Partial regularity of solutions of nonlinear quasimonotone systems

Christoph Hamburger

(Received November 5, 2001; Revised April 16, 2002)

Abstract

We prove partial regularity of weak solutions u of the nonlinear strictly quasimonotone system $\operatorname{div} A(x, u, D u)+B(x, u, D u)=0$ under natural polynomial growth, assuming that the coefficient function $A(x, u, P)$ is Hölder continuous in (x, u) and of class C^{1} in P, and that $A(x, u, P) \cdot P \geq F(x, P)$ for some continuous function F which is strictly quasiconvex at zero.

Key words: partial regularity, weak solution, nonlinear system, quasilinear system, quasimonotonicity, ellipticity, natural growth.

1. Introduction

We are interested in the regularity of the vector-valued weak solutions $u \in W^{1,2}\left(\Omega, \mathbf{R}^{N}\right)$ of the nonlinear system

$$
\begin{equation*}
\operatorname{div} A(x, u, D u)+B(x, u, D u)=0 \tag{1}
\end{equation*}
$$

or, in components,

$$
\sum_{\alpha=1}^{n} D_{\alpha}\left(A_{i}^{\alpha}(x, u, D u)\right)+B_{i}(x, u, D u)=0 \text { for } i=1, \ldots, N
$$

Here Ω is a bounded open subset of $\mathbf{R}^{n}, n \geq 2, N \geq 1$, and $D u(x) \in \mathbf{R}^{N \times n}$ denotes the gradient of u at a.e. point $x \in \Omega$. The coefficient functions A and B are defined on the set

$$
\mathfrak{Z}=\bar{\Omega} \times \mathbf{R}^{N} \times \mathbf{R}^{N \times n}
$$

with values in $\mathbf{R}^{N \times n}$ and \mathbf{R}^{N} respectively.
Definition 1 We say that $u \in W^{1,2}\left(\Omega, \mathbf{R}^{N}\right)$ is a weak solution of the system (1) if $A(x, u, D u)$ and $B(x, u, D u)$ are locally integrable and

$$
\begin{equation*}
\int_{\Omega} A(x, u, D u) \cdot D \varphi d x=\int_{\Omega} B(x, u, D u) \cdot \varphi d x \tag{2}
\end{equation*}
$$

for every $\varphi \in C_{c}^{\infty}\left(\Omega, \mathbf{R}^{N}\right)$. In components, (2) reads as

$$
\int_{\Omega}\left(\sum_{i, \alpha} A_{i}^{\alpha}(x, u, D u) D_{\alpha} \varphi^{i}\right) d x=\int_{\Omega}\left(\sum_{i} B_{i}(x, u, D u) \varphi^{i}\right) d x
$$

The problem of regularity of a weak solution $u \in W^{1,2}\left(\Omega, \mathbf{R}^{N}\right)$ of the nonlinear superelliptic system (1) has been intensively investigated over the last 24 years. As we know (see Example II.3.2 of [5]), we can in general only expect partial regularity if $N>1$, i.e. Hölder continuity of the gradient $D u$ outside of a closed set of Lebesgue measure zero.

The standard hypotheses are that $A(x, u, P)$ be uniformly superelliptic, Hölder continuous in (x, u) and of class C^{1} in P, and that $A(x, u, P)$, its partial derivative $A_{P}(x, u, P)$ and $B(x, u, P)$ have natural quadratic growth in the variable P, i.e.

$$
\begin{align*}
& |A(x, u, P)| \leq \Gamma(1+|P|), \quad\left|A_{P}(x, u, P)\right| \leq \Gamma \\
& |B(x, u, P)| \leq a|P|^{2}+b \tag{3}
\end{align*}
$$

Moreover, one assumes the smallness condition

$$
2 a \sup _{\Omega}|u|<\gamma
$$

the constant $\gamma>0$ being determined by the superellipticity ${ }^{1}$ of the system:

$$
\begin{equation*}
A_{P}(x, u, P) \cdot(\zeta, \zeta)=\sum_{i, j, \alpha, \beta} D_{P_{\beta}^{j}} A_{i}^{\alpha}(x, u, P) \zeta_{\alpha}^{i} \zeta_{\beta}^{j} \geq \gamma|\zeta|^{2} \tag{4}
\end{equation*}
$$

valid for all $(x, u, P) \in \mathcal{Z}$ and $\zeta \in \mathbf{R}^{N \times n}$.
We start with a short account of the development of the partial regularity theory for nonlinear systems, always under the hypothesis of superellipticity (see also [5]). The general method of the proof is to compare the given solution u with a solution of a linear system with constant coefficients, for which standard elliptic estimates are available. For the direct approach, this comparison is carried out on an arbitrary ball under a Dirichlet boundary condition; for the indirect approach, it is shown that a sequence of blow-up functions $w_{m} \in W^{1,2}\left(B, \mathbf{R}^{N}\right)$, rescaled to the unit ball B, converges weakly

[^0]to such a solution.
Partial regularity of the solutions $u \in W^{1,2}\left(\Omega, \mathbf{R}^{N}\right)$ of the quasilinear system
\[

$$
\begin{equation*}
\operatorname{div}(\mathcal{A}(x, u) \cdot D u)+B(x, u, D u)=0 \tag{5}
\end{equation*}
$$

\]

was shown, following the indirect approach, by Morrey [18] and by Giusti and Miranda [11]. A direct proof for this result was later given by Giaquinta and Giusti [7].

Partial regularity for the general nonlinear system (1) was obtained by Giaquinta and Modica [8] and by Ivert [17]. Their direct proofs are based on a reverse Hölder inequality with increasing supports for $D u-P_{0}$, for any constant $P_{0} \in \mathbf{R}^{N \times n}$. This reverse Hölder inequality in turn is derived from Caccioppoli's second inequality by invoking the higher integrability theorem of Gehring, Giaquinta and Modica (see Theorem 3).

As the higher integrability theorem is rather involved, it is desirable to find a simpler partial regularity proof which avoids the use of a reverse Hölder inequality. Such direct proofs were supplied for the quasilinear system $\operatorname{div}(\mathcal{A}(u) \cdot D u)=0$ by Evans and Giarrusso [2], for the nonlinear system $\operatorname{div} A(D u)=0$ by Giarrusso [9], and for the general nonlinear system (1) by Duzaar and Grotowski [1]. An indirect partial regularity proof for (1), which does not even employ a Caccioppoli inequality, was proposed in [14]. Nevertheless, at the moment it seems that our main result, Theorem 1, is unattainable without resort to a reverse Hölder inequality.

Superellipticity (4) implies strict monotonicity

$$
\begin{equation*}
(A(x, u, P+Q)-A(x, u, P)) \cdot Q \geq \gamma|Q|^{2} \tag{6}
\end{equation*}
$$

Further, (3), (6) with $P=0$, and the Cauchy inequality yield control from below

$$
\begin{equation*}
A(x, u, P) \cdot P \geq F(x, P) \tag{7}
\end{equation*}
$$

by the function $F(x, P)=\gamma|P|^{2} / 2-$ const. In the present paper we replace the superellipticity hypothesis by weaker versions of (6) and (7). Moreover, as in [3], we dispense with the growth condition on A_{P}.

First, we assume strict quasimonotonicity, which is obtained by integrating (6) when Q is the gradient of a test function, and x, u, P are constants (see Hypothesis 3). Quasimonotonicity is weaker than superellipticity, reducing to superellipticity for $n=1$ or $N=1$. Also, quasiconvexity
of a function $F: \mathfrak{Z} \rightarrow \mathbf{R}$ is weaker than quasimonotonicity of its partial derivative $F_{P}: \mathfrak{Z} \rightarrow \mathbf{R}^{N \times n}$. For a further discussion of this concept we refer to [12] (see also Remark $1(\mathrm{~b})$). Zhang [19] proved the existence of a weak solution of the nonlinear quasimonotone system (1). Partial regularity of such solutions has to date only been achieved for the quasimonotone system

$$
\begin{equation*}
\operatorname{div} A(x, D u)+B(x, u, D u)=0 \tag{8}
\end{equation*}
$$

whose leading part does not depend on the variable u. This was shown indirectly by Fuchs [4], and directly by Frasca and Ivanov [3] and by Hamburger [12].

Secondly, we assume (7) with an arbitrary continuous function F that is strictly quasiconvex at zero (see Hypothesis 4). This estimate from below is the analog of the coercivity condition of Hong [16] in the calculus of variations. It will be put to use in the proof of Caccioppoli's first inequality and subsequent higher integrability of the gradient $D u$ (see Theorem 4). While Hypothesis 4 is trivially satisfied for (8) by Remark 1 (a), it is to be considered as the missing link in the chain to partial regularity for the general quasimonotone system (1).

Our indirect proof of partial regularity employs the method which was introduced by Hamburger [13] in the context of minimizers of variational integrals in establishing convergence $w_{m} \rightarrow w$ in $W_{\text {loc }}^{1,2}$ of a sequence of blow-up functions $w_{m} \in W^{1,2}\left(B, \mathbf{R}^{N}\right)$, which is known to converge only weakly. This technique has already been applied to nonlinear superelliptic systems in [14], and to polyconvex variational integrals in [15]. Since we are not assuming any growth condition on A_{P}, we need to define sets $E_{r, m} \subset$ B_{r}, satisfying $\lim _{m \rightarrow \infty}\left|E_{r, m}\right|=0$, where the functions w_{m} or $D w_{m}$ exceed a certain bound (cf. [6], [10]). A reverse Hölder inequality for $D u-P_{0}$, for any constant $P_{0} \in \mathbf{R}^{N \times n}$, allows us to control the error integral of a rescaled power of $\left|D w_{m}\right|$ over the set $E_{r, m}$. We show that the blow-up functions w_{m} are approximate solutions of suitable rescaled systems. This has two consequences. First, passing to the limit as $m \rightarrow \infty$ we infer that w solves a linear elliptic system with constant coefficients. Secondly, we derive the key estimate

$$
\limsup _{m \rightarrow \infty} \int_{B_{r}} \zeta^{2} G\left(Y_{0}\right) \cdot\left(D w_{m}, D w_{m}\right) d z \leq \int_{B_{r}} \zeta^{2} G\left(Y_{0}\right) \cdot(D w, D w) d z
$$

Here ζ is a cut-off function, the bilinear form $G(Y)$ depends continuously
on Y, and the constant function Y_{0} is the limit in L^{2} of a suitable sequence of functions $\left\{Y_{m}\right\}$. We finally deduce from this estimate with the help of strict quasimonotonicity that $w_{m} \rightarrow w$ in $W_{\text {loc }}^{1,2}$. In this manner we achieve partial regularity of weak solutions of fully nonlinear quasimonotone systems in divergence form.

