Weighted weak type inqualities for maximal commutators of Bochner-Riesz operator

Liu Lanzhe and Lu Shanzhen

(Received July 18, 2001; Revised November 30, 2001)

Abstract. In this paper, we establish endpoint estimates of $L(\log L)$ type for maximal commutators of Bochner-Riesz operators, and the weighted weak type estimates for the commutators are also obtained.

Key words: Bochner-Riesz operator, commutator, weak type inequality, weight, sharp function.

1. Introduction

Let $b \in BMO(\mathbb{R}^n)$ and T be a Calderon-Zygmumd operator. Consider the commutator defined by

$$[b, T]f(x) = b(x)Tf(x) - T(bf)(x).$$

A classical result of Coifman, Rochberg and Weiss [3] proved that [b, T] is bounded on $L^p(\mathbb{R}^n)$ (1 . However, it is observed that <math>[b, T] is not, in general, weak type (1,1). In fact, Perez [10] proved that [b, T] satisfies $L(\log L)$ type inequality. The purpose of this paper is to consider a similar problem: how to establish the weak type inequalities for the maximal commutators of Bochner-Riesz operators. Recently, the boundedness of the commutators on $L^p(\mathbb{R}^n)$ and Herz-type Hardy spaces are studied in [7], [9], we go on doing this work. We show that the commutators satisfy $L(\log L)$ type inequalities, and the weighted weak type inequalities for the commutators are also obtained. In Section 2 and 3, we will give some concepts and Theorems of this paper, whose proofs will appear in Section 5, and Section 4 contains some Lemmas.

2. Definition

Let us first introduce some concepts.

Definition Let b be a locally integrable function and $m \in \mathbb{N}$. The maximal operator $B_{*,b}^{m,a}$ associated with the commutator generated by the Bochner-Riesz operator is defined by

$$B_{*,b}^{m,a}(f)(x) = \sup_{r>0} \left| B_{r,b}^{m,a}(f)(x) \right| \tag{1}$$

where

$$B_{r,b}^{m,a}(f)(x) = \int_{\mathbb{R}^n} B_r^a(x-y)f(y)(b(x)-b(y))^m dy$$
 (2)

and $(B_r^a(f))(\xi) = (1-r^2|\xi|^2)_+^a \hat{f}(\xi)$. If m=1, we denote simply $B_{*,b}^{1,a} = B_{*,b}^a$ and $B_{r,b}^{1,a}(f) = B_{r,b}^a(f)$. We also define

$$B_*^a(f)(x) = \sup_{r>0} |B_r^a(f)(x)|$$

which is the Bochner-Riesz operator (see [8]).

Let E be the space of bounded functions on $(0, \infty)$, $E = \{h : ||h|| = \sup_{r>0} |h(r)| < \infty\}$, then, for each fixed $x \in \mathbb{R}^n$, $B_r^a(f)(x)$ may be viewed as a mapping from $(0, \infty)$ to E, and it is clear that

$$B_*^a(f)(x) = ||B_r^a(f)(x)||$$
 and $B_{*,b}^a(f)(x) = ||b(x)B_r^a(f)(x) - B_r^a(bf)(x)||$

Let Mf be the Hardy-Littlewood maximal operator. For $\delta > 0$, we define

$$M_\delta(f) = [M(|f|^\delta)]^{1/\delta} \quad ext{and} \quad M_\delta^\#(f) = [M^\#(|f|^\delta)]^{1/\delta},$$

where

$$M^{\#}(f)(x) = \sup_{x \in Q} \frac{1}{|Q|} \int_{Q} |f(y) - f_{Q}| dy$$

and

$$f_Q = |Q|^{-1} \int_Q f(y) dy.$$

The corresponding dyadic maximal operators are denoted by M_{δ}^d and $M_{\delta}^{\#,d}$, respectively, (see [10])

Let $\Phi:[0,+\infty)\to[0,+\infty)$ be a Young function, we define the Φ -averge

of a function f over a ball Q by means of the following Luxemburg norm

$$||f||_{\Phi,Q}=\inf\left\{\lambda>0:|Q|^{-1}\int_Q\Phi(|f(y)|/\lambda)dy\leq 1\right\},$$

and the maximal operator M_{Φ} associated with $||\cdot||_{\Phi,Q}$ by

$$M_{\Phi}(f)(x) = \sup_{x \in Q} ||f||_{\Phi,Q}.$$

We have the following generalized Hölder's inequality

$$\frac{1}{|Q|} \int_{Q} |f(y)g(y)| dy \le ||f||_{\Phi,Q} ||g||_{\Psi,Q},$$

where Ψ is the complementory Young function of Φ , which is given by (see [10], [12] for details)

$$\Psi(s) = \sup_{0 \le t < \infty} (st - \Phi(t)), \quad 0 \le s < \infty.$$

It is obvious that $\Phi_m(t) = t(1 + \log^+ t)^m$ is a Young function and its complementary Young function $\Psi_m(t) \sim \exp(t^{1/m})$ (see [10]). Denote $||f||_{\Phi_m,Q}$ and $||f||_{\Psi_m,Q}$ by $||f||_{L(\log L)^m,Q}$ and $||f||_{(\exp L)^{1/m},Q}$, $M_{\Phi_m}(f)$ by $M_{L(\log)^m}(f)$.

