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Abstract. An explicit classification of simply connected compact homogeneous CR
manifolds G/L of codimension one, with non-degenerate Levi form, is given. There are
three classes of such manifolds:

a) the standard CR homogeneous manifolds which are homogeneous S^{1} -bundles over
a flag manifold F , with CR structure induced by an invariant complex structure on F ;

b) the MorimotO-Nagano spaces, i.e. sphere bundles S(N)\subset TN of a compact rank
one symmetric space N=G/H , with the CR structure induced by the natural complex
structure of TN=G^{(C}/H^{(C} ;

c) the following manifolds: SU_{n}/T^{1}\cdot SU_{n-2} , SU_{p}\cross SU_{q}/T^{1}\cdot U_{p-2}\cdot U_{q-2} , SU_{n}/T^{1} .
SU_{2}\cdot SU_{2}\cdot SU_{n-4} , SO_{10}/T^{1}\cdot SO_{6} , E_{6}/T^{1}\cdot SO_{8} ; these manifolds admit canonical holomor-
phic fibrations over a flag manifold (F, J_{F}) with typical fiber S(S^{k}) , where k=2,3,5,7
or 9, respectively; the CR structure is determined by the invariant complex structure J_{F}

on F and by an invariant CR structure on the typical fiber, depending on one complex
parameter.

Key words: homogeneous CR manifolds, real hypersurfaces, contact homogeneous mani-
folds.

1. Introduction

An almost CR structure on a manifold M is a pair (D, J) , where D \subset

TM is a distribution and J is a complex structure on V. The complex
fication D^{\mathbb{C}} can be decomposed as D^{\mathbb{C}}=D^{10}+D^{01} into sum of complex
eigendistributions of J , with eigenvalues i and -i .

An almost CR structure is called integrable or, shortly, CR structure
if the distribution D^{01} (and hence also D^{10} ) is involutive, i.e. with space
of sections closed under Lie bracket. This is equivalent to the following
conditions:

[JX, Y]+[X, JY]\in D ,

[JX, JY]-[X, Y]-J([JX, Y]+[X, JY])=0 ,
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for any two fields X, Y in V.
A map \varphi : (M, D, J) – (M’, D’, J’) between two CR manifolds is called

holomorphic map if \varphi_{*}(D)\subset D’ and \varphi_{*}(JX)=J’\varphi_{*}(X) .
Two CR structures (D, J) and (D’, J’) are called equivalent if there

exists a diffeomorphism such that \phi_{*}(D)=D’ and \phi_{*}J=J’ .
The codimension of D is called codimension of the CR structure. Note

that a CR structure of codimension zero is the same as a complex structure.
A codimension one CR structure (D, J) on a 2n+1-dimensional man-

ifold M is called Levi non-degenerate if D is a contact distribution. This
means that any local (contact) 1-form \theta , which defines the distribution (i.e.
such that ker \theta=D ) is maximally non-degenerate, that is (d\theta)^{n}\wedge\theta\neq 0 .

Note that any real hypersurface M of a complex manifold N has a natu-
ral codimension one CR structure (D, J_{D}) induced by the complex structure
J of N , where

D=\{X\in TM, JX\in TM\} , J_{D}=J|_{D} .

In the following, if the opposite is not stated, by CR structure we will
mean integrable codimension one Levi non-degenerate CR structure. Some-
times, if the contact distribution D is given, we will identify a CR structure
with the associated complex structure J.

A CR manifold, that is a manifold M with a CR structure (D, J) ,
is called homogeneous if it admits a transitive Lie group of holomorphic
transformations.

If the opposite is not stated, we will always assume that the homoge-
neous CR manifold (M, D, J) is simply connected.

The aim of this paper is to give a complete classification of simply
connected homogeneous CR manifolds M=G/L of a compact Lie group
G . This gives a classification of all simply connected homogeneous CR
manifolds, since any compact homogeneous CR manifold admits a compact
transitive Lie group of holomorphic transformations (see [1] and [12]).

The simplest example of compact homogeneous CR manifold is the
standard sphere S^{2n-1}\subset \mathbb{C}^{n} with the induced CR structure.

More elaborated examples are provided by the following construction
of A. Morimoto and T. Nagano ([9]). Let N=G/H be a compact rank
one symmetric space (shortly ‘CROSS’). The tangent space TN can be
identified with the homogeneous space G^{\mathbb{C}}/H^{\mathbb{C}} . Hence, it admits a natural
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G^{\mathbb{C}_{-}} invariant complex structure J. Any regular orbit Gp=S(N)\simeq G/L

in TN=G^{\mathbb{C}}/H^{\mathbb{C}} is a sphere bundle; in particular it is a real hypersurface
with (Levi non-degenerate) G-invariant CR structure.

Moreover, these examples together with the standard sphere S^{2n-1}\subset

\mathbb{C}^{n} exhaust the class of CR structures induced on a codimension one orbit
M=G\cdot x\subset C of a compact Lie group G of holomorphic transformations
of a Stein manifold C. We call the homogeneous CR manifolds which are
equivalent to such orbits Gp=S(N) in the tangent space of a CROSS
MorimotO-Nagano spaces.

Another important class of examples is obtained as follows. Let F=
G/K be a flag manifold of a connected, compact, semisimple Lie group G
and let g =e+\mathfrak{m} , with e=Lie(K) , be the associated orthogonal decom-
position of g = Lie(G), w.r.t. the Cartan-Killing form. Let also J_{F} be a
G-invariant complex structure on F=G/K. It can be shown that if Z is an
element in the center of t = Lie(K) and if it satisfies some suitable hypoth-
esis (i.e. it is a \mathfrak{p}-regular element; see definition in \S 3.1), then the subalgebra
t_{Z}=t\cap(Z)^{\perp} generates a closed subgroup L_{Z}\subset G , and the homogeneous
manifold M=G/L_{Z} admits a G-invariant CR structure (D, J) with the
following two properties:

i) D is the unique G-invariant distribution corresponding to the subspace
\mathfrak{m}=(i)^{\perp}\subset(\mathfrak{l}_{Z})^{\perp}-\sim T_{o}G/L_{Z} , 0=eL_{Z} ;

ii) (D, J) is the unique CR structure with distribution D, so that the
natural projection \pi : (M=G/L_{Z}, D, J) – (F=G/K, J_{F}) is hol0-
morphic.

We call any such homogenous CR manifold (M=G/L_{Z}, D, J) a standard
CR manifold, determined by the flag manifold F=G/K, the 6-regular
element Z and the invariant complex structure J_{F} on F

In the fundamental paper [1], H. Azad, A. Huckleberry and W.
Richthofer showed that MorimotO-Nagano spaces and standard CR man-
ifolds play a basic role in the description of compact homogeneous CR
manifolds (see also [8] and [11]). In fact, they prove that any compact
compact homogeneous CR manifold is either a standard CR manifold or a
MorimotO-Nagano space or it admits a natural holomorphic fibration onto
a flag manifold whose standard fiber is a MorimotO-Nagano space.

In this paper, we carry out the explicit classification of all compact
homogeneous manifold G/L of a compact Lie group G , which admit an in-
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variant CR structure, and we determine all invariant CR structures on each
of such spaces. As a result of this classification, we are able to determine the
exact list of all compact homogeneous CR manifolds, which are neither stan-
dard nor MorimotO-Nagano spaces. In particular, we prove that the only
manifolds, which may occur as fibers of the Azad-Huckleberry-Richthofer’s
holomorphic fibration of non-standard, non-MorimotO-Nagano spaces, are
the sphere bundles S(S^{k}) with k=2,3,5,7 and 9.

The first step consists in characterizing all homogeneous manifolds M=
G/L of a compact Lie groups G , which admit a G-invariant contact structure
(see \S 3.1). We first prove that, for any such manifold M=G/L , the center
Z(G) of G is at most one dimensional and that the semisimple part G^{ss}

acts transitively on M . By this fact, we may always assume that G is
semisimple. Secondly, we observe that, for a given compact semisimple Lie
group G , there is a one to one correspondence between simply connected
homogeneous contact manifolds (M=G/L, D) and non-zero elements Z\in

g = Lie(G) (defined up to scaling), which generate a closed one-parametric
subgroup and whose centralizer C_{\mathfrak{g}}(Z) contains no non-trivial ideal of the
Lie algebra g = Lie(G).

In fact, any such element Z determines: a) an orthogonal decomposition
(w.r.t . the Cartan-Killing form)

g =\mathfrak{t}+\mathbb{R}Z+\mathfrak{m} ,

where C_{\mathfrak{g}}(Z)=\downarrow\oplus \mathbb{R}Z;b) an associated homogeneous manifold M=G/L ,
with L connected closed subgroup generated by (, endowed with the invari-
ant contact structure D , which is the G-invariant extension of the Ad_{L} -

invariant subspace \mathfrak{m}\subset(\mathbb{R}Z+\mathfrak{m})-\sim T_{o}M , 0=eL . The element Z is called
contact element of the homogeneous contact manifold (M=G/L, D) .

We also prove that if (M=G/L, D) is the contact homogeneous man-
ifold associated with the contact element Z , then there exists a natural
principal S^{1} -fibration onto the flag manifold F_{Z}=Ad_{G}(Z)=G/C_{G}(Z)

\pi : M=G/Larrow F_{Z}=G/C_{G}(Z) ,

where C_{G}(Z) denotes the centralizer of Z in G .
We then determine all distinct invariant contact distributions, which

exists on a given homogeneous contact manifold (G/L, D) . It turns out
that only two possibilities may occur:
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\alpha) there exists exactly one invariant contact structure;
\beta) there exists a family of invariant contact structures, which is parame-

terized by the point of a two dimensional sphere S^{2} .
The contact manifolds of case (\beta) are called special contact manifolds. Ex-
amples of special manifolds can be constructed as follows. Let G be a simple
compact Lie group without center and let Q=G/Sp_{1}H’ be the associated
Wolf space, that is the homogeneous quaternionic K\"ahler manifold, where
Sp_{1} H’ is the normalizer in G of the 3-dimensional subalgebra \epsilon \mathfrak{p}_{1}(\mu) of
g associated with the maximal root \mu . Then the associated 3-Sasakian h0-
mogeneous manifold M=G/H’ is a special contact manifold. Any 0\neq

Z\in\epsilon \mathfrak{p}_{1}(\mu) is a contact element. Furthermore, any two invariant contact
structures on M are equivalent under a transformation, which commutes
with G , defined by the right action of an element from Sp_{1} .

We prove that any special contact manifold, with only one exception,
is a manifold constructed in this way. In fact (see Theorem 3.6)

Theorem 1.1 Any special contact manifold M=G/L is either the 3-
Sasakian homogeneous manifold G/H’ of a simple Lie group G , described
above, or M=G_{2}/Sp_{1} , where Sp_{1} is the 3-dimensional subgroup of the
exceptional Lie group G_{2} , with Lie algebra \epsilon \mathfrak{p}_{1}(\mu) , where \mu is the maximal
root of G_{2} .

The second step of the classification consists in determining which h0-
mogeneous contact manifold (M=G/L, D) , with G compact semisimple,
admits at least one G-invariant CR structure (D, J) . The answer is simple:
any homogeneous contact manifold of the above kind admits al least one G-
invariant CR structure. In fact, if D is associated with the contact element
Z and F is the corresponding flag manifold F=Ad_{G}(Z)=G/K , with K=
G_{G}(Z) , then it can be checked that Z is a e-regular element and [ =(Z)^{\perp}\cap

e . So, for any invariant complex structure J_{F} on F=Ad_{G}(Z)=G/K , the
manifold M=G/L admits the G-invariant standard CR structure (D, J_{F})

associated with Z and J_{F} .

The last (and longest) step consists in classifying all invariant CR struc-
tures for any homogeneous contact manifold (M=G/L, D) . For this part
of the classification, we need to introduce the concepts of primitive and
non-primitive CR structures (see \S 4.3). A compact homogeneous CR man-
ifold (M=G/L, D, J) is called non-primitive if there exists a holomorphic
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G-equivariant fibration (called CRF fifibration)

\pi : M=G/Larrow F=G/Q ,

onto a flag manifold F=G/Q , of positive dimension, equipped with an
invariant complex structure J_{F} . We call M primitive if it does not admit
any CRF fibration.

A fiber of a CRF fibration \pi : M=G/Larrow F=G/Q is always either
S^{1} or a homogeneous compact CR manifold Q/L .

Examples of non-primitive CR manifolds are given by the standard CR
manifolds, since, by construction, they always admit a CRF fibration with
fiber S^{1} . Examples of primitive CR manifolds are given by any MorimotO-
Nagano space which is not a sphere S^{2n-1} (which is standard CR mani-
fold) nor a 3-dimensional SU_{2} -0rbit in TS^{2}=T(SU_{2}/T^{1}) (which is a non-
standard CR manifold that admits a CRF fibration onto S^{2}=SU_{2}(T^{1})

with fiber S^{1} ) (see \S 8).

In \S 5, we classify all invariant CR structures on the special contact
manifolds, we determine which of those CR structures are primitive and,
for those which are non-primitive, we exhibit a natural CRF fibration with
primitive fibers.

After the result of \S 5, we have to discuss the non-special contact man-
ifolds. At this regard, we observe that on a non-special contact manifold
(M=G/L, D) , the invariant distribution D is uniquely determined and
that the standard CR structures on M=G/L are in one-t0-0ne correspon-
dence with the invariant complex structures J_{F} on the flag manifold F=
Ad_{G}(Z) associated with the contact element Z of the distribution D . Since
the description of invariant complex structures on a flag manifold is known
(see e.g. [3], [4], [5], [10]), it remains to classify the non-special contact
manifolds which admit non-standard CR structures, together with all their
admissible invariant CR structures.

A characterization on non-standard CR structures can be obtained by
means of the anticanonical map \phi , which was defined in [1] (see \S 4.4). Let
(M=G/L, D_{Z}, J) be a homogeneous CR manifold of a compact Lie group
G and g^{\mathbb{C}}=\mathfrak{l}^{\mathbb{C}}+\mathbb{C}Z+\mathfrak{m}^{10}+\mathfrak{m}^{01} the corresponding decomposition of
g^{\mathbb{C}} . Then the anticanonical map \phi is the holomorphic map of M into the
Grassmanian of k-planes, k=\dim_{\mathbb{C}}(\mathfrak{l}^{\mathbb{C}}+\mathfrak{m}^{01}) , given by
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\phi : M=G/Larrow Gr_{k}(g^{\mathbb{C}})\subset \mathbb{C}P^{N} . \phi : gL\mapsto Ad_{g}([\mathfrak{l}^{\mathbb{C}}+\mathfrak{m}^{01}]) .

Note that \phi is a G-equivariant map onto the orbit G\cdot p of p=[\mathfrak{l}^{\mathbb{C}}+\mathfrak{m}^{01}]\in

Gr_{k}(g^{\mathbb{C}}) under the natural adjoint action of G on Gr_{k}(g^{\mathbb{C}}) .
The following theorem gives the required characterization (see TheO-

rem 6.3):

Theorem 1.2 Let (M=G/L, D_{Z}, J) be a homogeneous CR manifold.
(1) If it is standard, then the image \phi(M)=G\cdot p of the anticanonical map

is the flflag manifold F_{Z}=G/K_{i} associated with the contact structure
D_{Z} . Hence \phi : Marrow\phi(M)=F_{Z} is the natural S^{1} -fifibration.

(1) If it is non-standard, then \phi : M – \phi(M)=Gp is a fifinite holO-
morphic covering, with respect to the CR structure of G\cdot p\subset Gr_{k}(g^{\mathbb{C}})

induced by the complex structure of Gr_{k}(g^{\mathbb{C}}) .

Using Theorem 1.2 and several algebraic lemmata, we reach the classifi-
cation of all non-standard CR structures on non-special contact manifolds in
\S 7 (see Propositions 7.3, 7.5 and 7.6). In particular we determine the list of
all non-special contact manifolds (M=G/L, D) admitting a non-standard
CR structure, together with the explicit description of all invariant non-
standard CR structures on such manifolds. We also determine which of
them is not primitive and, for any non-primitive CR manifold, we indicate
a natural CRF fibration with primitive fibers.

In \S 8, we give the complete lists of primitive CR manifolds and of
non-primitive CR manifolds, simply combining the previous results on spe-
cial and non-special contact manifolds. From such lists, it follows that
the MorimotO-Nagano spaces which are different from the standard spheres
S^{2n-1} and from the 3-dimensional orbits of SU_{2} in T(S^{2})=T(SU_{2}/T^{1}) are
exactly all primitive CR manifolds.

In \S 8, we also give a precise description of any non-standard, non-
primitive CR structure on a homogeneous manifold M=G/L in terms
of some suitable painted Dynkin graph, that is of a Dynkin graph of the Lie
algebra g = Lie(G) with nodes painted in three colors.

We have to mention that a few important steps towards a classification
of non-standard CR manifolds were performed also by Azad, Huckleberry
and Richthofer in [1]. There, the authors study in great detail the image of
a non-standard CR manifold M=G/L under the anti-canonical map. We
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recall that such image is a G-0rbit \hat{M}=G/\hat{L}=Gp\subset \mathbb{C}P^{N} in a complex
projective space \mathbb{C}P^{N} and it is finitely covered by M=G/L . Notice also
that the G-0rbit \hat{M}=G/\hat{L}=Gp\subset \mathbb{C}P^{N} is a real hypersurface in the
complex orbit \Omega=G^{\mathbb{C}} p=G^{C}/H . Azad, Huckleberry and Richthofer
prove that there always exists a natural G^{\mathbb{C}}-equivariant fibration \pi : \Omega=

G^{\mathbb{C}}/H – G^{\mathbb{C}}/P onto a flag manifold G^{\mathbb{C}}/P (possibly of dimension 0) and
they call it Stein-Rational fifibration. We may observe that a Stein-Rational
fibration \pi : \Omega=G^{\mathbb{C}}/H – G^{\mathbb{C}}/P onto a flag manifold of positive dimen-
sion induces always a CRF fibration \pi : G/\hat{L} – G^{\mathbb{C}}/P=G/G\cap P on the
real hypersurface G/\hat{L}=Gp . Studying the possibilities for the fiber of
a Stein-Rational fibration, Azad, Huckleberry and Richthofer find several
limitations on the parabolic subgroup P and on the isotropy subgroup H .
It is possible to use such limitations to determine a few corresponding con-
ditions that are satisfied by the subgroups Q and L of a given compact
semisimple Lie roup G , when there exists an invariant non-standard CR
structure on G/L and a CRF fibration \pi : G/Larrow G/Q . But none of such
conditions is sufficient to determine if a given homogeneous manifold G/L
does actually admit an invariant, non-standard CR structure. For this rea-
son, it is not possible to infer the exact list of non-standard CR manifolds
using only those conditions.

On the other hand, most of the arguments in [1] do not make any use
of the condition of Levi non-degeneracy and several results of that paper
give very useful information on the structure of compact homogeneous Levi
degenerate CR manifolds of a very wide class (see also [11]).

As a final remark, we would like to mention that our classification of
compact homogeneous CR manifolds have several important corollaries con-
cerning compact cohomogeneity one K\"ahler manifolds. In particular, such
corollaries are an essential tool towards the classification of K\"ahler-Einstein

manifolds in the above class. They will be discussed in a forthcoming paper.

We heartily thank the referee for his very valuable comments.

2. Basic facts about CR structures

Definition 2.1
(1) A CR structure on a manifold M is a pair (D, J) , where D\subset TM is

a distribution on M and J\in EndD , J^{2}=-1 , is a complex structure
on D .
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(2) A CR structure (D, J) is called integrable if J satisfies the following
integrability condition:

[JX, Y]+[X, JY]\in D ,

[JX, JY]-[X, Y]-J([JX, Y]+[X, JY])=0 (2.1)

for any pair of vector fields X. Y in D .

In the sequel, by CR manifold we will understand a manifold M with
integrable CR structure.

If (D, J) is a CR structure then the complexification D^{\mathbb{C}}\subset T^{\mathbb{C}}M of the
distribution D is decomposed into a sum D^{\mathbb{C}}=D^{10}+D^{01} of two mutually
conjugated (D^{10}=\overline{D}^{01})J-eigendistributions with eigenvalues i and -i .

The integrability condition (2.1) means that these eigendistributions are
involutive (i.e. closed under the Lie bracket).

The codimension of a CR structure (D, J) is defined as the codimension
of the distribution V. Remark that a codimension zero CR structure is the
same as a complex structure on a manifold. A codimension one CR structure
(D, J) is also called a CR structure of hypersurface type, because such is the
structure which is induced on a real hypersurface of a complex manifold.
In this case the distribution D can be described locally as the kernel of a
1-form \theta . The form \theta defines a J-invariant symmetric bilinear form

\mathcal{L}_{q}^{\theta} : D_{q}\cross D_{q}arrow IR

given by

\mathcal{L}^{\theta}(v, w)=(d\theta)(v, Jw)

for any v , w\in D . It is the real part of a \mathbb{C}-valued Hermitian form and
it is called the Levi form. Remark that the 1-form \theta is defined up to
multiplication by a function f everywhere different from zero and that \mathcal{L}^{f\theta}=

f\mathcal{L}^{\theta} . In particular, the conformal class of a Levi form depends only on the
CR structure.

A CR structure (D, J) of hypersurface type is called non-degenerate
if it has non-degenerate Levi form or, in other words, if D is a contact
distribution. In this case a 1-form \theta with ker \theta=D is called conlact form.

A smooth map \varphi : M – M’ of one CR manifold (M, D, J) into another
one (M’, D’, J’) is called holomorphic map if

a) \varphi_{*}(D)\subset D’ ;



218 D. V. Alekseevsky and A.F. Spiro

b) \varphi_{*}(Jv)=J’\varphi_{*}(v) for all v\in D .
In particular, we may speak about CR transformation of a CR manifold

(M, D, J) as a transformation \varphi such that \varphi and \varphi^{-1} are CR maps. In
general, the group of all CR transformations is not a Lie group, but it is a
Lie group when (D, J) is of hypersurface type and it is Levi non-degenerate.

Definition 2.2 A CR manifold (M, D, J) is called homogeneous if it ad-
mits a transitive Lie group G of CR transformations.

Our aim is to classify compact homogeneous codimension one non-
degenerate CR manifolds. The following theorem, which is indeed a conse-
quence of the results in [1], shows that we may identify any such manifold
with a quotient space G/L of a compact Lie group G .

Theorem 2.3 ([1], [12]) Let (M, D, J) be a compact non-degenerate CR

manifold of hypersurface type. Assume that it is homogeneous, i.e . that there
exists a transitive Lie group A of CR transformations. Then a maximal
compact connected subgroup G of A acts on M transitively and one may
identify M with the quotient space G/L where L is the stabilizer of a point
p\in M .

Now we fix some notations. If the opposite is not stated, we will as-
sume that a CR structure is of hypersurface type, integrable and Levi non-
degenerate.

The Lie algebra of a Lie group is denoted by the corresponding gothic
letter.

For any subset A of a Lie group G or of its Lie algebra g , we denote by
C_{G}(A) and C_{\mathfrak{g}}(A) its centralizer in G and g , respectively. Z(G) and Z(g)
denote the center of a Lie group G and a Lie algebra g . By homogeneous
manifold M=G/L we mean a homogeneous manifold of a compact con-
nected Lie group G with connected stability subgroup L and such that the
action of G on M is almost effective, i.e. has a finite kernel of non-effectivity.

3. Compact homogeneous contact manifold

3.1. Homogeneous contact manifolds of a compact Lie group G
Let M=G/L be a homogeneous manifold of a compact Lie group G

with connected stabilizer L .
Any G-invariant contact distributions D on M is uniquely associated

with a global G-invariant contact form \theta on M (determined up to a multiple)
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such that D=ker\theta . On the other hand, any G-invariant contact form \theta

on M is uniquely associated with an element \theta\in g^{*} of the dual space
of g=Lie(G) , which satisfies the following four conditions (see e.g. [2]):
i) it vanishes on \mathfrak{l}=Lie L;ii) it is Ad_{\iota}-invariant; iii ) Ker d\theta\not\subset \mathfrak{l};iv ) Ker \theta\cap

Ker d\theta\subset \mathfrak{l} . Any \theta\in g^{*} which satisfies conditions i)-iv) will be called contact
form of G/L .

Fix now an Ad_{G}-invariant Euclidean metric B on g and denote by \downarrow\perp

the orthogonal complement to [ in g .
The vector Z=B^{-1}\circ\theta which corresponds to a contact form \theta is called

a contact element of the manifold (M=G/L, D) .
From the fact that \theta is a contact form, it follows that Z=B^{-1}\circ\theta is

characterized by the properties that:
(1) Z\in \mathfrak{l}^{\perp} and
(2) the centralizer C_{\mathfrak{g}}(Z)=\mathfrak{l}\oplus \mathbb{R}Z .

Hence, we have the following

Proposition 3.1 There exists a natural bijection between invariant con-
tact structures on a homogeneous manifold M=G/L and contact elements
Z defifined up to a scaling.