For the coefficient function $A: \mathcal{Z} \rightarrow \mathbf{R}^{N \times n}$ we shall assume the following hypotheses, for an exponent $q \geq 2$.

Hypothesis 1 We suppose that $A(x, u, P)$ is of class C^{1} in P and of polynomial growth

$$
|A(x, u, P)| \leq \Gamma\left(1+|P|^{q-1}\right)
$$

and we assume that A_{P} is continuous.
Hypothesis 2 We suppose that $\left(1+|P|^{q-1}\right)^{-1} A(x, u, P)$ is Hölder continuous in (x, u) uniformly with respect to P :

$$
|A(x, u, P)-A(y, v, P)| \leq\left(1+|P|^{q-1}\right) \omega(|u|,|x-y|+|u-v|)
$$

for all $(x, u, P),(y, v, P) \in \mathfrak{Z}$. Here $\omega(s, t)=K(s) \min \left(t^{\delta}, 1\right)$ for $0<\delta<1$ and for a nondecreasing function $K(s)$; we note that $\omega(s, t)$, for fixed s, is concave, nondecreasing and bounded in t.

Hypothesis 3 We suppose that A is uniformly strictly quasimonotone

$$
\int_{\mathbf{R}^{n}} A\left(x_{0}, u_{0}, P_{0}+D \varphi\right) \cdot D \varphi d x \geq \int_{\mathbf{R}^{n}}\left(\kappa|D \varphi|^{2}+\gamma|D \varphi|^{q}\right) d x
$$

for some $\kappa, \gamma>0$, and all $\left(x_{0}, u_{0}, P_{0}\right) \in \mathfrak{Z}$ and $\varphi \in C_{c}^{\infty}\left(\mathbf{R}^{n}, \mathbf{R}^{N}\right)$.
Hypothesis 4 We suppose that

$$
A(x, u, P) \cdot P \geq F(x, P)
$$

for all $(x, u, P) \in \mathfrak{Z}$, and for some function $F(x, P)$, satisfying $|F(x, 0)| \leq c$, which is strictly quasiconvex at $P=0$, and for which $\left(1+|P|^{q}\right)^{-1} F(x, P)$ is continuous in x uniformly with respect to P :

$$
\int_{\mathbf{R}^{n}}\left(F\left(x_{0}, D \varphi\right)-F\left(x_{0}, 0\right)\right) d x \geq \tilde{\gamma} \int_{\mathbf{R}^{n}}|D \varphi|^{q} d x
$$

for some $\tilde{\gamma}>0$, and all $x_{0} \in \bar{\Omega}$ and $\varphi \in C_{c}^{\infty}\left(\mathbf{R}^{n}, \mathbf{R}^{N}\right)$;

$$
|F(x, P)-F(y, P)| \leq\left(1+|P|^{q}\right) \tilde{\omega}(|x-y|)
$$

for all $x, y \in \bar{\Omega}$ and $P \in \mathbf{R}^{N \times n}$, where $\tilde{\omega}$ is continuous and nondecreasing with $\tilde{\omega}(0)=0$.

Remark 1 (a) If $A(x, P)$ is independent of the variable u then Hypothesis 4 , with $F(x, P)=A(x, P) \cdot P$, is already a consequence of Hypotheses 2 and 3.
(b) If $A(x, u, P)=\mathcal{A}(x, u) \cdot P$ is linear in the variable P, i.e. for the quasilinear system (5), Hypothesis 3 is equivalent to uniform ellipticity

$$
\begin{equation*}
\mathcal{A}(x, u) \cdot(\eta \otimes \xi, \eta \otimes \xi) \geq \gamma|\eta \otimes \xi|^{2} \tag{9}
\end{equation*}
$$

for all $(x, u) \in \bar{\Omega} \times \mathbf{R}^{N}$ and $\eta \in \mathbf{R}^{N}, \xi \in \mathbf{R}^{n}$ (see [12]). In general, ellipticity is weaker than quasimonotonicity.
(c) If $A(x, P)=\mathcal{A}(x) \cdot P$ is independent of the variable u and linear in the variable P, i.e. for the semilinear system

$$
\operatorname{div}(\mathcal{A}(x) \cdot D u)+B(x, u, D u)=0
$$

Hypotheses 1 to 4 are equivalent to Hölder continuity and uniform ellipticity (9) of the coefficient matrix $\mathcal{A}(x)$. This follows from (a) and (b).

Example 1 (a) If a coefficient function A verifies Hypotheses 1 to 4, with $n=N \leq q$, then so does

$$
A_{1}(x, u, P)=A(x, u, P)+b(x) \operatorname{cof} P
$$

where b is of class $C^{0, \delta}$, and cof P denotes the matrix of co-factors ${ }^{2}$ of P. Here we set $F_{1}(x, P)=F(x, P)+n b(x) \operatorname{det} P$ in Hypothesis 4. By the Piola identity div cof $D u=0$, the added expression only contributes a lower order term to (1) if b is Lipschit continuous.
(b) A nonlinear coefficient function verifying Hypotheses 1 to 4, with $n=N=2, q=4$ and $F(x, P)=(1+\gamma)|P|^{4}$, is given by

$$
A(x, u, P)=\kappa P+(1+\gamma)|P|^{2} P+\eta(x, u) \operatorname{det} P \operatorname{cof} P
$$

where $\kappa, \gamma>0$, and η of class $C^{0, \delta}$ satisfies $0 \leq \eta \leq 4$ (see [12], (1.13)).

[^1]We also assume the coefficient function $B: \mathcal{Z} \rightarrow \mathbf{R}^{N}$ has natural polynomial growth. In order to save ourselves a separate treatment of the case $B=0$, we agree that $2 a M=0$ if $a=0$ and $M=\infty$. Of course, the condition (11) for $M=\infty$ is void.

Hypothesis 5 We suppose that $B(x, u, P)$ is a Carathéodory function, i.e. measurable in x and continuous in (u, P). Moreover, we assume that, for constants $a, b \in[0, \infty[$ and $M \in[0, \infty]$,

$$
\begin{equation*}
|B(x, u, P)| \leq a|P|^{q}+b \text { and } 2 a M<\min \{\gamma, \tilde{\gamma}\} \tag{10}
\end{equation*}
$$

for all $(x, u, P) \in \mathcal{Z}$ with $|u| \leq M$.
Our first result concerns the fully nonlinear system (1).
Theorem 1 Let A and B satisfy Hypotheses 1 to 5, with exponent $q \geq 2$. Let $u \in W^{1, q}\left(\Omega, \mathbf{R}^{N}\right)$, with

$$
\begin{equation*}
\sup _{\Omega}|u| \leq M, \tag{11}
\end{equation*}
$$

be a weak solution of the system

$$
\operatorname{div} A(x, u, D u)+B(x, u, D u)=0 .
$$

Then there exists an open set $\Omega_{0} \subset \Omega$, whose complement has Lebesgue measure zero, such that the gradient Du is locally Hölder continuous in Ω_{0}, with the exponent $0<\delta<1$ of Hypothesis 2:

$$
u \in C^{1, \delta}\left(\Omega_{0}, \mathbf{R}^{N}\right) \quad \text { and } \mathcal{L}^{n}\left(\Omega \backslash \Omega_{0}\right)=0
$$

Moreover, the regular set is characterized by

$$
\begin{aligned}
& \Omega_{0}=\left\{x_{0} \in \Omega: \sup _{r>0}\left(\left|u_{x_{0}, r}\right|+\left|D u_{x_{0}, r}\right|\right)<\infty\right. \\
&\text { and } \left.\quad \underset{r \backslash 0}{\operatorname{limin}} f_{B_{r}\left(x_{0}\right)}\left|D u-D u_{x_{0}, r}\right|^{q} d x=0\right\} .
\end{aligned}
$$

We now turn to the quasilinear case with $A(x, u, P)=\mathcal{A}(x, u) \cdot P$, for which we restate Hypotheses 1 to 4 with exponent $q=2$.

Hypothesis 1* We suppose that \mathcal{A} is continuous and bounded:

$$
|\mathcal{A}(x, u)| \leq \Gamma .
$$

Hypothesis 2* We suppose that \mathcal{A} is Hölder continuous with exponent $0<\delta<1$.

Hypothesis $\mathbf{3}^{*}$ We suppose that \mathcal{A} is uniformly elliptic:

$$
\mathcal{A}(x, u) \cdot(\eta \otimes \xi, \eta \otimes \xi) \geq \gamma|\eta \otimes \xi|^{2}
$$

for some $\gamma>0$, and all $(x, u) \in \bar{\Omega} \times \mathbf{R}^{N}$ and $\eta \in \mathbf{R}^{N}, \xi \in \mathbf{R}^{n}$.
Hypothesis 4* We suppose that

$$
\mathcal{A}(x, u) \cdot(P, P) \geq F(x, P)
$$

for all $(x, u, P) \in \mathcal{Z}$, and for some function $F(x, P)$, satisfying $|F(x, 0)| \leq$ c, which is strictly quasiconvex with constant $\tilde{\gamma}>0$ at $P=0$, and for which $\left(1+|P|^{2}\right)^{-1} F(x, P)$ is continuous in x uniformly with respect to P.