3. Theorems

Now we are in the position to state our main results.

Theorem 1 Let a > (n-1)/2 and $b \in BMO(\mathbb{R}^n)$. Then there exists a constant C > 0 such that for all $\lambda > 0$,

$$|\{x \in R^n : B^a_{*,b}(f)(x) > \lambda\}|$$

$$\leq C||b||_{BMO}(1 + \log^+ ||b||_{BMO})\lambda^{-1} \int_{R^n} |f(x)|(1 + \log^+ (\lambda^{-1}|f(x)|))dx.$$

Theorem 2 Let $m \in \mathbb{N}$ and a > (n-1)/2. Suppose $b \in BMO(\mathbb{R}^n)$ and $\omega \in A_1$ (Muckenhouput weight class). Then there exists a constant C > 0 such that for all $\lambda > 0$.

$$\omega(\{x \in R^{n} : B_{*,b}^{m,a}(f)(x) > \lambda\})
\leq C \left[||b||_{BMO} (1 + \log^{+} ||b||_{BMO}) \right]^{m} \lambda^{-1}
\times \int_{R^{n}} |f(x)| (1 + \log^{+} (\lambda^{-1}|f(x)|))^{m} \omega(x) dx.$$

Theorem 3 Let $p \in (1, \infty)$ and a > n/p - (n+1)/2, Given a pair of weights (u, v), suppose that for some r > 1 and for all balls Q,

$$\left(\frac{1}{|Q|}\int_{Q}u^{r}(x)dx\right)^{1/r}\left(\frac{1}{|Q|}\int_{Q}v^{-p'/p}(x)dx\right)^{p/p'}\leq C<\infty.$$

Then B^a_* satisfies the weak (p, p) inequality

$$u(\{x \in R^n : B^a_*(f)(x) > \lambda\}) \le C\lambda^{-p} \int_{R^n} |f(x)|^p v(x) dx.$$

Theorem 4 Let $p \in (1, \infty)$ and a > n/p - (n+1)/2, $m \in \mathbb{N}$ and suppose $b \in BMO(\mathbb{R}^n)$. Given a pair of weight (u, v), suppose that for some r > 1 and for all balls Q,

$$\left(\frac{1}{|Q|} \int_{Q} u^{r}(x) dx\right)^{1/r} ||v^{-1/p}||_{\Phi_{m},B}^{p} \le C < \infty.$$

where $\Phi_m(t) = t^{p'} (\log(1+t))^{mp'}$.

Then $B_{*,b}^{m,a}$ satisfies the weak (p,p) inequality

$$u(\{x \in R^{n} : B_{*,b}^{m,a}(f)(x) > \lambda\})$$

$$\leq C||b||_{BMO}^{mp} \lambda^{-p} \int_{R^{n}} |f(x)|^{p} v(x) dx.$$

4. Some Lemmas

Now, we state some lemmas, which are useful to our theorems in this paper.

Lemma 1 (Kolmogorov, [6]) Let $0 and for any function <math>f \ge 0$, define that

$$||f||_{WL^q} = \sup_{\lambda > 0} \lambda |\{x \in R^n : f(x) > \lambda\}|^{1/q},$$

$$N_{p,q}(f) = \sup_{E} ||f\chi_E||_p / ||\chi_E||_r, \ (1/r = 1/p - 1/q)$$

where the supremum is taken for all measurable sets E with $0 < |E| < \infty$. Then

$$||f||_{WL^q} \le N_{p,q}(f) \le (q/(q-p))^{1/p}||f||_{WL^q}.$$

Lemma 2 ([10]) There exists a constant C > 0 such that for any function f and for all $\lambda > 0$,

$$|\{y \in R^n : M^2 f(y) > \lambda\}|$$

$$\leq C\lambda^{-1} \int_{R^n} |f(y)| (1 + \log^+(\lambda^{-1}|f(y)|)) dy,$$

where $M^2 = M \circ M$.

