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Weighted weak type inqualities for maximal
commutators of Bochner-Riesz operator
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Abstract. In this paper, we establish endpoint estimates of L(log L) type for maximal
commutators of Bochner-Riesz operators, and the weighted weak type estimates for the
commutators are also obained.
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1. Introduction

Let b € BMO(R") and T be a Calderon-Zygmumd operator. Consider
the commutator defined by

[b, T]f(x) = b(x)T f(z) — T(bf)(x)-

A classical result of Coifman, Rochberg and Weiss [3] proved that [b, T
is bounded on LP(R") (1 < p < 00). However, it is observed that [b, T
is not, in general, weak type (1,1). In fact, Perez proved that [b, T
satisfies L(log L) type inequality. The purpose of this paper is to consider a
similar problem: how to establish the weak type inequalities for the maximal
commutators of Bochner-Riesz operators. Recently, the boundedness of
the commutators on LP(R™) and Herz-type Hardy spaces are studied in
[7], @, we go on doing this work. We show that the commutators satisfy
L(log L) type inequalities, and the weighted weak type inequalities for the
commutators are also obtained. In Section 2 and 3, we will give some
concepts and Theorems of this paper, whose proofs will appear in Section 5,
and Section 4 contains some Lemmas.

2. Definition

Let us first introduce some concepts.
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Definition Let b be a locally integrable function and m € N. The
maximal operator B] ;" associated with the commutator generated by the
Bochner-Riesz operator is defined by

BIY(£)(@) = sup| By (f)(@)] (1)
where

B (@) = [ Bra-n)i)6() - be)"dy @)

n

and (B“(f))A( £) = (1-r2[¢|? )_,_f(f) If m = 1, we denote simply B Y= = By,
and B: b (f) = B2y (f). We also define

B (f)(@) = sup | BY(£) (=)

which is the Bochner-Riesz operator (see [8]).

Let E be the space of bounded functions on (0,00), E = {h : ||h]| =
sup,so |A(r)| < oo}, then, for each fixed z € R", B%(f)(x) may be viewed
as a mapping from (0, 00) to E, and it is clear that

B (f)(z) = ||B:(f)(z)|| and
B y(f)(z) = [[b(z) B2 (f) (<) — B (bf) ()]

Let M f be the Hardy-Littlewood maximal operator. For § > 0, we
define

Ms(f) = [M(IfI)"° and  MZ(f) = [M*(|f°),
where
#(f)(z) = su
M*(f)(@) p|Q|/|f ~ faldy
and

fa =@ /Q £ (v)dy.

The corresponding dyadic maximal operators are denoted by M (‘51 and M f ’d,

respectively, (see [10])
Let @ : [0, 4+00) — [0, 4+00) be a Young function, we define the ®-averge
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of a function f over a ball Q by means of the following Luxemburg norm

I£lloq =int {3>0: 101 [ a(swi/Nay <1},
and the maximal operator Mg associated with || - ||o o by

My (f)(z) = sup||f]],0-
T€EQ

We have the following generalized Holder’s inequality

i /Q FW)e@)ldy < | flloallsllve

where ¥ is the complementory Young function of ®, which is given by (see

[10], for details)

U(s) = sup (st—@(t)), 0<s< 0.
0<t<oo

It is obvious that ®,,(t) = t(1+log™ t)™ is a Young function and its comple-
mentary Young function ¥,,(t) ~ exp(t!/™) (see [10]). Denote ||f||,, o and

f 1l wm,@ bY [[fllLogrym,@ and |[fl(expryi/m @) Mam(f) by ML(iog)m(f)-
3. Theorems

Now we are in the position to state our main results.

Theorem 1 Let a > (n—1)/2 and b € BMO(R™). Then there ezists a
constant C > 0 such that for all A > 0,

{z € B™: B,y (f)(z) > A}

< C|1bl| smo(1+1log™ [1b]| 5mo) A~ o |f(@)l(1+1og" (A7 f(2)]))dz.

Theorem 2 Let m € N and a > (n —1)/2. Suppose b € BMO(R™) and

w € Ay (Muckenhouput weight class). Then there exists a constant C > 0
such that for all A > 0.

w({z € R": B} (f)(z) > A})
< C [IbllBmo(1 + log™ |b]|Bmo)] ™ A~
x / F@)(1 +logt (A~ £(2))"w(z)dz.
Rn
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Theorem 3 Let p € (1,00) and a > n/p — (n + 1)/2, Given a pair of
weights (u,v), suppose that for some r > 1 and for all balls Q,

() G o) <o

Then B2 satisfies the weak (p,p) inequality

u(lz e B B(N)(@) > A <O [ |7(a)Po(e)da.

n

Theorem 4 Let p € (1,00) and a > n/p—(n+1)/2, m € N and suppose
b € BMO(R™). Given a pair of weight (u,v), suppose that for some r > 1
and for all balls Q,

1 1/7'
(— / u’"(m)dx) v /7| 5 < C < oo
Ql Jg

where ®p,(t) = t7 (log(1 + t))™"'.
Then B,’;" satisfies the weak (p,p) inequality

u({z € R": B}"(f)(z) > A})

< Cllblghor [ 1@lPia)de.