Remark 2 Hypothesis 4^{*} reduces for $F(x, P)=\gamma|P|^{2}$ to uniform superellipticity of \mathcal{A}.

For the quasilinear system (5) we then have
Theorem 2 Let \mathcal{A} and B satisfy Hypotheses 1*, 3*, 4* and 5. Let $u \in$ $W^{1,2}\left(\Omega, \mathbf{R}^{N}\right)$, with

$$
\sup _{\Omega}|u| \leq M
$$

be a weak solution of the quasilinear system

$$
\operatorname{div}(\mathcal{A}(x, u) \cdot D u)+B(x, u, D u)=0
$$

Then there exists an open set $\Omega_{0} \subset \Omega$, whose complement has Hausdorff dimension less than $n-2$, such that the solution u is locally Hölder continuous in Ω_{0}, with any exponent $0<\alpha<1$:

$$
u \in \bigcap_{0<\alpha<1} C^{0, \alpha}\left(\Omega_{0}, \mathbf{R}^{N}\right) \quad \text { and } \quad \operatorname{dim}_{\mathcal{H}}\left(\Omega \backslash \Omega_{0}\right)<n-2
$$

Moreover, the regular set is characterized by

$$
\begin{aligned}
\Omega_{0}=\left\{x_{0} \in \Omega\right. & \sup _{r>0}\left|u_{x_{0}, r}\right|<\infty \\
& \text { and } \left.\quad \liminf _{r \backslash 0} f_{B_{r}\left(x_{0}\right)}\left|u-u_{x_{0}, r}\right|^{2} d x=0\right\}
\end{aligned}
$$

If \mathcal{A} also satisfies Hypothesis 2* with exponent $0<\delta<1$ then the gradient $D u$ is locally Hölder continuous in Ω_{0}, with the same exponent δ :

$$
u \in C^{1, \delta}\left(\Omega_{0}, \mathbf{R}^{N}\right)
$$

Proof. The proofs of Theorems VI.1.3 and VI.1.5 of [5] hold verbatim with ellipticity in place of superellipticity, once the reverse Hölder inequality

$$
\left\{f_{B_{R / 2}\left(x_{0}\right)}|D u|^{2(1+\epsilon)} d x\right\}^{1 /(1+\epsilon)} \leq c f_{B_{R}\left(x_{0}\right)}\left(1+|D u|^{2}\right) d x
$$

for some $\epsilon>0$ and every ball $B_{R}\left(x_{0}\right) \subset \subset \Omega$, is known. Here we derive this inequality from Hypotheses $1^{*}, 4^{*}$ and 5 (see Theorem 4 for $q=2$).

2. A decay estimate for the excess

In what follows, all constants c may depend on the data and on the number L from the proof of Proposition 1. The Landau symbol $o(1)$ stands for any quantity for which $\lim _{m \rightarrow \infty} o(1)=0$; this may in Section 4 also depend on the numbers $0<s<r<1$ and $\beta>0$. We write $B_{r}\left(x_{0}\right)=$ $\left\{x \in \mathbf{R}^{n}:\left|x-x_{0}\right|<r\right\}, B_{r}=B_{r}(0)$, and $B=B_{1}$ for the unit ball (we also used the symbol B in (1)). We denote the mean of a function f on the ball $B_{r}\left(x_{0}\right)$ by

$$
f_{x_{0}, r}=f_{B_{r}\left(x_{0}\right)} f d x=\frac{1}{\mathcal{L}^{n}\left(B_{r}\left(x_{0}\right)\right)} \int_{B_{r}\left(x_{0}\right)} f d x
$$

In this section we assume Hypotheses 1 to 5 with $q \geq 2$. We let $u \in$ $W^{1, q}\left(\Omega, \mathbf{R}^{N}\right)$, subject to (11), be a weak solution of the system (1). For the positive exponent $\alpha<\delta / 2$ appearing in Theorem 5, we define the excess of $D u$ on the ball $B_{r}\left(x_{0}\right) \subset \subset \Omega$:

$$
U\left(x_{0}, r\right)=r^{2 \alpha}+f_{B_{r}\left(x_{0}\right)}\left(\left|D u-D u_{x_{0}, r}\right|^{2}+\left|D u-D u_{x_{0}, r}\right|^{q}\right) d x
$$

The conclusions of Theorem 1, as yet with exponent α instead of δ, follow in a routine way from the next proposition (see [5], pp. 197-199, [6], Section 3, [10], pp. 349-352, [12], Section 5).

Showing that $u \in C^{1, \delta}\left(\Omega_{0}, \mathbf{R}^{N}\right)$ with the optimal exponent δ requires a second step. For any open set $\Sigma \subset \subset \Omega_{0}$, we consider $u \in W^{1, q}\left(\Sigma, \mathbf{R}^{N}\right)$
as a solution of the system

$$
\operatorname{div} \tilde{A}(x, D u)+B(x, u, D u)=0
$$

with the composite coefficient function $\tilde{A}(x, P)=A(x, u(x), P)$. We note that $\tilde{A}: \bar{\Sigma} \times \mathbf{R}^{N \times n} \rightarrow \mathbf{R}^{N \times n}$ satisfies Hypotheses 1 to 4 with the same exponent δ, as soon as we know that $u \in C^{0,1}\left(\Omega_{0}, \mathbf{R}^{N}\right)$. Thus, by invoking Theorem 1.2 of [12], we conclude that $u \in C^{1, \delta}\left(\Sigma, \mathbf{R}^{N}\right) .{ }^{3}$

Proposition 1 Let $L>0$ and $\tau \in] 0,1[$ be given. Then there exist positive constants $c_{1}(L)$ and $\epsilon(L, \tau)$ such that if

$$
B_{r}\left(x_{0}\right) \subset \subset \Omega,\left|u_{x_{0}, r}\right| \leq L,\left|D u_{x_{0}, r}\right| \leq L \quad \text { and } \quad U\left(x_{0}, r\right) \leq \epsilon
$$

then

$$
U\left(x_{0}, \tau r\right) \leq c_{1} \tau^{2 \alpha} U\left(x_{0}, r\right)
$$

Proof. We will determine the constant c_{1} later on. If the proposition were not true then there would exist a sequence of balls $B_{r_{m}}\left(x_{m}\right) \subset \subset \Omega$ such that, setting

$$
\begin{equation*}
u_{m}=u_{x_{m}, r_{m}}, \quad P_{m}=D u_{x_{m}, r_{m}}, \quad \lambda_{m}^{2}=U\left(x_{m}, r_{m}\right) \tag{12}
\end{equation*}
$$

we have

$$
\begin{equation*}
\left|u_{m}\right| \leq L, \quad\left|P_{m}\right| \leq L, \quad \lambda_{m} \searrow 0 \tag{13}
\end{equation*}
$$

but

$$
\begin{equation*}
U\left(x_{m}, \tau r_{m}\right)>c_{1} \tau^{2 \alpha} \lambda_{m}^{2} \tag{14}
\end{equation*}
$$

We define the rescaled functions

$$
w_{m}(z)=\frac{u\left(x_{m}+r_{m} z\right)-u_{m}-r_{m} P_{m} \cdot z}{r_{m} \lambda_{m}}
$$

for $z \in B$. We notice that

$$
\begin{align*}
& D w_{m}(z)=\frac{D u\left(x_{m}+r_{m} z\right)-P_{m}}{\lambda_{m}} \tag{15}\\
& \left(w_{m}\right)_{0,1}=0, \quad\left(D w_{m}\right)_{0,1}=0 \tag{16}
\end{align*}
$$

[^2]Then (12) and (14) become

$$
\begin{align*}
\lambda_{m}^{-2} r_{m}^{2 \alpha} & +f_{B}\left|D w_{m}\right|^{2} d z+\lambda_{m}^{q-2} f_{B}\left|D w_{m}\right|^{q} d z=1 \tag{17}\\
c_{1} \tau^{2 \alpha}< & \lambda_{m}^{-2} r_{m}^{2 \alpha} \tau^{2 \alpha}+f_{B_{\tau}}\left|D w_{m}-\left(D w_{m}\right)_{0, \tau}\right|^{2} d z \\
& +\lambda_{m}^{q-2} f_{B_{\tau}}\left|D w_{m}-\left(D w_{m}\right)_{0, \tau}\right|^{q} d z \tag{18}
\end{align*}
$$

From (16), (17) and the Poincaré inequality we immediately have

$$
\begin{equation*}
\lambda_{m}^{-1} r_{m}^{\alpha} \leq 1, \quad\left\|w_{m}\right\|_{W^{1,2}(B)} \leq c, \quad \lambda_{m}^{(q-2) / q}\left\|w_{m}\right\|_{W^{1, q}(B)} \leq c \tag{19}
\end{equation*}
$$

Since $\alpha<\delta / 2$, we infer from (13) and (19) that

$$
\begin{equation*}
r_{m} \searrow 0 \quad \text { and } \quad \lambda_{m}^{-1} r_{m}^{\delta / 2} \searrow 0 \tag{20}
\end{equation*}
$$

By assumption (11) on u, we also note that

$$
\begin{equation*}
\sup _{B}\left|r_{m} \lambda_{m} w_{m}\right| \leq 2 M+o(1) \tag{21}
\end{equation*}
$$