Lemma 3 ([10]) (1) There exists a constant C > 0 such that for all $\lambda > 0$, $\varepsilon > 0$,

$$|\{y \in R^n : M^d f(y) > \lambda, M^{\#,d} f(y) \le \lambda \varepsilon\}|$$

$$\le C\varepsilon |\{y \in R^n : M^d f(y) > \lambda/2\}|.$$

(2) Let $\varphi:(0,+\infty)\to(0,+\infty)$ be a doubling function. Then there exists a constant C>0 such that

$$\sup_{\lambda>0} \varphi(\lambda) |\{y \in R^n : M_{\delta}f(y) > \lambda\}|$$

$$\leq C \sup_{\lambda>0} \varphi(\lambda) |\{y \in R^n : M_{\delta}^{\#}f(y) > \lambda\}|.$$

Lemma 4 Let $0 < \delta < 1$ and a > (n-1)/2. Suppose that f and $B_*^a(f)$ are locally integrable. Then there exists a constant C > 0 such that

$$M_{\delta}^{\#}(B_{\star}^{a}(f))(x) \leq CMf(x), \quad \text{for all } x \in \mathbb{R}^{n}.$$

Lemma 5 Let $0 < \delta < \varepsilon < 1$ and a > (n-1)/2, suppose that $b \in BMO(\mathbb{R}^n)$. Then there exists a constant C > 0 such that

$$M_{\delta}^{\#}(B_{*,b}^{a}(f))(x) \leq C||b||_{BMO}[M_{\varepsilon}(B_{*}^{a}(f))(x) + M^{2}f(x)]$$

for all smooth functions f.

Lemma 6 Let $\Phi(t) = t(1 + \log^+ t)$ and $L_{\delta}(f) = \sup_{t>0} \frac{1}{\Phi(1/t)} |\{y \in R^n : M_{\delta}(B^a_{*,b}(f))(y) > t\}|$ and $b \in BMO(R^n)$. Then there exists a constant C > 0 such that for all $\varepsilon > 0$ and $0 < \delta < 1$, when a > (n-1)/2, we have

$$L_{\delta}(f) \leq C\varepsilon L_{\delta}(f) + C||b||_{BMO}(1 + \log^{+}||b||_{BMO})$$

$$\times \sup_{t>0} \frac{1}{\Phi(1/t)} |\{y \in R^{n} : M^{2}f(y) > t\}|.$$

Lemma 7 Let $\Phi(t) = t(1 + \log^+ t)$ and a > (n-1)/2. Suppose that $b \in BMO(\mathbb{R}^n)$. Then there exists a constant C > 0 such that for any smooth function f with compact support,

$$\sup_{t>0} \frac{1}{\Phi(1/t)} |\{y \in R^n : B^a_{*,b}(f)(y) > t\}|
\leq C||b||_{BMO} (1 + \log^+ ||b||_{BMO}) \sup_{t>0} \frac{1}{\Phi(1/t)} |\{y \in R^n : M^2 f(y) > t\}|.$$

Proof of Lemma 4. Given $x \in R^n$, and a ball $Q = Q(x_0, R) \ni x$, let aQ be the ball with the same center as Q and a times radius of Q. Let $f_1 = f\chi_{2Q}$, $f_2 = f\chi_{(2Q)^c}$. Then, for all $z \in Q(x_0, R)$, we have

$$|B_*^a(f)(z) - B_*^a(f_2)(x_0)| \le ||B_r^a(f)(z) - B_r^a(f_2)(x_0)||$$

$$\le B_*^a(f_1)(z) + ||B_r^a(f_2)(z) - B_r^a(f_2)(x_0)||.$$

By Lemma 1 and weak type (1,1) of B^a_* (see [8]), we have

$$\left(\frac{1}{|Q|} \int_{Q} (B_{*}^{a}(f_{1})(z))^{\delta} dz\right)^{1/\delta} = |Q|^{-1} \frac{||B_{*}^{a}(f_{1})\chi_{Q}||_{\delta}}{|Q|^{1/\delta - 1}}
\leq C|B|^{-1}||B_{*}^{a}(f_{1})||_{WL^{1}} \leq C|Q|^{-1} \int_{2Q} |f(z)| dz
\leq CMf(x).$$

Next, we estimate $||B_r^a(f_2)(z) - B_r^a(f_2)(x_0)||$. To do this, we write

$$B_r^a(f_2)(x) = r^{-n} \int f_2(y) K^a((x-y)/r) dy$$

and K^a satisfies the following (see [8], p. 121).

$$|\nabla^{\beta} K^{a}(z)| \le C(1+|z|)^{-(a+(n+1)/2)}$$
 for $|\beta| \le 1$,

where
$$\beta = (\beta_1, \beta_2, \dots, \beta_n)$$
 and $\nabla^{\beta} = \frac{\partial^{|\beta|}}{\partial^{\beta_1} \partial^{\beta_2} \cdot \partial^{\beta_n}}$. We choose $(n-1)/2 < a_0 < \min(a, (n+1)/2)$.

