice that in [19], [22] and [23],
we associated the module \mu_{*}(O_{\mathbb{C}^{2}}\otimes V_{\rho})^{I^{\neg}} to a representation \rho instead of
\mu_{*}(O_{\mathbb{C}^{2}}\otimes V_{\rho^{*}})^{\Gamma} Hence, we are dealing in the present paper with the dual
representations which fit better into the framework of the ItO-Nakamura
construction.

Theorem 5
1) \overline{M}special\Leftrightarrow the canonical map \overline{M}\otimes\omega_{\overline{X}}arrow[(M\otimes\omega_{X})^{**}]- is an

isomorphism.

2) M special \Leftrightarrow M\otimes ojx/torsion is reflexive.
3) \rho special\Leftrightarrow the canonical map (\Omega_{\mathbb{C}^{2},0}^{2})^{\Gamma}\otimes(O_{\mathbb{C}^{2},0}\otimes V_{\rho}*)^{\Gamma}

arrow(\Omega_{\mathbb{C}^{2},0}^{2}\otimes V_{\rho^{*}})^{\Gamma} is surjeclive.

Here, of course, two stars denote the double dual ( or reflexive hull) of a

coherent analytic sheaf, \Omega_{X}^{m} is the sheaf of K\"AHLER m-forms and \omega_{X}:=

(\Omega_{X}^{2})^{**} the dualizing sheaf on a complex analytic surface X

Since the paper [19] is not easily available, we include a proof of TheO-
rcrrl 5 in Section 6.

Theorem 6 (Wunram [23]) There is a bijection

{special nontrivial indecomposable reflexive modules}
rightarrow {irreducible components E_{j} of E }

’()’/,\cdot a

M\mapsto c_{1}(\overline{M})E_{k}=\delta_{jk} .
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The rank of M_{j} equals the multiplicity r_{j} of the curve E_{j} in the funda mental
cycle Z= \sum r_{j}E_{j} .

As a Corollary, one gets once more the McKay correspondence since
for the Klein singularities one has \omega_{X}\cong O_{X} (Gorenstein property) and
\omega_{\overline{X}}\cong O -.

WUNRAM has, in particular, computed the irreducible special represen-
tations in the case of cyclic quotients [22]. As it t\iota 1rnks^{1} out, they coincide
with the representations we have found in Section 3. In fact, one has to
dualize twice to get the correct result. In our notation for M_{\rho} which is dual
to Wunram’s, the special representations are exactly the dual ()ncs to those
computed in section 3 with respect to the given action on the polynomial
ring \mathbb{C}[u, v] . But this action, in turn, is dual to the action on \mathbb{C}^{2} we should
start with. Thus, Theorem 2 is proven (more or less by ir1spe^{Y}ct,i()n ) ill the
cyclic case.

5. The manuscript of A. Ishii

McKay correspondence may be understood as an equivalence of der\cdot ilf‘\supset\zeta f

categories. This has been worked out by KAPRANOV alld VASSb^{\urcorner}ROT f_{()1}.

SL (2, \mathbb{C}) [13] and by BRIDGELAND, KING, REID [3] irl diII1(^{Y}11_{t}b^{1}io)r13 . T1_{1}‘\backslash

last paper led A. Ishii to study more closely the canonical f\iota lIle\cdot t()r

\Psi : D_{c}^{\Gamma}(\mathbb{C}^{2})arrow D_{c}(Y)

where D_{c}^{\Gamma}(\mathbb{C}^{2}) denotes the derived category of F-equivariant e\cdot o11e^{Y}r(^{Y}11t\dot{c}111-

alytic sheaves with compact support on \mathbb{C}^{2} , \Gamma a finite small b_{\llcorner}^{1}\iota 11 )gr()111)()f
GL(2, \mathbb{C}) , and D_{c}(Y) the derived category of coherent allalytie \cdot 1s^{1}11e^{1}av(_{\iota}^{Y}b’()11

Y=Hi1b^{\Gamma}(\mathbb{C}^{2}) with compact support.
The main ingredient of his proof is Wunram’s multiplication f()r\cdot rm\iota lo

which generalizes the one of Esnault and Kn\"orrer. We denote by M\dot{\epsilon}\iota re^{Y}fl()x-

ive module on X=\mathbb{C}^{2}/\Gamma , its AUSLANDER-REITEN translate (l1l\otimes\omega_{X})^{**}

by \tau(M) , and finally, we write N_{M}=(M\otimes\Omega_{X}^{1})^{**} . Then we 11^{\cdot}avc^{1} :

Theorem 7 (Wunram [23])

c_{1}(\overline{N}_{M})-c_{1}(\overline{M})-c_{1}(\overline{\tau(M)})=\{

E_{j} , M=M_{j}spec\cdot ial , j\neq() ,

Z , M=M_{0}:=O_{X} ,

0, M nonspecial.
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Here, Z denotes the fundamental cycle of the minimal resolution of X

A. Ishii first restates and proves once more WUNRAM’s multiplication
formula in the following form.

Theorem 8 (A. Ishii [9]) Let \rho be an irreducible representation of \Gamma\subset

GL(2, \mathbb{C}) and put O_{0}=O_{\mathbb{C}^{2},0}/\mathfrak{m} , where rn denotes the maximal ideal of \mathbb{C}^{2}

at the origin. Then

\Psi (O_{0}\otimes V_{\rho^{*}})=\{

O_{E_{j}}(-1)[1] , \rho=\rho_{j} special, j\neq 0 ,
O_{Z} , \rho=\rho_{0} ,

0, \rho nonspecial.