We will denote by D_{Z} the contact structure on M defined by a contact
element Z . A homogeneous manifold M=G/L with an invariant contact
structure D is called homogeneous contact manifold.

Proposition 3.1 implies the following

Corollary 3.2 Let G/L be a homogeneous contact manifold of a compact
Lie group G which acts effectively. Then the the center Z(G) of G has
dimension 0 or 1.

Moreover, if Z(G) is one dimensional, then any contact element Z has
nonzero orthogonal projections Z_{Z(\mathfrak{g})} , Z_{\mathfrak{g}’} on Z(g) and g’=[g, g] , and the
stability subalgebra [ can be written as

\mathfrak{l}=[C_{\mathfrak{g}’}(Z_{\mathfrak{g}’})]_{\varphi}=def\{X=Y+\varphi(Y), Y\in C_{\mathfrak{g}’}(Z_{\mathfrak{g}’})\}

where \varphi : C_{\mathfrak{g}’}(Z_{\mathfrak{g}’})arrow Z(g)\approx \mathbb{R} is a non-trivial Lie algebra homomorphism.

Proof. Clearly C_{\mathfrak{g}}(Z)\supset Z(g) . If dim Z(g)\geq 2 then \mathfrak{l}\cap Z(g)\neq\{0\} and
this contradicts the fact that G acts effectively. The other claims follow
immediately. \square
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Now we associate with a homogeneous contact manifold (M=G/L, D_{Z})

a flag manifold

F_{Z}=G/K=Ad_{G}Zdef=Ad_{G’}(Z_{\mathfrak{g}’})

where K=C_{G}(Z) is the centralizer of the contact element Z . We will call
F_{Z} the flflag manifold associated to a contact element Z .

Note that the contact form \theta=B\circ Z is a connection (form) in the
S^{1} bundle \pi : G/L – F_{Z} and that the corresponding contact structure
D=ker\theta is the horizontal distribution of this connection.

We describe now all homogeneous contact manifolds (G/L, D_{Z}) with
given associated flag manifold F=G/K of a semisimple Lie group G .

Consider the orthogonal reductive decomposition

g =\not\in+\mathfrak{m}

associated with the flag manifold F=G/K .
We say that an element Z of the center Z(\not\in) is t -regular if it generates

a closed 1-parametric subgroup of G and the centralizer C_{G}(Z)=K .
One can check that if Z is e-regular, then the subalgebra

\mathfrak{l}_{Z}=t\cap(Z)^{\perp}

generates a closed subgroup, which we denote by L_{Z} . Therefore

Proposition 3.3 Let F=G/K be a flflag manifold of a compact, semisim-
ple Lie group G. There is a natural 1-1 correspondence

Z\Leftrightarrow(G/L_{Z}, D_{Z})

between the t -regular elements Z\in g (determined up to a scaling) and the
homogeneous contact manifolds (G/L, D) with associated flflag manifold F=
G/K .

Proof. The proof is straightforward. \square

3.2. Invariant contact structures on a contact manifold M=
G/L

Now we describe all invariant contact structures on a given homoge-
neous manifold M=G/L. We will show that generically there is no more
then one such structure.
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Definition 3.4 A homogeneous manifold G/L is called homogeneous con-
tact manifold of non-special type (respectively, of special type or, shortly,
special) if it admits a unique (respectively, more then one) invariant contact
structure.

3.2.1. Main examples of special homogeneous contact manifolds
Let g be a compact semisimple Lie algebra, \mathfrak{h} a Cartan subalgebra of g

and R the root system of the pair (g^{\mathbb{C}}. \mathfrak{h}^{\mathbb{C}}) .
Recall that a root \alpha\in R defines a 3-dimensional regular subalgebra

g^{\mathbb{C}}(\alpha) with standard basis given by the root vectors E_{\alpha} , E_{-\alpha} and

H_{\alpha}=[E_{\alpha}, E_{-\alpha}]= \frac{2}{|\alpha|^{2}}B^{-1}\circ\alpha (3.1)

satisfying the relation [H_{\alpha}, E_{\pm\alpha}]=\pm 2E_{\pm\alpha} . The intersection of this subal-
gebra with g is a 3-dimensional compact subalgebra denoted by g(\alpha) . We
will call g(\alpha) the subalgebra associated with the root \alpha and denote by G(\alpha)

the 3-dimensional subgroup of the adjoint group G=Int(g) =Aut(g)^{0}

generated by g(\alpha) .
Note that two such subalgebras are conjugated by an inner automor-

phism of g if and only if the corresponding roots have the same length.

Fix a system R^{+} of positive roots of R and put R^{-}=-R^{+} The highest
root \mu of R^{+} defines the following gradation of the complex Lie algebra g^{\mathbb{C}} :

g^{\mathbb{C}}=g_{-2}+g_{-1}+g_{0}+g_{1}+g_{2} , (3.2)

where

9-2=\mathbb{C}E_{-\mu} g_{2}=\mathbb{C}E_{\mu} g_{0}=\mathbb{C}H_{\mu}+g_{0}’ g_{0}’=C_{\mathfrak{g}^{rC}}(g(\mu))

9-1= \sum_{\beta\in R^{-}\backslash (\{-\mu\}\cup R_{o})}\mathbb{C}E_{\beta} g_{1}=\sum_{\beta\in R^{+}\backslash (\{\mu\}\cup R_{o})}\mathbb{C}E_{\beta}
(3.3)

and R_{o}=\{\alpha\in R, \alpha\perp\mu\} is the root system of the subalgebra 90=C_{\mathfrak{g}}(H_{\mu}) .
(3.2) is called the gradation associated with the highest root.
The explicit decomposition (3.2) for any simple complex Lie algebra is

given in Table 1 of the Appendix.

Denote by \mathfrak{l}=C_{\mathfrak{g}}(g(\mu))=g_{0}’\cap g the centralizer of g(\mu) in g and by L
the corresponding connected subgroup of G . It is easy to check that L=
C_{G}(g(\mu)) .
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Lemma 3.5 Let G be a compact simple Lie group without center and let
L=C_{G}(g(\mu)) be as defifined above. Then any non zero vector Z\in g(\mu) is a

contact element of the manifold G/L . In particular, G/L is a homogeneous
contact manifold of special type.

Proof. Observe that Z\in g(\mu) is a contact element if and only if C_{\mathfrak{g}}(Z)=

\mathfrak{l}+\mathbb{R}Z and then g\cdot Z is contact for any g\in G(\mu) . Since G(\mu) acts transitively
on the unit sphere of g(\mu) , the Lemma follows from the fact that

C_{\mathfrak{g}}(iH_{\mu})=g_{0}\cap g=t+\mathbb{R}(iH_{\mu})

and hence that iH_{\mu} is a contact element. \square

Remark that the contact manifolds M=G/L=G/C_{G}(g(\mu)) , with G
simple, carry invariant 3-Sasakian structure and they exhaust all homoge-
neous 3-Sasakian manifolds (see [6]).

3.2.2. Classification of special homogeneous contact manifolds
The previous examples almost exhaust the class of special homogeneous

contact manifolds. In fact, we have the following classification theorem.

Theorem 3.6 Let M=G/L be a special homogeneous contact manifold
of a compact Lie group G. Then the group G is simple and either L is the
centralizer of the subalgebra g(\mu) associated with the highest root and M is
a homogeneous 3-Sasakian manifold or G=G_{2} and L is the centralizer of
the subalgebra g(l/) associated with a short root lJ .

Proof. We prove first that if G is not semisimple and, hence, dim Z(g)=1 ,
then a contact element Z is unique up to a scaling and M is not special.
Indeed, we have the decomposition

t =C_{\mathfrak{g}}(Z)=\mathfrak{l}\oplus \mathbb{R}Z=\mathfrak{l}\oplus Z(g)

since Z(g)\cap(=0 , by effectivity. The line \mathbb{R}Z is determined uniquely as the
orthogonal complement to [ in e =\mathfrak{l}+Z(g) .

Now we may assume that g is semisimple. We need the following:

Lemma 3.7 Let g be compact semisimple and let ( \subset g be a subalgebra,
which contains no ideal of g . If there exist two not proportional vectors
Z, Z’\in \mathfrak{l}^{\perp}such that

C_{\mathfrak{g}}(Z)=(+\mathbb{R}Z, \downarrow+\mathbb{R}Z’\subseteq C_{\mathfrak{g}}(Z’) ,
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then g is simple and there exists a root \alpha\in R such that:
(1) t =C_{\mathfrak{g}}(g(\alpha)) ;
(2) Z, Z’\in g(\alpha) and C_{\mathfrak{g}}(Z’)=C_{\mathfrak{g}}(g(\alpha))+\mathbb{R}Z’ ;
(3) C_{\mathfrak{g}}(\mathfrak{l})=Z(\mathfrak{l})+g(\alpha) ;
(4) for any root \beta which is orthogonal to \alpha , \alpha\pm\beta is not a root.

Proof. We put e =C_{\mathfrak{g}}(Z) and consider the orthogonal decomposition

g =t+\mathfrak{m}=(\mathfrak{l}+\mathbb{R}Z)+\mathfrak{m} .

Denote by R the root system of the complex Lie algebra g^{\mathbb{C}} with respect to a
Cartan subalgebra \mathfrak{h}^{\mathbb{C}} which is the complexification of a Cartan subalgebra
\mathfrak{h} of e . Then the element Z’ can be written as

Z’=cZ+ \sum_{i=1}^{k}c_{i}E_{\alpha_{i}}

for some root vectors E_{\alpha_{i}} and constants c , c_{i} . The condition [\mathfrak{l}, Z’]=0

implies \alpha_{i}(|)\cap 1)=0 if c_{i}\neq 0 . Since [)\cap \mathfrak{l} is of codimension one in \mathfrak{h} , there
exist exactly two (proportional) roots with this property, say \alpha and -\alpha .
This shows that [ \subset C_{\mathfrak{g}}(g(\alpha)) . Moreover, since Z\in \mathfrak{h}\cap \mathfrak{l}^{\perp} . we obtain also
that Z is proportional to H_{\alpha}=[E_{\alpha}, E_{-\alpha}] and (1) follows. In particular, g

must be simple and now (2) is clear. (3) follows from (2).
To prove (4), assume that there is a root \beta which is orthogonal to \alpha

and such that \alpha+\beta is a root. Then the vector E_{\beta}+E_{-\beta}\in g^{\mathbb{C}} does not
belong to \mathfrak{l}^{\mathbb{C}}=C_{\mathfrak{g}^{C}}(g(\alpha)) , but it is orthogonal to Z (since Z is proportional
to H_{\alpha} ) and belongs to the centralizer of Z : contradiction. \square

Now we conclude the proof of Theorem 3.6. Let G be a compact
semisimple Lie group and let Z , Z’ two non-proportional contact elements
for G/L . By Lemma 3.7, G is simple and L=C_{G}(g(\alpha)) . By direct inspec-
tion of the root systems of simple Lie groups, a root \alpha satisfies the condition
(4) of Lemma 3.7 if and only if it is a long root or if it is a short root in the
G_{2} type system. This concludes the proof. \square

3.3. Isotropy representation of a homogeneous contact manifold
Let M=G/L be a homogeneous contact manifold with invariant con-

tact structure D associated to a contact element Z . Let g=(+\mathbb{R}Z+\mathfrak{m} be
the corresponding orthogonal decomposition. Fix a Cartan subalgebra \mathfrak{h} of
g which belongs to t =\mathfrak{l}+\mathbb{R}Z=Z(t)+t’ (where t’=[t, t] is the semisimple
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part of t ). Then

\mathfrak{h}=Z(f)+\mathfrak{h}’=Z(\mathfrak{l})+\mathbb{R}Z+\mathfrak{h}’ ,

where we denote by \mathfrak{h}’ a Cartan subalgebra of f’ Remark that \mathfrak{h}(\mathfrak{l})=Z(\mathfrak{l})+

\mathfrak{h}’ is a Cartan subalgebra of [ .
Denote by R (resp. R_{o} ) the root system of g^{\mathbb{C}} (resp. e^{\mathbb{C}} ) w.r.t. the Cartan

subalgebra \mathfrak{h}^{\mathbb{C}} and let R’=R\backslash R_{o} . We will denote by \mathfrak{h}(\mathbb{R}) the standard
real form of \mathfrak{h} , spanned by R, that is

\mathfrak{h}(\mathbb{R})=\mathfrak{h}\cap B^{-1}(\langle R\rangle) .

We put t=3(\not\in)\cap \mathfrak{h}(\mathbb{R}) . Then Z\in it and we may identify

\theta=-i\theta=-iB(Z, \cdot)

with the corresponding element in t^{*}\subset \mathfrak{h}(\mathbb{R})^{*}=span_{\mathbb{R}}R .
Consider the decomposition of the e^{\mathbb{C}_{-}}module \mathfrak{m}^{\mathbb{C}} into sum of irreducible

e^{\mathbb{C}}-modules

\mathfrak{m}^{\mathbb{C}}=\sum \mathfrak{m}(\gamma) . (3.4)

Here, \mathfrak{m}(\gamma) stands for the irreducible e^{\mathbb{C}}-module with highest weight \gamma\in R’ .

The following Lemma states a well known property of flag manifolds
(see e.g . [3] or [4]).

Lemma 3.8 The t^{\mathbb{C}} -module \mathfrak{m}(\gamma) are pairwise not equivalent and, in par-
ticular, the decomposition (3.4) is unique. The modules \mathfrak{m}(\gamma) are irreducible
also as \mathfrak{l}^{\mathbb{C}} -module

Proof. We only need to check that a module \mathfrak{m}(\gamma) is irreducible also as an
\mathfrak{l}^{\mathbb{C}_{-}} module. But it is sufficient to observe that the semisimple parts of \mathfrak{l}^{\mathbb{C}} and
of e^{\mathbb{C}} coincide and to recall that, whenever dimc \mathfrak{m}(\gamma)>1 , the semisimple
part of e^{\mathbb{C}} acts non-trivially and irreducibly on \mathfrak{m}(\gamma) . \square

From Lemma 3.8 we derive the following technical proposition, which
will be useful in the following sections.

Proposition 3.9 Let M=G/L be a homogeneous contact manifold and
let Z be a contact element for M Assume that G\neq G_{2} or that G=G_{2}

and \theta=-iB\circ Z is not proportional to a short root of R .
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Then for any irreducible e^{\mathbb{C}_{-}} module \mathfrak{m}(\gamma) there exists at most one dis-
tinct e^{\mathbb{C}_{-}}module \mathfrak{m}(\gamma’) which is isomorphic to \mathfrak{m}(\gamma)

as\downarrow \mathbb{C}_{-} module.
This is the case if and only if the highest weights \gamma and \gamma’ are \theta-

congruent, i.e . \gamma’=\gamma+\lambda\theta for some real number \lambda .

Corollary 3.10 Let M and Z as in the Proposition 3.9. Then:
a) if the modules \mathfrak{m}(\gamma) , \mathfrak{m}(\gamma’) are equivalent as \mathfrak{l}^{\mathbb{C}_{-}} modules then f()r any

weight \alpha\in R’ of \mathfrak{m}(\gamma) , there exists exactly one weight \alpha’\in R’()f

\mathfrak{m}(\gamma’) which is \theta -congruent to \alpha ;
b) for any root \alpha\in R’ there exists at most one root \alpha’\in R’ which is

\theta -congruent to \alpha , i.e . such that \alpha’=\alpha+\lambda\theta for some real number
\lambda\neq 0 .

Proof of Proposition 3.9. Observe that two irreducible 1^{\mathbb{C}} modules \mathfrak{m}(\gamma)

and \mathfrak{m}(\gamma’) are isomorphic if and only if their highest weights \gamma|_{\mathfrak{h}(1)} and
\gamma’|_{\mathfrak{h}(1)} coincide. This occurs if and only if \gamma’=\gamma+\lambda\theta for some \lambda\in \mathbb{R} .

Assume now that there exist three distinct isomorphic 1^{\mathbb{C}} modules \mathfrak{m}(\gamma) ,
\mathfrak{m}(\gamma’) and \mathfrak{m}(\gamma’) . Then \tilde{R}=span_{\mathbb{R}}(\gamma, \gamma’, \gamma’)\cap R is a 2-dimensional root
system and \gamma , \gamma’ and \gamma’ belong to the straight line \gamma+\mathbb{R}\theta . Checking all 2-
dimensional root systems, 2A_{1} , A_{2} , B_{2} , G_{2} , we conclude that this is possible
only if \tilde{R} is of type B_{2} or G_{2} and \theta is proportional to a short root. We claim
that both these cases cannot occur.

If \tilde{R} has type G_{2} , then \tilde{R}=R which contradicts to the assumptions.
If \tilde{R} has type B_{2} , one of the roots \gamma , \gamma’ . \gamma’ is orthogonal to \theta and this

is impossible because

\theta^{\perp}\cap R=R_{o}=R\backslash R’

while \gamma , \gamma’ . \gamma’\in R’ . \square

4. General properties of compact homogeneous CR manifolds

4.1. Infinitesimal description of invariant CR structures
Let (M=G/L, D_{Z}) be a homogeneous contact manifold of a connected

compact Lie group G with connected stabilizer L and let

g =t+\mathbb{R}Z+\mathfrak{m} (4.1)

the associated orthogonal decomposition where t =C_{\mathfrak{g}}(Z)=(+\mathbb{R}Z .
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Definition 4.1 A complex subspace \mathfrak{m}^{10} of \mathfrak{m}^{\mathbb{C}} is called holomorphic if
i) \mathfrak{m}^{10}\cap \mathfrak{m}^{01}=\{0\} , where \mathfrak{m}^{01}=\overline{\mathfrak{m}^{10}} and ‘bar’ denotes the complex

conjugation with respect to the real subspace g ;
ii)\mathfrak{m}^{\mathbb{C}}=\mathfrak{m}^{10}+\mathfrak{m}^{01} ;

iii)\mathfrak{l}^{\mathbb{C}}+\mathfrak{m}^{10} is a complex subalgebra of g^{\mathbb{C}} .
In the following we will refer to condition iii ) as the integrability condition.

Note that if the integrability condition holds, also \mathfrak{l}^{\mathbb{C}}+\mathfrak{m}^{01} is a subalge-
bra. Furthermore, any holomorphic subspace \mathfrak{m}^{10} defines an ad_{\mathfrak{l}} invariant
complex structure J on \mathfrak{m} , whose (+i) - and (-i)-eigenspaces are exactly
\mathfrak{m}^{10} and \mathfrak{m}^{01} .

Proposition 4.2 Let (M=G/L, D_{Z}) be a compact homogeneous contact
manifold and g =(+\mathbb{R}Z+\mathfrak{m} be the associated decomposition. Then there
exists a natural one to one correspondence between the set of invariant CR
structures (D_{Z}, J) on M and the set of holomorphic subspaces \mathfrak{m}^{10} of \mathfrak{m}^{\mathbb{C}} .

Proof Recall that, under the natural identification of \mathbb{R}Z+\mathfrak{m} with the
tangent space T_{eL}M . we have that \mathfrak{m}=D_{Z}|_{eL} . Moreover, any invariant CR
structure (D_{Z}, J) defines a decomposition D_{Z}^{\mathbb{C}}=D^{10}+D^{01} into two mutually
conjugated invariant integrable distributions. Then one can easily check
that the complex subspace \mathfrak{m}^{10}=D_{eL}^{10}\subset \mathfrak{m}^{\mathbb{C}} is a holomorphic subspace.

Conversely an holomorphic subspace \mathfrak{m}^{10} and its conjugate subspace
\mathfrak{m}^{01}=\overline{\mathfrak{m}^{10}} are ad_{l}-invariant and also Ad_{L}-invariant since L is connected.
Then they can be extended to two invariant integrable complex distributions
D^{10} and D^{01} such that D^{\mathbb{C}}=D^{10}+D^{01} with D^{10}\cap D^{01}=0 . Hence they may
be considered as eigendistributions of an invariant CR structure (D_{Z}, J) on
M. \square

4.2. Standard CR structures
We want to show how to construct an invariant CR structure (D_{Z}, J) on

a homogeneous contact manifold (M=G/L, D_{Z}) starting from an invariant
complex structure J on the associated flag manifold F_{Z} .

Let F=G/K be a flag manifold and let g =t+\mathfrak{m} the associated
reductive decomposition. Recall that an invariant complex structure J_{F} on
F is associated with a decomposition \mathfrak{m}^{\mathbb{C}}=\mathfrak{m}^{10}+\mathfrak{m}^{01} such that

a)\mathfrak{m}^{01}=\overline{\mathfrak{m}^{10}} ; b ) \mathfrak{p}=e^{\mathbb{C}}+\mathfrak{m}^{10} is a subalgebra of g^{\mathbb{C}} . (4.2)

We say that \mathfrak{m}^{10} is the holomorphic subspace associated with J_{F} .
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It is known that \mathfrak{p} is a parabolic subalgebra, with reductive part e^{\mathbb{C}} and
nilradical \mathfrak{m}^{10} . Moreover, we can always choose a system of positive roots
R^{+} for g^{\mathbb{C}} , such that \mathfrak{m}^{10} is generated by root vectors E_{\alpha} , with \alpha\in R^{+}

We say that such system R^{+} is compatible with the complex structure J_{F} .

Let (M=G/L, D_{Z}) be a homogeneous contact manifold, g =(1+
\mathbb{R}Z)+\mathfrak{m}=e+\mathfrak{m} the corresponding decomposition and F_{Z}=G/K the
associated flag manifold. Any invariant complex structure J_{F} on F_{Z} induces
an invariant CR structure (D_{Z}, J) , which is the one corresponding to the
same holomorphic subspace \mathfrak{m}^{10}\subset \mathfrak{m}^{\mathbb{C}} as J_{F} .

Definition 4.3 An invariant CR structure (D, J) on a homogeneous con-
tact manifold (M=G/L, D) , which is induced by an invariant complex
structure J_{F} on the associated flag manifold F=G/K, is called standard
CR structure.

Remark 4.4 Since any flag manifold admits at least one invariant com-
plex structure, we may conclude that any homogeneous contact manifold
(G/L, D) , with G compact, admits an invariant CR structure (D, J) .

The following Lemma gives an algebraic characterization of the stan-
dard CR structures.

Lemma 4.5 An invariant CR structure (D, J) on a homogeneous contact
manifold (M=G/L, D) is standard if and only if the corresponding complex
structure J on rn is Ad(K) invariant

Proof. The proof is straightforward. \square

Since the description of all invariant complex structures on flag man-
ifolds is well known (see [3], [4], [5], [10]), the problem of classification of
the invariant CR structures on compact homogeneous spaces reduces to the
description of non-standard invariant CR structures.

The following proposition reduces the problem to the case of G semi-
simple.

Proposition 4.6 Let (M=G/L, D) be a contact manifold of a compact
Lie group G with dim Z(G)=1 . Then any invariant CR structure with
underlying distribution D is standard.

Proof. It follows immediately from the fact that any Ad(L)-invariant de-
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composition \mathfrak{m}^{\mathbb{C}}=\mathfrak{m}^{10}+\mathfrak{m}^{01} is clearly also Ad(\^i)-invariant, since K=L .

Z(G) . \square

4.3. Holomorphic fibering of homogeneous CR manifolds
Let (M=G/L, D, J) be a homogeneous CR manifold with a standard

CR structure J associated to a complex structure J_{F} on the associated flag
manifold F=G/K\tau Then the natural projection

\pi : G/Larrow F=G/K

is a G-equivariant holomorphic fibration.
More generally we give the following definition.

Definition 4.7 Let M=G/L be a homogeneous manifold with invariant
CR structure (D, J) .
(1) Any G-equivariant holomorphic fibering

\pi : M=G/Larrow F=G/Q

of (M, D, J) over a flag manifold F=G/Q equipped with an invariant
complex structure J_{F} is called CRF fifibration;

(2) we say that a homogeneous CR manifold (M=G/L, D, J) is primitive
if it doesn’t admit a non-trivial CRF fibration;

(3) a non-primitive homogeneous CR manifold (M=G/L, D, J) , admit
ting a CRF fibration with typical fiber S^{1} . is called circular.

Remark that any standard CR structure is circular and that the typical fifiber
Q/L of a CRF fifibration carries a natural invariant CR structure.

The following Lemma gives a characterization of primitive CR struc-
tures.

Lemma 4.8 A homogeneous CR manifold (G/L, D, J) admits a non-
trivial CRF fifibration if and only if there exists a proper parabolic subal-
qebra \mathfrak{p}=r+\mathfrak{n}\neq g^{\mathbb{C}} (here r is a reductive part and \mathfrak{n} the nilpotent part)
such that

a)r=(\mathfrak{p}\cap g)^{\mathbb{C}} ; b ) \mathfrak{l}^{\mathbb{C}}+\mathfrak{m}^{10}\subset \mathfrak{p} ; c) \mathfrak{l}^{\mathbb{C}}\neq r .