4. Some Lemmas

Now, we state some lemmas, which are useful to our theorems in this
paper.

Lemma 1 (Kolmogorov, [6]) Let 0 < p < g < oo and for any function
f >0, define that

|| fllwra = iu%/\l{:r € R™: f(z) > A}/,
>

Npo(f) = Sup I fxellp/lIxell, 1/r=1/p—1/q)

where the supremum is taken for all measurable sets E with 0 < |E| < oo.
Then

1 fllwze < Npo(f) < (a/(@a =) Pllfllwes.
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Lemma 2 ([10]) There exists a constant C > 0 such that for any function
f and for all A >0,

fy e R M21(y) > M
<oxt [ 1w+ 1ot (717w

where M%2 = M o M.

Lemma 3 ([10]) (1) There exists a constant C > 0 such that for all
A>0,e>0,

[{y € R™ : M%f(y) > X\, M*4f(y) < Ae}|
< Cel{y € R™ : M°f(y) > A/2}|.

(2) Let ¢ : (0,400) — (0,400) be a doubling function. Then there
exists a constant C > 0 such that

Sup e(M){y € R™ : Msf(y) > A}|
< Csupp(N)|{y € R™ : MY f(y) > A}|.
A>0

Lemmad Let0<d<1anda> (n—1)/2. Suppose that f and B(f)
are locally integrable. Then there exists a constant C > 0 such that

Mf(Bf:(f))(:c) < CMf(x), forall x€ R".

Lemmab Let 0 < §d < e <1 and a > (n— 1)/2, suppose that b €
BMO(R™). Then there exists a constant C > 0 such that

M (B%,(£))(x) < Cllbll smolMe(B2(f)) (z) + M?f(z))
for all smooth functions f.

Lemma 6 Let ®(t) = t(1 +log* t) and Ls(f) = supssg W%/t_) [{y € R™:
Ms(Bg, (f))(y) > t}| and b € BMO(R™). Then there exists a constant
C > 0 such that for all e >0 and 0 < § < 1, when a > (n — 1)/2, we have

Ls(f) < CeLs(f) + C|bl| Bmo(1 + log™ |bl| Bmo)

1
X SUp ———~

Up Sy Y € BT M2f(y) > t}].
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Lemma 7 Let ®(t) = t(1+1log*t) and a > (n —1)/2. Suppose that b €
BMO(R™). Then there exists a constant C > 0 such that for any smooth
function f with compact support,

Hy € R™: B, (f)(y) > t}

50 ‘I’(l/ )

< ClIbl|Bmo(1 + log™ ||b||BMo)Sup sy € R M2 f(y) > t}.

(1/t)

Proof of Lemma 4. Given z € R", and a ball Q = Q(zg, R) 3 z, let aQ be
the ball with the same center as @ and a times radius of Q. Let f1 = fxe0,
f2 = fx@q)s- Then, for all z € Q(zo, R), we have

|BL(£)(2) — Bi(f2)(zo)| < ||BR(£)(2) — BE(f2)(z0)|
< By (f1)(2) + ||BF(f2)(2) — BR(f2)(zo)]|-
By and weak type (1,1) of B? (see [8]), we have

1/6 .
(Iézl / (B“(fl)(z))5dz) = |Q|‘1"ﬁg|€?if?"5

< CIBI 1B (f)llwi < ClQI™ / 1(2)|dz
2Q
< CM f(z).

Next, we estimate || B(f2)(2) — B*(f2)(zo)||. To do this, we write

Bef@) =™ [ K (@ —)/r)dy
and K satisfies the following (see [8], p. 121).

[VPK®(2)] S O(L+ [2)~@HD2) - for g <1,
where 8 = (81, B2, - .., Bn) and V7 5?@3?‘37 We choose

(n—1)/2 < ap < min(a, (n+ 1)/2).

Since |zo—y| ~ |z—y| when z € Q and y € (2Q)°, we consider the following
two cases:
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Case1: 0 < r < R. In this case, we have, for x € Q,

IB2(£) (@)
<crm / F@)I(L+ [z — gl/r)~ @Dy
(2Q
rn Z / DI(L+ [ — gl/r) (o412,
’°+1Q\2’“Q

<Cr_n+a+<n+1>/2z 27| ! F)ld
S (2kR)a+(n+1)/2 \ |26+1Q) Jors1g y)iey

—C( ) a—(n— 1)/2Z K-1)/2-2) . b ()

k=1
< CM f(z).