We denote the rescaled quantity $\left(x, u, s D u+(1-s) P_{m}\right) \in \mathfrak{Z}$:

$$
\begin{aligned}
& Z_{m}(s, z) \\
& \quad=\left(x_{m}+r_{m} z, u_{m}+r_{m} P_{m} \cdot z+r_{m} \lambda_{m} w_{m}, P_{m}+s \lambda_{m} D w_{m}\right) \text {. }
\end{aligned}
$$

It follows from (13) and (19) that, on passing to a subsequence and relabelling, we have

$$
\begin{array}{ll}
D w_{m} \rightharpoonup D w & \text { weakly in } L^{2}\left(B, \mathbf{R}^{N \times n}\right) \\
w_{m} \rightarrow w & \text { in } L^{2}\left(B, \mathbf{R}^{N}\right) \\
\lambda_{m} D w_{m} \rightarrow 0 & \text { in } L^{2}\left(B, \mathbf{R}^{N \times n}\right) ; \\
\lambda_{m}^{(q-2) / q} D w_{m} \rightharpoonup 0 & \text { weakly in } L^{q}\left(B, \mathbf{R}^{N \times n}\right) \tag{22}\\
\lambda_{m}^{(q-2) / q} w_{m} \rightarrow 0 & \text { in } L^{q}\left(B, \mathbf{R}^{N}\right)(\text { for } q>2) ; \\
& \\
\left(x_{m}, u_{m}, P_{m}\right) \rightarrow Z_{0}=\left(x_{0}, u_{0}, P_{0}\right) & \text { in } \mathfrak{Z}, \\
Z_{m} \rightarrow Z_{0} & \text { in } L^{2}([0,1] \times B, \mathfrak{Z})
\end{array}
$$

Now suppose that we can show that $w \in W^{1,2}\left(B, \mathbf{R}^{N}\right)$ is a weak solution of the following linear system with constant coefficients:

$$
\begin{equation*}
\operatorname{div}\left(A_{P}\left(Z_{0}\right) \cdot D w\right)=0 \tag{23}
\end{equation*}
$$

We infer from Hypothesis 1 and (13) that

$$
\left|A_{P}\left(Z_{0}\right)\right| \leq c
$$

and from Hypothesis 3 that (23) is uniformly elliptic (see [12]):

$$
\begin{equation*}
A_{P}\left(Z_{0}\right) \cdot(\eta \otimes \xi, \eta \otimes \xi) \geq \gamma|\eta \otimes \xi|^{2} \quad \text { for all } \eta \in \mathbf{R}^{N}, \xi \in \mathbf{R}^{n} \tag{24}
\end{equation*}
$$

Hence, from the relevant regularity theory (see [5], Theorem III.2.1, Remarks III.2.2, III.2.3) we conclude that w is smooth and

$$
\begin{equation*}
f_{B_{\tau}}\left|D w-D w_{0, \tau}\right|^{2} d z \leq c_{2} \tau^{2} f_{B}\left|D w-D w_{0,1}\right|^{2} d z \tag{25}
\end{equation*}
$$

where by (16), (17) and (22)

$$
\begin{equation*}
D w_{0,1}=0 \text { and } f_{B}|D w|^{2} d z \leq \liminf _{m \rightarrow \infty} f_{B}\left|D w_{m}\right|^{2} d z \leq 1 \tag{26}
\end{equation*}
$$

On the other hand, if we also know that

$$
\begin{array}{ll}
D w_{m} \rightarrow D w & \text { in } \quad L_{\mathrm{loc}}^{2}\left(B, \mathbf{R}^{N \times n}\right), \\
\lambda_{m}^{(q-2) / q} D w_{m} \rightarrow 0 & \text { in } L_{\mathrm{loc}}^{q}\left(B, \mathbf{R}^{N \times n}\right) \quad(\text { for } q>2) \tag{28}
\end{array}
$$

then it would follow from (18) and (19) that

$$
c_{1} \tau^{2 \alpha} \leq \tau^{2 \alpha}+f_{B_{\tau}}\left|D w-D w_{0, \tau}\right|^{2} d z
$$

If we now choose $c_{1}>1+c_{2}$, we obtain a contradiction to (25) and (26). This proves the proposition.

The remainder of this work is devoted to showing (23), and (27), (28), which are the assertions of Lemmas 4 and 5 respectively.

We introduce some further notation. We define the set

$$
\mathfrak{Y}=\bar{\Omega} \times \mathbf{R}^{N} \times \mathbf{R}^{N} \times \mathbf{R}^{N \times n} \times \mathbf{R}^{N \times n}
$$

Next, we define a bilinear form $G(Y)$ on $\mathbf{R}^{N \times n}$, for $Y=(x, u, v, P, Q) \in \mathfrak{Y}$, by

$$
G(Y)=\int_{0}^{1} A_{P}(x, u, P+s Q) d s-2 a|u-v||Q|^{q-2} I
$$

where $I=\langle\cdot, \cdot\rangle$ denotes the inner product on $\mathbf{R}^{N \times n}$. By Hypothesis 1 , the bilinear form $G(Y)$ depends continuously on $Y \in \mathfrak{Y}$. We observe that

$$
\begin{align*}
G(x, u, u, P, Q) \cdot Q & =\int_{0}^{1} A_{P}(x, u, P+s Q) \cdot Q d s \\
& =A(x, u, P+Q)-A(x, u, P) \tag{29}
\end{align*}
$$

Therefore, by Hypothesis 1 and Young's inequality, we infer that

$$
\begin{align*}
& \mid \int_{0}^{1} \\
& \quad A_{P}(x, u, P+s Q) \cdot(Q, R) d s \mid \\
& \quad=|(A(x, u, P+Q)-A(x, u, P)) \cdot R| \tag{30}\\
& \quad \leq c\left(1+|P|^{q}+|Q|^{q}+|R|^{q}\right)
\end{align*}
$$

We end this section by showing that w_{m} is, to order zero as $m \rightarrow \infty$, a weak solution of a rescaled system of inequalities.

Lemma 1 Suppose that A and B satisfy Hypotheses 1, 2, 3 and 5. For $\varphi \in W_{0}^{1, q}\left(B, \mathbf{R}^{N}\right)$, with $\sup _{B}|\varphi|<\infty$ if $a \neq 0$, we then have

$$
\begin{align*}
& \int_{B} \int_{0}^{1} A_{P}\left(Z_{m}(s, z)\right) \cdot\left(D w_{m}, D \varphi\right) d s d z \\
& \quad \leq 2 a \int_{B} \lambda_{m}^{q-2}\left|D w_{m}\right|^{q} r_{m} \lambda_{m}|\varphi| d z+c \lambda_{m}^{-1} r_{m}^{\delta / 2}\|\varphi\|_{W^{1,2}} \tag{31}
\end{align*}
$$

Proof. Rescaling the system (1) we find

$$
\int_{B} A\left(Z_{m}(1, z)\right) \cdot D \varphi d z=r_{m} \int_{B} B\left(Z_{m}(1, z)\right) \cdot \varphi d z
$$

for every $\varphi \in C_{c}^{\infty}\left(B, \mathbf{R}^{N}\right)$. So it follows from (29) that

$$
\begin{aligned}
& \int_{B} \int_{0}^{1} A_{P}\left(Z_{m}(s, z)\right) \cdot\left(D w_{m}, D \varphi\right) d s d z \\
& \quad=\lambda_{m}^{-1} \int_{B}\left(A\left(Z_{m}(1, z)\right)-A\left(Z_{m}(0, z)\right)\right) \cdot D \varphi d z
\end{aligned}
$$

$$
\begin{aligned}
&=\lambda_{m}^{-1} r_{m} \int_{B} B\left(Z_{m}(1, z)\right) \cdot \varphi d z \\
&-\lambda_{m}^{-1} \int_{B}\left(A\left(x_{m}+r_{m} z, u_{m}+r_{m} P_{m} \cdot z+r_{m} \lambda_{m} w_{m}, P_{m}\right)\right. \\
&\left.\quad-A\left(x_{m}, u_{m}, P_{m}\right)\right) \cdot D \varphi d z=(\mathrm{I})+(\mathrm{II})
\end{aligned}
$$

By virtue of Hypothesis 2, we estimate the term (II) as follows (using (13), (19), Hölder's and Jensen's inequalities in combination with the boundedness and concavity of $\omega(L, \cdot)$, and the inequality $\left.\omega(L, t) \leq c t^{\delta}\right)$:

$$
\begin{aligned}
(\mathrm{II}) & \leq c\left(1+\left|P_{m}\right|^{q-1}\right) \lambda_{m}^{-1} f_{B} \omega\left(\left|u_{m}\right|, r_{m}+r_{m}\left|P_{m}\right|+r_{m} \lambda_{m}\left|w_{m}\right|\right)|D \varphi| d z \\
& \leq c \lambda_{m}^{-1}\left(f_{B} \omega\left(L, r_{m}+r_{m} L+r_{m} \lambda_{m}\left|w_{m}\right|\right) d z\right)^{1 / 2}\|\varphi\|_{W^{1,2}} \\
& \leq c \lambda_{m}^{-1} \omega\left(L, r_{m}+r_{m} L+r_{m} \lambda_{m} f_{B}\left|w_{m}\right| d z\right)^{1 / 2}\|\varphi\|_{W^{1,2}} \\
& \leq c \lambda_{m}^{-1} r_{m}^{\delta / 2}\|\varphi\|_{W^{1,2}}
\end{aligned}
$$