In this case, G/L admits a CRF fifibration with basis G/Q , where Q is the
connected subgroup generated by q=r\cap g .

Proof Suppose that (M=G/L, D, J) is non-primitive and let \pi : G/Larrow
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G/Q be a CRF fibration over a flag manifold F=G/Q with invariant
complex structure J_{F} . Consider the decompositions associated to J and J_{F}

g=\mathfrak{l}+\mathbb{R}Z+\mathfrak{m} , \mathfrak{m}^{\mathbb{C}}=\mathfrak{m}^{10}+\mathfrak{m}^{01} .

g =q+\mathfrak{m}’ . \mathfrak{m}^{\prime \mathbb{C}}=\mathfrak{m}^{\prime 10}+\mathfrak{m}^{\prime 01}

Since \pi is holomorphic and non-trivial, the subalgebra t^{\mathbb{C}}+\mathfrak{m}^{10} is properly
contained in the parabolic subalgebra \mathfrak{p}=q^{\mathbb{C}}+\mathfrak{m}^{\prime 10} , with reductive part
q^{\mathbb{C}}=(g\cap \mathfrak{p})^{\mathbb{C}} . Furthermore, since the fiber has positive dimension, [\neq q .

Conversely, if \mathfrak{p}=r+\mathfrak{n}\subset g^{\mathbb{C}} is a parabolic subalgebra with reductive
subalgebra r =q^{\mathbb{C}} , where q=\mathfrak{p}\cap g , then we may consider the orthogonal
decompositions

g =q+\mathfrak{m}’ , g^{\mathbb{C}}=r+\mathfrak{m}^{\prime \mathbb{C}}=r+\mathfrak{n}+\mathfrak{n}’ .

where \mathfrak{n}’=\mathfrak{n}^{\perp}\cap \mathfrak{m}^{\prime \mathbb{C}} . By the remarks at the beginning of \S 4.2, there exists
a unique invariant complex structure J_{F} with associated holomorphic space
\mathfrak{m}^{\prime 10}=\mathfrak{n} . Therefore if t^{\mathbb{C}}+\mathfrak{m}^{10}\subset \mathfrak{p} , [ \neq q and Q is the reductive sllbgrollp
generated by q , it is clear that \pi : G/L – G/Q is a non-trivial CRF
fibration. \square

4.4. The anticanonical map of a homogeneous CR manifold
Let (M=G/L, D_{Z}, J) be a homogeneous CR manifold of a compact

Lie group G and

g=\mathfrak{l}+\mathbb{R}Z+\mathfrak{m} , \mathfrak{m}^{\mathbb{C}}=\mathfrak{m}^{10}+\mathfrak{m}^{01}

the associated decompositions of g and of \mathfrak{m}^{\mathbb{C}} .
To characterize non-standard invariant CR structures, we need to recall

the definition of anticanonical map of a homogeneous CR manifold intr0-
duced for the first time in [1]. It is a G-equivariant holomorphic maI)

\phi : M=G/Larrow Gr_{k}(g^{\mathbb{C}})

into the Grassmanian of complex k-planes, k=\dim_{\mathbb{C}}(\mathfrak{l}^{\mathbb{C}}+\mathfrak{m}^{01}) , of g^{(r^{\backslash }}\cdot b) ive^{Y}11

by

\phi : gL\mapsto Ad_{g}(\mathfrak{l}^{\mathbb{C}}+\mathfrak{m}^{01}) .

Due to the existence of standard holomorphic G-equivariant c1llt) t^{Y}(1t1i11\ltimes’

A : Gr_{k}(g^{\mathbb{C}})arrow \mathbb{C}P^{N} . N=(\begin{array}{l}di\prime I1Q^{t\Gamma}A\cdot\end{array})-1 ,
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V=span(e_{1}, . ., e_{k})\mapsto l[V]=\mathbb{C}(e_{1}\wedge \cdot\wedge e_{k}) ,

we may consider \phi as a G-equivariant map into \mathbb{C}P^{N} To prove that the
map \phi is holomorphic it is sufficient to check that the linear map

\phi_{*} : D_{0}=ker\theta|_{T_{0}M}=\mathfrak{m}arrow T_{[1^{\mathbb{C}}+\mathfrak{m}^{01}]}Gr_{k}(g^{\mathbb{C}})

commutes with the complex structure.
Let v=X+\overline{X}\in \mathfrak{m} , where X\in \mathfrak{m}^{10} . Then

\phi_{*}(v)=ad_{(X+\overline{X})}([t^{\mathbb{C}}+\mathfrak{m}^{01}])=ad_{X}([\mathfrak{l}^{\mathbb{C}}+\mathfrak{m}^{01}]) .

Therefore

\phi_{*}(Jv)=\phi_{*}(iX-i\overline{X})=ad_{iX}([\mathfrak{l}^{\mathbb{C}}+\mathfrak{m}^{01}])

=iad_{X}([t^{\mathbb{C}}+\mathfrak{m}^{01}])=i\phi_{*}(v) .

This shows that the map \phi is holomorphic.
Remark that the stabilizer Q of the point [\mathfrak{l}^{\mathbb{C}}+\mathfrak{m}^{01}] in \phi(M)=G/Q is

the normalizer Q=N_{G}(\mathfrak{l}^{\mathbb{C}}+\mathfrak{m}^{01}) .
Characterizations of non-standard CR structures by means of the anti-

canonical map will be given in \S 6, after proving some main facts on CR
structures on special contact manifolds.

5. Classification of CR structures on special contact manifolds

We describe here all invariant CR structures (D_{Z}, J) on a special con-
tact manifold G/L . Recall that in this case G is simple and L=C_{G}(g(\alpha)) ,
by Theorem 3.6, where either \alpha=\mu is the highest root or G=G_{2} and
\alpha=U is a short root.

We have the following orthogonal decomposition of g

g=\mathfrak{l}+\mathbb{R}Z+\mathfrak{m}=\mathfrak{l}+a+\mathfrak{n} , (5.1)

where a=g(\alpha) is the 3-dimensional subalgebra associated with the root \alpha ,
Z=iH_{\alpha}\in a and [ =C_{\mathfrak{g}}(a) is its centralizer.

Let (D, J) be an invariant CR structure on G/L which is determined
by the contact element Z=iH_{\alpha} and by the decompositions

\mathfrak{m}^{\mathbb{C}}=\mathfrak{m}^{10}+\mathfrak{m}^{01}=a^{10}+\mathfrak{n}^{10}+a^{01}+\mathfrak{n}^{01} (5.2)

where a^{10}=a^{\mathbb{C}}\cap \mathfrak{m}^{10} , \mathfrak{n}^{10}=\mathfrak{n}^{\mathbb{C}}\cap \mathfrak{m}^{10} and \mathfrak{m}^{01}=a^{01}+\mathfrak{n}^{01}=\overline{\mathfrak{m}^{10}} .
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Since a^{\mathbb{C}}-\sim\epsilon \mathfrak{l}_{2}(\mathbb{C}) and a^{10}+a^{01} is the orthogonal complement to \mathbb{C}Z in
a^{\mathbb{C}} , we can write a^{10}=\mathbb{C}Z’ . for some Z’\in \mathfrak{m}^{\mathbb{C}}\cap a^{\mathbb{C}} .

Note that a regular element X of a^{\mathbb{C}} (up to rescaling) can be always
identified with iH_{\alpha} , where \alpha is a root of g^{\mathbb{C}} with respect to some Cartan
subalgebra \mathfrak{h} of g^{\mathbb{C}} and such that a =g(\alpha) . In particular, since any contact
element Z of g is a regular element for a^{\mathbb{C}} . it can be always identified with
iH_{\alpha} .

If \alpha=\mu is the highest root, the eigenspace decomposition of ad_{H_{\alpha}} gives
the gradation

g^{\mathbb{C}}=g_{-2}+g_{-1}+g_{0}+g_{1}+g_{2} , (5.3)

which is described in (3.3) and Table 1. Table 1 shows that for g^{\mathbb{C}}\neq A_{\ell} , the
90 modules g_{\pm 1} are irreducible, their dimension is \dim_{\mathbb{C}9\pm 1}=1/2\dim_{C}\mathfrak{n}^{\mathbb{C}}

and

[g_{\pm 1}, g_{\pm 1}]=g\pm 2 . (5.4)

If g^{\mathbb{C}}=A_{\ell} , each 90-module 9\pm 1 decomposes into two not equivalent irre-
ducible 90-modules: 9\pm 1=g_{\pm 1}^{(1)}+g_{\pm 1}^{(2)} . Moreover, the following relations
hold:

[g_{1}^{(i)}, g_{1}^{(i)}]=\{0\}=[g_{-1}^{(i)}, g_{-1}^{(i)}] , [g_{1}^{(i)}, g_{1}^{(j)}]=g_{2} , [g_{-1}^{(i)}, g_{-1}^{(j)}]=g_{-2} ,

(5.5)

[g_{1}^{(i)}, g_{-2}]=g_{-1}^{(j)} , [g_{-1}^{(i)}, g_{2}]=g_{1}^{(j)} . \overline{g_{1}^{(i)}}=g_{-1}^{(i)} (i\neq j) . (5.6)

The modules g_{1}^{(i)} and g_{-1}^{(j)}(i\neq j) are isomorphic as g_{0}’-modules and, for

both values of i , \dim_{\mathbb{C}}g_{\pm 1}^{(i)}=1/4\dim_{(C}\mathfrak{n}^{\mathbb{C}} .

When g^{\mathbb{C}}=G_{2} and \alpha=U=\epsilon_{1} is a short root, the eigenspace decom-
position of operator ad_{H_{\nu}} defines the following gradation of g^{\mathbb{C}} :

g^{\mathbb{C}}=g_{-3}+g_{-2}+g_{-1}+g_{0}+g_{1}+g_{2}+g_{3} , (5.7)

where

90=g_{0}’+\mathbb{C}H_{\nu} , g_{0}’=C_{\mathfrak{g}^{C}}(g(\nu))=\langle E_{\pm(\epsilon_{2}-\in s)}, H_{\epsilon_{2}-\epsilon_{3}}\rangle ,

g_{2}=\mathbb{C}E_{\epsilon_{1}} , g_{-2}=\mathbb{C}E_{-\epsilon_{1}} , g^{\mathbb{C}}(u)=g_{2}+g_{-2}+\mathbb{C}H_{\epsilon_{1}} ,
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g_{1}=\langle E_{-\in;}, E_{-\epsilon_{2}}\rangle , g_{3}=\langle E_{\in_{1}-\in}, E_{\in_{1}-\epsilon_{2}}\rangle ,

9-\iota
. =\overline{g_{i}} for i=1,3 (5.8)

(_{\llcorner}b^{1}t^{1}C^{1} Al)perldix for notation).
N()tc^{1} that all subspaces g_{i} are irreducible g_{0}’modules and tllat the rllod-

\iota 11e^{1}sg_{j} , j=\pm 1, \pm 3 , are equivalent g_{0}’ modules Furthermore, [g_{\pm 1}, g_{\pm 1}]=

9\pm 2 arld [g_{\pm 3}, g_{\pm 3}]=\{0\} .

T11e^{1}f()11(JWirg T1_{1}eorern gives tlle complete c lassification of the invariant
CR \iota s^{1}tr\iota 1e\cdot t\iota 1\Gamma(^{Y}s on special c ontact manifolds.

Theorem 5.1 Lct(M=G/L, D_{Z}) be a spec\dot{l}al contact rnanifold. Then:
\dot{c}\lambda) if G\neq SU_{\ell+1} and M\neq G_{2}/Sp_{1} , where Sp_{1} denotes the subgroup

with Lic^{J} alg(^{\lrcorner b_{7}\cdot a\epsilon \mathfrak{p}_{1}}( \mu)with/\iota\max\prime i7\gamma lalr\cdot oot , then there exists ( up to a sign)
a l7l’ique\dot{\iota}nva^{l}r\cdot\prime iant CR structure (Dr_{I}\swarrow, ’ J) , and i,t\dot{\iota}s tfie (

\backslash \cdot tandar\cdot d or’ e .
b) if M=G_{2}/Sp_{1} , wf/(’r(^{2}Sp_{1} de7\iota ote_{\backslash }:) ffie sub.tj7^{\cdot}0\tau\iota p with Li() algebra

\epsilon \mathfrak{p}_{1}(l/)l)itf\iota/\iota maximal r\cdot()ot, tfler\cdot\epsilon’C^{\lrcorner}xist\iota:. a 1-1 c\cdot or\cdot r\cdot espo7ldenc\cdot eb\epsilon^{J}tmef^{\lrcorner}n tfie
in’\iota)ar^{\gamma}/a7ltCR.\backslash \cdot t_{7l(}..tnr\cdot es ( (f(’termin\epsilon^{3}dn1) to 0.i.qr’ ) and the points of ffie ur|\iota.t

di.\backslash \cdot(. D=\{t\in \mathbb{C}, |t|<1\} . Using tfie notation ()ftfl(^{2}App(^{3}7ldix for \cdot th ‘ J r()0\dagger 6^{\cdot}

()fG_{2} an d under the \iota.d^{J}‘\tau\iota tl.fic\cdot a\dagger AonZ=iH_{\mathcal{E}\downarrow} . a point t\in Dc\cdot orr\cdot e.spond.s. to
tfl‘ J CR|\backslash ^{1}t_{71l(}..tr\cdot(^{3} ( D_{ },Jt) with th(’holomor.pf/,/,c\cdot.\backslash \cdot ubcspa(.e

\mathfrak{m}^{1()}=\mathbb{C}(E_{\epsilon_{1}}^{\urcorner}+t^{2}‘ E_{-\in_{1}})+\mathbb{C}(E_{-\in}, +tE_{52})+\mathbb{C}(E_{-\epsilon_{2}}+tE_{\in},)

+\mathbb{C}(E_{\epsilon-\in_{2}}j1+fE_{\epsilon_{\}}-\epsilon_{1}};):+\mathbb{C}(E_{\epsilon_{1}-\in\}}+t^{1\}}E_{\in_{2}-\epsilon_{1}}) . (5.(J)

Thr^{J}CR.\backslash \cdot t7^{\cdot}m\cdot tu7()(D’\nearrow_{\lrcorner}, .J, )\dot{l}.5’.\backslash \cdot tandard if ar\iota d only if f=0 .
( . ) /\cdot fG=SU_{2} and hc^{2}n(.(^{\circ}M=6’U_{2}‘, tf/(^{J}r\cdot eC^{J}J^{\cdot}i.g^{l}teb. a 1-1 c\cdot or\cdot r\cdot ec9ponden(.e

f_{J)}‘,tu)(^{y}(^{J}7ltf,(’\dot{l}7ll)(xr\cdot iant CR.s\cdot t_{7’u(}..tn\prime r\cdot c^{J}eb’ ( d\epsilon^{y}t ( r\cdot r\dot{m}ned up to a_{\backslash }\backslash ^{l}ig_{7l} ) and tflc^{3} points
c)ftf/‘)url\dot{l}f di.s\cdot (. D. Under tf\iota(^{\circ}/\cdot de7ltificatio7lZ – iH_{(Y} , a point \dagger t\in D
( .(J7^{\cdot}7^{\cdot}(^{J}.\backslash \cdot po7l(4.\backslash ^{1} to tf/(^{y}CR.\backslash \cdot trm\cdot tur\cdot(^{3}(D, J_{l}) with th,J f\iota oloror\cdot\prime pfl\dot{l}C^{\cdot}.\backslash ^{l}ub.\backslash ^{l}pac\cdot e

\mathfrak{m}^{10}--\mathbb{C}(E_{c\nu}+tE_{-(\nu}) . (5.10)

Th(’CR.\backslash \cdot tr\cdot uc\cdot tur\cdot c^{I}(D, J_{l}) is standard if and only if t=() .
(1) if G=SU_{\ell} , \ell>2 , and h\epsilon^{3}nc(^{\lrcorner}M=SU_{l}/U_{l-2} , tfie set of all

in t) ar\cdot iant CR.\sigma.tructur\cdot e,s ( deter\prime rrinecl up to (\lambda 8’j.q7l)CO7lsi6^{1}te\backslash \cdot of:
(5.8) tfi ( s tandard CRstruc ture ( D_{Z} , J^{(())} ), induced by tfie in\uparrow) ar\cdot iant c\cdot orpl()j .

.b^{1}tr\cdot m\cdot tu7^{\cdot}e,I^{(())} on Fz’ =SU_{l}/T^{2} SU_{l-2} , wf\iota i(.hie9 the natural (.orpl,(’.l\cdot

eS^{\cdot}trur\cdot tur\cdot c^{J}()f the tu)^{\prime ic}s^{l}tor space of tfic^{J}Wolf.\backslash \cdot pa(.\epsilon^{I}Gr_{2}.(\mathbb{C}^{l})=SU_{l}/S(U_{2}

U_{\ell-2}) ;
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d.2) three families (D_{Z}, J_{t}) , (D_{Z}, J_{t}’) and (D_{Z}, J_{t}^{(0)}) of invariant CR struc-
tures, parameterized by the points of the unit disc D. Under the identi-
fibration Z=iH_{\mu} , the CR structures (D_{Z}, J_{t}) , (D_{Z}, J_{t}’) and (D_{Z}, J_{f}^{(0)})

have the following holomorphic subspaces

(for J_{t} ) \mathfrak{m}^{10}=\mathbb{C}(E_{\mu}+tE_{-\mu})+g_{1}^{(1)}+g_{-1}^{(2)} , (5.11)

(for J_{t}’ ) \mathfrak{m}^{\prime 10}=\mathbb{C}(E_{\mu}+tE_{-\mu})+g_{1}^{(2)}+g_{-1}^{(1)} , (5.12)

(for J_{t}^{(0)} ) \mathfrak{m}^{\prime\prime 10}=\mathbb{C}(E_{\mu}+t^{2}E_{-\mu})+(g_{1}^{(1)}+tg_{-1}^{(2)})+(g_{1}^{(2)}+tg_{-1}^{(1)}) ,

(5.13)
where

g^{\mathbb{C}}=\mathfrak{l}^{\mathbb{C}}+\mathbb{C}Z+\mathfrak{m}^{\mathbb{C}}=g_{0}’+\mathbb{C}(iH_{\mu})+(g_{-2}+g_{-1}+g_{1}+g_{2}) ,

and where (g_{1}^{(i)}+tg_{-1}^{(j)}) denotes the unique g_{0}’ -invariant subspace of
g_{1}+9-1 , with highest weight vector E_{1}^{(i)}+tE_{-1}^{(j)} , where E_{\pm 1}^{(k)} . k=1,2 ,

are highest weight vectors of g_{\pm 1}^{(k)}

A CR structure (D_{Z}, J_{t}) , (D_{Z}, J_{t}’) or (D_{Z}, J_{t}^{(0)}) is standard if and
only if t=0 .

Corollary 5.2 Let (M=G/L, D_{Z}) be a special contact manifold with
G=SU_{\ell} .
(1) if M=SU_{2} , then (M, D_{Z}) admits (up to sign) only one standard CR

structure and one family of non-standard CR structures, parameterized
by the punctured unit disc D\backslash \{0\}\subset \mathbb{C} ; any non-standard CR structures
is circular and the anti-canonical map \phi : Marrow\phi(M) is a finite
covering;

(2) if M=SU_{\ell}/U_{\ell-2} , \ell>2 , then (M, D_{Z}) admits (up to a sign) ex-
actly three standard CR structures (namely (D_{Z}, J^{(0)}) , (D_{Z}, J_{0}) and
(D_{Z}, J_{0}’)) that are induced by three invariant complex structures of the
corresponding flflag manifold F_{Z}=SU_{\ell}/T^{2} SU_{\ell-2} , plus three fami-
lies (D_{Z}, J_{t}^{(0)}) , (D_{Z}, J_{t}) and (D_{Z}, J_{t}’) of non-standard CR structures,
parameterized by the points of the punctured unit disc t\in D\backslash \{0\} ;
any non-standard CR structure (D_{Z}, J_{t}^{(0)}) is primitive, while the CR

structures (D_{Z}, J_{t}) and (D_{Z}, J_{t}’) are circular; furthermore, each CR

structure (D_{Z}, J_{t}) or (D_{Z}, J_{t}’) admits also a CRF fifibration
\pi : M=SU_{\ell}/U_{\ell-2}arrow Gr_{2}(\mathbb{C}^{\ell})=SU_{\ell}/S(U_{2}\cross U_{\ell-2})
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with fifiber SO_{3} over the Wolf space Gr_{2}(\mathbb{C}^{p}) equipped with its (unique
up to a sign) complex structure; fifinally, for any of the non-standard
CR structures, the anti-canonical map \phi : Marrow\phi(M) is a fifinite
covering;

(3) if M=G_{2}/SU_{2} with the subgroup SU_{2} as described in Theorem 5.1,
then (M, D_{Z}) admits (up to sign) only one standard CR structure and
one family of primitive CR structures, parameterized by the punctured
unit disc D\backslash \{0\}\subset \mathbb{C} .

Remark 5.3 The complex structures J_{0} and J_{0}’ on F_{Z} coincide on the
fibers of the twistor fibration \pi : F_{Z}arrow Gr_{2}(\mathbb{C}^{\ell}) but are projected into two
opposite complex structures of Gr_{2}(\mathbb{C}^{p}) .

Proof The proof of Theorem 5.1 reduces to classification of the decomposi-
tions (5.2), which correspond to an integrable CR structure, for each special
contact manifold (G/L, D_{Z}) . For any decomposition (5.2), the subspace a^{10}

can be expressed as a^{10}=\mathbb{C}Z’ for some suitable Z’\in a^{\mathbb{C}} . Therefore we
have to cases:
(1) Z’ is a regular element of a^{\mathbb{C}} ;
(2) Z’ is a non-regular (hence nilpotent) element of a^{\mathbb{C}}-\sim\epsilon \mathfrak{l}_{2}(\mathbb{C}) .

Case (1): Consider first a =g(\mu) , with \mu long root of the simple group G .
Since Z’ is regular, we may assume that Z’=iH_{\mu} and we may consider the
corresponding graded decomposition (5.3). Recall that t^{\mathbb{C}}=C_{\mathfrak{g}}(g(\mu))=g_{0}’ .

Hence the subalgebra b =[^{\mathbb{C}}+\mathfrak{m}^{10} is contained in

1^{\mathbb{C}}+\mathfrak{m}^{10}=g_{0}’+a^{10}+\mathfrak{n}^{10}=g_{0}’+\mathbb{C}H_{\mu}+\mathfrak{n}^{10}

=g0+\mathfrak{n}^{10}\subset g_{0}+g_{1}+g_{-1}

since \mathfrak{n}^{\mathbb{C}}\subset g_{1}+9-1 , being orthogonal to a^{\mathbb{C}}=\mathbb{C}H_{\mu}+g_{2}+9-2 . In case
g^{\mathbb{C}}\neq A_{\ell} , g_{1} and 9-1 are irreducible 00-modules and hence either g_{1} or 9-1
is included in \mathfrak{n}^{10} . However [g_{1}, g_{1}]=g_{2} and [g_{-1}, g_{-1}]=9-2 , and hence
there is no subalgebra b of 90+g_{1}+9-1 which contains 90 properly. In
conclusion, if \alpha=\mu is a long root, then g^{\mathbb{C}}=A_{\ell} .

Consider now the case in which G=G_{2} and a=g(\nu) , with lJ short
root of g^{\mathbb{C}} . We assume that Z’=iH_{lJ} and we consider the corresponding
graded decomposition (5.7). Then \mathfrak{t}^{\mathbb{C}}+\mathfrak{m}^{10} is contained in
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t^{\mathbb{C}}+\mathfrak{m}^{10}=t^{\mathbb{C}}+a^{10}+\mathfrak{n}^{10}

=g_{0}’+\mathbb{C}H_{\iota/}+\mathfrak{n}^{10}\subset g_{0}+g_{1}+g_{-1}+g_{3}+g_{-3} (5.14)

because \mathfrak{n}^{\mathbb{C}} is orthogonal to a^{\mathbb{C}}=\mathbb{C}H_{U}+g_{2}+g_{-2} . Since t^{\mathbb{C}}+\mathfrak{m}^{10}=9^{0}+\mathfrak{n}^{10}

is a subalgebra and \dim_{\mathbb{C}9\pm 1}=\dim_{\mathbb{C}9\pm 3}=\frac{1}{2}\dim_{\mathbb{C}}\mathfrak{n}^{10} . \mathfrak{n}^{10} contains two
irreducible g_{0}’-modules. The only possibility for \mathfrak{n}^{10} , so that g_{0}+\mathfrak{n}^{10} is a
subalgebra, is \mathfrak{n}^{10}=g_{-3}+g_{3} . This means that, for a given Z’ . there exists
at most one CR structure. If we identify the contact element Z (and I1O

longer Z’ ) with iH_{lJ} , U =\epsilon_{1} , then the element Z’ can be written in the forr1l

Z’=E_{\epsilon_{1}}+sE_{-\in_{1}} , |s|\neq 0 , (5.15)

and exchanging a^{10} with a^{01}=\overline{a^{10}} if necessary (which corresponds t_{)}ot^{\backslash }1_{1a1l}g-

ing sign to the complex structure), we may assume that 0<|s|\leq 1 . Si11(.(^{Y}

a^{10}\cap a^{01}=\{0\} and hence E_{\epsilon_{1}}+sE_{-\epsilon_{1}} and \overline{s}E_{\epsilon_{1}}+E_{-\epsilon_{1}}are^{Y} linearly iI1e1(^{Y}-

pendent, s satisfies the condition

det \{\begin{array}{ll}1 s\overline{s} 1\end{array}\}=1-|s|^{2}\neq 0 (5.16)

and therefore s\in D\backslash \{0\}=\{0<|s|<1\} . Now, the reader can c1_{1}e^{1}ck that,

the subspace \mathfrak{m}^{10}\subset g_{1}+9-1+g_{2}+g_{-2}+g_{3}+9-3 elcscribcel iI1(5.(J)is_{k}^{1}

indeed a holomorphic subspace corresponding to the unique CR s^{1}ktr\iota 1C\uparrow,11\Gamma(^{Y}

with a^{10}=\mathbb{C}Z’ . where Z’ is of the form (5.14) with s=t^{2} .