He then explicitly constructs a right adjoint \Phi to \Psi . The resulting
isomorphism

Hom_{D_{c}(Y)}(\Psi(\triangle), \nabla)\cong Hom_{D_{c}^{\Gamma}(\mathbb{C}^{2})}(\triangle, \Phi(\nabla))

leads to the desired result when applied to \triangle:=O_{0}\otimes V_{\rho^{*}} , \nabla:=O_{y} , y\in Y

6. A characterization of special reflexive modules and special
representations

In this section we present a proof of Theorem 5 which is taken from [23]
and [19]. More precisely, we show the following

Lemma 9 Let M be a reflexive module on the rational singularity X
Then the following conditions are equivalent:
a) M is special, i.e . R^{1}\pi_{*}(\overline{M})^{*}=0 ;
b) the canonical map \overline{M}\otimes\omega_{\overline{X}}arrow\tau(M)^{\sim}is bijective;
c) M\otimes\omega_{X}/torsion\cong\tau(M) .

Proof. The equivalence of b) and c) will be deduced from a more general
lemma that is proven below. The equivalence of a) and b) is obviously the

–

same as the claim that M\otimes\omega - is full if and only if R^{1}\pi_{*}M^{*}=0 . But
\overline{M}\otimes\omega_{\tilde{X}} is locally free and generated by global sections. Hence, \overline{M}\otimes\omega

- is
full if and only if R^{1}\pi_{*} ((\overline{M}\otimes\omega -)^{*}\otimes\omega -)=0 . \square

The rest is a consequence of the next

Lemma 10 Let M and N be reflexive modules on the rational singularity
X ‘ Then the following are equivalent:
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i) \overline{M}\otimes\overline{N}arrow\sim[(M\otimes N)^{**}]^{\sim};

ii) \pi_{*}(\overline{M}\otimes\overline{N})arrow\sim(M\otimes N)^{**};

iii) M\otimes Narrow(M\otimes N)^{**} is surjective;
iv) M\otimes N/ torsion is reflexive.

Pro\underline{of.} \underline{i})\Rightarrow ii) is trivial due to the last sentence in Theorem 4. Since
\pi_{*}(M\otimes N) has no torsion and \alpha : \pi_{*}(\overline{M}\otimes\overline{N})

– (M\otimes N)^{**} is an isomorphism
on X’=X\backslash \{x_{0}\} , \alpha is always a monomorphism. Hence, ii ) is equivalent to
the surjectivity of \alpha which follows from iii ) using the factorizations

M\otimes Narrow\pi_{*}\pi^{*}(M\otimes N)arrow\sim\pi_{*}(\pi^{*}M\otimes\pi^{*}N)arrow\pi_{*}(\overline{M}\otimes\overline{N})

(*)
arrow(M\otimes N)^{**} .

Notice that all maps in (*) are isomorphisms outside x_{0} . The equivalence
of iii ) and iv) is easily deduced from the commutative diagram

N)^{**}

The implication ii ) \Rightarrow i ) is a consequence of the fact that the injective map
in i) is dominated by the epimorphism

\pi^{*}\pi_{*}(\overline{M}\otimes\overline{N})arrow\sim\pi^{*}((M\otimes N)^{**})arrow[(M\otimes N)^{**}]^{\sim}

For the remaining i\underline{m}plication ii ) \Rightarrow iii ) to be true, we must show that the
map M\otimes N – \pi_{*}(M\otimes\overline{N}) is surjective. We split this statement up into
two parts:
v) the morphism M\otimes Narrow\pi_{*}(\pi^{*}M\otimes\underline{\overline{N}}) is surjective,
vi) the morphism \pi_{*}(\pi^{*}M\otimes\overline{N})arrow\pi_{*}(M\otimes\overline{N}) is surjective.

ad v). Take a local presentation

O_{X}^{q}arrow O_{X}^{p}arrow Marrow 0

to get the exact sequence

O_{\overline{X}}^{q}arrow O_{\overline{X}}^{p}arrow\pi^{*}Marrow 0 .