We next apply the estimate (10) to the term (I) and we use the inequality $(x+y)^{q} \leq 2 x^{q}+c y^{q}$. This gives

$$
\begin{aligned}
(\mathrm{I}) & \leq \lambda_{m}^{-1} r_{m} \int_{B}\left(a\left|P_{m}+\lambda_{m} D w_{m}\right|^{q}+b\right)|\varphi| d z \\
& \leq 2 a \int_{B} \lambda_{m}^{q-2}\left|D w_{m}\right|^{q} r_{m} \lambda_{m}|\varphi| d z+c \lambda_{m}^{-1} r_{m}\|\varphi\|_{L^{2}}
\end{aligned}
$$

3. Caccioppoli and reverse Hölder inequalities

We recall a simple algebraic lemma (see [5], Lemma V.3.1, [10], Lemma 6.1) and the higher integrability theorem of Gehring, Giaquinta and Modica (see [5], Proposition V.1.1, [10], Theorem 6.6).
Lemma 2 Let $f(t)$ be a bounded nonnegative function defined for $R / 2 \leq$ $t \leq R$. Suppose that

$$
f(t) \leq \theta f(s)+A(s-t)^{-2}+B(s-t)^{-q}+C
$$

for $R / 2 \leq t<s \leq R$, where θ, A, B, C are nonnegative constants with $\theta<1$. Then

$$
f\left(\frac{R}{2}\right) \leq c(\theta, q)\left(A R^{-2}+B R^{-q}+C\right)
$$

Theorem 3 Let Ω be a bounded open subset of \mathbf{R}^{n}, and let $f \in L_{\mathrm{loc}}^{1}(\Omega)$ and $g \in L_{\mathrm{loc}}^{t}(\Omega)$ be nonnegative functions with $0<s<1<t<\infty$. Suppose that

$$
\begin{equation*}
f_{B_{R / 2}\left(x_{0}\right)} f d x \leq b\left\{f_{B_{R}\left(x_{0}\right)} f^{s} d x\right\}^{1 / s}+f_{B_{R}\left(x_{0}\right)} g d x \tag{32}
\end{equation*}
$$

for every ball $B_{R}\left(x_{0}\right) \subset \subset \Omega$ with $R \leq R_{0}$. Then $f \in L_{\text {loc }}^{1+\epsilon}(\Omega)$ for any $0 \leq \epsilon<\epsilon_{0}$, and

$$
\left\{f_{B_{\mu R}\left(x_{0}\right)} f^{1+\epsilon} d x\right\}^{1 /(1+\epsilon)} \leq c f_{B_{R}\left(x_{0}\right)} f d x+c\left\{f_{B_{R}\left(x_{0}\right)} g^{1+\epsilon} d x\right\}^{1 /(1+\epsilon)}
$$

for every ball $B_{R}\left(x_{0}\right) \subset \subset \Omega$ with $R \leq R_{0}$, and $0<\mu<1$, where $\epsilon_{0}=$ $\epsilon_{0}(n, s, t, b)$ and $c=c(n, s, t, b, \mu, \epsilon)$ are positive constants.

The next lemma is similar to [6], Lemma 2.1, [10], Lemma 9.1.
Lemma 3 There exists a constant c such that the estimate

$$
\left|A\left(x_{0}, u_{0}, P_{0}+P\right)-A\left(x_{0}, u_{0}, P_{0}\right)\right| \leq c\left(|P|+|P|^{q-1}\right)
$$

holds for all $P \in \mathbf{R}^{N \times n}$, and $\left(x_{0}, u_{0}, P_{0}\right) \in \mathfrak{Z}$ with $\left|u_{0}\right| \leq L$ and $\left|P_{0}\right| \leq L$.
Proof. We let $K=\sup _{\mathcal{Z}_{L}}\left|A_{P}\right|$ for the compact set

$$
\mathfrak{Z}_{L}=\{(x, u, P) \in \mathfrak{Z}:|u|,|P| \leq L+1\}
$$

For $|P| \leq 1$, we then have

$$
\begin{aligned}
& \left|A\left(x_{0}, u_{0}, P_{0}+P\right)-A\left(x_{0}, u_{0}, P_{0}\right)\right| \\
& \quad=\left|\int_{0}^{1} A_{P}\left(x_{0}, u_{0}, P_{0}+s P\right) \cdot P d s\right| \leq K|P|
\end{aligned}
$$

while for $|P| \geq 1$,

$$
\left|A\left(x_{0}, u_{0}, P_{0}+P\right)-A\left(x_{0}, u_{0}, P_{0}\right)\right| \leq c\left(1+|P|^{q-1}\right) \leq c|P|^{q-1}
$$

We first prove a reverse Hölder inequality for $D u$ (cf. [6], Proposition 2.2 and (2.18), [10], Theorem 6.7 and Proposition 9.1).

Theorem 4 Let $u \in W^{1, q}\left(\Omega, \mathbf{R}^{N}\right)$ be a weak solution of the system (1), whose coefficient functions A and B satisfy Hypotheses 1, 4 and 5.

Then $D u \in L_{\mathrm{loc}}^{q\left(1+\epsilon^{\prime}\right)}\left(\Omega, \mathbf{R}^{N \times n}\right)$ for any $0 \leq \epsilon^{\prime}<\epsilon_{1}$, and

$$
\left\{f_{B_{\mu R}\left(x_{0}\right)}\left(1+|D u|^{q}\right)^{1+\epsilon^{\prime}} d x\right\}^{1 /\left(1+\epsilon^{\prime}\right)} \leq c f_{B_{R}\left(x_{0}\right)}\left(1+|D u|^{q}\right) d x
$$

for every ball $B_{R}\left(x_{0}\right) \subset \subset \Omega$ with $R \leq R_{0}$, and $0<\mu<1$, where ϵ_{1}, R_{0} and $c\left(\mu, \epsilon^{\prime}\right)$ are positive constants.

Proof. We fix some ball $B_{R}\left(x_{0}\right) \subset \subset \Omega$ with $R \leq R_{0}$, and we set $u_{0}=$ $u_{x_{0}, R}$. For $R / 2 \leq t<s \leq R$, we let $\zeta \in C_{c}^{\infty}\left(B_{s}\left(x_{0}\right)\right)$ be a cut-off function with $0 \leq \zeta \leq 1, \zeta=1$ on $B_{t}\left(x_{0}\right)$ and $|D \zeta| \leq c(s-t)^{-1}$. We set $\varphi=$ $\zeta\left(u-u_{0}\right)$, which by (11) satisfies $|\varphi| \leq 2 M$. By Hypothesis 4 and (2), we then have

$$
\begin{aligned}
\tilde{\gamma} \int_{B_{s}}|D \varphi|^{q} d x \leq & \int_{B_{s}}\left(F\left(x_{0}, D \varphi\right)-F\left(x_{0}, 0\right)\right) d x \\
\leq & \int_{B_{s}} F(x, D \varphi) d x+\tilde{\omega}\left(R_{0}\right) \int_{B_{s}}|D \varphi|^{q} d x+c R^{n} \\
\leq & \int_{B_{s}}(A(x, u, D \varphi)-A(x, u, D u)) \cdot D \varphi d x \\
& +\int_{B_{s}} B(x, u, D u) \cdot \varphi d x+\tilde{\omega}\left(R_{0}\right) \int_{B_{s}}|D \varphi|^{q} d x+c R^{n}
\end{aligned}
$$

Thus, by Hypotheses 1 and 5, and Young's inequality, we obtain

$$
\begin{aligned}
\int_{B_{t}}|D u|^{q} d x \leq & c_{1} \int_{B_{s} \backslash B_{t}}|D u|^{q} d x+\frac{2 a M+2 \tilde{\omega}\left(R_{0}\right)}{\tilde{\gamma}} \int_{B_{s}}|D u|^{q} d x \\
& +c(s-t)^{-q} \int_{B_{R}}\left|u-u_{0}\right|^{q} d x+c R^{n}
\end{aligned}
$$

We now "fill the hole", that is, we add c_{1} times the left hand side to both sides and we divide the resulting inequality by $1+c_{1}$. This yields

$$
\int_{B_{t}}|D u|^{q} d x \leq \theta \int_{B_{s}}|D u|^{q} d x+c(s-t)^{-q} \int_{B_{R}}\left|u-u_{0}\right|^{q} d x+c R^{n}
$$

where by (10)

$$
\theta=\frac{\frac{2 a M+2 \tilde{\omega}\left(R_{0}\right)}{\tilde{\gamma}}+c_{1}}{1+c_{1}}<1
$$

for sufficiently small R_{0}. By an application of Lemma 2, we arrive at Caccioppoli's first inequality

$$
\int_{B_{R / 2}}|D u|^{q} d x \leq c R^{-q} \int_{B_{R}}\left|u-u_{0}\right|^{q} d x+c R^{n} .
$$

By the Poincaré-Sobolev inequality, we deduce the estimate (32) with $f=$ $1+|D u|^{q}, g=0$ and $s=q_{*} / q=n /(n+q)<1$. The result now follows by Theorem 3.

We are ready for a reverse Hölder inequality for $\mathrm{Du}-P_{0}$ plus an error term (cf. [12], Corollary 4.1, [6], Theorems 2.2 and 2.5$)^{4}$. It provides a uniform bound in $L_{\text {loc }}^{2(1+\epsilon)}$ for the gradients of the blow-up functions w_{m} (see Corollary 1).

Theorem 5 Let $u \in W^{1, q}\left(\Omega, \mathbf{R}^{N}\right)$ be a weak solution of the system (1), whose coefficient functions A and B satisfy Hypotheses 1 to 5.