Now it remains to classify the invariant CR s_{L}^{1}trnct11rc\llcorner s^{1} 011 (SU_{\ell}/

U_{\ell-2} , D_{Z}) .
For the following part of the proof, it is more convenient te) iele1ltif.y

the contact element Z (and no longer Z’ ) with iH_{\mu} . We also co11sio1e^{Y}r t11C^{Y}

decomposition (5.3) determined by Z=\prime iH_{\mu} .
Since Z’ is a regular element which is orthogonal to Z=iH_{/\iota} , it ist’ (111)

to a factor) of the form Z’=E_{\mu}+tE_{-\mu} with |t|\neq 0 . Exchanging a^{10}wit,11

a^{01}=\overline{a^{10}} if necessary, we may assume that 0<|t|\leq 1 a1lel since a^{1()}\cap a^{()1}=

\{0\} , by the same arguments of before, we get that t\in D\backslash \{0\}=\{0<|t|<

1\} .

We claim that for any point t\in D\backslash \{0\} there exist exac tly t_{)}1_{1}re^{\backslash }(^{Y} ill-
variant CR structures, whose associated s\iota lbspae\cdot ea^{10}is^{t} equal t()\mathbb{C}(E_{l}, +

tE_{-\mu}) . In fact, one can check that the only g_{0}’-irlvariarlt b_{L}^{1}11 }) b\iota’ 1)
\dot{c}\iota(.t^{Y}b\iota’ \mathfrak{m}^{11)}()f

.

\mathbb{C}(E_{\mu}+tE_{-\mu})+g_{1}+9-1 , which satisfy (i) a1ld (ii) ()fDe^{1fi}_{11iti}()114.1 , \dot{c}11^{\cdot}t^{\backslash }
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either (5.11), (5.12) or a subspace of the form

\mathfrak{m}^{10}=\mathbb{C}(E_{\mu}+tE_{-\mu})+(g_{1}^{(1)}+sg_{-1}^{(2)})+(g_{1}^{(2)}+sg_{-1}^{(1)}) (5.17)

for some coefficient s . One can also check that the subspaces (5.11) and
(5.12) satisfy also the integrability condition, while (5.17) satisfies the inte-
grability condition if and only if t=s^{2} . This proves that (5.11), (5.12) and
(5.13) are the only holomorphic subspaces of \mathfrak{m}^{\mathbb{C}} containing \mathbb{C}(E_{\mu}+tE_{-\mu}) .
In particular, they define three distinct invariant CR structures, which we
denote by (D_{Z}, J_{t}) , (D_{Z}, J_{t}’) and (D_{Z}, J_{t}^{(0)}) .

If \ell=2 and hence M=SU_{2} , then \mathfrak{n}=\{0\} and the three CR structures
(D_{Z}, J_{t}) , (D_{Z}, J_{t}’) and (D_{Z}, J_{t}^{(0)}) coincide for any t .

Since for any t\neq 0 the holomorphic subspaces \mathfrak{m}^{10} and \mathfrak{m}^{\prime 01} are not
ad_{Z}-invariant, any CR structure (D_{Z}, J_{t}) , (D_{Z}, J_{t}’) or (D_{Z}, J_{t}^{(0)})(t\neq 0) is
non-standard by Lemma 4.5.

Case (2): Since Z’ is not regular, it is a nilpotent element of a^{\mathbb{C}}=\epsilon t_{2}(\mathbb{C})=

g^{\mathbb{C}}(\alpha) . Then we may always choose a Cartan subalgebra \mathbb{C}H_{\alpha} of a so that
Z’\in \mathbb{C}E_{\alpha} . Furthermore, since the contact element Z is orthogonal to a^{10}+

a^{01}=\mathbb{C}E_{\alpha}+\overline{\mathbb{C}E_{\alpha}}=\mathbb{C}E_{\alpha}+\mathbb{C}E_{-\alpha} , we may assume (after rescaling) that
Z=iH_{\alpha} .

Consider first that \alpha=\mu is a long root of G and take the gradation
(5.3) of g^{\mathbb{C}} determined with H_{\mu} . Then g_{2}=\mathbb{C}Z’=a^{10} and hence

1^{\mathbb{C}}+\mathfrak{m}^{10}=g_{0}’+g_{2}+\mathfrak{n}^{10}\subset g_{0}’+g_{2}+g_{1}+g_{-1} .

Assume that g^{\mathbb{C}}\neq A_{\ell} . Then the g_{0}’ -modules 9\pm 1 are irreducible and
[g_{\pm 1}, g_{\pm 1}]=g_{\pm 2} . Hence the only subalgebra of g_{0}’+g_{2}+g_{1}+9-1 , which
properly contains g_{0}’+g_{2} , is g_{0}’+g_{1}+g_{2} . Hence \mathfrak{m}^{10}=g_{1}+g_{2} .

Vice versa, \mathfrak{m}^{10}=g_{1}+g_{2} is a holomorphic subspace of \mathfrak{m}^{\mathbb{C}}=(t^{\mathbb{C}}+

\mathbb{C}Z)^{\perp}=g_{0}^{\perp} and hence it corresponds to an invariant CR structure on
(G/L, D_{Z}) . Since Z=iH_{\mu}\in N_{\mathfrak{g}}(g_{0}’+9-1+g_{-2})=N_{\mathfrak{g}}(\mathfrak{l}^{\mathbb{C}}+\mathfrak{m}^{01}) , this CR
structure is standard.

Assume now that g^{\mathbb{C}}=A_{\ell} and again consider the decomposition (5.3)
determined by Z=iH_{\mu} . Since \dim_{\mathbb{C}}g_{\pm 1}^{(i)}=1/4\dim_{C}\mathfrak{n}^{\mathbb{C}} , the g_{0}’-module \mathfrak{n}^{10}

can be written in one of the following five forms:

1) \mathfrak{n}^{10}=(g_{1}^{(1)})_{\varphi}+(g_{-1}^{(1)})_{\psi} , 2) \mathfrak{n}^{10}=g_{1}^{(1)}+g_{-1}^{(2)} .
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3) \mathfrak{n}^{10}=g_{1}^{(2)}+g_{-1}^{(1)} , 4) \mathfrak{n}^{10}=g_{1} , 5) \mathfrak{n}^{10}=g_{-1} ,

where \varphi : g_{1}^{(1)}
–

g_{-1}^{(2)} and \psi : g_{-1}^{(1)}
–

g_{1}^{(2)} are two g_{0}’-equivariant homomor-
phisms and where (g_{1}^{(1)})_{\varphi} and (g_{-1}^{(1)})_{\psi} denote the subspaces of the form

(g_{1}^{(1)})_{\varphi}=\{X+\varphi(X) _{:} X\in g_{1}^{(1)}\} , (g_{-1}^{(1)})_{\psi}=\{X+\psi(X) _{:} X\in g_{-1}^{(1)}\} .

Case 5) cannot occur because in that case [\mathfrak{n}^{10}, \mathfrak{n}^{10}]=g_{-2} and this contra-
dicts the fact that g_{0}’+\mathfrak{n}^{10}+g_{2} is a subalgebra.

Also case 1) may not occur. In fact, \varphi is either trivial or an isom()r-
phism. In case \varphi is an isomorphism, for any 0\neq X\in g_{1}^{(1)} it is possible

(1)to find an element Y\in g_{-1} so that [\varphi(X), Y] is non-trivial and belongs to
9-2 . Hence,

[X+\varphi(X), Y+\psi(Y)]
mod

\mathfrak{g}0+\mathfrak{g}_{1}+\mathfrak{g}_{2}\equiv[\varphi(X), Y]\in g_{-2} .

This contradicts the fact that \mathfrak{l}^{\mathbb{C}}+\mathfrak{m}^{10} is a subalgebra of g_{0}’+g_{1}+g_{2} . We
conclude that, if case 1) occurred, \mathfrak{n}^{10}=g_{1}^{(1)}+(g_{-1}^{(1)})_{\psi} . Now, for any X\in

g_{1}^{(1)} we may consider an element Y+\psi(Y)\in(g_{-1}^{(1)})_{\psi} so that [X, Y]=\lambda H_{\mu}

for some \lambda\neq 0 . Hence

[X, Y+\psi(Y)]=\lambda H_{\mu} mod g_{0}’+g_{2}

This gives a contradiction with the fact that g_{0}’+\mathfrak{n}^{10}+g_{2} is a subalgebra
and the claim is proved.

For the cases 2), 3) and 4), \mathfrak{m}^{10} equals one of the following three sub-
spaces

g_{1}^{(1)}+g_{-1}^{(2)}+g_{2} , g_{1}^{(2)}+g_{-1}^{(1)}+g_{2} , g_{1}+g_{2} (5.18)

and one can check that any of them is a holomorphic subspace.
By Proposition 4.2, they determine three distinct CR structures de-

noted by (D, J) , (D, J’) and (D, J^{(0)}) , respectively. For any of the three
subspaces (5.18), the normalizer N_{\mathfrak{g}}(\mathfrak{l}^{\mathbb{C}}+\mathfrak{m}^{01}) contains 90\cap g=[+\mathbb{R}Z and
hence the corresponding CR structures are standard.

Finally, observe that (D, J^{(0)}) is induced by the invariant complex struc-
ture J_{F} on the flag manifold F_{Z}=SU_{\ell}/T^{2} SU_{\ell-2} which is associated to
the following black-white Dynkin graph

\circ-- -\circ-\mapsto 0
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a1ld whic h is the invariant com plex structure of the twistor space of the
W()1f space Gr_{2}(\mathbb{C}^{l})=SU_{\ell}/S(U_{2} U_{\ell-2}) ; moreover, the subspace of J^{(0)}

coincides with the subspace given in (5.13) for t=0; on the other hand,
t11\zeta^{Y}s_{\llcorner}^{1}\iota 1bspace\llcorner s^{1} of J and J’ are the subspaces given in (5.11) and (5.12) for
t=0 . All corresponding CR structures coincide if M=SU_{2} .

It remains to consider the case in which G=G_{2} and a=g(u) , where u

is a short root. Consider the decomposition (5.7) determined by H_{\iota/} so that
\mathbb{C}Z’=\mathbb{C}E_{\iota\nearrow}=g_{2} .

As before, we identify Z with iH_{1J} . We have

\mathfrak{l}^{\mathbb{C}}+\mathfrak{m}^{10}=g_{0}’+a^{10}+\mathfrak{n}^{10}\subset g_{0}’+g_{2}+g_{-1}+g_{1}+g_{-3}+g_{3}

because \mathfrak{n}^{\mathbb{C}} is orthogonal to a^{\mathbb{C}}=\mathbb{C}H_{U}+9-2+g_{2} . We claim that g_{3}\subset \mathfrak{n}^{10} .
Ill fact, for any element X\in \mathfrak{n}^{10} consider the decomposition

X=X_{-3}+X_{-1}+X_{1}+X_{3} , X_{i}\in g_{i} .

Tllen, one of the four vectors X , X’=[E_{U}, X] , X’=[E_{U}, [E_{\iota/}, X]] , X’=
[E_{l/}, [E_{U}, [E_{U}, X]]] is a non-trivial element of g_{3} and it belongs to \mathfrak{n}^{10} . Since
g_{3} is g_{()}’-irreducible, the claim follows.

Similarly, we claim that g_{1}\subset \mathfrak{n}^{10} . To prove this, take any element
X\in \mathfrak{n}^{10} which has a decomposition of the form

X=X_{-3}+X_{-1}+X_{1} , X_{i}\in g_{i} .

Then, either X or X’=[E_{l/}, X] or X’=[E_{U}, [E_{I/}, X]] is a non-trivial
clcrnent, of g_{1}+g_{3} , with non-vanishing projection on g_{1} . This implies that
g_{1}\cap \mathfrak{n}^{10}\neq\{0\} and hence that g_{1}\subset \mathfrak{n}^{10} . Since \dim_{\mathbb{C}}(g_{1}+g_{3})=\dim_{\mathbb{C}}\mathfrak{n}^{10} .
we conclude that \mathfrak{n}^{10}=g_{1}+g_{3} and that \mathfrak{m}^{10}=g_{1}+g_{2}+g_{3} . Indeed,
since [^{(C}+g_{1}+g_{2}+g_{3} is always a subalgebra, there exists an integrable
CR structure whose associated holomorphic subspace is \mathfrak{m}^{10}=g_{1}+g_{2}+g_{3} .

Furthermore, N_{\mathfrak{g}}(1^{\mathbb{C}}+\mathfrak{m}^{01}) contains Z=iH_{lJ} and hence this CR structure
is standard. \square

Proof of Corollary 5.2. (1) By Theorem 5.1, it remains only need to check
that any non-standard CR structure on M=SU_{2} is circular and that the
associated anti-canonical map is a finite covering.

By (5.10), the CR structure (D_{Z}, J) is non-standard if and only if the
corresponding holomorphic subspace is of the form \mathfrak{m}^{10}=\mathbb{C}(E_{\alpha}+tE_{-\alpha})

with 0<|t|<1 . Since \mathfrak{l}=\{0\} and the element E_{\alpha}+tE_{-\alpha} is a regular
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element of \epsilon \mathfrak{l}_{2}(\mathbb{C}) , then \mathfrak{m}^{10} is a Cartan subalgebra of g^{\mathbb{C}}=\epsilon \mathfrak{l}_{2}(\mathbb{C}) and any
parabolic subalgebra \mathfrak{p} which contains \mathfrak{m}^{10} satisfies the conditions a), b) and
c) of Lemma 4.8. This implies that M=SU_{2} admits a CRF fibration over
SU_{2}/T^{1} , where T^{1} is the 1-dimensional subgroup generated by the subspace
t=\mathfrak{p}\cap\epsilon \mathfrak{u}_{2} .

On the other hand, when 0<|t|<1 ,

N_{\mathfrak{g}}(\mathbb{C}(E_{\alpha}+tE_{-\alpha}))

=\{X=a(iH_{\alpha})+b(E_{\alpha}+E_{-\alpha})+ic(E_{\alpha}-E_{-\alpha})

\in\epsilon u_{2} : [X, E_{\alpha}+tE_{-\alpha}]\in \mathbb{C}(E_{\alpha}+tE_{-\alpha})\}=\{0\} .

Then, by the remarks at the end of \S 4.4, the stabilizer Q of the image of
the anti-canonical map \phi(SU_{2})=SU_{2}/Q is 0-dimensional and the anti-
canonical map is a covering map.

(2) We first observe that each non-standard CR structure (D_{Z}, J_{t}^{(0)})

is primitive. In fact, by Lemma 4.8, if one of such CR structures is non-
primitive, then there exists a parabolic subalgebra \mathfrak{p}\subseteq g , which satisfies a),
b) and c) of Lemma 4.8. On the other hand, one can check that in this
case, there is no proper subalgebra of g^{\mathbb{C}} which properly contains \mathfrak{l}^{\mathbb{C}}+\mathfrak{m}^{10} .

with \mathfrak{l}^{\mathbb{C}}=g_{0}’ and \mathfrak{m}^{10} as in (5.13).
Now, we want to prove that each non-standard CR structure (D_{Z}, J_{t})

or (D_{Z}, J_{t}’) admits a CRF fibration onto Gr_{2}(\mathbb{C}^{\ell})=SUp/S(U_{2} U_{\ell-2}) .
Indeed, note that, if we consider the decomposition (5.3) determined

by the regular contact element Z=iH_{\mu} , any CR structure (D_{Z}, J_{t}) or
(D_{Z}, J_{t}’) corresponding to the holomorphic subspaces defined in (5.11) and
(5.12) satisfies

t^{\mathbb{C}}+\mathfrak{m}^{01}\subset \mathfrak{p}=g_{0}+g_{-1}^{(1)}+g_{1}^{(2)}+g_{-2}+g_{2} , (5.19)

\mathfrak{l}^{\mathbb{C}}+\mathfrak{m}^{\prime 10}\subset \mathfrak{p}’=g_{0}+g_{-1}^{(2)}+g_{1}^{(1)}+g_{-2}+g_{2} , (5.20)

respectively. A reductive part for both subalgebras \mathfrak{p} and \mathfrak{p}’ is r =r’=
(\mathfrak{l}+a)^{\mathbb{C}} . Therefore, by Lemma 4.8, the CR structures (D, J_{t}) and (D, J_{t}’)

are non-primitive and they admit a CRF fibration over the Wolf space
SU_{\ell+1}/S(U_{2} U_{\ell-1}) with typical fiber S(U_{2} ^{Up-1})/U_{\ell-1}=SO_{3} .

We now want to prove that any non-standard CR structure (D_{Z}, J_{t}) or
(D_{Z}, J_{t}’) admits also a CRF fibration with standard fiber S^{1} . Let us use
the same notation as before and observe that, for any complex holomorphic
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subspace \mathfrak{m}^{10} or \mathfrak{m}^{\prime 10} defined in (5.11) or (5.12), the element X=E_{\mu}+
tE_{-\mu}\in \mathfrak{m}^{10}\cap \mathfrak{m}^{\prime 10} is a regular element of g^{\mathbb{C}}(\mu)\subset g^{\mathbb{C}} . Hence, if we denote
by \hat{\mathfrak{p}} any parabolic subalgebra \hat{\mathfrak{p}}(\mu)\subset g^{\mathbb{C}}(\mu) , which properly contains E_{\mu}+

tE_{-\mu} or E_{\mu}+t^{2}E_{-\mu} , we get that

\mathfrak{l}^{\mathbb{C}}+\mathfrak{m}^{01}\subset \mathfrak{p}_{\mu}=g_{0}’+g_{-1}^{(1)}+g_{1}^{(2)}+\hat{\mathfrak{p}}(\mu) , (5.21)

t^{\mathbb{C}}+\mathfrak{m}^{\prime 10}\subset \mathfrak{p}_{\mu}’=g_{0}+g_{-1}^{(2)}+g_{1}^{(1)}+\hat{\mathfrak{p}}(\mu) . (5.22)

Note that \mathfrak{p}_{\mu} and \mathfrak{p}_{\mu}’ are two parabolic subalgebras of g^{\mathbb{C}} which satisfy a), b)
and c) of Lemma 4.8 and hence that the CR structures (D, J_{t}) and (D, J_{t}’)

admit CRF fibrations with 1-dimensional fibers.
It remains to check that the anti-canonical map of any non-standard CR

structure is a covering map. As in the proof of (1), this reduces to checking
that for any holomorphic subspace defined in (5.11) and (5.12), N_{\mathfrak{g}}(\mathfrak{l}^{\mathbb{C}}+

\mathfrak{m}^{10})=N_{\mathfrak{g}}(\mathfrak{l}^{\mathbb{C}}+\mathfrak{m}^{\prime 10})=\mathfrak{l}^{\mathbb{C}} and hence that the image of the anti-canonical
map has the same dimension as G/L .

(3) It is only a matter to check that the non-standard CR structures
with holomorphic subspace \mathfrak{m}^{10} given in (5.9) are primitive. This can be
done as in (2), using Lemma 4.8. \square

6. A characterization of non-standard CR structures

The aim of this section is to give a criterion which distinguishes stan-
dard CR structures in the class of circular CR structures and to furnish a
complete characterization of standard and non-standard CR structures by
means the anti-canonical map.

Let (D, J) be a circular CR structure on G/L and let Z_{D} be a contact
element associated to V. Let also \pi : G/L – G/Q be the CRF fibration
onto the flag manifold G/Q with fiber S^{1}=Q/L . Notice that, since q is
the isotropy subalgebra of a flag manifold, q is of the form q=t+\mathbb{R}Z_{J} for
same Z_{J}\in C_{\mathfrak{g}}(\mathfrak{l})\cap(t)^{\perp} .

Moreover, since \pi is holomorphic, we also have that \mathfrak{l}^{\mathbb{C}}+\mathfrak{m}^{01}\subset q^{\mathbb{C}}+\mathfrak{m}^{01}

and that q^{\mathbb{C}}+\mathfrak{m}^{01} is a subalgebra with nilradical \mathfrak{m}^{01} . This implies that
q=\mathfrak{l}+\mathbb{R}Z_{J}\subset N_{\mathfrak{g}}(\mathfrak{l}^{\mathbb{C}}+\mathfrak{m}^{01}) .

At this point, we need the following Lemma, which in fact was proved
in [1].
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Lemma 6.1 Let G/Q=\phi(G/L) be the image of the anticanonical map.
Then dim Q/L\leq 1 .

Proof. We need to prove that dim q/\mathfrak{l}\leq 1 , where q=N_{\mathfrak{g}}(\mathfrak{l}^{\mathbb{C}}+\mathfrak{m}^{01}) is the
stability subalgebra of the flag manifold G/Q . Since g =(+\mathbb{R}Z+\mathfrak{m} , it is
sufficient to check that q\cap \mathfrak{m}=0 . Let v\in q\cap \mathfrak{m} . Then

B(Z, [v, t^{\mathbb{C}}+\mathfrak{m}^{01}])\subset B(Z, t^{\mathbb{C}}+\mathfrak{m}^{01})=\{0\}

and in particular

\{O\}=B(Z, [v, \downarrow+\mathfrak{m}])=-B([v, Z], \mathfrak{l}+\mathfrak{m}) .

This means that v\in N_{\mathfrak{g}}(Z)=e=(+\mathbb{R}Z and hence that v\in e\cap \mathfrak{m}=\{0\} .
\square

By Lemma 6.1, we have that dim N_{\mathfrak{g}}(t^{\mathbb{C}}+\mathfrak{m}^{01})\leq\dim \mathfrak{l}+1 and therefore
that q=N_{\mathfrak{g}}(t^{\mathbb{C}}+\mathfrak{m}^{01}) . In particular, the circular CR structure (D, J) is
standard if and only if q=e , i.e. if and only if \mathbb{R}Z_{J}=\mathbb{R}Z_{D} .

If G/L is a contact manifold of non-special type, then dim C_{\mathfrak{g}}(t)\cap(\mathfrak{l})^{\perp}=

1 and hence \mathbb{R}Z_{J}=\mathbb{R}Z_{D} . From this we conclude that any circular CR
structure on a non-special contact manifold is standard and a circular non-
standard CR structure may exist only on a special contact manifold.

Now, the class of all invariant CR structures on special contact man-
ifolds is explicitly classified in Theorem 5.1 and Corollary 5.2. From this
classification, the following description of all circular CR structures is im-
mediately obtained.

Theorem 6.2 Let M=G/L be a homogeneous contact manifold of a
compact Lie group G. Then M=G/L admits an invariant non-standard
circular CR structure (D, J) if and only if M=SUp/U_{\ell-2} for \ell\geq 2 .

By means of Theorem 6.2, we may finally obtain the following important
description of standard and non-standard CR structures.

Theorem 6.3 Let

\phi : M=G/Larrow Gr_{k}(g^{\mathbb{C}})

be the anticanonical map of a homogeneous CR manifold (M=G/L, D_{Z}, J) .
(1) If the CR structure is standard, then the image \phi(M) is G-equivariantly

biholomorphic to the associated flflag manifold F_{Z}=G/K=Ad_{G}Z en-
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dowed with the complex structure J_{F} which induces the CR structure
(D_{Z}, \mathcal{J}) .

In this case, \phi is a CRF fifibration with fifiber S^{1} and the normalizer
in g of\downarrow \mathbb{C}+\mathfrak{m}^{01} is

e =N_{\mathfrak{g}}(t^{\mathbb{C}}+\mathfrak{m}^{01})=\mathfrak{l}+\mathbb{R}Z

and it is equal to the stabilizer of the point [\mathfrak{l}^{\mathbb{C}}+\mathfrak{m}^{01}]\in\phi(M) in G .
(2) If the CR structure is not standard, then the image \phi(M)=G/Q is a

homogeneous CR manifold with CR structure induced by the complex
structure of Gr_{k}(g^{\mathbb{C}}) and \phi : Marrow\phi(M) is a fifinite covering.