Since $|x_0-y| \sim |z-y|$ when $z \in Q$ and $y \in (2Q)^c$, we consider the following two cases:

Case 1: $0 < r \le R$. In this case, we have, for $x \in Q$,

$$|B_r^a(f_2)(x)|$$

$$\leq Cr^{-n} \int_{(2Q)^c} |f(y)| (1+|x-y|/r)^{-(a+(n+1)/2)} dy$$

$$= Cr^{-n} \sum_{k=1}^{\infty} \int_{2^{k+1}Q \setminus 2^k Q} |f(y)| (1+|x-y|/r)^{-(a+(n+1)/2)} dy$$

$$\leq Cr^{-n+a+(n+1)/2} \sum_{k=1}^{\infty} \frac{|2^{k+1}Q|}{(2^k R)^{a+(n+1)/2}} \left(\frac{1}{|2^{k+1}Q|} \int_{2^{k+1}Q} |f(y)| dy \right)$$

$$= C \left(\frac{r}{R} \right)^{a-(n-1)/2} \sum_{k=1}^{\infty} 2^{k((n-1)/2-a)} \cdot Mf(x)$$

$$\leq CMf(x).$$

It follows that

$$||B_r^a(f_2)(z) - B_r^a(f_2)(x_0)|| \le CMf(x);$$

Case 2: r > R. In this case, we have

$$\begin{split} &|B_{r}^{a}(f_{2})(z) - B_{r}^{a}(f_{2})(x_{0})| \\ &\leq r^{-n} \int |f_{2}(y)| |B^{a}((z-y)/r) - B^{a}((x_{0}-y)/r)| dy \\ &\leq Cr^{-n-1} \int |f_{2}(y)| |z - x_{0}| (1 + |y - x_{0}|/r)^{-(a+(n+1)/2)} dy \\ &= Cr^{-n-1} \sum_{k=1}^{\infty} \int_{2^{k+1}Q \setminus 2^{k}Q} |f(y)| |z - x_{0}| (1 + |y - x_{0}|/r)^{-(a+(n+1)/2)} dy \\ &\leq Cr^{a_{0}-(n+1)/2} \sum_{k=1}^{\infty} \frac{R(2^{k+1}R)^{n}}{(2^{k}R)^{a_{0}+(n+1)/2}} \cdot \left(\frac{1}{|2^{k+1}Q|} \int_{2^{k+1}Q} |f(y)| dy\right) \\ &\leq CR^{a_{0}-(n+1)/2} R^{1+n} \cdot R^{-(a_{0}+(n+1)/2)} \sum_{k=1}^{\infty} 2^{k((n-1)/2-a_{0})} Mf(x) \\ &\leq CMf(x). \end{split}$$

It follows that

$$||B_r^a(f_2)(z) - B_r^a(f_2)(x_0)|| \le CMf(x);$$

Thus, by Hölder's inequality,

$$\left(\frac{1}{|Q|} \int_{Q} ||B_{r}^{a}(f_{2})(z) - B_{r}^{a}(f_{2})(x_{0})||^{\delta} dz\right)^{1/\delta} \\
\leq \frac{1}{|Q|} \int_{Q} ||B_{r}^{a}(f_{2})(z) - B_{r}^{a}(f_{2})(x_{0})||dz \\
\leq CMf(x),$$

so that

$$\left(\frac{1}{|Q|} \int_{Q} |B_{*}^{a}(f)(z) - B_{*}^{a}(f_{2})(x_{0})|^{\delta} dz\right)^{1/\delta} \\
\leq C \left(\frac{1}{|Q|} \int_{Q} |B_{*}^{a}(f_{1})(z)|^{\delta} dz\right)^{1/\delta} \\
+ C \left(\frac{1}{|Q|} \int_{Q} ||B_{r}^{a}(f_{2})(z) - B_{r}^{a}(f_{2})(x_{0})||^{\delta} dz\right)^{1/\delta} \\
\leq C M f(x),$$

notice that $||a|^{\delta} - |b|^{\delta}| \leq |a - b|^{\delta}$ for $a, b \in R$. Then the conclusion of Lemma 4 follows from the inequality above.