It follows that
|B7 (f2)(2) — B (f2)(zo)|| < CM f(x);

Case2: r > R. In this case, we have
| B (f2)(2) — BE(f2)(w0)]
< / | R2@)1B*(z ~ 9)/7) - B*((z0 — v)/r)|dy

<o / £2(W)l12 = 2ol (1 +ly ol /)~ Dy

= Cr "1 — (a+(n+1)/2)
Z s O = ol 1yl dy

B o R(2k+1R)" 1
< (Opto—(nt1)/2 . /
<or kz—:_1 (2 R)ao+(n+1)/2 <|2k+1Q| pk+1Q | (y)ldy

00
< CRao—(n+1)/2R1+n . R——(ao+(n+1)/2) Z 2k((n_1)/2_ao)Mf($)
k=1

< CMf(z).
It follows that
|| B (f2)(2) — Br(f2)(z0)l|| < CM f(z);
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Thus, by Holder’s inequality,

1/6
(ng_l /Q 1B (f2)(2) = Bf(fz)(wo)ll‘sdz)

1 a z) — B% T z
< /Q I1B2(£2)(2) — B2(f2) (o) |d
< CMf(z),

(@ [ 1Bz (8- () e v

1/5
(IQI/ B (f1)( "‘)'5‘“)

1/5
- a 2) — B® T )
+c(|Q| [Q 1B2(f2)(2) — BE(f2) (@) dz)

< CM f(z),

so that

notice that ||al® — |b|%] < |a — b]® for a,b € R. Then the conclusion of
follows from the inequality above. 0O

Remark From Lemma 4, we get
M#(Bi(f))(z) < CMpf(z), 1<p<oo.

Proof of Lemma 5. Given x € R™ and a ball @ = Q(xo, R) > x. We write,
for y € @,

b(y) By (F)(y) — B2 (bf)(y)
= (b(y) — b2@) B} (f)(y) — B ((b — b2q) fx20) (v)
— Br((b — b20) fX(2q)e) (%)
so that

| By o (F)(y) — BL((b—b29) fx(2Q)<) (%0)|
< [[(b(y) — b2@) Br (£) ()| + || BF (b — b2@) FXx20) (¥)]|

+ [|Br (b — b2q) fX(20)e) () — Br ((b— b2@) fX(20)c) (o)l
= Ii(y) + L2(y) + I3(y)-

For I(y), by Holder’s inequality with exponent p and p’, where 1 < p < €/4,
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and 1/p + 1/p' = 1 we have

(I1(y))’dy (L [b(y) — bagl°(B2(£)(v)) dy
IQI Q1 Jq

< (g1 J, oo - ”2@‘@)1/@) (e, BEOEFa)

< C||bl| BMoMsp(Bi(f))(x)
< C||bl|BMmoMe(B (f)) (). (3)

For I2(y), by and the weak type (1,1) of B? (see [8]), we have

(& [ (Iz(y))‘sdy)l/é—(lél JREIC IO )1/5

| B((b — b2g) fx20)ls
|2Q[1/6-1

< CP2QI™IBX(b - ba) Fxza)llwrr
< cRqQ™ / 1b(y) — bagl |£(v)ldy-
2Q

1/5

< cl2q

By the generalized Holder’s inequality and the fact (see [10]).

|16 — bgllexpL,@ < C||bl|BMO,

we obtain

1 1/6
(@ /62(12(9))5“’@/) < Cllb— bagllexpr 2l fll1og .20
< Cl|bl|BMoML10g Lf (2)- (4)

For I3(y), we proceed to do it as in the proof of Lemma 4, and by the
properties of BMO(R™) functions (see [14]), we have

<| QI / (Ia(y))‘sdy) v

< al /Q || B2((b— b2q) FXx2q)e) (¥) — Br ((b = b2q) fX(2q)c) (zo) ||y

o0 1
< K(n-1)/2-a0)__1__ / _
<C k§=1ﬁ2 R0 Jyrig |f(W)] [b(y) — bagldy
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ok((n—1)/2—ao)
<cy °12k+1c2| Jong 1 @) ~ bl

k=1

+szk<(n )/2-a0)__L wlm / [borsig — bagl £ (y)ldy
k=1

00
< CZ 2k((n—1)/2——a0)Hb - b2k+1Q| |expL,2k+1Q|lfIILlogL,2k+1Q
k=1

+C Z 2k(n=1)/2=a0) k. 1p| | ppro M f ()

k=1
< C|[bl|BMoML10g L f () + C||b]| BMOM f ()
< C“b”BMOMLlogLf(x)- (5)
Note that M2f ~ M0 f (cf. [10]) and by (3) ~ (5). We obtain the
desired result. H