Proof. (1) Notice that, by Lemma 4.5, if (D_{Z}, J) is standard then N_{\mathfrak{g}}(t^{\mathbb{C}}+

\mathfrak{m}^{01})\supset \mathfrak{l}+\mathbb{R}Z . Therefore, from Lemma 6.1, we get that N_{\mathfrak{g}}(1^{\mathbb{C}}+\mathfrak{m}^{01})=(+

\mathbb{R}Z=t and the image \phi(G/L) of the anticanonical map coincides with the
flag manifold F=G/K .

To prove (2), we first show that if the CR structure is non-standard,
then the anti-canonical map \varphi : G/L – \phi(G/L) is a finite covering. In
fact, if the CR structure is non-circular, the fiber of the anticanonical map
is not 1-dimensional (otherwise it would give a CRF fibration with S^{1}

-

fiber) and by Lemma 6.1 this implies that \varphi : G/Larrow\phi(G/L) is a finite
covering. If the CR structure is circular and non-standard, by Theorem 6.2
and Corollary 5.2, M=SU_{\ell}/U_{\ell-2} and again \varphi : G/L – \phi(G/L) is a
finite covering. The other part of the claim follows immediately by the
holomorphicity and the G-equivariance of \phi . \square

7. Classification of non-standard CR structures on non-special
homogeneous contact manifolds

7.1. Notation
In all this section,

.. (G/L, D_{Z}) denotes a simply connected non-special homogeneous con-
tact manifold of a compact Lie group G ;

.. t =C_{\mathfrak{g}}(Z)=(\oplus \mathbb{R}Z is the orthogonal decomposition of the centralizer
t of Z and nt is the orthogonal complement to e in g ;
\mathfrak{h}\subset t is a Cartan subalgebra of t and hence of g ;
\theta=BoZ|_{\mathfrak{h}} is the 1-form on \mathfrak{h} dual to Z and \theta=-i\theta=-iB\circ Z|_{\mathfrak{h}} ; we
will refer to both of them as contact forms;

- R (resp. R_{o} ) is the root system of (g^{\mathbb{C}}, \mathfrak{h}^{\mathbb{C}}) (resp. of ( f^{\mathbb{C}} , \mathfrak{h}^{\mathbb{C}} )) and R’=



Invariant CR structures on compact homogeneous manifolds 243

R\backslash R_{o} ;
- E_{\alpha} is the root vector with root \alpha in the Chevalley normalization (see

e.g . [7] ) ;
a subset S\subset R is called closed subsystem if (S+S)\cap R\subset S ;
if S is a closed subsystem of roots, then g(S)\subset g^{\mathbb{C}} is the subalgebra
generated by the root vectors E_{\alpha} , \alpha\in S ;
recall that the root vectors E_{\alpha} , \alpha\in R’ , span \mathfrak{m}^{\mathbb{C}} ;
\mathfrak{m}(\alpha) denotes the irreducible t^{\mathbb{C}}-submodules of \mathfrak{m}^{\mathbb{C}} , with highest weight
\alpha\in R’ ;
if \mathfrak{m}(\alpha) and \mathfrak{m}(\beta) are equivalent as \mathfrak{l}^{\mathbb{C}}-modules, we denote by \mathfrak{m}(\alpha)+

t\mathfrak{m}(\beta) the irreducible \mathfrak{l}^{\mathbb{C}}-module with the highest weight vector E_{\alpha}+

tE_{\beta} , \alpha , \beta\in R’ . t\in \mathbb{C} ; note that together with \mathfrak{m}(\beta) , these mod-
ules exhaust all the irreducible \mathfrak{l}^{\mathbb{C}}-submodules of \mathfrak{m}(\alpha)+\mathfrak{m}(\beta) (see
Lemma 7.1);

.. by Dynkin graph \Gamma we will understand the Dynkin graph associated
with a root system R of a compact semisimple Lie algebra g ; we ass0-

ciate with the nodes of \Gamma the simple roots of R as in [7] (see Table 4
in the Appendix).

7.2. Preliminaries
By the results in \S 5, the classification of invariant CR structures reduces

to the classification of non-standard CR structures on homogeneous contact
manifolds of non-special type. This will be the contents of \S 7.3 and \S 7.4.

In this section we give two important lemmata that settle the main
tools for the classification. The first Lemma is an immediate corollary of
Proposition 3.9.

Lemma 7.1 Let (M=G/L, D_{Z}, J) be a homogeneous CR manifold assO-

ciated with holomorphic subspace \mathfrak{m}^{10}\subset \mathfrak{m}^{\mathbb{C}} and J the associated complex
structure on \mathfrak{m} . Assume also that G\neq G_{2} or that G=G_{2} and that the
contact form \theta is not proportional to a short root of R .

Then a minimal J-invariant e^{\mathbb{C}} -submodule \mathfrak{n} of \mathfrak{m}^{\mathbb{C}} is either e^{\mathbb{C}} -irreduc-
ible (and hence \mathfrak{n}=\mathfrak{m}(\alpha) for some \alpha\in R’ ) or it is the sum \mathfrak{m}(\alpha)+\mathfrak{m}(\beta)

of two such t^{\mathbb{C}} -modules, where the roots \alpha and \beta are \theta -congruent (i.e. \beta=

\alpha+\lambda\theta , for some \lambda\in \mathbb{R}).

Proof. Consider the decomposition \mathfrak{m}^{\mathbb{C}}=\sum \mathfrak{m}(\gamma) into irreducible t-sub-
modules as in \S 3.3. The claim follows immediately from the fact that any
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ad_{\mathfrak{j}}-invariant complex structure J on rn preserves the \mathfrak{l}^{\mathbb{C}}-isotypic components
(i.e. the sum of all mutually equivalent irreducible t^{\mathbb{C}}-modules) and that,
\iota\ln(ler the hypotheses of Proposition 3.9, the multiplicity of any irreducible
[-module \mathfrak{m}(\gamma)is^{\urcorner} less or equal to 2. \square

Lemma 7.2 Let (G/L, D_{Z}, J) be a homogeneous CR manifold with non-
t\backslash ^{Y}tandard CR structure. Then G is either simple or of the form G=G_{1}\cross

G_{2} , where each G_{i} is simple.
Moreover, if G=G_{1}\cross G_{2} and R=R_{1}\cup R_{2} is the corresponding

decomposition of the root system, then there exist two roots \mu_{1}\in R_{1} , \mu_{2}\in

R_{2} , such that the pairs of roots (\mu_{1}, -\mu_{2}) and (-\mu_{1}, \mu_{2}) are the only ones
which are \theta -congruent; in particular, \theta=\mu_{1}+\mu_{2} is not proportional to any
root.

Proof. Since the CR structure (D_{Z}, J) is non-standard, the associated
complex structure J on nt is not ad_{f}-invariant; in particular there exists
some minimal J-invariant e^{\mathbb{C}}-module in \mathfrak{m}^{\mathbb{C}} , which is not e^{\mathbb{C}} irreducible By
Lemma 7.1, there exist at least two roots \alpha , \beta , which are \theta-congruent.
Without loss of generality, we may assume that \theta=\alpha-\beta .

If \theta is proportional to some root \gamma , then this root belongs to some
summand g_{i} of g , i=1 , ., r . Hence, t =C_{\mathfrak{g}}(Z) contains all other simple
summands of g and the same holds for \mathfrak{l} . By effectivity, this implies that
g =g_{1} .

If \theta=\alpha-\beta is not proportional to any root and \alpha and \beta belong to
the same summand g_{1} , then g =g_{1} as before. Assume that they belong
to two different summands g_{1} and g_{2} . The same arguments of before show
that g =g_{1}\oplus g_{2} and that \pm(\alpha, \beta) are the only pairs of roots which are
\theta-congruent. \square

We will perform the classification by considering separately two cases:
when the contact form \theta is proportional to a root and when it is not pr0-

portional to any root. Note that by Lemma 7.2, the first case may occur
only when G is simple.

7.3. Case when the contact form is proportional to a root
Recall that the Weyl group of a simple Lie group acts transitively on

the set of roots of the same length. In particular any long root can be
considered as a maximal root. Since we assume that the contact manifold
(M=G/L, D_{Z}) is non-special and G is simple, we may suppose that \theta is
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proportional to a short root (i.e. strictly shorter then a long root) and hence
G equals either SO_{2n+1} , Sp_{n} or F_{4} . Note that if G=G_{2} then any contact
manifold (G_{2}/L, D_{Z}) , with contact form \theta proportional to a short root, is
special (see \S 3.2.2).

Proposition 7.3 Let (G/L, D_{Z}) be a homogeneous non-special contact
manifold of a simple group G, such that the contact form \theta is proportional
to a root. Then:
(1) G/L is SO_{2n+1}/SO_{2n-1} , Sp_{n}/Sp_{1}\cross Sp_{n-2} or F_{4}/SO_{7} and \theta is prO-

portional to a short root of G ;
(2) there exists a 1-1 correspondence between the invariant CR structures

on (G/L, D_{Z}) (determined up to a sign) and the points of the unit disc
D\subset \mathbb{C} ;

(3) more precisely, any point t\in D corresponds to the CR structure
(D_{Z}, J_{t}) whose holomorphic subspace \mathfrak{m}^{10} is listed in the following table
(see \S 7.1 for notation) :

G/L \theta \mathfrak{m}^{10}

\frac{so_{2n+1}}{so_{2n-1}}=S(S^{2n})
\epsilon_{1} \mathfrak{m}(\in_{1}+\epsilon_{2})+tm(-\epsilon_{1}+\epsilon_{2})

\frac{Sp_{n}}{Sp_{1}\cross Sp_{n-2}}=S(\mathbb{H}P^{n-1}) \epsilon_{1}+\epsilon_{2} (\mathfrak{m}(2\epsilon_{1})+t^{2}\mathfrak{m}(-2\epsilon:_{2}))\oplus(\mathfrak{m}(\epsilon i_{1}+\in s)+t\mathfrak{m}(-\epsilon_{2}+\in.;))

\frac{F}{Spin}-_{7}=S(\mathbb{O}P^{2}) \epsilon_{1}

(\mathfrak{m}(\epsilon_{1}+\in_{2})+t^{2}\mathfrak{m}(-\epsilon_{1}+\epsilon_{2}))

\oplus(\mathfrak{m}(1/2(\in_{1}+\in_{2}+\epsilon_{3}+\epsilon_{4}))

+t\mathfrak{m}(1/2(-\in_{1}+\epsilon_{2}i+\epsilon_{3}+\epsilon_{4})))

(4) a CR structure (D_{Z}, J_{t}) is standard if and only if t=0 ; in all other
cases it is primitive.

Proof. For each group G equal to SO_{2\ell+1} , Sp\ell or F_{4} we may assume that
\theta is the short root \theta=\epsilon_{1} , \epsilon_{1}+\epsilon_{2} or \epsilon_{1} , respectively. The associated
decomposition g =\mathfrak{l}+\mathbb{R}Z+\mathfrak{m} is given in Table 2 of the Appendix. It is not
difficult to determine the decomposition of \mathfrak{m}^{\mathbb{C}} into irreducible submodules.
The result is given in Table 2. Then one has to find all decompositions
\mathfrak{m}^{\mathbb{C}}=\mathfrak{m}^{10}+\mathfrak{m}^{01} into two \mathfrak{l}^{\mathbb{C}}-modules which satisfy the following conditions:
a) \mathfrak{m}^{01}=\overline{\mathfrak{m}^{10}};b ) [\mathfrak{m}^{10}, \mathfrak{m}^{10}]\subset \mathfrak{m}^{10}+\mathfrak{l}^{\mathbb{C}} . The modules \mathfrak{m}^{10} which satisfy
condition a) are of the following form:
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G=SO_{2p+1} : \mathfrak{m}^{10}=\mathfrak{m}_{t}^{10}=\mathfrak{m}(\epsilon_{1}+\epsilon_{2})+t\mathfrak{m}(-\epsilon_{1}+\epsilon_{2}) ;
G=Sp\ell : \mathfrak{m}^{10}=\mathfrak{m}_{t,s}^{10}=(\mathfrak{m}(2\epsilon_{1})+s\mathfrak{m}(-2\epsilon_{2}))

\oplus(\mathfrak{m}(\epsilon_{1}+\epsilon_{3})+t\mathfrak{m}(-\epsilon_{2}+\epsilon_{3})))
.

G=F_{4} : \mathfrak{m}^{10}=\mathfrak{m}_{t,s}^{10\prime}=(\mathfrak{m}(\epsilon_{1}+\epsilon_{2})+s\mathfrak{m}(-\epsilon_{1}+\epsilon_{2}))

\oplus(\mathfrak{m}(1/2(\epsilon_{1}+\epsilon_{2}+\epsilon_{3}+\epsilon_{4}))+t\mathfrak{m}(1/2(-\epsilon_{1}+\epsilon_{2}+\epsilon_{3}+\epsilon_{4})))

for some s , t\neq 0 . One can easily check that \mathfrak{m}_{t}^{10} satisfies condition b) for
every t . The module \mathfrak{m}_{t,s}^{10} satisfies condition b) if and only if s=t^{2} . To
prove it one should observe that the only brackets between \mathfrak{t}^{\mathbb{C}}-weight vectors
in [\mathfrak{m}_{t,s}^{10}, \mathfrak{m}_{t,s}^{10}] , which are non-trivial modulo \downarrow \mathbb{C} , are

[E_{\epsilon_{1}+\epsilon_{i}}+tE_{-\epsilon_{2}+\in_{i}}, E_{\epsilon_{1}-\epsilon_{i}}+tE_{-\in_{2}-\in_{i}}]

\equiv N_{\epsilon_{1}+\in_{i},\in_{1}-\epsilon:_{i}}E_{2\epsilon_{1}}+t^{2}N_{-\epsilon_{2}+\epsilon_{i},-\in_{2}+\in_{i}}E_{-2\in_{2}} mod t^{\mathbb{C}}

[E_{\epsilon_{1}+\in_{i}}+tE_{-\epsilon_{2}+\epsilon_{i}}, E_{\epsilon_{2}-\epsilon_{i}}+tE_{-\epsilon_{1}-\in_{i}}]

\equiv N_{\epsilon_{1}+\epsilon_{i},\epsilon_{2}-\epsilon_{\iota}}E_{\in_{1}+\epsilon_{2}}+t^{2}N_{-\epsilon_{2}+\in_{i},-\epsilon_{1}+\epsilon_{i}}E_{-\epsilon_{1}-\epsilon_{2}} mod 1^{\mathbb{C}}

By a straightforward computation, it follows that these vectors are in \mathfrak{m}_{t,s}^{10}

if and only if s=t^{2} .

A similar argument shows that also \mathfrak{m}_{t,s}^{10\prime} satisfies condition b) if and
only if s=t^{2} .

Observe that up to an exchange between \mathfrak{m}^{10} and \mathfrak{m}^{01} (which corre-
sponds to changing the sign of complex structure J), we may always assume
that |t|\leq 1 . It remains to check the condition \mathfrak{m}^{01}\cap \mathfrak{m}^{10}=\{0\} : in all cases,

this implies det \{\begin{array}{ll}l tt 1\end{array}\}\neq 0 and hence that |t|<1 .

To prove (4), note that, in all cases listed in the table above, N_{\mathfrak{g}}(\mathfrak{l}^{\mathbb{C}}+

\mathfrak{m}^{01}) contairlb’ Z only if t=0 and hence, by Theorems 6.2 and 6.3, this is
the only case when the CR structure is standard. Moreover, in all cases, if
t\neq 0 there exists no proper parabolic subalgebra \mathfrak{p}\supset 1^{\mathbb{C}} which satisfies the
conditions of Lemma 4.8. \square

7.4. Painted Dynkin graphs and CR-graphs
In this subsection we introduce the concepts of painted Dynkin graphs

and of CR-graphs. They will be necessary to state the classification of non-
standard CR structures corresponding to contact forms not proportional to
any root.
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A painted Dynkin graphs of g=Lie(G) is a Dynkin graph of the Lie
algebra g with nodes painted in three colors: white (o), black (o) and ‘grey’
(\otimes) .

Recall that any flag manifold F=G/Q with an invariant complex
structure J_{F} is defined (up to equivalence) by a black-white Dynkin graph,
where the subalgebra q=Lie(Q) is generated by the Cartan subalgebra and
the root vectors associated with the white nodes. The complex structure
J_{F} is determined by the decomposition

g^{\mathbb{C}}=q^{\mathbb{C}}+\mathfrak{m}^{10}+\mathfrak{m}^{01}

where \mathfrak{m}^{10} is the nilpotent subalgebra generated by the root vectors associ-
ated to black nodes (see e.g. [3], [4]).

With a painted Dynkin graph \Gamma (equipped by simple roots in a standard
way), we associate two flag manifolds F_{1}(\Gamma)=G/K and F_{2}(\Gamma)=G/Q

and two invariant complex structure J_{1}(\Gamma) and J_{2}(\Gamma) on F_{1}(\Gamma) and F_{2}(\Gamma) ,
respectively, as follows. The pairs (F_{1}(\Gamma)=G/K, J_{1}(\Gamma)) and (F_{2}(\Gamma)=

G/Q , J_{2}(\Gamma)) are the flag manifolds with invariant complex structures defined
by the black-white graphs obtained from \Gamma by considering the grey nodes
as black and, respectively, white.

Note that Q contains K and that the natural fibration

\varpi : F_{1}(\Gamma)=G/Karrow F_{2}(\Gamma)=G/Q

is holomorphic and a fiber Q/K is a flag manifold with an induced invariant
complex structure J’ . Moreover, J_{1}(\Gamma) is canonically defined by J_{2}(\Gamma) and
J’ .

Conversely, if F_{1}=G/K and F_{2}=G/Q are two flag manifolds with
invariant complex structures J_{1} and J_{2} such that Q\supset K and the equivariant
fibration \varpi : F_{1} – F_{2} is holomorphic, then we may associate with F_{1} and
F_{2} a painted Dynkin graph in an obvious way.

Definition 7.4 A CR-graph is a pair (\Gamma, \theta(\Gamma)) , formed by a painted
Dynkin graph \Gamma and a linear combination \theta(\Gamma) of simple roots, given in
the following table:
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The correspondence between nodes and simple roots is as in Table 4 of
the Appendix.

The CR-graphs of type I are called special CR-graph. All the others
are called non-special CR-graphs.

Let (\Gamma, \theta(\Gamma)) be a CR-graph. We fix a Cartan subalgebra \mathfrak{h} of the
associated compact Lie algebra g and define the element Z(\Gamma)=iB^{-1}o

\theta(\Gamma)\in \mathfrak{h} . Then Z(\Gamma) is a contact element and we call the corresponding
contact manifold (M(\Gamma)=G/L, D_{Z(\Gamma)}) the contact manifold associated with
the CR-graph (\Gamma, \theta(\Gamma)) . Note that M(\Gamma) is special if and only if the CR-
graph is special.

7.5. Case when the contact form is not proportional to any root
In this case we obtain the following classification.

Proposition 7.5 Let (M=G/L, D_{Z}) be a contact manifold with contact
form \theta not proportional to any root. If it admits a primitive invariant CR
structure (D_{Z}, J) , then it is one of the following.

If G is simple then
a) G/L=SO_{2n}/SO_{2n-2} , n>2 , and \theta is either \epsilon_{1} or, when n=4, \epsilon_{1}+

\epsilon_{2}+\epsilon_{3}\pm\epsilon_{4} ; moreover the holomorphic subspace of the CR structure
(D_{Z}, J) is given by

\mathfrak{m}^{10}=\mathfrak{m}(\epsilon_{1}+\epsilon_{2})+t\mathfrak{m}(\beta) (7.1)

where \beta=-\epsilon_{1}+\epsilon_{2} , -\epsilon_{3}-\epsilon_{4} or -\epsilon_{3}+\epsilon_{4} {the last two cases occur
only for n=4) and t belongs to the punctured unit disc D\backslash \{0\}\subset \mathbb{C} ;
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b) G/L=Spin_{7}/SU_{3}=S(S^{7})=S^{7}\cross S^{6} . \theta=\epsilon_{1}+\epsilon_{2}+\epsilon_{3} and the
holomorphic subspace of (D_{Z}, J) is given by

\mathfrak{m}^{10}=\mathfrak{m}(\epsilon_{1}+\epsilon_{2})+t\mathfrak{m}(-\epsilon_{3})+\overline{\mathfrak{m}(\epsilon_{1}+\epsilon_{2})}+\frac{1}{t}\overline{\mathfrak{m}(-\epsilon_{3})} (7.2)

for some t\in D\backslash \{0\} .
If G is not simple then

c) G/L=SU_{2}\cross SU_{2}/T^{1}=S(S^{3})=S^{3}\cross S^{2} , \theta=(\epsilon_{1}-\epsilon_{2})-(\epsilon_{1}’-\epsilon_{2}’)

and the holomorphic subspace of (D_{Z}, J) is

\mathfrak{m}^{10}=\mathbb{C}(E_{\epsilon_{1}-\epsilon_{2}}+tE_{\epsilon_{1}’-\epsilon_{2}’})+\mathbb{C}(E_{-(\epsilon_{1}-\in_{2})}+\frac{1}{t}E_{-(\epsilon_{1}’-\epsilon_{2}’)}) . (7.3)

In all cases we consider \theta up to a factor and up to a transformation from
the Weyl group W(R) , and J up to a sign.

Proposition 7.6 A homogeneous contact manifold (G/L, D_{Z}) with con-
tact form \theta not proportional to any root, admits a non-standard non-
primilive CR structure if and only if it is G-contact diffeomorphic to the
contact manifold (M(\Gamma)=G/L, D_{Z(\Gamma)}) associated with a non-special CR-
graph (\Gamma, \theta(\Gamma)) (see Defifinition 7.4).

For any invariant CR structure (D_{Z(\Gamma)}, J) on M(\Gamma)=G/L the natural
projection \pi : M(\Gamma)=G/Larrow F_{2}(\Gamma)=G/Q is holomorphic w.r.t . the
complex structure J_{2}(\Gamma) or -J_{2}(\Gamma) .

The CR structures for which \pi is holomorphic w.r. t. J_{2}(\Gamma) are in 1-
1 correspondence with the invariant CR structures on the fifiber C=Q/L
subordinated to the induced contact structure D_{Z(\Gamma)}\cap TC .

More precisely, if
q^{\mathbb{C}}=\mathfrak{l}^{\mathbb{C}}+\mathbb{C}Z+\mathfrak{m}_{C}^{10}+\mathfrak{m}_{C}^{01} , g^{\mathbb{C}}=q^{\mathbb{C}}+\mathfrak{m}_{J_{2}}^{10}+\mathfrak{m}_{J_{2}}^{01}

are the two decompositions of q^{\mathbb{C}} and g^{\mathbb{C}} associated with an invariant CR

structure on the fifiber C=Q/L and with the complex structure J_{2}(\Gamma) on
F_{2}(\Gamma) , then

\mathfrak{m}^{10}=\mathfrak{m}_{C}^{10}+\mathfrak{m}_{J_{2}}^{10} (7.4)

is the holomorphic subspace of the corresponding CR structure on M(\Gamma) .
Moreover, this CR structure is non-standard if and only if the CR structure
on C is primitive.

The rest part of the section is devoted to the proof of Propositions 7.5
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and 7.6. We need some additional notations.
For a fixed CR structure (D_{Z}, J) , we set

R_{J}^{\pm}=\{\alpha\in R’ : J(E_{\alpha})=\pm iE_{\alpha}\} ,

R_{J}=R_{J}^{+}\cup R_{J}^{-} , R_{e}=R’def\backslash R_{J} (7.5)

and we define the subspaces

\mathfrak{m}_{J}^{\pm}=\sum_{\beta\in R^{\pm}}

,
\mathbb{C}E_{\beta} , \mathfrak{m}_{J}=\mathfrak{m}_{J}^{+}+\mathfrak{m}_{J}^{-} ,

e=\sum_{\beta\in R_{t^{\backslash }}}def\mathbb{C}E_{\beta}\subset \mathfrak{m}^{\mathbb{C}}
. (7.6)

Note that J is standard if and only if R_{J}=R’ . We define also the closed
subsystem

\tilde{R}_{e}=[R_{e}]=Rdef\cap span(R_{e})\mathbb{R} ’
\tilde{R}_{o}=R_{o}\cap\tilde{R}_{e} ,

and we set R_{o}’=R_{o}\backslash \tilde{R}_{o} .
The following Lemma collects some basic properties of these objects.