Remark From Lemma 4, we get

$$M^{\#}(B_*^a(f))(x) \le CM_p f(x), \qquad 1$$

Proof of Lemma 5. Given $x \in \mathbb{R}^n$ and a ball $Q = Q(x_0, \mathbb{R}) \ni x$. We write, for $y \in Q$,

$$b(y)B_r^a(f)(y) - B_r^a(bf)(y)$$

$$= (b(y) - b_{2Q})B_r^a(f)(y) - B_r^a((b - b_{2Q})f\chi_{2Q})(y)$$

$$- B_r^a((b - b_{2Q})f\chi_{(2Q)^c})(y)$$

so that

$$|B_{*,b}^{a}(f)(y) - B_{*}^{a}((b - b_{2Q})f\chi_{(2Q)^{c}})(x_{0})|$$

$$\leq ||(b(y) - b_{2Q})B_{r}^{a}(f)(y)|| + ||B_{r}^{a}((b - b_{2Q})f\chi_{2Q})(y)||$$

$$+ ||B_{r}^{a}((b - b_{2Q})f\chi_{(2Q)^{c}})(y) - B_{r}^{a}((b - b_{2Q})f\chi_{(2Q)^{c}})(x_{0})||$$

$$= I_{1}(y) + I_{2}(y) + I_{3}(y).$$

For $I_1(y)$, by Hölder's inequality with exponent p and p', where 1 ,

and 1/p + 1/p' = 1 we have

$$\left(\frac{1}{|Q|} \int_{Q} (I_{1}(y))^{\delta} dy\right)^{1/\delta} = \left(\frac{1}{|Q|} \int_{Q} |b(y) - b_{2Q}|^{\delta} (B_{*}^{a}(f)(y))^{\delta} dy\right)^{1/\delta}
\leq \left(\frac{1}{|Q|} \int_{Q} |b(y) - b_{2Q}|^{\delta p'}\right)^{1/(\delta p')} \left(\frac{1}{|Q|} \int_{Q} (B_{*}^{a}(f)(y))^{\delta r} dy\right)^{1/(\delta p)}
\leq C||b||_{BMO} M_{\delta p}(B_{*}^{a}(f))(x)
\leq C||b||_{BMO} M_{\varepsilon}(B_{*}^{a}(f))(x).$$
(3)

For $I_2(y)$, by Lemma 1 and the weak type (1,1) of B_*^a (see [8]), we have

$$\left(\frac{1}{|Q|} \int_{Q} (I_{2}(y))^{\delta} dy\right)^{1/\delta} = \left(\frac{1}{|Q|} \int_{Q} (B_{*}^{a}((b - b_{2Q})f\chi_{2Q})(y))^{\delta} dy\right)^{1/\delta}
\leq C|2Q|^{-1} \frac{||B_{*}^{a}((b - b_{2Q})f\chi_{2Q})||_{\delta}}{|2Q|^{1/\delta - 1}}
\leq C|2Q|^{-1}||B_{*}^{a}((b - b_{2Q})f\chi_{2Q})||_{WL^{1}}
\leq C|2Q|^{-1} \int_{2Q} |b(y) - b_{2Q}| |f(y)| dy.$$

By the generalized Hölder's inequality and the fact (see [10]).

$$||b - b_Q||_{\exp L, Q} \le C||b||_{BMO},$$

we obtain

$$\left(\frac{1}{|Q|} \int_{Q} (I_{2}(y))^{\delta} dy\right)^{1/\delta} \leq C||b - b_{2Q}||_{\exp L, 2Q}||f||_{L \log L, 2Q}
\leq C||b||_{BMO} M_{L \log L} f(x).$$
(4)

For $I_3(y)$, we proceed to do it as in the proof of Lemma 4, and by the properties of $BMO(\mathbb{R}^n)$ functions (see [14]), we have

$$\left(\frac{1}{|Q|} \int_{Q} (I_{3}(y))^{\delta} dy\right)^{1/\delta} \\
\leq \frac{1}{|Q|} \int_{Q} ||B_{r}^{a}((b - b_{2Q})f\chi_{(2Q)^{c}})(y) - B_{r}^{a}((b - b_{2Q})f\chi_{(2Q)^{c}})(x_{0})||dy \\
\leq C \sum_{k=1}^{\infty} 2^{k((n-1)/2 - a_{0})} \frac{1}{|2^{k+1}Q|} \int_{2^{k+1}Q} |f(y)| |b(y) - b_{2Q}|dy$$

$$\leq C \sum_{k=1}^{\infty} 2^{k((n-1)/2-a_0)} \frac{1}{|2^{k+1}Q|} \int_{2^{k+1}Q} |f(y)| |b(y) - b_{2^{k+1}Q}| dy
+ C \sum_{k=1}^{\infty} 2^{k((n-1)/2-a_0)} \frac{1}{|2^{k+1}Q|} \int_{2^{k+1}Q} |b_{2^{k+1}Q} - b_{2Q}| |f(y)| dy
\leq C \sum_{k=1}^{\infty} 2^{k((n-1)/2-a_0)} ||b - b_{2^{k+1}Q}||_{\exp L, 2^{k+1}Q} ||f||_{L\log L, 2^{k+1}Q}
+ C \sum_{k=1}^{\infty} 2^{k((n-1)/2-a_0)} k||b||_{BMO} Mf(x)
\leq C||b||_{BMO} M_{L\log L} f(x) + C||b||_{BMO} Mf(x)
\leq C||b||_{BMO} M_{L\log L} f(x).$$
(5)

Note that $M^2 f \approx M_{L \log L} f$ (cf. [10]) and by (3) \sim (5). We obtain the desired result.