Then there exist positive constants $\epsilon, \alpha<\delta / 2, R_{0}$ and $c(\mu)$ such that

$$
\begin{aligned}
& \left\{f_{B_{\mu R}\left(x_{0}\right)}\left(\left|D u-P_{0}\right|^{2}+\left|D u-P_{0}\right|^{q}\right)^{1+\epsilon} d x\right\}^{1 /(1+\epsilon)} \\
& \leq c f_{B_{R}\left(x_{0}\right)}\left(\left|D u-P_{0}\right|^{2}+\left|D u-P_{0}\right|^{q}\right) d x \\
& \quad+c R^{2 \alpha}\left\{f_{B_{R}\left(x_{0}\right)}\left(1+|D u|^{q}\right) d x\right\}^{1+2 \alpha / q}
\end{aligned}
$$

holds for every ball $B_{R}\left(x_{0}\right) \subset \subset \Omega, 0<\mu<1$ and $P_{0} \in \mathbf{R}^{N \times n}$, with $R \leq$ $R_{0},\left|u_{x_{0}, R}\right| \leq L$ and $\left|P_{0}\right| \leq L$.

Proof. We fix $B_{R}\left(x_{0}\right) \subset \subset \Omega$ and $P_{0} \in \mathbf{R}^{N \times n}$, subject to the conditions $R \leq R_{0},\left|u_{0}\right| \leq L$ and $\left|P_{0}\right| \leq L$, where $u_{0}=u_{x_{0}, R}$.

We next fix some ball $B_{r}\left(y_{0}\right) \subset \subset B_{R}\left(x_{0}\right)$. For $r / 2 \leq t<s \leq r$, we let $\zeta \in C_{c}^{\infty}\left(B_{s}\left(y_{0}\right)\right)$ be a cut-off function with $0 \leq \zeta \leq 1, \zeta=1$ on $B_{t}\left(y_{0}\right)$ and

[^3]$|D \zeta| \leq c(s-t)^{-1}$. We set
\[

$$
\begin{align*}
& P(x)=u_{y_{0}, r}+P_{0} \cdot\left(x-y_{0}\right) \\
& \varphi=\zeta(u-P), \quad \psi=(1-\zeta)(u-P) \tag{33}
\end{align*}
$$
\]

for which

$$
\varphi+\psi=u-P, \quad D \varphi+D \psi=D u-P_{0}
$$

and

$$
\begin{equation*}
a|\varphi| \leq 2 a M+c r \tag{34}
\end{equation*}
$$

Hypotheses 2, 3 and 5, (2) and Lemma 3 assert that

$$
\begin{aligned}
\int_{B_{s}} & \left(\kappa|D \varphi|^{2}+\gamma|D \varphi|^{q}\right) d x \\
\leq & \int_{B_{s}}\left(A\left(x_{0}, u_{0}, P_{0}+D \varphi\right)-A\left(x_{0}, u_{0}, P_{0}+D \varphi+D \psi\right)\right) \cdot D \varphi d x \\
& +\int_{B_{s}}\left(A\left(x_{0}, u_{0}, D u\right)-A(x, u, D u)\right) \cdot D \varphi d x \\
& +\int_{B_{s}} B(x, u, D u) \cdot \varphi d x \\
\leq & c \int_{B_{s} \backslash B_{t}}\left(|D \varphi|+|D \varphi|^{q-1}+|D \psi|+|D \psi|^{q-1}\right)|D \varphi| d x \\
& +\int_{B_{s}} \omega\left(\left|u_{0}\right|,\left|x-x_{0}\right|+\left|u-u_{0}\right|\right)\left(1+|D u|^{q-1}\right)|D \varphi| d x \\
& +\int_{B_{s}}\left(a|D u|^{q}+b\right)|\varphi| d x
\end{aligned}
$$

We estimate the last term, using the inequality $(x+y)^{q} \leq(1+\epsilon) x^{q}+$ $c(\epsilon) y^{q},(34)$, the Poincaré inequality for φ on $B_{s}\left(y_{0}\right)$ and the Young inequality, as

$$
\begin{aligned}
\int_{B_{s}}\left(a|D u|^{q}+b\right)|\varphi| d x \leq & \left((1+\epsilon) 2 a M+c(\epsilon) R_{0}\right) \int_{B_{s}}|D \varphi|^{q} d x \\
& +c(\epsilon) \int_{B_{s}}|D \psi|^{q} d x+c(\epsilon) r^{n+1}
\end{aligned}
$$

By choosing ϵ and R_{0} sufficiently small so that $(1+\epsilon) 2 a M+c(\epsilon) R_{0}<\gamma$,
we conclude that

$$
\begin{aligned}
\int_{B_{t}} f d x \leq & c_{1} \int_{B_{s} \backslash B_{t}} f d x+c(s-t)^{-2} \int_{B_{r}}|u-P|^{2} d x \\
& +c(s-t)^{-q} \int_{B_{r}}|u-P|^{q} d x+c \int_{B_{r}} g d x
\end{aligned}
$$

for the functions

$$
\begin{aligned}
& f=\left|D u-P_{0}\right|^{2}+\left|D u-P_{0}\right|^{q}, \\
& g=\omega\left(\left|u_{0}\right|,\left|x-x_{0}\right|+\left|u-u_{0}\right|\right)\left(1+|D u|^{q}\right)+R .
\end{aligned}
$$

We note that the definitions of f and g do not involve y_{0} or r. "Filling the hole" and applying Lemma 2, with $\theta=c_{1} /\left(1+c_{1}\right)<1$, results in Caccioppoli's second inequality

$$
\int_{B_{r / 2}} f d x \leq c r^{-2} \int_{B_{r}}|u-P|^{2} d x+c r^{-q} \int_{B_{r}}|u-P|^{q} d x+c \int_{B_{r}} g d x .
$$

By means of the Poincaré-Sobolev and Hölder inequalities, we deduce, for $s=2_{*} / 2=n /(n+2)<1$, that

$$
f_{B_{r / 2}\left(y_{0}\right)} f d x \leq c\left\{f_{B_{r}\left(y_{0}\right)} f^{s} d x\right\}^{1 / s}+c f_{B_{r}\left(y_{0}\right)} g d x
$$

for all $B_{r}\left(y_{0}\right) \subset \subset B_{R}\left(x_{0}\right)$. Invoking Theorem 3 we finally arrive at

$$
\begin{align*}
& \left\{f_{B_{\mu R}\left(x_{0}\right)} f^{1+\epsilon} d x\right\}^{1 /(1+\epsilon)} \\
& \quad \leq c f_{B_{\nu R}\left(x_{0}\right)} f d x+c\left\{f_{B_{\nu R}\left(x_{0}\right)} g^{1+\epsilon} d x\right\}^{1 /(1+\epsilon)} \tag{35}
\end{align*}
$$

for some exponent $0<\epsilon<\epsilon^{\prime}$ and $0<\mu<\nu<1$. Here the constant c also depends on μ / ν and ϵ, and ϵ^{\prime} is the exponent from Theorem 4.

We next set

$$
\beta=\frac{\epsilon^{\prime}-\epsilon}{\left(1+\epsilon^{\prime}\right)(1+\epsilon)} \quad \text { and } \quad 2 \alpha=\delta \beta .
$$

Then, using the Hölder, Jensen and Poincaré inequalities, the boundedness and concavity of $\omega(L, \cdot)$, Theorem 4 and the estimate $\omega(L, t) \leq c t^{\delta}$ we
control the last term of (35) by

$$
\begin{aligned}
& \left\{f_{B_{\nu R}} g^{1+\epsilon} d x\right\}^{1 /(1+\epsilon)} \\
& \leq c\left\{f_{B_{\nu R}} \omega\left(\left|u_{0}\right|,\left|x-x_{0}\right|+\left|u-u_{0}\right|\right) d x\right\}^{\beta} \\
& \times\left\{f_{B_{\nu R}}\left(1+|D u|^{q}\right)^{1+\epsilon^{\prime}} d x\right\}^{1 /\left(1+\epsilon^{\prime}\right)}+c R \\
& \leq c \omega\left(L, R+f_{B_{R}}\left|u-u_{0}\right| d x\right)^{\beta} f_{B_{R}}\left(1+|D u|^{q}\right) d x+c R \\
& \leq c \omega\left(L, c R\left\{f_{B_{R}}\left(1+|D u|^{q}\right) d x\right\}^{1 / q}\right)^{\beta} f_{B_{R}}\left(1+|D u|^{q}\right) d x+c R \\
& \leq c R^{2 \alpha}\left\{f_{B_{R}}\left(1+|D u|^{q}\right) d x\right\}^{1+2 \alpha / q} .
\end{aligned}
$$

Corollary 1 In terms of $w_{m} \in W^{1, q}\left(B, \mathbf{R}^{N}\right)$, we have, for $0<r<1$,

$$
\left\{f_{B_{r}}\left(\left|D w_{m}\right|^{2}+\lambda_{m}^{q-2}\left|D w_{m}\right|^{q}\right)^{1+\epsilon} d z\right\}^{1 /(1+\epsilon)} \leq c(r)
$$

Proof. Substituting (15), $x_{0}=x_{m}, R=r_{m}, \mu=r$ and $P_{0}=P_{m}$ in Theorem 4, and using (13) and (19) yields

$$
\begin{aligned}
& \left\{f_{B_{r}}\left(\left|D w_{m}\right|^{2}+\lambda_{m}^{q-2}\left|D w_{m}\right|^{q}\right)^{1+\epsilon} d z\right\}^{1 /(1+\epsilon)} \\
& \quad \leq c(r) f_{B}\left(\left|D w_{m}\right|^{2}+\lambda_{m}^{q-2}\left|D w_{m}\right|^{q}\right) d z \\
& \quad+c(r) \lambda_{m}^{-2} r_{m}^{2 \alpha}\left\{f_{B}\left(1+\left|P_{m}+\lambda_{m} D w_{m}\right|^{q}\right) d z\right\}^{1+2 \alpha / q} \\
& \quad \leq c(r)
\end{aligned}
$$