Lemma 7. 7
(1) R_{J}=-R_{J} and R_{e}=-R_{e} ;
(2) for any \alpha\in R_{e} there exists exactly one root \beta\in R_{e} which is \theta

-

congruent to \alpha ;
(3) for any pair \alpha , \beta\in R_{e} of \theta -congruent roots, there exist two uniquely

determined complex numbers \lambda , \mu\neq 0 such that

e_{\alpha,(3}=E_{\alpha}+\lambda E_{\beta}\in \mathfrak{m}^{10} , f_{\alpha,\beta}=E_{\alpha}+\mu E_{\beta}\in \mathfrak{m}^{01}- (7.7)

(4) (R_{J}^{\pm}.+R_{o})\cap R\subset R_{J}^{\pm} and (R_{e}+R_{o})\cap R\subset R_{e} ;

(5) (R_{J}^{\pm}+R_{e})\cap R\subset R_{J}^{\pm}\cup R_{e}\cup R_{o} .

Pro()f. (1) is clear. To see (2), (3) and (4), observe that \alpha\in R_{J} if and only
if E_{\alpha} belongs to an irreducible t^{\mathbb{C}}-module which is also J-invariant; hence
(2), (3) and (4) follow from Lemma 7.1 and Corollary 3.10.

Tlle proof of (5) is the following. Let \gamma\in R_{J}^{+} and \alpha , \beta\in R_{e} a pair of
two \theta^{(}-congruent roots. If \gamma+\alpha\in R_{J}^{-} , consider the element f_{-\alpha,-\beta}\in \mathfrak{m}^{01}

as defined in (7.7). Since E_{\gamma+\alpha}\in \mathfrak{m}^{01} . by the integrability condition

[E_{\gamma+\alpha}, f_{-\alpha,-\beta}]=CE_{\gamma}+X\in \mathfrak{m}^{01}+\mathfrak{l}^{\mathbb{C}}

for some C\neq 0 and X\not\in \mathbb{C}E_{\gamma} . This implies that \gamma\in R_{J}^{-}: contradi(^{\tauti}()11 .
\square
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For any \alpha\in R , a root \beta\in R , which is \theta-congruent to \alpha , is said to be
\theta -dual to \alpha and we say that (\alpha, \beta) is a \theta -dual pair. By Corollary 3.10 any
root admits at most one \theta-dual root; by Lemma 7.7 (3), any root in R_{e} has
exactly one \theta-dual root.

Lemma 7.8 Let (\alpha, \alpha’) be a \theta -dual pair in R_{e} . Then the root subsystem
\tilde{R}=R\cap span_{\mathbb{R}}\{\alpha, \alpha’\} is of type A_{1}+A_{1} . In particular \alpha\perp\alpha’ and \alpha\pm\alpha’\not\in

R .

Proof. Assume that \tilde{R}\neq A_{1}+A_{1} . Then \tilde{R} is a root system of type A_{2} , B_{2}

or G_{2} . Since by assumptions \theta=\alpha-\alpha’ is proportional to no root, looking
at the corresponding root systems, we find that up to a transformation from
the Weyl group there are the following possibilities:

R=A_{2} : \alpha=\epsilon_{0}-\epsilon_{2} , \alpha’=\epsilon_{2}-\epsilon_{1} ;
\tilde{R}=B_{2} : \alpha=\epsilon_{1} , \alpha’=-\epsilon_{1}+\epsilon_{2;}

\tilde{R}=G_{2} : \alpha=-\epsilon_{2} , \alpha’=-\epsilon_{1}+\epsilon_{2} .

Note that in each of these three cases, \alpha+\alpha’=\beta\in R .

Case \tilde{R}=A_{2} : In this case \theta=(\epsilon_{0}-\epsilon_{2})-(\epsilon_{2}-\epsilon_{1})=\epsilon_{0}+\epsilon_{1}-2\epsilon_{2} and
\beta=\alpha+\alpha’ is orthogonal to \theta and hence it belongs to R_{o} . Moreover \mathfrak{l}^{\mathbb{C}}=

C_{\mathfrak{g}^{C}}(Z) contains the subalgebra

t’=\mathbb{C}H_{\epsilon_{0}-\epsilon_{1}}+\mathbb{C}E_{\in 0-\epsilon_{1}}+\mathbb{C}E_{\epsilon_{1}-\in 0} .

At the same time, by Lemma 7.7 (3), \mathfrak{m}^{01} contains the element f_{\in 0-\epsilon_{2},\epsilon_{2}-\in_{1}}=

E_{\epsilon i}0^{-\in_{2}}+\mu E_{\epsilon_{2}-\in_{1}} , with some fixed \mu\neq 0 . Since \mathfrak{m}^{01} is \downarrow \mathbb{C}-invariant, \mathfrak{m}^{01}

contains also the subspace

[E_{\epsilon_{1}-\epsilon_{0}}, \mathbb{C}f_{\epsilon_{0}-\epsilon_{2},\epsilon_{2}-\in_{1}}]=\mathbb{C}(E_{\epsilon:_{1^{-\epsilon_{2}}}}-\mu E_{\epsilon i})2^{-\in_{0}} .

By integrability condition, this implies that

[E_{\in 0-62}+\mu E_{\epsilon_{2}-\epsilon_{1}}, E_{\in_{1}-\epsilon_{2}}-\mu E_{\epsilon_{2}-\in 0}]

=\mu(-H_{\in 0-\epsilon_{2}}+H_{\epsilon_{2}-\in_{1}})\in \mathfrak{m}^{01}+\mathfrak{l}^{\mathbb{C}}

and hence we conclude that -H_{\epsilon_{0}-\epsilon_{2}}+H_{\epsilon_{2}-\epsilon_{1}}\in\downarrow \mathbb{C} . But this cannot be
because -H_{\epsilon_{0}-\epsilon_{2}}+H_{\in_{2}-\epsilon i_{1}} is not orthogonal to Z=iB^{-1}\circ\theta .
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Case \tilde{R}=B_{2} or G_{2} : Then \beta=\alpha+\alpha’ is not orthogonal to \theta=\alpha-\alpha’ and,
moreover,

(\beta+\mathbb{R}\theta)\cap R=\emptyset .

These two facts show that \beta\in R\backslash (R_{e}\cup R_{o})=R_{J} . Changing the sign of \alpha

and \alpha’ . if necessary, we may assume that \beta\in R_{J}^{+} .
Consider the vector f_{\alpha,\alpha’}=E_{\alpha}+\mu E_{\alpha’}\in \mathfrak{m}^{01} which is defined by (7.7).

Then E_{\alpha}+\mu E_{\alpha’}=E_{-\alpha}+\overline{\mu}E_{-\alpha’}\in \mathfrak{m}^{10} and by integrability condition its
commutator with E_{\beta} is also in \mathfrak{m}^{10}+\mathfrak{l}^{\mathbb{C}} . Therefore

[E_{-\alpha}+\overline{\mu}E_{-\alpha’}, E_{\beta}]=N_{-\alpha,\beta}E_{\alpha’}+\overline{\mu}N_{-\alpha’,\beta}E_{\alpha}\in \mathfrak{m}^{10} .

Hence the coefficient \lambda of the vector e_{\alpha,\alpha’} defined by (7.7) is

\lambda=\frac{N_{-\alpha,\beta}}{\overline{\mu}N_{-\alpha’,\beta}} . (7.8)

SiI1e\cdot e^{1} we use the Chevalley normalization (see \S 7.1), N_{-\alpha,\beta}=\pm(p+1) for
a1ly two roots \alpha , \beta , where p\geq 0is_{\llcorner}^{1} the maximal integer such that \beta+p\alpha\in

\tilde{R} (,s^{\backslash }ce e.g. [7]). Using this formula, we obtain from (7.8) that if \tilde{R}=B_{2} ,
\lambda\overline{l\iota}=\pm 2 , while if \tilde{R}=G_{2} , \lambda\overline{\mu}=\pm 3 .

On the other hand, by integrability condition

[e_{cx,cx’}, \overline{f_{\alpha,\alpha’}}]=[E_{\alpha}+\lambda E_{\alpha}’, E_{-\alpha}+\overline{\mu}E_{-\alpha’}]=H_{\alpha}+\lambda\overline{\mu}H_{\alpha’}\in 1^{\mathbb{C}} .

Tllit\iota’ Ineantb^{1} tllat \theta(H_{CX}+\lambda\overline{\mu}H_{(\chi’})=0 , i.e . that

\langle\theta^{(}|\alpha\rangle+\lambda\mu\langle\theta|\alpha’\rangle=0 ,

wI1(^{Y}r(^{Y}\langle\theta^{(}|\alpha\rangle=2(\theta, \alpha)/(\alpha, \alpha) . Hence for \theta=\alpha-\alpha’ . we obtain

2-\langle cx’|\alpha\rangle+\lambda\overline{\mu}[-2+\langle\alpha|\alpha’\rangle]=0 .

Ill ( .ats’ e^{1}\tilde{R}=B_{2} , \langle\alpha’|\alpha\rangle=-2 anel \langle\alpha|\alpha’\rangle=-1 so tllat \lambda\overline{\mu}=4/3 ; ill case
\tilde{R} – G_{2} , \langle\alpha’|\alpha\rangle=-3 and \langle\alpha|\alpha’\rangle=-1 so that \lambda\mu=5/3 . In both cases we
gct a (.()Ilt,radict,i()Il with the previously determined va lues for \lambda\overline{l\iota} . \square

Now we dcterrriine the possible types of the root \llcorner s^{1}ubsyst,c111\tilde{R}_{\iota^{\backslash }}=R\cap

sp\dot{c}xr1_{\mathbb{R}}(R_{e}) .

Lemma 7.9 If \tilde{R}_{e} is not of the form A_{1}\cup A_{1} , then \tilde{R}_{e}rtd Rm\cdot()l)()tf/

indecomposable root systems.
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Proof. By Lemma 7.8, we may assume that rank \tilde{R}_{e}>2 . S\iota 1ppo,b^{1}C t_{1}1_{1}at,

\tilde{R}_{e} is decomposable into two mutually orthogonal subsystems R_{1} and R_{2}‘ .
Let \alpha\in R_{1}\cap R_{e} , \alpha’\in R_{2}\cap R_{e} and \beta , \beta’ the \theta-dual roots of \alpha arl(1r\nu’ ,
respectively. Since \theta cannot be in the span of R_{1} , it is clear that (4\in R_{2}

and that \beta’\in R_{1} . Then the identity

\mathbb{R}\theta=\mathbb{R}(\alpha-\beta)=\mathbb{R}(\alpha’-\beta’)

i_{111}1)1ie\llcorner\backslash ^{\tau} that \alpha+\rho\beta’=\rho\alpha’+\beta=0 for some \rho\neq 0 . Fr()mt_{J}11isf()11()W,b1 t,1_{1}at,

\beta’=-\alpha , \beta=-\alpha’ and that rank \tilde{R}_{e}=2 : contradiction.
A s^{\tau}i111i1ar contradiction arises if we replace \tilde{R}_{e} by R. \square

Note that by Lemma 7.9, if G=G_{1}\cross G_{2} , then the only possibility f_{()}r

\tilde{R}_{c} is A_{1}\cup A_{1} .

The following Lemma gives a more detailed description of the re)ot

s^{\urcorner}ubsystem\overline{R}_{e} .

Lemma 7.10 The root subsystem \overline{R}_{e} has type Dg , \ell>1 or B_{3} and, up to
a factor and a transformation from the Weyl group W=W(R) , the contact
form \theta is one of the following:

(1) if \tilde{R}_{e}=D_{2}=A_{1}+A_{1}’ and \alpha , \alpha’ are roots of the summands A_{1} and
A_{1}’ , then \theta=\alpha-\alpha’ ;

(2) if \tilde{R}_{e}=D_{3} or D_{\ell} , with \ell>4 , then \theta=2\epsilon_{1} ;
(3) if \tilde{R}_{e}=D_{4} then \theta=2\epsilon_{1} or \theta=\epsilon_{1}+\epsilon_{2}+\epsilon_{3}+\epsilon_{4} or \theta=\epsilon_{1}+\epsilon_{2}+\epsilon_{3}-\epsilon_{4} ;
(4) if \overline{R}_{e}=B_{3} then \theta=\epsilon_{1}+\epsilon_{2}+\epsilon_{3} .

Note that in case \tilde{R}_{e}=D_{4} , all three contact forms \theta in (3) are equivalent
with respect to automorphisms of the root system.

Proof. From Lemma 7.9, it is sufficient to consider the case when rank
\tilde{R}_{e}>2 and \tilde{R}_{e} is indecomposable. For each indecomposable root system \tilde{R}_{e}

we describe, up to a transformation from the Weyl group, all pairs of roots
(\alpha, \alpha’) , which are orthogonal and such that \alpha\pm\alpha’\not\in R . By Lemma 7.8
such pairs are the only candidates for \theta-dual pairs in R_{e} . For each case, we
consider the corresponding form \theta=\alpha-\alpha’ , and describe all \theta-dual pairs in
\tilde{R}_{e} . Then, assuming that \alpha , \alpha’\in R_{e} , we check if the case is possible looking
if the \theta-dual pairs in R_{e} may generate \tilde{R}_{e} .

Case (A): \tilde{R}_{e}=A_{\ell} .
Up to a transformation from the Weyl group, the pair (\alpha, \alpha’) is equal
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to (\epsilon_{1}-\epsilon_{2}, \epsilon_{3}-\epsilon_{4}) . Then \theta=(\epsilon_{1}-\epsilon_{2})-(\epsilon_{3}-\epsilon_{4}) and the \theta-dual pairs are
(up to sign)

(\epsilon_{1}-\epsilon_{2}, \epsilon_{3}-\epsilon_{4}) ; (\epsilon_{1}-\epsilon_{3}, \epsilon_{2}-\epsilon_{4}) .

Since \beta=\epsilon_{2}-\epsilon_{3}\in R_{o}=(\theta)^{\perp}\cap R , then \epsilon_{1}-\epsilon_{3}=\alpha+\beta\in R_{e} and hence
also the second \theta-dual pair is in R_{e} . In particular rank \tilde{R}_{e}=3 and \tilde{R}_{e}=

A_{3}=D_{3} .

Case (B): \tilde{R}_{e}=B_{\ell} .
We have three possibilities for (\alpha, \alpha’) according to their lengths:
i) (\alpha, \alpha’)=(\epsilon_{1}+\epsilon_{2}, -(\epsilon_{3}+\epsilon_{4})) ;
ii) (\alpha, \alpha’)=(\epsilon_{1}+\epsilon_{2}, -\epsilon_{3}) ;
iii) (\alpha, \alpha’)=(\epsilon_{1}, -\epsilon_{2}) .

The last case is not possible, since we assume that \theta=\alpha-\alpha’ is pr0-

portional to no root,

i) \theta=\epsilon_{1}+\epsilon_{2}+\epsilon_{3}+\epsilon_{4} and the \theta-dual pairs are (up to sign)

(\epsilon_{1}+\epsilon_{2}, -(\epsilon_{3}+\epsilon_{4})) ; (\epsilon_{1}+\epsilon_{3}, -(\epsilon_{2}+\epsilon_{4})) ;
(\epsilon_{1}+\epsilon_{4}, -(\epsilon_{2}+\epsilon_{3})) . (7.9)

As in case (A), one can check that all these \theta-dual pairs are in R_{e} and
that they span a space of dimension 4. Since the \theta-dual pairs consist of
long roots, they cannot generate the root system B_{\ell} and hence this case is
impossible.
ii)\theta=\epsilon_{1}+\epsilon_{2}+\epsilon_{3} and the \theta-dual pairs are (up to sign)

(\alpha=\epsilon_{1}+\epsilon_{2}, \alpha’=-\epsilon_{3}) ; (\beta=\epsilon_{2}+\epsilon_{3}, \beta’=-\epsilon_{1}) ;
(\gamma=\epsilon_{3}+\epsilon_{1}, \gamma’=-\epsilon_{2}) . (7.10)

Again all pairs in (7.10) consist of roots in R_{e} . This implies that rank \tilde{R}_{e}=

3 .

Case (B): \tilde{R}_{e}=C_{\ell} .
As in case (B), we have three possibilities,
i) (\alpha, \alpha’)=(\epsilon_{1}+\epsilon_{2}, -(\epsilon_{3}+\epsilon_{4})) ;
ii) (\alpha, \alpha’)=(\epsilon_{1}+\epsilon_{2}, -2\epsilon_{3}) ;
iii) (\alpha, \alpha’)=(2\epsilon_{1}, -2\epsilon_{2}) .

As in (B), the last case is not possible.
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i) \theta=\epsilon_{1}+\epsilon_{2}+\epsilon_{3}+\epsilon_{4} and the \theta-dual pairs are given (up to sign) in (7.9).
This implies that\pm 2\epsilon_{i}\in R_{J} , i=1 , ., 4, because it has no \theta-dual root and
it is not orthogonal to \theta . Note also that the roots \epsilon_{i}-\epsilon_{j} , i , j=1 , , 4,
belong to R_{o} , because they are orthogonal to \theta . Therefore

R_{e}\subset\{\pm(\epsilon_{i}+\epsilon_{j}), 1\leq i, j\leq 4\}\subset(R_{o}+\{\pm 2\epsilon_{i}\})\cap R\subset R_{J}

and this is a contradiction.
ii)\theta=\epsilon_{1}+\epsilon_{2}+2\epsilon_{3} .

In this case, up to sign, there is only one \theta-dual pair, that is (\epsilon_{1}+

\epsilon_{2},
-2\epsilon_{3}) . On the other hand, \epsilon_{1}-\epsilon_{2}\in R_{o} and hence 2\epsilon_{1}=(\epsilon_{1}+\epsilon_{2})+

(\epsilon_{1}-\epsilon_{2})\in R_{e} : contradiction.

Case (E): \tilde{R}_{e}=D_{\ell} .
Since D_{3}= A3, we may assume that \ell\geq 4 . Then we have three

possibilities:
i) (\alpha, \alpha’)=(\epsilon_{1}+\epsilon_{2}, -(\epsilon_{3}+\epsilon_{4})) ;
ii) (\alpha, \alpha’)=(\epsilon_{1}+\epsilon_{2}, -(\epsilon_{3}-\epsilon_{4}) ;
iii) (\alpha, \alpha’)=(\epsilon_{1}+\epsilon_{2}, -(\epsilon_{1}-\epsilon_{2})) .

i) \theta=\epsilon_{1}+\epsilon_{2}+\epsilon_{3}+\epsilon_{4} and the \theta-dual pairs are given (up to sign) in (7.9)
and they all belong to R_{e} . Hence the rank of \tilde{R}_{e} is 4.

A similar argument shows that rank \tilde{R}_{e}=4 in case ii ), where \theta=\epsilon_{1}+

\epsilon_{2}+\epsilon_{3}-\epsilon_{4} .

iii)\theta=2\epsilon_{1} and the \theta-dual pairs are (\epsilon_{1}+\epsilon_{i}, \epsilon_{1}-\epsilon_{i}) , with i=2 , \ldots
\ell , they

are all in R_{e} and they span the whole system D_{\ell} .

Case (E): \tilde{R}_{e}=E_{6} , E7 or E_{8} .
Let \alpha , \alpha’\in R_{e} be a \theta-dual pair. Since \alpha and \alpha’ are orthogonal, we

may included them into a subsystem II of simple roots. According to the
type of \tilde{R}_{e} , without loss of generality, we may assume that \alpha’ is one of the
following:

\tilde{R}_{e}=E_{6} : \alpha’=\epsilon_{4}+\epsilon_{5}+\epsilon_{6}+\epsilon ;
\tilde{R}_{e}=E_{7} : \alpha’=\epsilon_{5}+\epsilon_{6}+\epsilon_{7}+\epsilon_{8;}

\tilde{R}_{e}=E_{8} : \alpha’=\epsilon_{6}+\epsilon_{7}+\epsilon_{8} .

For each case, it follows that \alpha=\epsilon_{i}-\epsilon_{i+1} for some i\neq\ell-3 where \ell=

rank \tilde{R}_{e} . It can be easily checked that, using permutations of the vectors
\epsilon_{i} which belong to the Weyl group of Ep and which preserve \alpha’ , we may
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assume that either \alpha=\epsilon_{1}-\epsilon_{2} or \alpha=\epsilon_{\ell-1}-\epsilon p=-\sum_{i=1}\ell-2\epsilon_{i}i-2\epsilon_{\ell} . Therefore
we have the following possibilities:
if \tilde{R}_{e}=E_{6} :

i) \alpha=\epsilon_{1}-\epsilon_{2} and \theta=\alpha’-\alpha=-\epsilon_{1}+\epsilon_{2}+\epsilon_{4}+\epsilon_{5}+\epsilon_{6}+\epsilon ;
ii) \alpha=\epsilon_{5}-\epsilon_{6} and \theta=\epsilon_{4}+2\epsilon_{6}+\epsilon=\epsilon_{6}-\epsilon_{1}-\epsilon_{2}-\epsilon_{3}-\epsilon_{5}+\epsilon ;

if \tilde{R}_{e}=E_{7} :
iii) \alpha=\epsilon_{1}-\epsilon_{2} and \theta=-\epsilon_{1}+\epsilon_{2}+\epsilon_{5}+\epsilon_{6}+\epsilon_{7}+\epsilon_{8} ;
iv) \alpha=\epsilon_{6}-\epsilon_{7} and \theta=\epsilon_{5}+2\epsilon_{7}+\epsilon_{8}=\epsilon_{7}-\epsilon_{1}-\epsilon_{2}-\epsilon_{3}-\epsilon_{4}-\epsilon_{6} ;

if \tilde{R}_{e}=E_{8} :
v) \alpha=\epsilon_{1}-\epsilon_{2} and \theta=-\epsilon_{1}+\epsilon_{2}+\epsilon_{6}+\epsilon_{7}+\epsilon_{8} ;
vi) \alpha=\epsilon_{7}-\epsilon_{8} and \theta=\epsilon_{6}+2\epsilon_{8}=\epsilon_{8}-\epsilon_{1}-\epsilon_{2}-\epsilon_{3}-\epsilon_{4}-\epsilon_{5}-\epsilon_{7} .
We claim that all \theta-dual pairs belong to R_{e} and that the space they

generate has dimension 5 for the cases i ), ii ) and v); it has dimension 6 for
the cases iii ) and iv) and dimension 7 for the case vi ). Since in all cases
the dimension is strictly less then rank \tilde{R}_{e}=\ell , we conclude that the case
R_{e}=E_{\ell} is impossible.

We prove the claim in the cases v) and vi ) which occur when \tilde{R}_{e}=E_{8} ;
in all other cases the proof is similar.

For case v), the \theta-dual pairs are (up to sign) (-\epsilon_{1}+\epsilon_{i}, \theta+\epsilon_{1}-\epsilon_{i}) ,
where i=2,6,7,8 and they all belong to R_{e} . These vectors generate a
5-dimensional vector space. In case vi ) the \theta-dual pairs are (-\epsilon_{8}+\epsilon i_{i}, \theta+

\epsilon_{8}-\epsilon_{i}) , where i=1 , ., 5 or 7, and again they are all in R_{e} . These vectors
generate a 7-dimensional vector space.

Case (F): \tilde{R}_{e}=F_{4} .
We have the following possibilities:
i) (\alpha, \alpha’)=(\epsilon_{1}+\epsilon_{2}, -(\in s+\epsilon_{4})) ;
ii) (\alpha, \alpha’)=(\epsilon_{1}+\epsilon_{2}, -\epsilon_{3}) ;
iii) (\alpha, \alpha’)=(\epsilon_{1}+\epsilon_{2}, -(1/2(\epsilon_{1}-\epsilon_{2}+\in s+\epsilon_{4})) ;
iv) (\alpha, \alpha’)=(\epsilon_{1}, -\epsilon_{2}) .

Cases i) and iv) are impossible because \theta=\alpha-\alpha’ should be proportional
to no root. The admissible \theta-dual pairs for case ii ) are given by (7.10) and
they all belong to R_{e} . They generate a 3-dimensional subspace and this is
impossible because rank \tilde{R}_{e}=rankF_{4}=4 . A similar argument is applied
for case iii ). \square

Corollary 7.11 If G is simple, then the only possibilities for the pair
(R,\tilde{R}_{e}) are
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( A_{n} , A3), (A_{n}, B_{3}) , ( B_{n} , A3), (B_{n)}B_{3}) ,

(B_{n}, D_{4}) , (D_{n}, D_{4}) , (D_{n}, D_{n}) , (E_{6}, D_{5}) ,

(E7, D_{6} ), (E_{8}, D_{5}) , (E_{8}, D_{7}) , ( F_{4} , A3), (F_{4}, B_{3}) .