Proof of Lemma 6. Because $|\{Mf(y) > t\}| \sim |\{M^d f(y) > t\}|$, from Lemma 3, we have

$$\begin{aligned} \left| \left\{ y \in R^{n} : M_{\delta}(B^{a}_{*,b}(f))(y) > t \right\} \right| \\ & \leq C\varepsilon | \left\{ y \in R^{n} : M((B^{a}_{*,b}(f))^{\delta})(y) > t^{\delta}/2 \right\} | \\ & + C | \left\{ y \in R^{n} : M^{\#}((B^{a}_{*,b}(f))^{\delta})(y) > \varepsilon t^{\delta} \right\} | \\ & \equiv I + II. \end{aligned}$$

For II, by Lemma 5, with $\varepsilon = p\delta$, 1 , we have

$$II \le |\{y \in R^n : M_{p\delta}(B^a_*(f))(y) > \varepsilon^{1/\delta}t/(2C||b||_{BMO})\}| + |\{y \in R^n : M^2f(y) > \varepsilon^{1/\delta}t/(2C||b||_{BMO})\}|,$$

where C is the constant in Lemma 5.

Let $\alpha = \varepsilon^{1/\delta}/(2C||b||_{BMO})$, we obtain

$$\frac{1}{\Phi(1/t)} |\{y \in R^n : M_{\delta}(B^a_{*,b}(f))(y) > t\}|
\leq \frac{C\varepsilon}{\Phi(1/t)} |\{y \in R^n : M_{\delta}(B^a_{*,b}(f))(y) > t/2^{1/\delta}\}|
+ \frac{1}{\Phi(1/t)} |\{y \in R^n : M_{p\delta}(B^a_*(f))(y) > \alpha t\}|$$

$$\begin{split} &+ \frac{1}{\Phi(1/t)} | \{ y \in R^n : M^2 f(y) > \alpha t \} | \\ &\leq \frac{C\varepsilon}{\Phi(2^{1/\delta}/t)} | \{ y \in R^n : M_{\delta}(B^a_{*,b}(f))(y) > t/2^{1/\delta} \} | \\ &+ \frac{C||b||_{BMO}(1 + \log^+ ||b||_{BMO})}{\Phi(1/\alpha t)} | \{ y \in R^n : M_{p\delta}(B^a_*(f))(y) > \alpha t \} | \\ &+ \frac{C||b||_{BMO}(1 + \log^+ ||b||_{BMO})}{\Phi(1/\alpha t)} | \{ y \in R^n : M^2 f(y) > \alpha t \} | \\ &\leq C\varepsilon L_{\delta}(f) + C||b||_{BMO}(1 + \log^+ ||b||_{BMO}) \\ &\times \sup_{t>0} \frac{1}{\Phi(1/t)} \Big(| \{ y \in R^n : M_{p\delta}(B^a_*f)(y) > t \} | \\ &+ \frac{C||b||_{BMO}(1 + \log^+ ||b||_{BMO})}{\Phi(1/ct)} | \{ f \in R^n : M^2 f(y) > t \} | \Big), \end{split}$$

thus, by Lemma 3 and 4, we have

$$L_{\delta}(f) \leq C\varepsilon L_{\delta}(f) + C||b||_{BMO}(1 + \log^{+}||b||_{BMO})$$

$$\times \sup_{t>0} \frac{1}{\Phi(1/t)} |\{y \in R^{n} : Mf(y) > t\}|$$

$$+ C||b||_{BMO}(1 + \log^{+}||b||_{BMO})$$

$$\times \sup_{t>0} \frac{1}{\Phi(1/t)} |\{y \in R^{n} : M^{2}f(y) > t\}|$$

$$\leq C\varepsilon L_{\delta}(f) + C||b||_{BMO}(1 + \log^{+}||b||_{BMO})$$

$$\times \sup_{t>0} \frac{1}{\Phi(1/t)} |\{y \in R^{n} : M^{2}f(y) > t\}|.$$

This complete the proof of Lemma 6.

Proof of Lemma 7. By Lemma 6, we only need to show that $L_{\delta}(f)$ is finite, which is similar to the proof of [10] (see [10], p. 173), we omit the details.