4. Convergence of the blow-up functions

For $0<r<1$ and $\beta>0$, we define the sets

$$
E_{r, m}=\left\{z \in B_{r}: \lambda_{m}\left(\left|w_{m}\right|+\left|D w_{m}\right|\right) \geq \beta\right\}
$$

By (13) and (19), we infer that

$$
\begin{equation*}
\left|E_{r, m}\right| \leq \beta^{-2} \lambda_{m}^{2} \int_{E_{r, m}}\left(\left|w_{m}\right|+\left|D w_{m}\right|\right)^{2} d z \leq c \beta^{-2} \lambda_{m}^{2}=o(1) \tag{36}
\end{equation*}
$$

Moreover, by the Hölder inequality, Corollary 1 and (36), we deduce

$$
\begin{aligned}
& \int_{E_{r, m}} \lambda_{m}^{q-2}\left|D w_{m}\right|^{q} d z \\
& \quad \leq\left\{\int_{B_{r}}\left(\lambda_{m}^{q-2}\left|D w_{m}\right|^{q}\right)^{1+\epsilon} d z\right\}^{1 /(1+\epsilon)}\left|E_{r, m}\right|^{\epsilon /(1+\epsilon)}=o(1)
\end{aligned}
$$

In summary,

$$
\begin{equation*}
\int_{E_{r, m}}\left(\lambda_{m}^{-2}+\lambda_{m}^{q-2}\left|D w_{m}\right|^{q}\right) d z \leq c \beta^{-2}+o(1) \tag{37}
\end{equation*}
$$

By choosing for φ a test function in Lemma 1 and taking the limit as $m \rightarrow \infty$, we derive

Lemma 4 The function $w \in W^{1,2}\left(B, \mathbf{R}^{N}\right)$ is a weak solution of the linear elliptic system with constant coefficients

$$
\operatorname{div}\left(A_{P}\left(Z_{0}\right) \cdot D w\right)=0
$$

In particular, we conclude that w is smooth.
Proof. We fix $\varphi \in C_{c}^{\infty}\left(B_{r}, \mathbf{R}^{N}\right)$ with $0<r<1$, and $\beta>0$. We define the compact set

$$
\mathfrak{Z}_{\beta}=\{(x, u, P) \in \mathfrak{Z}:|u|,|P| \leq 2 L+\beta\}
$$

and note that $Z_{m}(s, z) \in \mathfrak{Z}_{\beta}$ for every $s \in[0,1]$ and a.e. $z \in B_{r} \backslash E_{r, m}$. Therefore

$$
\begin{equation*}
\sup _{[0,1] \times\left(B_{r} \backslash E_{r, m}\right)}\left|A_{P}\left(Z_{m}\right)\right| \leq \sup _{\mathcal{Z}_{\beta}}\left|A_{P}\right|=c(\beta) . \tag{38}
\end{equation*}
$$

We claim by Lebesgue's dominated convergence that

$$
\begin{equation*}
\left(1-\chi_{E_{r, m}}\right) A_{P}\left(Z_{m}\right) \rightarrow A_{P}\left(Z_{0}\right) \text { in } L^{2}\left([0,1] \times B_{r}\right) \tag{39}
\end{equation*}
$$

where $\chi_{E_{r, m}}$ is the characteristic function of the set $E_{r, m}$. Indeed, the left hand side of (39) is bounded and converges pointwise a.e. on $[0,1] \times B_{r}$, by
(36), which asserts that $\chi_{E_{r, m}} \rightarrow 0$ in $L^{1}\left(B_{r}\right)$, and by (22), (38) and the continuity of A_{P}.

As a consequence of (22) and (39), we have

$$
\begin{align*}
\lim _{m \rightarrow \infty} & \int_{B_{r} \backslash E_{r, m}} \int_{0}^{1} A_{P}\left(Z_{m}\right) \cdot\left(D w_{m}, D \varphi\right) d s d z \\
& =\int_{B_{r}} A_{P}\left(Z_{0}\right) \cdot(D w, D \varphi) d z \tag{40}
\end{align*}
$$

It next follows from (13) and (30) that

$$
\begin{align*}
& \left|\int_{E_{r, m}} \int_{0}^{1} A_{P}\left(Z_{m}\right) \cdot\left(D w_{m}, D \varphi\right) d s d z\right| \\
& \quad \leq c \int_{E_{r, m}}\left(\lambda_{m}^{-2}+\lambda_{m}^{q-2}\left|D w_{m}\right|^{q}+\lambda_{m}^{q-2}|D \varphi|^{q}\right) d z \tag{41}
\end{align*}
$$

For $\varphi \in C_{c}^{\infty}\left(B_{r}, \mathbf{R}^{N}\right)$, the right hand side of (31) is easily seen to approach zero as $m \rightarrow \infty$. Therefore, using (13), (37) and (41) we obtain

$$
\begin{aligned}
& \int_{B_{r} \backslash E_{r, m}} \int_{0}^{1} A_{P}\left(Z_{m}\right) \cdot\left(D w_{m}, D \varphi\right) d s d z \\
& =o(1)-\int_{E_{r, m}} \int_{0}^{1} A_{P}\left(Z_{m}\right) \cdot\left(D w_{m}, D \varphi\right) d s d z \leq c \beta^{-2}+o(1) .
\end{aligned}
$$

We conclude by (40) and since $\beta>0$ was arbitrary that

$$
\int_{B_{r}} A_{P}\left(Z_{0}\right) \cdot(D w, D \varphi) d z \leq 0
$$

and the result follows by replacing φ by $-\varphi$.
Lemma 5 We have the limits

$$
\begin{array}{ll}
D w_{m} \rightarrow D w & \text { in } L_{\mathrm{loc}}^{2}\left(B, \mathbf{R}^{N \times n}\right) \\
\lambda_{m}^{(q-2) / q} D w_{m} \rightarrow 0 & \text { in } \quad L_{\mathrm{loc}}^{q}\left(B, \mathbf{R}^{N \times n}\right) \quad(\text { for } q>2) . \tag{43}
\end{array}
$$

In the proof we shall make use of the fact that, by Lemma 4, the function w and its gradient $D w$ are locally bounded on B.

We fix $0<s<r<1$ and $\beta>0$. We let $\zeta \in C_{c}^{\infty}\left(B_{r}\right)$ be a cut-off function with $0 \leq \zeta \leq 1, \zeta=1$ on B_{s} and $|D \zeta| \leq c(r-s)^{-1}$, and we define
the functions

$$
\begin{aligned}
& Y_{m}=\left(x_{m}+r_{m} z, u_{m}+r_{m} P_{m} \cdot z+r_{m} \lambda_{m} w_{m}, u_{m}, P_{m}, \lambda_{m} D w_{m}\right), \\
& \tilde{Y}_{m}=\left(x_{m}, u_{m}, u_{m}, P_{m}, \lambda_{m} \zeta\left(D w_{m}-D w\right)+\lambda_{m}\left(w_{m}-w\right) \otimes D \zeta\right) .
\end{aligned}
$$

By virtue of (13), (20) and (22), we notice the limits

$$
Y_{m}, \tilde{Y}_{m} \rightarrow Y_{0}=\left(x_{0}, u_{0}, u_{0}, P_{0}, 0\right) \quad \text { in } L^{2}(B, \mathfrak{Y}) .
$$

We define the compact set

$$
\begin{aligned}
\mathfrak{Y}_{\beta}=\{ & (x, u, v, P, Q) \in \mathfrak{Y}:|u|,|v|,|P|,|Q| \leq 2 L+\beta \\
& \left.+\|D w\|_{L^{\infty}\left(B_{r}\right)}+c(r-s)^{-1}\left(\beta+\|w\|_{L^{\infty}\left(B_{r}\right)}\right)\right\}
\end{aligned}
$$

and note that $Y_{m}(z), \tilde{Y}_{m}(z) \in \mathfrak{Y}_{\beta}$ for a.e. $z \in B_{r} \backslash E_{r, m}$. Therefore

$$
\begin{equation*}
\sup _{B_{r} \backslash E_{r, m}}\left\{\left|G\left(Y_{m}\right)\right|,\left|G\left(\tilde{Y}_{m}\right)\right|\right\} \leq \sup _{\mathfrak{Y}_{\beta}}|G|=c(\beta, r, s) . \tag{44}
\end{equation*}
$$

By the same argument as that for (39), we show that

$$
\begin{aligned}
& \left(1-\chi_{E_{r, m}}\right) G\left(Y_{m}\right) \rightarrow G\left(Y_{0}\right) \text { in } L^{p}\left(B_{r}\right), \\
& \left(1-\chi_{E_{r, m}}\right) G\left(\tilde{Y}_{m}\right) \rightarrow G\left(Y_{0}\right) \text { in } L^{p}\left(B_{r}\right),
\end{aligned}
$$

for $1 \leq p<\infty$. We then infer by Hölder's inequality and Corollary 1 that

$$
\begin{align*}
& \int_{B_{r} \backslash E_{r, m}} \zeta^{2} G\left(Y_{m}\right) \cdot\left(D w_{m}, D w_{m}\right) d z-\int_{B_{r}} \zeta^{2} G\left(Y_{0}\right) \cdot\left(D w_{m}, D w_{m}\right) d z \\
& \leq\left\{\int_{B_{r}}\left|\left(1-\chi_{E_{r, m}}\right) G\left(Y_{m}\right)-G\left(Y_{0}\right)\right|^{(1+\epsilon) / \epsilon} d z\right\}^{\epsilon /(1+\epsilon)} \\
& \times\left\{\int_{B_{r}}\left|D w_{m}\right|^{2(1+\epsilon)} d z\right\}^{1 /(1+\epsilon)} \\
&=o(1) . \tag{45}
\end{align*}
$$