Proof. If R is the root system of the simple Lie group G and (\alpha, \alpha’) is a
\theta-dual pair in R_{e} , then the arguments used in the proof of Lemma 7.10 give
the result. \square

Lemma 7.12 Let \tilde{R}_{o}=R_{o}\cap\tilde{R}_{e} , R_{o}’=R_{o}\backslash \tilde{R}_{o} and \alpha , \alpha’\in R_{e} be a \theta -dual
pair. Then

a) \tilde{R}_{e}=[(\{\pm\alpha, \pm\alpha’\}+\tilde{R}_{o})\cap R]\cup\tilde{R}_{o} ;
b) R_{e}=(\{\pm\alpha, \pm\alpha’\}+\tilde{R}_{o})\cap R and R_{J}\cap\tilde{R}_{e}=\emptyset ;
c) R_{Q}=R_{o}\cup R_{e} and R_{P}=R_{o}\cup R_{e}\cup R_{J}^{+} are closed subsystem of R;R_{Q}

is the maximal symmetric subset in R_{P}(i.e . the biggest subset such
that-R_{Q}=R_{Q}) , and R_{P} is parabolic ( i.e . for any root \alpha , either \alpha or
-\alpha belongs to it );

d) (R_{Q}+\tilde{R}_{e})\cap R\subset\tilde{R}_{e} and hence R_{Q}=R_{o}’\cup\tilde{R}_{e} is an orthogonal decom-
position;

e) for any \theta -dual pair (\alpha, \alpha’) let R_{o}(\alpha)=(R_{o}+\{\alpha\})\cap R and R_{o}(-\alpha’)=

(R_{o}+\{-\alpha’\})\cap R) ; then the set of roots

S(\alpha, \alpha’)=R_{o}\cup R_{o}(\alpha)\cup R_{o}(-\alpha’)\cup R_{J}^{+} (7.11)

is a closed parabolic subsystem of R .

Proof. a) When rank \tilde{R}_{e}=2 the claim is trivial.
If \tilde{R}_{e}=B_{3} , we may assume that \alpha=\epsilon_{1}+\epsilon_{2} , \alpha’=-\epsilon_{3} and \theta=\epsilon_{1}+

\epsilon_{2}+\epsilon_{3} . Hence

\tilde{R}_{o}=\tilde{R}_{e}\cap(\theta)^{\perp}=\{\epsilon_{i}-\epsilon_{j}, i, j=1, . . ’ 3\} .

By Lemma 7.7 (4),

(\{\pm\alpha, \pm\alpha’\}+\tilde{R}_{o})\cap R=\{\pm(\epsilon_{i}+\epsilon_{j}), \pm\epsilon_{i}, i, j=1, . , 3\}\subset R_{e} .

Since \tilde{R}_{e}=\tilde{R}_{o}\cup\{\pm(\epsilon_{i}+\epsilon_{j}), \pm\epsilon_{i}, i, j=1, ., 3\} , the claim is proved for
this case.

If \tilde{R}_{e}=D_{\ell} , the argument is similar. In particular, if \theta=2\epsilon_{1} , one
obtains that \tilde{R}_{o}=D_{\ell-1}=\{\pm\epsilon_{i}\pm\epsilon_{j}, i, j>1\} and R_{e}=\{\pm\epsilon_{1}\pm\epsilon_{i}\} .

b) follows directly from a).
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c) The closeness of R_{Q} and R_{P} follows from Lemma 7.7 (4) and (5)
and from point b). The last statement is obvious.

d) The first claim follows from the facts that \tilde{R}_{e}=span_{\mathbb{R}}(R_{e})\cap R and
(R_{o}+R_{e})\cap R\subset Rz . This implies that g(\tilde{R}_{e}) is an ideal of the semisimple
Lie algebra g(R_{Q}) and from this also the second claim follows.

e) By point b), R_{o}(\alpha)\cup R_{o}(-\alpha’)\subset R_{e} and hence R_{o}\cup R_{o}(\alpha)\cup

R_{o}(-\alpha’)\subset R_{Q} and S(\alpha, \alpha’)\subset R_{P}=R_{Q}\cup R_{J}^{+} . Since R_{Q} corresponds
to a reductive part of the parabolic subalgebra g(R_{P}) and R_{J}^{+} corresponds
to the nilradical, it follows that (S(\alpha, \alpha’)+R_{J}^{+})\cap R\subset R_{J^{\tau}}^{+} By d), it remains
to check that R_{o}(\alpha)\cup R_{o}(-\alpha) is a closed subsystem.

In case \tilde{R}_{e}=2A_{1}=D_{2} , we have that R_{o}(\alpha)\cup R_{o}(-\alpha)=\{\alpha, -\alpha’\} and
hence the claim is trivial.

In case \tilde{R}_{e}=Dp , \ell>2 , we may assume that \theta=2\epsilon_{1} , \alpha=\epsilon_{1}+\epsilon_{2} ,
\alpha’=-(\epsilon_{1}-\epsilon_{2}) . Then \tilde{R}_{o}=\{\pm\epsilon_{i}\pm\epsilon_{j}, 1<i, j\} and

R_{o}(\alpha)=\{\epsilon_{1}\pm\epsilon_{i}, 1<i\}=R_{o}(-\alpha’) (7.13)

and the conclusion follows. In case \tilde{R}_{\epsilon}=B_{3} , then \theta=\epsilon_{1}+\epsilon_{2}+\epsilon_{3} , \alpha=

\epsilon_{1}+\epsilon_{2} and \alpha’=-\epsilon_{3} . Then \tilde{R}_{o}=\{\pm(\epsilon_{i}-\epsilon_{j})\} and

R_{o}(\alpha)=\{\epsilon_{i}+\epsilon_{j}\} , R_{o}(-\alpha’)=\{\epsilon_{i}\} (7.13)

and again the conclusion follows. \square

Since g(R_{J}^{+}) is the nilradical of the parabolic subalgebra g(R_{P}) , we
may choose an ordering of the roots such that the positive root system R^{+}

contains R_{J}^{+} . In the following \alpha denotes the maximal root in R_{e}w.r.t . this
ordering and \alpha’ is its associated \theta-dual root.

Proposition 7.13 The orthogonal complement \mathfrak{m}^{\mathbb{C}} to e^{\mathbb{C}} in g^{\mathbb{C}} admits the
following t^{\mathbb{C}} -invariant decomposition:
(1) if \tilde{R}_{e}=B_{3} or D_{2}=A_{1}+A_{1} , then

\mathfrak{m}^{\mathbb{C}}=e+\mathfrak{m}_{J}^{+}+\mathfrak{m}_{J}^{-}=(\mathfrak{m}(\alpha)+\mathfrak{m}(\alpha’)+\overline{\mathfrak{m}(\alpha)}+\overline{\mathfrak{m}(\alpha’)})+\mathfrak{m}_{J}^{+}+\mathfrak{m}_{J}^{-} ,

(7.14)

(2) if \tilde{R}_{e}=D_{l} , then

\mathfrak{m}^{\mathbb{C}}=e+\mathfrak{m}_{J}^{+}+\mathfrak{m}_{J}^{-}=(\mathfrak{m}(\alpha)+\mathfrak{m}(\alpha’))+\mathfrak{m}_{J}^{+}+\mathfrak{m}_{J}^{-} (7.15)

where \mathfrak{m}(\alpha) and \mathfrak{m}(\alpha’) are irreducible e^{\mathbb{C}}-modules with highest weights \alpha ,
\alpha’ , which are equivalent and irreducible as \mathfrak{l}^{\mathbb{C}} -modules.
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In terms of this decomposition, the holomorphic subspace \mathfrak{m}^{10} of the CR
structure (D_{Z}, J) (up to sign) is of the form
(1) if \tilde{R}_{e}=B_{3} or D_{2}=A_{1}+A_{1}’

\mathfrak{m}^{10}=(\mathfrak{m}(\alpha)+t\mathfrak{m}(\alpha’))+(\overline{\mathfrak{m}(\alpha)}+\frac{1}{t}\overline{\mathfrak{m}(\alpha’)})+\mathfrak{m}_{J}^{+} . (7.16)

(2) if \tilde{R}_{e}=D_{\ell}

\mathfrak{m}^{10}=(\mathfrak{m}(\alpha)+t\mathfrak{m}(\alpha’))+\mathfrak{m}_{J}^{+} (7.17)

for some t\in\{x\in \mathbb{C} : 0<|x|<1\}=D\backslash \{0\} .

Proof. From (R_{o}+\alpha)\cap R\subset R_{e} and the definition of \alpha , the root \alpha is the
maximal weight of the t^{\mathbb{C}}-module in \mathfrak{m}^{\mathbb{C}} which contains E_{\alpha} . Moreover since
\alpha’ is \theta-congruent to \alpha , then also \alpha’ is the maximal weight of an \mathfrak{l}^{\mathbb{C}}-and
hence e^{\mathbb{C}}-module, and the \mathfrak{l}^{\mathbb{C}}-modules \mathfrak{m}(\alpha) and \mathfrak{m}(\alpha’) are equivalent. By
Lemma 7.12 b), it follows that the subspace e , spanned by the root vectors
E_{\gamma} , \gamma\in R_{e} , is given by

e =\mathfrak{m}(\alpha)+\mathfrak{m}(\alpha’)+\overline{\mathfrak{m}(\alpha)}+\overline{\mathfrak{m}(\alpha’)} .

Moreover if \tilde{R}_{e}=D_{\ell} , \ell>2 , R_{o}(\alpha)=R_{o}(-\alpha’) (see (7.12)) and hence
\mathfrak{m}(\alpha)=\overline{\mathfrak{m}(\alpha’)} (see also Table 3 in the Appendix).

From Lemma 7.1 and the remark in the second to the last point of \S 7.1,
we obtain that the holomorphic subspace \mathfrak{m}^{10} is of the form

\mathfrak{m}^{10}=(\mathfrak{m}(\alpha)+t\mathfrak{m}(\alpha’))+\mathfrak{m}_{J}^{+}

when \tilde{R}_{e}=D_{\ell} , \ell>2 , and of the form

\mathfrak{m}^{10}=(\mathfrak{m}(\alpha)+t\mathfrak{m}(\alpha’))+(\overline{\mathfrak{m}(\alpha)}+s\overline{\mathfrak{m}(\alpha’)})+\mathfrak{m}_{J}^{+}

when \tilde{R}_{e}=B_{3} or D_{2}=A_{1}+A_{1} , for some t , s\neq 0 . By exchanging \mathfrak{m}^{10}

with \mathfrak{m}^{01} (which corresponds to changing the sign of J) we may assume
that |t|\leq 1 . Using the integrability condition and the assumption that
\theta=\alpha-\alpha’\not\in R , we have

[E_{\alpha}+tE_{\alpha’}, E_{-\alpha}+sE_{-\alpha’}]=H_{\alpha}+tsH_{\alpha’}\in \mathfrak{m}^{10}+\mathfrak{l}^{\mathbb{C}}

and therefore H_{\alpha}+tsH_{\alpha’}\in \mathfrak{l}^{\mathbb{C}} . Using (3.1) we get

0=\theta(H_{\alpha}+tsH_{\alpha’})=\langle\theta|\alpha\rangle+ts\langle\theta|\alpha’\rangle .
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So

s=- \frac{1}{t}\frac{\langle\theta|\alpha\rangle}{\langle\theta|\alpha\rangle}, .

If \tilde{R}_{e}=2A_{1} , it is immediate to check that \langle\theta|\alpha\rangle=2=-\langle\theta|\alpha’\rangle . In case
\tilde{R}_{e}=B_{3} , we may assume that \theta=\epsilon_{1}+\epsilon_{2}+\epsilon_{3} , \alpha=\epsilon_{1}+\epsilon_{2} and \alpha’=-\epsilon_{3} .
Hence again \langle\theta|\alpha\rangle=-\langle\theta|\alpha’\rangle and this shows that in both cases s=1/t .

Finally, the condition \mathfrak{m}^{10}\cap \mathfrak{m}^{01}=\{0\} implies that the vectors E_{\alpha}+

tE_{\alpha’} and \overline{E_{-\alpha}+\frac{1}{t}E_{-\alpha’}}=E_{\alpha}+\frac{1}{t}E_{\alpha’} are linearly independent, and hence
|t|\neq 1 . \square

Lemma 7.14
(1) Let q^{\mathbb{C}}=t^{\mathbb{C}}+e and \mathfrak{p}=q^{\mathbb{C}}+\mathfrak{m}_{J}^{+} . Then \mathfrak{p} is a parabolic subalgebra

of g^{\mathbb{C}} . with reductive part q^{\mathbb{C}} and nilradical \mathfrak{m}_{J}^{+} Moreover, if Q is the
connected subgroup of G with Lie algebra q=q^{\mathbb{C}}\cap g , then F_{2}=G/Q
is a flflag manifold and \mathfrak{m}_{J}^{+} is the holomorphic subspace of an invariant
complex structure J_{2} on F_{2}=G/Q .

(2) The subspace \mathfrak{m}_{J_{1}}^{10}=\mathfrak{m}(\alpha)+\mathfrak{m}(-\alpha’)+\mathfrak{m}_{J}^{+} is the holomorphic subspace
of an invariant complex structure J_{1} of F_{Z}=G/K\tau

(3) The natural G-equivariant projections

\pi : G/Larrow G/Q , \pi’ : G/Karrow G/Q

are holomorphic fifibrations w.r.t. the CR structure (D_{Z}, J) on G/L ,
the complex structure J_{1} on F_{Z}=G/K and the complex structure J_{2}

on F_{2}=G/Q , respectively. Moreover, the typical fifiber C=Q/L of \pi

is either Spin_{7}/SU_{3}=S^{7}\cross S^{6} or SO_{2\ell}/SO_{2p-2} , \ell>1 and the induced
invariant CR structure is primitive.

(4) The typical fifiber C=Q/L of \pi may be equal SO_{4}/SO_{2}=S^{3}\cross S^{2} only
if G=G_{1}\cross G_{2} , with each G_{i} simple.

Proof. (1) The proof follows from Lemma 7.12 c) and the remark that
\mathfrak{p}=g(R_{P})+\mathfrak{h}^{\mathbb{C}} and q^{\mathbb{C}}=g(R_{Q})+\mathfrak{h}^{\mathbb{C}} .

(2) We have to check the conditions a) and b) of (4.2). Condition a)
is obvious. Condition b) means that e^{\mathbb{C}}+\mathfrak{m}(\alpha)+\mathfrak{m}(-\alpha’)=g(S(\alpha, \alpha’))+h^{\mathbb{C}}

is a subalgebra. This follows from Lemma 7.12 e).
(3) The first claim follows from Lemma 4.8.
For the second claim, we recall that we have the following decomposi-
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tions of the Lie algebras q^{\mathbb{C}} and \mathfrak{l}^{\mathbb{C}} :

\mathfrak{l}^{\mathbb{C}}=g(R_{o}’)\oplus(g(\tilde{R}_{o})+Z(t^{\mathbb{C}})) ,

q^{\mathbb{C}}=t^{\mathbb{C}}+e=g(R_{o}’)\oplus(g(\tilde{R}_{e})+Z(q^{\mathbb{C}})) .

Since the fiber Q/L has a non-standard CR structure, the group Q’=
Q/N , where N is its kernel of non-effectivity, is semisimple by Corollary 3.2
and Proposition 4.6. Therefore it has Lie algebra q^{\prime \mathbb{C}}=g(\tilde{R}_{e})=B_{3} or
D_{\ell} . The corresponding stability subalgebra t^{\prime \mathbb{C}}=\mathfrak{l}^{\mathbb{C}}/\mathfrak{n}^{\mathbb{C}} has rank equal to
rank(q^{\prime \mathbb{C}}) –1 and his semisimple part is g(\tilde{R}_{o})=A_{2} or D_{\ell-1} . Hence the
fiber Q/L=Q’/L’ . considered as homogeneous manifold of the effective
group Q’ , is either Spin_{7}/SU_{3} or SO_{2\ell}/SO_{2\ell-2} (note that SO_{7} does not
contains SU_{3} ). The manifold Spin_{7}/SU_{3} can be identified with the unit
sphere bundle S(Spin_{7}/G_{2})=S(S^{7})=S^{7}\cross S^{6} .

The holomorphic subspace \mathfrak{m}^{10}(Q/L) of the CR structure of the fiber
Q/L is of the form (\mathfrak{m}(\alpha)+t\mathfrak{m}(\alpha’))+(\overline{\mathfrak{m}(\alpha)}+1/t\overline{\mathfrak{m}(\alpha’)}) for some t\neq 0 and
the minimal e^{\mathbb{C}}-module generated by \mathfrak{m}^{10}(Q/L) is e . By Lemma 4.8, this
implies that the CR structure on Q/L is primitive.

(4) It is sufficient to observe that if G is simple, the case \tilde{R}_{e}=A_{1}\cup A_{1}

cannot occur by Corollary 7.11. \square

Lemma 7.13 (3) and Proposition 7.13 directly imply Proposition 7.5.

Now it remains to prove Proposition 7.6. Let (M=G/L, D_{Z}, J) be a
non-standard non-primitive CR manifold with contact form \theta not propor-
tional to any root. We recall that in Lemma 7.14 (3) we defined a complex
structure J_{1} on the flag manifold F_{Z}=G/K , associated with the decom-
position g^{\mathbb{C}}=t^{\mathbb{C}}+\mathfrak{m}_{J_{1}}^{10}+\mathfrak{m}_{J_{1}}^{01} . We also defined another flag manifold F_{2}=

G/Q , with q^{\mathbb{C}}=e^{\mathbb{C}}+e , with invariant complex structure J_{2} associated
with the decomposition g^{\mathbb{C}}=q^{\mathbb{C}}+\mathfrak{m}_{J}^{+}+\mathfrak{m}_{J}^{-} and such that the projection
\pi : (F_{Z}=G/K, J_{1})arrow(F_{2}=G/Q, J_{2}) is holomorphic. Moreover the CR
structure (D_{Z}, J) on G/L has the holomorphic subspace defined in (7.16)
and (7.17).

The subalgebra e^{\mathbb{C}} corresponds to the root subsystem R_{o} , which has the
orthogonal decomposition R_{o}=R_{o}’\cup\tilde{R}_{o} , and q^{\mathbb{C}} corresponds to the root
subsystem with the orthogonal decomposition R_{Q}=R_{o}’\cup\tilde{R}_{e}=R_{o}’\cup(\tilde{R}_{o}\cup

R_{e}) (see Lemma 7.12). Moreover there are only three possibilities for the
pair of subsystems (\tilde{R}_{e},\tilde{R}_{o}) , namely (D_{2}=2A_{1}, \emptyset) , (D_{\ell}, D_{\ell-1}) , \ell>2 , or
(B_{3}, A_{2}) . However, the following lemma shows that this last case cannot
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occur.

Lemma 7.15 If R_{J}\neq\emptyset , then \tilde{R}_{e}\neq B_{3} .

In other words, the fiber C=Q/L of the CRF fibration \pi : G/L -

G/Q described in Lemma 7.14 (3) cannot be Spin_{7}/SU_{3} if the base is not
trivial.

Proof. Assume that \tilde{R}_{e}=B_{3} . Then G is simple and R is indecomposable
by Lemma 7.9. So R has type either B_{n} or F_{4} , because these are the only
connected Dynkin graphs which contain a subgraph of type B_{3} .

If R=F_{4} , using the notation of the Appendix, we may assume that
(\alpha=\epsilon_{2}+\epsilon_{3}, \alpha’=-\epsilon_{4}) is a \theta-dual pair in R_{e} . Since \theta=\epsilon_{2}+\epsilon_{3}+\epsilon_{4} , then
-\epsilon_{4}+\epsilon_{1}\in R_{J} , because it is not orthogonal to \theta nor has a \theta-dual root;
moreover -\epsilon_{1}\in R_{o}=R\cap(\theta)^{\perp} and hence -\epsilon_{4}=(-\epsilon_{4}+\epsilon_{1})-\epsilon_{1}\in R_{J} , by
Lemma 7.7 (4): contradiction.

Assume now that R=B_{n} , n>3 . Then we may assume that (\alpha, \alpha’)=

(\epsilon_{1}+\epsilon_{2}, -\epsilon_{3}) is a \theta-dual pair in R_{e} and hence that \theta=\epsilon_{1}+\epsilon_{2}+\epsilon_{3} . Then,
as before, we get that -\epsilon_{3}+\epsilon_{4}\in R_{J} , -\epsilon_{4}\in R_{o} and hence that -\epsilon_{3}=

(-\epsilon_{3}+\epsilon_{4})+(-\epsilon_{4})\in R_{J} : contradiction. \square

Now we construct some special basis II for R, which we will call good.
For any basis II let

\Pi_{O}=\Pi\cap R_{o} , \tilde{\Pi}_{O}=\Pi_{O}\cap\tilde{R}_{e} , \tilde{\Pi}_{e}=\Pi\cap\tilde{R}_{e} , \Pi_{e}=\square \cap R_{e} .

Then

\tilde{\Pi}_{e}=\Pi_{e}\cup\tilde{\Pi}_{O} .

A basis II is called good if

\tilde{R}_{o}=[\tilde{\Pi}_{O}] , \tilde{R}_{e}=[\tilde{\Pi}_{e}] , R_{o}=[\Pi_{o}] ,

where for any subset A\subset\Pi we denote [A]=span(A)\cap R .

A good basis exists because R_{o}\cup\tilde{R}_{e}=R_{o}’\cup\tilde{R}_{e} is a closed subset of
roots , R_{o}’ is orthogonal to \tilde{R}_{e} and R_{o}=R_{o}’\cup(R_{o}\cap\tilde{R}_{e})=R_{o}’\cup\tilde{R}_{o} . In fact,
we may take a basis \tilde{\Pi}_{o} for \tilde{R}_{o} , extend it to a basis \tilde{\Pi}_{e} for \tilde{R}_{e} , add to it a
basis for R_{o}’ and finally extend everything to a basis II for R .

By the remarks before Lemma 7.15, the pair (\tilde{\Pi}_{t},\tilde{\Pi}_{O}) is of type
(D\ell, Dp-1) , \ell>2 , or (2A_{1}, \emptyset) and it can be represented by the fo11owi_{Il}g
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two graphs

Rarrow 22 -_{\backslash _{O}}^{\gamma^{o}}2211 (7.18)

1
-1\otimes

\otimes (7.19)

where the subdiagram \tilde{\Pi}_{o} is obtained by deleting the grey nodes. Moreover,
by Lemma 7.10, the contact form \theta is the linear combination of the simple
roots associated with the nodes of (7.18) and (7.19) with the indicated c0-

efficients. For example, if (\tilde{\Pi}_{e},\tilde{\Pi}_{O})=(D_{\ell}, D_{\ell-1}) and if we use the standard
correspondence between nodes and roots, we get

\theta=2(\epsilon_{1}-\epsilon_{2})+ +2(\epsilon_{\ell-2}-\epsilon_{\ell-1})+(\epsilon_{\ell-1}-\in\ell)+(\epsilon_{\ell-1}+\in p)

=2\epsilon_{1} .

Note that if \ell=4 , using two permutations of the simple roots corresponding
to the end nodes, one gets the other two possible contact forms, namely \theta=

\epsilon_{1}+\epsilon_{2}+\epsilon_{3}+\epsilon_{4} and \theta=\epsilon_{1}+\epsilon_{2}+\epsilon_{3}-\epsilon_{4} .
Remark that a good basis \Pi together with the subsets \Pi_{o} and \Pi_{e} com-

pletely determines the homogeneous CR manifold M=G/L and the flag
manifolds (F_{Z}=G/K, J_{1}) and (F_{2}=G/Q, J_{2}) . In fact the root systems
R_{o}=R(K) of K and R(Q) of Q are given by R_{o}=[\Pi_{O}] and R(Q)=[\tilde{\Pi}_{e}=

\Pi_{O}\cup\Pi_{e}] and \mathfrak{l}=t\cap(ker\theta) , where \theta is defined by (7.18)-(7.19).
Notice also that by definition of good basis

R\cap(\theta)^{\perp}=R_{o}=[\Pi_{O}] (7.20)

and hence that

\Pi_{O}=\square \cap(\theta)^{\perp} . (7.21)

Any good basis \Pi together with the subsets \Pi_{O} and \Pi_{e} can be represented
by a painted Dynkin graph \Gamma=\Gamma(\square ) if we paint the nodes corresponding
to the roots of \Pi_{e} in grey, the nodes of \Pi_{O} in white and all others in black.

We call such graph \Gamma a painted Dynkin graph associated with the CR

manifold (M=G/L, D_{Z}, J) .
Any associated painted Dynkin graph has the following two properties.

(1) It contains a unique proper subgraph \Gamma_{e} of type (7.18), if it is con-
nected, or of type (7.19), if it is not connected; moreover in this second
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case, \Gamma=\Gamma_{1}\cup\Gamma_{2} has two connected components and each of them
contains exactly one grey node.

(2) The black nodes are exactly the nodes which are linked to \Gamma_{e} .
Indeed, (1) follows from definition of good basis, Lemma 7.9 and Lemma 7.2.
(2) follows from (7.21).

A painted Dynkin graph which satisfies (1) and (2) is called admissible
graph.

Let \Gamma be an admissible graph and \Gamma_{e} the corresponding subgraph of
type (7.18) or (7.19). We denote by \theta(\Gamma) the linear combination of roots
associated with the nodes of \Gamma_{e} as prescribed in (7.18)-(7.19).