5. Proof of Theorems

Proof of Theorem 1. By homogeneity, it suffice to show the case $\lambda = 1$. Without loss of generality, we assume that f is a smooth function with compact support. By Lemma 7 and 2, we have

$$\begin{split} &|\{x \in R^{n}: B^{a}_{*,b}(f)(x) > 1\}|\\ &\leq \sup_{t>0} \frac{1}{\Phi(1/t)} |\{x \in R^{n}: B^{a}_{*,b}(f)(x) > t\}|\\ &\leq C||b||_{BMO} (1 + \log^{+}||b||_{BMO}) \sup_{t>0} \frac{1}{\Phi(1/t)} |\{x \in R^{n}: M^{2}f(x) > t\}|\\ &\leq C||b||_{BMO} (1 + \log^{+}||b||_{BMO}) \sup_{t>0} \frac{1}{\Phi(1/t)} \int_{R^{n}} \Phi(|f(x)|/t) dx\\ &\leq C||b||_{BMO} (1 + \log^{+}||b||_{BMO}) \sup_{t>0} \frac{1}{\Phi(1/t)} \int_{R^{n}} \Phi(|f(x)|) \Phi(1/t) dx\\ &\leq C||b||_{BMO} (1 + \log^{+}||b||_{BMO}) \int_{R^{n}} |f(x)|(1 + \log^{+}|f(x)|) dx. \end{split}$$

This finishes the proof of Theorem 1.

The proof of Theorem 2 goes along the same line as that of m=1 and the unweighted case once we give the following lemmas.

Lemma 8 Let a > (n-1)/2, $0 < \delta < \varepsilon < 1$ and suppose $b \in BMO(\mathbb{R}^n)$. Then there exists a constant C > 0 such that for each smooth function f,

$$M_{\delta}^{\#}(B_{*,b}^{m,a}(f))(x)$$

$$\leq C \left(\sum_{j=0}^{m-1} ||b||_{BMO}^{m-j} M_{\varepsilon}(B_{*,b}^{j,a}(f))(x) + ||b||_{BMO}^{m} M^{m+1} f(x) \right).$$

Lemma 9 Let a > (n-1)/2. Suppose $b \in BMO(\mathbb{R}^n)$ and $\omega \in A_1$. That $\Phi_m(t) = t(1 + \log^+ t)^m$. Then there exists a constant C > 0 such that for any smooth function f with compact support

$$\sup_{t>0} \frac{1}{\Phi_m(1/t)} \omega(\{x \in R^n : B^{m,a}_{*,b}(f)(x) > t\})
\leq C \left[||b||_{BMO} (1 + \log^+ ||b||_{BMO}) \right]^m
\times \sup_{t>b} \frac{1}{\Phi_m(1/t)} \omega(\{x \in R^n : M^{m+1}f(x) > t\})$$

where $\Phi_m(t) = t^{p'}(\log(1+t))^{mp'}$.

Proof of Lemma 8. Following the idea of [5] (also see [10]), for any constant c, we have

$$\begin{split} B_{r,b}^{m,a}f(x) &= \int_{R^n} [(b(x)-c)-(b(y)-c)]^m \frac{1}{r^n} K^a \Big(\frac{x-y}{r}\Big) f(y) dy \\ &= \sum_{j=1}^m C_{j,m}(b(x)-c)^j \int_{R^n} (b(y)-c)^{m-j} \frac{1}{r^n} K^a \Big(\frac{x-y}{r}\Big) f(y) dy \\ &+ B_r^a ((b-c)^m f)(x) \\ &= \sum_{j=1}^m C_{j,m}(b(x)-c)^j \int_{R^n} [(b(y)-b(x))+(b(x)-c)]^{m-j} \\ &\quad \times \frac{1}{r^n} K^a \Big(\frac{x-y}{r}\Big) f(y) dy + B_r^a ((b-c)^m f)(x) \\ &= \sum_{j=1}^m \sum_{k=0}^{m-j} C_{j,k,m}(b(x)-c)^{j+k} \int_{R^n} (b(y)-b(x))^{m-j-k} \\ &\quad \times \frac{1}{r^n} K^a \Big(\frac{x-y}{r}\Big) f(y) dy + B_r^a ((b-c)^m f)(x) \\ &= \sum_{j=0}^{m-1} C_{j,m}(b(x)-c)^{m-j} B_{r,b}^{j,a} f(x) + B_r^a ((b-c)^m f)(x). \end{split}$$

Thus, using the same method as in the proof of Lemma 5 and the proof of Lemma 7.1 in [7], and noting that $M^{m+1} \approx M_{L(\log L)^m}$, we obtain the desired estimate.