Similarly, we obtain

$$
\begin{align*}
& \int_{B_{r} \backslash E_{r, m}} \zeta^{2} G\left(\tilde{Y}_{m}\right) \cdot\left(D w_{m}-D w, D w_{m}-D w\right) d z \\
& \quad \leq \int_{B_{r}} \zeta^{2} G\left(Y_{0}\right) \cdot\left(D w_{m}-D w, D w_{m}-D w\right) d z+o(1) . \tag{46}
\end{align*}
$$

We now insert $\varphi=\zeta^{2}\left(w_{m}-w\right) \in W_{0}^{1, q}\left(B_{r}, \mathbf{R}^{N}\right)$ in (31), for which

$$
D \varphi=\zeta^{2}\left(D w_{m}-D w\right)+2 \zeta\left(w_{m}-w\right) \otimes D \zeta
$$

By (13), (19), (20), (21), (22), (37), (38) and (41), this easily yields

$$
\begin{aligned}
& \int_{B_{r} \backslash E_{r, m}} \zeta^{2} G\left(Y_{m}\right) \cdot\left(D w_{m}, D w_{m}\right) d z \\
&= \int_{B_{r} \backslash E_{r, m}} \int_{0}^{1} \zeta^{2} A_{P}\left(Z_{m}\right) \cdot\left(D w_{m}, D w_{m}\right) d s d z \\
&-2 a \int_{B_{r} \backslash E_{r, m}} \zeta^{2}\left|r_{m} P_{m} \cdot z+r_{m} \lambda_{m} w_{m}\right| \lambda_{m}^{q-2}\left|D w_{m}\right|^{q} d z \\
& \leq \int_{B_{r} \backslash E_{r, m}} \int_{0}^{1} \zeta^{2} A_{P}\left(Z_{m}\right) \cdot\left(D w_{m}, D w\right) d s d z+c \beta^{-2}+o(1)
\end{aligned}
$$

We also use (40) (with $\zeta^{2} D w$ in place of $D \varphi$, and noting that $A_{P}\left(Z_{0}\right)=$ $\left.G\left(Y_{0}\right)\right)$ and (45), and we arrive at the key estimate

$$
\begin{align*}
& \limsup _{m \rightarrow \infty} \int_{B_{r}} \zeta^{2} G\left(Y_{0}\right) \cdot\left(D w_{m}, D w_{m}\right) d z \\
& \quad \leq \int_{B_{r}} \zeta^{2} G\left(Y_{0}\right) \cdot(D w, D w) d z+c \beta^{-2} \tag{47}
\end{align*}
$$

According to Hypothesis $3,(13),(29),(30)$ and the definition of \tilde{Y}_{m}, we have

$$
\begin{aligned}
& \int_{B_{r}}\left(\kappa|D \varphi|^{2}+\gamma \lambda_{m}^{q-2}|D \varphi|^{q}\right) d z \\
& \leq \lambda_{m}^{-1} \int_{B_{r}}\left(A\left(x_{m}, u_{m}, P_{m}+\lambda_{m} D \varphi\right)-A\left(x_{m}, u_{m}, P_{m}\right)\right) \cdot D \varphi d z \\
& \leq c \int_{E_{r, m}}\left(\lambda_{m}^{-2}+\lambda_{m}^{q-2}|D \varphi|^{q}\right) d z+\int_{B_{r} \backslash E_{r, m}} G\left(\tilde{Y}_{m}\right) \cdot(D \varphi, D \varphi) d z
\end{aligned}
$$

where now $\varphi=\zeta\left(w_{m}-w\right)$. By (13), (22), (37), (44) and (46), this gives

$$
\begin{aligned}
& \int_{B_{s}}\left(\kappa\left|D w_{m}-D w\right|^{2}+\gamma \lambda_{m}^{q-2}\left|D w_{m}-D w\right|^{q}\right) d z \\
& \quad \leq \int_{B_{r}} \zeta^{2} G\left(Y_{0}\right) \cdot\left(D w_{m}-D w, D w_{m}-D w\right) d z+c \beta^{-2}+o(1)
\end{aligned}
$$

Thus we infer, using (22) and (47), that

$$
\begin{aligned}
& \limsup _{m \rightarrow \infty} \int_{B_{s}}\left(\kappa\left|D w_{m}-D w\right|^{2}+\gamma \lambda_{m}^{q-2}\left|D w_{m}-D w\right|^{q}\right) d z \\
& \quad \leq(1+1-1-1) \int_{B_{r}} \zeta^{2} G\left(Y_{0}\right) \cdot(D w, D w) d z+c \beta^{-2} .
\end{aligned}
$$

Bearing in mind that $\beta>0$ was arbitrary we conclude that

$$
\begin{aligned}
& \lim _{m \rightarrow \infty} \int_{B_{s}}\left|D w_{m}-D w\right|^{2} d z=0 \\
& \lim _{m \rightarrow \infty} \lambda_{m}^{q-2} \int_{B_{s}}\left|D w_{m}-D w\right|^{q} d z=0
\end{aligned}
$$

The last equation implies

$$
\lim _{m \rightarrow \infty} \lambda_{m}^{q-2} \int_{B_{s}}\left|D w_{m}\right|^{q} d z=0
$$

and we have shown that (42) and (43) hold.
Acknowledgements I wish to thank Conor Daly and the referee for reading the manuscript.

References

[1] Duzaar F. and Grotowski J.F., Optimal interior partial regularity for nonlinear elliptic systems: The method of A-harmonic approximation. Manuscr. Math., 103 (2000), 267-298.
[2] Evans L.C. and Giarrusso E., An elementary, direct proof of partial regularity for solutions of certain nonlinear elliptic systems. Indiana Univ. Math. J., 34 (1985), 857-864.
[3] Frasca M. and Ivanov A.V., Partial regularity for quasilinear nonuniformly elliptic systems. Le Mat., 46 (1991), 625-644.
[4] Fuchs M., Regularity theorems for nonlinear systems of partial differential equations under natural ellipticity conditions. Analysis, 7 (1987), 83-93.
[5] Giaquinta M., Multiple Integrals in the Calculus of Variations and Nonlinear Elliptic Systems. Princeton Univ. Press, Princeton, 1983.
[6] Giaquinta M., Quasiconvexity, growth conditions and partial regularity. Partial differential equations and calculus of variations, Lecture Notes in Math., vol. 1357, Springer-Verlag, Berlin, 1988, pp. 211-237.
[7] Giaquinta M. and Giusti E., Nonlinear elliptic systems with quadratic growth. Manuscr. Math., 24 (1978), 323-349.
[8] Giaquinta M. and Modica G., Almost-everywhere regularity results for solutions of non linear elliptic systems. Manuscr. Math., 28 (1979), 109-158.
[9] Giarrusso E., On a method of K. Uhlenbeck for proving partial regularity for solutions of certain nonlinear elliptic systems. Manuscr. Math., 54 (1986), 381-390.
[10] Giusti E., Metodi diretti nel calcolo delle variazioni. UMI, Bologna, 1994.
[11] Giusti E. and Miranda M., Sulla regolarità delle soluzioni deboli di una classe di sistemi ellittici quasi-lineari. Arch. Rat. Mech. Anal., 31 (1968), 173-184.
[12] Hamburger C., Quasimonotonicity, regularity and duality for nonlinear systems of partial differential equations. Ann. Mat. Pura Appl., 169 (1995), 321-354.
[13] Hamburger C., Partial regularity for minimizers of variational integrals with discontinuous integrands. Ann. Inst. Henri Poincaré, Anal. Non Lin., 13 (1996), 255-282.
[14] Hamburger C., A new partial regularity proof for solutions of nonlinear elliptic systems. Manuscr. Math., 95 (1998), 11-31.
[15] Hamburger C., Partial regularity of minimizers of polyconvex variational integrals. To appear in: Calc. Var.
[16] Hong M.C., Existence and partial regularity in the calculus of variations. Ann. Mat. Pura Appl., 149 (1987), 311-328.
[17] Ivert P.-A., Regularitätsuntersuchungen von Lösungen elliptischer Systeme von quasilinearen Differentialgleichungen zweiter Ordnung. Manuscr. Math., 30 (1979), 53-88.
[18] Morrey C.B. Jr., Partial regularity results for nonlinear elliptic systems. J. Math. Mech., 17 (1968), 649-670.
[19] Zhang K.-W., On the Dirichlet problem for a class of quasilinear elliptic systems of partial differential equations in divergence form. Partial differential equations, Proceedings, Tianjin 1986, Lecture Notes in Math., vol. 1306, Springer-Verlag, Berlin, 1988, pp. 262-277.

[^0]: ${ }^{1}$ Superellipticity is often referred to as strong ellipticity or simply ellipticity. We reserve the term ellipticity, which is also known as the condition of Legendre-Hadamard, for (9) or (24).

[^1]: ${ }^{2}$ It may be helpful to recall the formula

 $$
 \operatorname{cof} D u \cdot D \varphi d x^{1} \wedge \cdots \wedge d x^{n}=\sum_{i=1}^{n} d u^{1} \wedge \cdots \wedge d u^{i-1} \wedge d \varphi^{i} \wedge d u^{i+1} \wedge \cdots \wedge d u^{n}
 $$

[^2]: ${ }^{3}$ Theorem 1.2 of [12] has only been proved under a growth condition on \tilde{A}_{P}, which may however be eliminated following [6].

[^3]: ${ }^{4}$ The efforts of both Giusti and Hamburger to simplify the argument in [6] are fruitless: the estimate in line 14 on p. 337 of the excellent book [10] is incorrect; in the proof of [13], Theorem 4.3, we need to define $P(x)$ by (33) in line 4 on p. 274, to add an extra term $|u-P|$ to the second argument of ω in line 18 on p. 275 , and thereafter to complete the proof as in [6]. This extra term does not occur in our proof of Theorem 5, so here we can follow [13].