AI1 admissible graph \Gamma is called good if

[\Pi_{o}]=R\cap(\theta)^{\perp} . (7.22)

where \Pi_{o} is the set of simple roots associated with the white nodes of \Gamma

Remark that by (7.20) any graph associated with (M=G/L, D_{Z}, J) is a
good graph. The converse of this statement is also true.

Lemma 7.16 Any good graph is a painted Dynkin graph associated to
a homogeneous CR manifolds (G/L, D_{Z}, J) , which have a contact form \theta

parallel to no roots and where (D_{Z}, J) is non-standard and non-primitive.

Proof. Let \Gamma be a good graph and \theta(\Gamma) the corresponding contact form. As
described in \S 7.4, \Gamma defines two flag manifolds F_{1}(\Gamma)=G/K and F_{2}(\Gamma)=

G/Q , with invariant complex structures J_{1}(\Gamma) and J_{2}(\Gamma) , respectively. De-
note by

g^{\mathbb{C}’}=f^{C}+\mathfrak{m}_{J_{1}}^{10}+\mathfrak{m}_{J_{1}}^{01}(, g^{\mathbb{C}}=q^{\mathbb{C}}+\mathfrak{m}_{J_{2}}^{10}+\mathfrak{m}_{J_{2}}^{01}

the corresponding associated decompositions. Consider also the element
Z=iB^{-1}\circ\theta(\Gamma) . Since the 1-parametric subgroup generated by Z is closed,
by Proposition 3.3 it defines a contact manifold (M=G/L, D_{Z}) with \mathfrak{l}=

t\cap(Z)^{\perp} . Moreover the fiber C=Q/L of the fibration \pi : G/L – G/Q ,
together with the contact structure induced on C by Z , is one of the contact
manifolds described in Proposition 7.5 admitting a primitive CR structure.

If \mathfrak{m}_{C}^{10} is the holomorphic subspace of such CR structure, then \mathfrak{m}^{10}=

\mathfrak{m}_{C}^{10}+\mathfrak{m}_{J_{2}}^{10} is the holomorphic subspace of a non-standard CR structure
(D_{Z}, J) on G/L and the associated painted Dynkin graph is exactly
(\Gamma, \theta(\Gamma)) . In fact, the conditions i) and ii ) of Definition 4.1 are immediate.
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The integrability condition follows from the fact that \mathfrak{m}_{C}^{10} is a holomorphic
subspace for a CR structure on C=Q/L (and hence that t^{\mathbb{C}}+\mathfrak{m}_{C}^{10} is a
subalgebra), that \mathfrak{m}_{J_{2}}^{10} is the nilradical of the parabolic subalgebra

q^{\mathbb{C}}+\mathfrak{m}_{J_{2\square }}^{10}

,
and that \mathfrak{m}_{C}^{10}\subset q^{\mathbb{C}} .

Now the classification of homogeneous CR manifolds of the considered
type reduces to the classification of good graphs \Gamma

Case 1: \Gamma is not connected.
In this case \Gamma_{e}=A_{1}\cup A_{1} , \Gamma=\Gamma_{1}\cup\Gamma_{2} , where each \Gamma_{i} is a connected

component which corresponds to a root system R_{i} , and R=R_{1}\cup R_{2} .
Moreover \theta=\alpha_{1}-\alpha_{2} , where \alpha_{i}\in R_{i} .

We prove that if \Gamma is good then R=A_{p}\cup A_{q} , with p+q>1 and that
\Gamma is a CR-graph of type II .

First of all, one can easily check that if one of the connected components
\Gamma_{i} is not of type A_{q} , then \Gamma is not good, that is that there exists a root
\beta\in R\cap(\theta)^{\perp} which is not in [\Pi_{o}] . For example, if R_{1}=D_{q} , we may assume
that \theta=\alpha_{1}-\alpha_{2} , where \alpha_{1}=\epsilon_{1}-\epsilon_{2} . Then \beta=\epsilon_{1}+\epsilon_{2}\in R\cap(\theta)^{\perp} but it
is not in [\Pi_{O}] .

Assume now that R=A_{p}\cup A_{q} . Without loss of generality we may
assume that \alpha_{1}=\epsilon_{k}-\epsilon_{k+1} , \alpha_{2}=\epsilon_{r}’-\epsilon_{r+1}’ are the roots associated with
the grey nodes of \Gamma_{1} and \Gamma_{2} , respectively. Then R\cap(\theta)^{\perp}=A_{p-2}\cup A_{q-2}‘

and it coincides with [\Pi_{O}] if and only if the nodes of the roots \alpha_{i} are end
nodes. This proves that \Gamma is good if and only if it is a CR-graph of type II
(see Definition 7.4).

Case 2: \Gamma is connected
In this case, \Gamma is a good graph only if the type of the pair (\Gamma, \Gamma_{e}) is one

of the following

( A_{n} , A3), ( B_{n} , A3), (D_{n}, D_{4}) , (E_{6}, D_{5}) ,

(E7, D_{6} ), (E_{8}, D_{5}) , (E_{8}, D_{7}) .

This follows from Corollary 7.11 and the fact that ( A_{n} , A3), (B_{n}, B_{3}) ,
(B_{n}, D_{4}) , (D_{n}, D_{n}) , ( F_{4} , A3) and (F_{4}, B_{3}) do not correspond to any ad-
missible graph.

We first prove that the cases ( B_{n} , A3), (E7, D_{6} ), (E_{8}, D_{5}) and (E_{8}, D_{7})

are not possible.
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i) (\Gamma, \Gamma_{e})= ( B_{n} , A3). In this case \Gamma is of the form
\alpha_{1} \alpha_{2} \alpha_{3}

\mapsto . .-\circ-0-\circ\infty\circ-0–. .arrow=0

where \alpha_{1}=\epsilon_{k}-\epsilon_{k+1} , \alpha_{2}=\epsilon_{k+1}-\epsilon_{k+2} and \alpha_{3}=\epsilon_{k+2}-\epsilon_{k+3} . Then
\theta(\Gamma)=\alpha_{1}+2\alpha_{2}+\alpha_{3}=\epsilon_{k}+\epsilon_{k+1}-\epsilon_{k+2}-\epsilon_{k+3} and

\Pi_{o}=\{\epsilon_{i}-\epsilon_{i+1}, i=1, ., k-2;k;k+2;k+4, \ldots, n-1;\epsilon_{n}\} .

However the root \beta=\epsilon_{k+1}+\epsilon_{k+2}\in(\theta(\Gamma))^{\perp}\cap R but it does not belong
to [\Pi_{o}] : contradiction,

ii)(\Gamma, \Gamma_{e})=(E_{7}, D_{6}) . In this case \Gamma and \theta(\Gamma) are
\alpha_{1} \alpha_{2} \alpha_{3} \alpha_{4} \alpha_{5} \alpha_{6}

\theta(\Gamma)=2\epsilon_{1}+\epsilon_{7}+\epsilon_{8} .

However, this situation corresponds to no good graph, because the
root \beta=\epsilon_{7}-\epsilon_{8} is in \theta(\Gamma)^{\perp}\cap R , but it does not belong to

[\Pi_{O}]=[\{\alpha_{2}, \alpha_{3}, \alpha_{4}, \alpha_{5}, \alpha_{7}\}]

=\{\epsilon_{a}-\epsilon_{b}, \pm(\epsilon_{a}+\epsilon_{b}+\epsilon_{7}+\epsilon_{8}), 1\leq a, b\leq 6\} .

iii)(\Gamma, \Gamma_{e})=(E_{8}, D_{5}) . Then \Gamma and \theta(\Gamma) are

\circ-\circ-arrow\tau^{R}\circ
\theta(\Gamma)=\epsilon_{4}+\epsilon_{5}+\epsilon_{6}+\epsilon_{7}-\epsilon_{8} .

One can easily check that the root \beta=\epsilon_{1}+\epsilon_{2}+\epsilon_{4} is orthogonal to
\theta(\Gamma) , but it doesn’t belong to the subsystem

[\Pi_{o}]=[\{\alpha_{1}, \alpha_{2}, \alpha_{4}, \alpha_{5}, \alpha_{6}, \alpha_{8}\}]

generated by white roots: contradiction,

iv)(\Gamma, \Gamma_{e})=(E_{8}, D_{7}) . Then \Gamma and \theta(\Gamma) are

, \theta(\Gamma)=2\epsilon_{1}+\epsilon_{8} .

Also this case is not possible because \epsilon_{7}-\epsilon_{9}\in R\cap(\theta(\Gamma))^{\perp} but it is
not in [\Pi_{o}]=[\{\alpha_{2}, \alpha_{3}, \alpha_{4}, \alpha_{5}, \alpha_{6}, \alpha_{8}\}] .

It remains to describe the good graphs of the following types

1) ( A_{n} , A3), 2) (D_{n}, D_{4}) , 3) (E_{6}, D_{5}) .
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(1) (\Gamma, \Gamma_{e})=(A_{n}, A_{3}) .
Assume that \Gamma_{e} is not at an end of \Gamma , that is

\alpha_{1} \alpha_{2} \alpha_{3}

arrow –0

Then we may assume that \alpha_{i}=\epsilon_{p+i}-\epsilon_{p+i+1} . Then \theta(\Gamma)=\alpha_{1}+2\alpha_{2}+

\alpha_{3}=\epsilon_{p+1}+\epsilon_{p+2}-\epsilon_{p+3}-\epsilon_{p+4} and the root \beta=\epsilon_{p}-\epsilon_{p+5}\in R\cap(\theta(\Gamma))^{\perp}

but it is not in the span of \Pi_{o} ; hence the graph is not good. On the other
hand one can easily check that the graph

–0

is good.

(2) (\Gamma, \Gamma_{e})=(D_{n}, D_{4}) .
In this case we have two admissible graphs:

arrow \infty\circ-\mapsto 0\alpha_{n-3}\alpha_{n-\alpha_{O}}2\backslash \alpha_{n-1}\alpha_{n} (7.23)

\alpha_{n-1}

\circ- (7.24)
\alpha_{n}

Using the standard equipment, we have that if \Gamma is given by (7.23), then

\theta(\Gamma)=\alpha_{n-3}+2\alpha_{n-2}+\alpha_{n-1}+2\alpha_{n}=\epsilon_{n-3}+\epsilon_{n-2}+\epsilon_{n-1}+\epsilon_{n}

and R\cap(\theta(\Gamma))^{\perp}=D_{n-4}\cup A_{3} . If \Gamma is given by (7.24), then

\theta(\Gamma)=2\alpha_{n-3}+2\alpha_{n-2}+\alpha_{n-1}+\alpha_{n}=2\epsilon_{n-3}

and R\cap(\theta(\Gamma))^{\perp}=D_{n-1} .
Since in both cases [\Pi_{o}]=A_{n-5}\cup A_{3} , the graph (7.24) is not good,

while the graph (7.23) is good only when n=5 .

(3) (\Gamma, \Gamma_{e})=(E_{6}, D_{5}) .
Up to isomorphism, we have only one admissible graph

\alpha_{1} \alpha_{2} \alpha_{3} \alpha_{4} \alpha_{5}

Using the standard equipment, we get

\theta(\Gamma)=2(\alpha_{1}+\alpha_{2}+\alpha_{3})+\alpha_{4}+\alpha_{6}=2\epsilon_{1}+\epsilon_{6}+\epsilon .
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Then

R\cap(\theta(\Gamma))^{\perp}=\{\epsilon_{a}-\epsilon_{b}, \pm(\epsilon_{a}+\epsilon_{b}+\epsilon_{6}+\epsilon), a, b=2,3,4,5\}

=[\Pi_{o}]=D_{4}

and hence the graph is good.

This concludes the classification of good graphs. We proved that the
pairs (\Gamma, \theta(\gamma)) given by all good graphs are exactly the non-special CR-
graphs of Definition 7.4. By the remarks before Lemma 7.16 and the Lem-
mata 7.14 and 7.16, Proposition 7.6 follows.

8. Primitive and non-standard non-primitive CR manifolds

In this conclusive section, we collect the information of Theorem 5.1,
Corollary 5.2 and Propositions 7.3, 7.5 and 7.6 to enumerate all primitive
CR manifolds and non-standard non-primitive CR manifolds.

The list of primitive CR manifolds is easily obtained taking in account
the primitive CR manifolds described in Corollary 5.2 and the primitive
CR manifolds described in Propositions 7.3 and 7.5. Moreover, we have the
following.

Lemma 8.1 Any primitive CR manifold (M=G/L, D, J) is a MorimotO-
Nagano space.

Proof. By Theorem 6.3, the anti-canonical map

\phi : G/Larrow Gr_{k}(g^{C})\subset \mathbb{C}P^{N}

is a finite holomorphic covering of the G-0rbit G/\hat{L}=Gp=\phi(G/L)\subset

Grk(Qc) p=\phi(eL) . Observe also that \phi(G/L)=G/\hat{L} does not admit any
CRF fibration: in fact, if G\cdot p=G/\hat{L} admitted a CRF fibration, then there
would exists a parabolic subalgebra \mathfrak{p}\subset g^{C} . which satisfies the conditions
of Lemma 4.8 and hence also M=G/L would admit a CRF fibration.

By [1], the orbit G/\hat{L}=G p is a real hypersurface in the complex
orbit G^{\mathbb{C}}p=G^{\mathbb{C}}/H of the complexified group G^{\mathbb{C}} and the complex orbit
G^{\mathbb{C}} p=G^{\mathbb{C}}/H is either Stein or it admits a holomorphic fibration \pi :
G^{\mathbb{C}}/H – F=G^{C}/P onto a flag manifold F=G^{C}/P . This second case
cannot occur, because otherwise \pi would induce a CRF fibration \pi : G/\hat{L} –

F=G^{C}/P . Since G is a compact Lie group acting holomorphically on the
Stein manifold G^{\mathbb{C}} p=G^{\mathbb{C}}/H with orbits of codimension one, by [9], it
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follows immediately that the orbit G/\hat{L}=Gp\subset G^{\mathbb{C}}/H is a MorimotO-
Nagano space. By a direct inspection of all cases, it can also be checked
that any MorimotO-Nagano space is either simply connected or it admits
a holomorphic covering by a simply connected MorimotO-Nagano space.
Hence, also the simply connected primitive CR manifold M=G/L is a
MorimotO-Nagano space. \square

Collecting these information, we have the following theorem.

Theorem 8.2 Let (M=G/L, D_{Z}, J) be a simply connected, primitive,
homogeneous CR manifold and let \theta=B\circ Z|_{t} be the dual form of the
contact element Z restricted to a Cartan subalgebra t of t =C_{\mathfrak{g}}(Z)=(+

\mathbb{R}Z . Then G/L is isomorphic to the universal covering space of a sphere
bundle S(N)\subset T(N) of a CROSS N The groups G, K=C_{G}(Z) , the form
\theta=-i\theta and the CROSS N are listed in the following table.

n^{o} G K=C_{G}(Z) \theta N=G/H

1 SU_{2} \cross SU_{2}’ T^{1}\cross T^{1\prime}
(\in_{1}-\epsilon_{2})+(\epsilon_{1}’-\epsilon_{2}’) S^{3}= \frac{so}{so_{3}}

2 Spin_{7} T^{1} . SU_{3} \epsilon_{1}+\in_{2}+\epsilon_{3} S^{7}= \frac{Spin_{7}}{G_{2}}

3 G_{2} T^{1} . SU_{2} \epsilon_{1} S^{6}= \frac{G}{s}U_{3}2_{-}

4 F_{4} T^{1} SO_{7} \epsilon_{1} \mathbb{O}P^{2}=\frac{F}{Spin}-9

5 SO_{2n+1} n>1 T^{1} SO_{2n-1} \epsilon_{1} S^{2n}= \frac{so_{2n+1}}{so_{2\mathfrak{n}}}

6 SO_{2n} n>2 T^{1} SO_{2n-2} \epsilon_{1} S2n-1= \frac{s}{so}-Orarrow 27l-1

7 SU_{n+1} n>1 T^{1} U_{n-1} \epsilon_{1}-\in_{2} \mathbb{C}P^{n}=\frac{SU_{n+1}}{U_{n}}

\Omega Q_{\cap} \varphi 1 Q_{\eta} . . Q_{\cap}
\wedge

Cn\perp C_{\wedge} r pn-l –

Sp_{n}
\cup .\mu n p .P\perp -.Pn–.A \circ\perp I c\angle \Delta 41

-\overline{Sp_{1}}Sp_{\mathfrak{n}-1}

Putting together the lists of non-primitive CR manifolds in Corollary 5.2
and those in Proposition 7.6, we also obtain the complete table of non-
standard non-primitive CR manifolds, which give in the following theorem.
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Theorem 8.3 Let (M=G/L, D_{Z}, J) be a simply connected homogeneous
CR manifold with a non-standard non-primitive CR structure.

Then, either M=SU_{2} or there exists a unique CRF fifibration
\pi : M=G/Larrow F=G/Q

over a flflag manifold F with an invariant complex structure J_{F} , such that
the fifiber C=Q/L is either a primitive CR manifold or is equal to SO_{3}=

S(S^{2}) . Moreover the groups G , L , the primitive fifiber C=Q/L and the flflag
manifold F=G/Q are as in the following table (in n.2 , the subgroups U_{p-2}

and U_{q-2}’ of L are subgroups of the factors SU_{p} and SU_{q}’ of G , respectively):

n^{o} G L C=Q/L F=G/Q

1 SU_{n} n>2 T^{1} . SU_{n-2} SO_{3}=S(S^{2}) \underline{SU_{n}}

\overline{S(U_{2}}U_{n-2})

2 SU_{p}p+ q>4\cross SU_{\acute{q}}

T^{1} . U_{p-2} . U_{q-2}’ \frac{so}{so_{2}}=S(S^{3}) \frac{sU_{p}}{S(U_{2}U_{p-2})} \cross\frac{SU_{q}}{s(U_{2}U_{q-2})}

3 SU_{n} n>4 T^{1} . (SU_{2}\cross SU_{2}) . SU_{n-4} \frac{s}{s}o_{4}oA=S(S^{5})
\underline{SU_{n}}
\overline{S(U_{4}\cross U_{n-4})}

4 SO_{10} T^{1} SO_{6} \frac{so}{so}6a_{=S(S^{7})} \frac{s}{T^{1}}\frac{o}{s}O_{8}L

5 E_{6} T^{1} so_{8} \frac{s}{s}\frac{o}{o}8a=S(S^{9}) \overline{T^{1}}so_{10}\Leftrightarrow E

In particular, the fifiber C is a sphere bundle S(S^{r})\subset TS^{r} where r=2,3,5,7
or 9. The CR manifolds in n.1 admit also a CRF fifibration with fifiber S^{1} .

We conclude with the next Theorem 8.4, where it is indicated how a
non-standard, non-primitive CR structure can be totally recovered from a
CR-graph (see the definition and basic properties of CR-graphs in \S 7.4).

We recall that the explicit classification of non-standard, non-primitive
CR structures on non-special CR manifolds using non-special CR-graphs is
already given in Proposition 7.6. On the other hand, the explicit description
given in Theorem 5.1 and Corollary 5.2 of non-standard, non-primitive CR
structures on special CR manifolds can be easily restated using special CR-
graphs. Putting these results together, one obtains the following description
in term of CR-graphs of any non-standard, non-primitive CR structure.
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Theorem 8.4 Let M=G/L be a simply connected, homogeneous CR

manifold with a non-primitive, non-standard CR structure (D_{Z}, J) . Suppose
also that M\neq SU_{2} .

Denote by \pi : G/Larrow F_{Z}=G/K the natural (non-holomorphic) fifibra-
tion associated with the contact structure D_{Z} and by \pi’ : G/Larrow F_{2}=G/Q

the unique CRF fifibration over a flflag manifold F_{2}=G/Q with invariant
complex structure J_{2} , with non-standard fifiber Q/L of minimal dimension,
which is either primitive or admitting a CRF fifibration with fifiber S^{1} .

Then Q\supset K and the sequence of fifiberings

M=G/Larrow F_{Z}=G/Karrow F_{2}=G/Q

is holomorphic with respect to the standard CR structure (D, J_{s}) on M .

associated to (D, J) , the corresponding complex structure J_{s} on F_{Z} and the
complex structure J_{2} on F_{2} .

Moreover, the painted Dynkin graph \Gamma associated to the flflag manifolds
F_{1}=F_{Z} , F_{2} with complex structures J_{1}=J_{s} and J_{2} , respectively, is a CR
graph and (up to a transformation from the Weyl group) Z is proportional
to Z(\Gamma)=iB^{-1}\circ\theta(\Gamma) .

Conversely, if \Gamma is a CR-graph, then there exists a unique homogeneous
contact manifold (M=G/L, D_{Z}) such that Z=iB^{-1}\circ\theta(\Gamma) and F_{Z}=

F_{1}(\Gamma)=G/K . The complex structure J_{1}(\Gamma) defifines the unique standard
CR structure (D_{Z}, J_{1}(\Gamma)) on M such that the sequence of fifibrations

M=G/Larrow F_{Z}=F_{1}(\Gamma)=G/Karrow F_{2}(\Gamma)=G/Q

is holomorphic w.r.t . (D_{Z}, J_{1}(\Gamma)) , J_{1}(\Gamma) and J_{2}(\Gamma) . The space of the invari-
ant CR structures (D_{Z}, J) on M such that the projection \pi’ : M – F_{2}(\Gamma)

is holomorphic, is parameterized by the points of the unit disc D\in \mathbb{R}^{2} .
The center of D corresponds to the CR structure (D_{Z}, J_{1}(\Gamma)) and the other
points correspond to the non-standard CR structures. Moreover a CR struc-
ture is non-standard if and only if it induces a non-standard CR structure
on the fifiber Q/L ; such induced CR structure is always primitive, with the
exceptions of the cases in which \Gamma is a special CR-graph.

Appendix

The notation used in the following Tables is the same of [7]. We recall
that the weights of the groups B_{\ell} , C_{\ell} , D_{\ell} and F_{4} are expressed in terms of
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an orthonormal basis (\epsilon_{1}, . , \epsilon\ell) of \mathfrak{h}(\mathbb{Q})^{*} The weights of the groups A_{\ell} ,
E7, E_{8} and G_{2} are expressed using vectors \epsilon_{1} , , \epsilon p+1\in \mathfrak{h}(\mathbb{Q})^{*} such that

\sum\epsilon_{i}=0 , (\epsilon_{i}, \epsilon_{j})=\{\begin{array}{l}\frac{\ell}{\ell+1}-\frac{1}{\ell+1}\end{array} i=ji\neq j (A. 1)

It is useful to recall that if \sum a_{i}=0 , then ( \sum a_{i}\epsilon_{i}, \sum b_{j}\epsilon_{j}i)=\sum a_{i}b_{i} . For
E_{6} , the weights are expressed by vectors \epsilon_{1} , ., \epsilon_{6} , which satisfy (A.I) with
\ell=5 , and by an auxiliary vector \epsilon which is orthogonal to all \epsilon_{i} and satisfies
(\epsilon, \epsilon)=1/2 .

In Table 1, for any simple complex Lie group g^{\mathbb{C}} , we give the correspond-
ing root system R, the longest root \mu (unique up to inner automorphisms),
the subalgebra g_{0}’=C_{\mathfrak{g}^{C}}(g(\mu)) , the subsystem of roots R_{o} corresponding
to g_{0}’ , the decomposition into irreducible submodules of the 90-module g_{1}

which appear in the decomposition (3.2), and the set of roots R_{1}=R^{+}\backslash

(\mu\cup R_{o}) .
For a set of simple roots of g_{0}’ , we denote by \{\pi_{1}, , \pi p\} the corre-

sponding system of fundamental weights and, for any weight \lambda=\sum a_{i}\pi_{i} ,
we denote by V(\lambda) the irreducible g_{0}’-module with highest weight \lambda .

In Table 2, we give the information needed to determine the holomor-
phic subspaces \mathfrak{m}^{10} when g^{\mathbb{C}} is a simple Lie algebra and the contact form
\theta=-iB\circ Z|_{\mathfrak{h}} is parallel to a short root.

In Table 3 we give the same information for the cases g^{\mathbb{C}}=B_{3} or Dp

and \theta proportional to no root and associated with a primitive CR structure.
In both tables we give the root systems R, the contact form \theta , the

subalgebra \mathfrak{l}^{\mathbb{C}}=C_{9^{C}}(Z)\cap(Z)^{\perp} , the root subsystem R_{o} of t^{\mathbb{C}} and the list
of the highest weights for the irreducible e^{\mathbb{C}}-modules in \mathfrak{m}^{\mathbb{C}}(f^{\mathbb{C}}=C_{\mathfrak{g}^{C}}(Z)) .
We group the highest weights corresponding to equivalent \mathfrak{t}^{\mathbb{C}}-modules with
curly brackets.

In Table 4 we recall the Dynkin graphs associated with indecomposable
root systems and the correspondence used in [7] between nodes and simple
roots.
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Table 1

Table 2
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Table 3

Table 4
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