Tensorizing with \overline{N} . we find exact sequences
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0 arrow R arrow \overline{N}^{q} arrow Q arrow 0,

0 arrow Q arrow \overline{N}^{p} arrow \pi^{*}M\otimes\overline{N} arrow 0,

which imply, because of R^{1}\pi_{*}\overline{N}=0 , R^{2}\pi_{*}R=0 , that R^{1}\pi_{*}Q=0 and

0arrow\pi_{*}Qarrow\pi_{*}\overline{N}^{p}arrow\pi_{*}(\pi^{*}M\otimes\overline{N})arrow 0

is an exact sequence. We also have a commutative diagram

(\pi_{\underline{1}}^{*}N)^{p} \pi^{*}(M\otimes N)\downarrow

N^{p} \pi^{*}M\otimes\overline{N}

with a surjective upper row. Taking direct images, adjoining to the new di-
agram the canonical morphism N^{p}arrow M\otimes N from above, and remembering
that the composite map N^{p}arrow\pi_{*}\overline{N}^{p} is an isomorphism and the last row is
an epimorphism, the proof of v) is accomplished.

Note that the proof of v) is correct for an arbitrary coherent module
M . So, we have

Corollary 11 The canonical morphism Marrow\pi_{*}\pi^{*}M is surjective for an
arbitrary coherent module on a rational singularity X

ad vi ) We regard the exact sequence

0arrow\overline{T}_{M}arrow\pi^{*}Marrow\overline{\Lambda I}arrow 0

and form direct images:

0arrow\pi_{*}\overline{T}_{M}arrow\pi_{*}\pi^{*}Marrow\pi_{*}\overline{M}arrow R^{1}\pi_{*}\overline{T}_{M}arrow R^{1}\pi_{*}\pi^{*}M=0 .

Since the composite map Marrow\pi_{*}\pi^{*}M –

\pi_{*}\overline{M} is an isomorphism, the
morphism M – \pi_{*}\pi^{*}M is injective and, by Corollary 11, bijective. Conse-
quently,

\pi_{*}\overline{T}_{M}\cong R^{1}\pi_{*}\overline{T}_{M}=0 ,

and, due to the fact that \overline{N} is generated by global sections,

R^{1}\pi_{*}(\overline{T}_{M}\otimes\overline{N})=0 .
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Tensorizing the first exact sequence by \overline{N} and forming the long exact direct
image sequence gives the result.

It remains to show that for quotient singularities a representation \rho is
special if and only if 3) in Theorem 5 is satisfied. To see this, let us start
with a reflexive module M on X , form the pull back \mu^{*}M with respect to
the finite covering \mu : \mathbb{C}^{2}arrow \mathbb{C}^{2}/\Gamma=X and denote its reflexive hull by M .

This is a (locally) free sheaf on W:=\mathbb{C}^{2} which carries a natural \Gamma-action:
Starting with a local presentation

O_{X}^{q}arrow O_{X}^{p}arrow Marrow 0 ,

we get the exact sequences

O_{W}^{q}arrow O_{W}^{p}arrow\mu^{*}Marrow 0

and

0arrow(\mu^{*}M)^{*}arrow O_{W}^{p}arrow O_{W}^{q} .

In particular, the sheaf (\mu^{*}M)^{*} is already reflexive on W and thus locally
free. The map O_{W}^{p} – O_{W}^{q} is \Gamma-equivariant since it is defined by a matrix
with entries in the invariant ring under \Gamma Thus, the sheaf (\mu^{*}M)^{*} and its
dual \overline{M} carry canonical \Gamma-actions. We furthermore associate to the reflexive
module M the natural representation of \Gamma on the finite dimensional vector
space (\mu^{*}M)_{0}^{*}/\mathfrak{m}(\mu^{*}M)_{0}^{*} , rn :=\mathfrak{m}_{\mathbb{C}^{2},0} . This action is dual to the one on
\overline{M}_{0}/\mathfrak{m}\overline{M}_{0} and hence the same as the action on the fiber over the origin of
the vector bundle associated to M .

Theorem 12 (H. Esnault [5]) There exists a one-tO-One correspondence
between

{(indecomposable) reflexive modules M on (X, x_{0}) }.

{( \Gamma-indecomposable) free modules \overline{M} on (\mathbb{C}^{2},0) with a \Gamma-action}

and

{(irreducible) representations \rho of \Gamma }.

If we write W for \mathbb{C}^{2} as above, then the canonical representation c :
\Gammaarrow Aut W induces a character

\chi : \Gammaarrow Aut\wedge^{2}W^{*}
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and, as \Gamma-modules,

O_{\mathbb{C}^{2}}\otimes\wedge^{2}W^{*}\cong\Omega_{\mathbb{C}^{2}}^{2} .

For each representation \rho : \Gammaarrow Aut V. there exists an obvious morphism

(**) \mu_{*}(O_{\mathbb{C}^{2}}\otimes V_{\rho^{*}})^{I^{\neg}}\otimes\mu_{*}(\Omega_{\mathbb{C}^{2}}^{2})^{\Gamma}arrow\mu_{*}(\Omega_{\mathbb{C}^{2}}^{2}\otimes V_{\rho^{*}})^{\Gamma}

where \mu_{*}(\Omega_{\mathbb{C}^{2}}^{2}\otimes V_{\rho}*)^{\Gamma} is the reflexive hull of \omega x\otimes M . So, the map (**)
coincides with the homomorphism M\otimes\omega_{X}arrow\tau(M) in item 3. of Theorem 5.
Criterion iii ) in Lemma 10 translates into the desired proof. \square
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