Proof of Lemma 9. It suffice to show that the lemma holds for $||b||_{BMO} \le 1$. Since we have the weighted version of Lemma 3 (see [7]):

$$\omega(\{x \in R^n : Mf(x) > \lambda, M^{\#}f(x) \le \lambda \varepsilon\})$$

$$< C\varepsilon\omega(\{x \in R^n : Mf(x) > \lambda/2\}),$$

similar to the proof of Lemma 6, we have

$$\sup_{t>0} \frac{1}{\Phi_m(1/t)} \omega(\{x \in R^n : M_\delta(B^{m,a}_{*,b}(f))(x) > t\})
\leq C \left[||b||_{BMO} (1 + \log^+ ||b||_{BMO}) \right]^m
\times \sup_{t>0} \frac{1}{\Phi_m(1/t)} \omega(\{x \in R^n : M^{m+1}f(y) > t\}).$$

Thus, by the iterating argument, similar to the proof of Lemma 7, we gain

the estimate of the Lemma 9.

Now, Theorem 2 follows from Lemma 8 and 9, we omit the details.

The proof of Theorem 3 is based on Lemma 4 and a version of the Calderon-Zygmund decomposition (see Theorem 3.4 in [4]), which can obtained by the same way as that of Theorem 1.2 in [4], almost without changing any words.

The proof of Theorem 4 depends on Lemma 8 and Theorem 3. A similar argument as in the proof of Theorem 1.6 in [4] will give us the desired inequality. We omit the details.

Corollary Let 1 , <math>a > n/p - (n+1)/2 and $m \in \mathbb{N}$. Suppose $b \in BMO(\mathbb{R}^n)$ and $\omega \in A_p$. Then,

$$||B_{*,b}^{m,a}(f)||_{L^p(\omega)} \le C||b||_{BMO}^m||f||_{L^p(\omega)},$$

for all $f \in L^p(\mathbb{R}^n, \omega)$.

Acknowledgement The authors would like to express their deep gratitude to the referee for his very valuable comments and suggestions.

References

- [1] Alvarez J., Bagby R., Kurtz D. and Perez C., Weighted estimates for commutators of linear operators. Studia Math. 104 (1993), 195–209.
- [2] Coifman R., Rochberg R. and Weiss G., Factorization theorems for Hardy spaces in several variables. Ann. of Math. 103 (1976), 611-635.
- [3] Cruz-Uribe D., SFO and Perez C., Sharp two-weight, weak-type norm inequalities for singular integral operators. Math. Res. Letters 6 (1999), 417–427.
- [4] Cruz-Uribe D., SFO and Perez C., Two-weight, weak-type norm inequalities for fractional integrals. Calderon-Zygmund operators and commutators, Indiana Univ. Math. J. 49 (2000), 697-721.
- [5] Garcia-Cuerva J., Harbour E., Segovia C. and Torrea J.L., Weighted norm inequalities for commutators of strongly singular integrals. Indiana Univ. Math. J. 40 (1991), 1398–1420.
- [6] Garcia-Cuerva J. and Rubio de Francia J.L., Weighted norm inequalities and related topics. North-Holland Math. Studies, 116 North-Holland, Amsterdan, 1985.
- [7] Hu G. and Lu S., The commutators of the Bochner-Riesz operator. Tôhoku Math.
 J. 48 (1996), 259–266.
- [8] Lu S., Four lectures on real H^p spaces. World Scientific: River Edge, NJ., 1995.
- [9] Lu S. and Yang D., The continuity of commutators on Herz-type spaces. Michigan Math. J. 44 (1997), 255–281.

- [10] Perez C., Endpoint estimates for commutators of singular integral operators. J. Func. Anal. 128 (1995), 163–185.
- [11] Perez C., Sharp estimates for commutators of singular integrals via iterations of the Hardy-Littlewood maximal function. J. Fourier Anal. and Appl. 3 (1997), 743-756.
- [12] Perez C. and Pradolini G., Sharp weighted endpoint estimates for commutators of singular integrals. Michigan Math. J. 49 (2001), 23-37.
- [13] Rao M.M. and Ren Z.D., Theory of Orliez spaces. Marcel Dekker, New York 1991.
- [14] Stein E.M., Harmonic Analysis: real variable methods, orthogonality and oscillatory integrals. Primceton Univ. Press, Princeton, NJ., 1993.

Liu Lanzhe
Department of Applied Mathematics
Hunan University
Changsha, 410082
R. R. China
E-mail: lanzheliu@263.net

Lu Shanzhen
Department of Mathematics
Beijing Normal university
Beijing, 100875
P. R. China
E-mail: lusz@bnu.edu.cn