Proof of Lemma 6. Because |[{M f(y) > t}| ~ {M%f(y) > t}|, from Lem-
ma 3, we have
[{y € R™ : Ms(BZo(f))(y) > t}]
< Cel{y € R™ : M((B£(1))°)(y) > t°/2}]
+Cl{y € R™: M7 ((B?4(f))°)(y) > et’}]
=1+1I.
For II, by Lemma 5, with e = pd, 1 < p < 1/6, we have

IT < |{y € R™ : Mys(B(£))(y) > €/°t/(2C||b]| 5m0) }]
+{y € R™ : M*f(y) > &'/°t/(2C||b|| smo) },
where C is the constant in [Lemma 5.
Let o = €1/%/(2C||b|| prmo), we obtain

1
3(1/t)

Hy € R* : Ms(B:,(f))(y) > t}]

< gy e B Ms(B()w) > /2

+

<I>(i/t) {y € R* : Mps(Bi(f))(y) > at}|
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*Fazgy € R M) > o
= W?;"/Bl{y € R™: Ms(BZ,(f))(y) > t/2'/°}]
o +
n C||bl|BMO$(-i~/lai) Hb”BMO)Hy € R": Mpg(Bff(f))(y) > at}|
o +
+ C”b|IBMO(<11(41—/1a§) Pllswo) e mr - M2f(y) > aty]

< CeLs(f) + C|bl| smo (1 + log™ ||b]| smo)

X sup q)(i/t) (Itye B Mys(B2 1)) > 1}

C||b|| Bmo(1 + log™ |[b|| Bmo)
®(1/ct)

thus, by and 4, we have

Ls(f) < CeLs(f) + C||bl| Bmo(1 + log™ |[b]| B;o)

X sup @(i/t)l{y € R": Mf(y) > t}|

+ C||bl| Bmo(1 + log™ ||bl| BMO)

1 YN
X iggml{y € R™: M*f(y) > t}|

< CeLs(f) + C||b|| Bmo(1 + log™ ||| BM0)

1
X su € R": M? > t}.
up 51 ) > )
This complete the proof of [Lemma 6. O

Proof of Lemma 7. By [Lemma 6, we only need to show that Ls( f) is finite,
which is similar to the proof of (see [10], p. 173), we omit the details.
O

{f € R™: M*f(y) > t}]),

5. Proof of Theorems

Proof of Theorem 1. By homogeneity, it sufice to show the case A = 1.
Without loss of generality, we assume that f is a smooth function with
compact support. By Lemma 7 and 2, we have
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[{z € R" : By, (f)(z) > 1}

< sup gelle € B < BL(f)(a) > 1)
1 n
< Cllpllamo(L + 1og™ Illwo) sup gl € B : M2 (x) > 1)

< Cllawo(1 +1og* |1l awo) sup 5 o [ as@i/da
< Cltllowo(1 +1og* [llswo) sup 57 [ @S (@))B(1/0)de

< C|lbl 5o (1 + log* |1bl| 5ar0) / 2)|(1+ log* |f(2)))dz

This finishes the proof of [Theorem 1. O

The proof of goes along the same line as that of m = 1 and
the unweighted case once we give the following lemmas.

Lemma 8 Leta> (n—1)/2,0<6é <e <1 and suppose b € BMO(R™).
Then there exists a constant C > 0 such that for each smooth function f,

MF (B3 ()(2)
m—1
< C( > bllEaoMe(BLs (f)) () + ||b||7£MOMm+1f($)>-
7=0

Lemma 9 Leta > (n—1)/2. Suppose b€ BMO(R") and w € A;. That
D, (t) = t(1 + log™ t)™. Then there ezists a constant C > 0 such that for
any smooth function f with compact support

sup

>0 q)m(ll/t)w({x €R": BZI;a(f)(x) > t})

< C[|IbllBmo(1 +log™ ||bl| Bm0)] ™
w({z € B*: M™1§(z) > t})

1
X sup
t>b <I)m(]-/t)

where @, (t) = ¥ (log(1 + t))™*'.

Proof of Lemma 8. Following the idea of [5] (also see [10]), for any constant
¢, we have
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BT (@)
= [ 1) =) - 0) - " K () f(w)ay
=3 Cunlble) =¥ [ 00— () st

+ B ((b—¢)"f)(x)
=Y Cim(b(z) - ¢y / [(b(y) — b(z)) + (b(=) — )™
j=1

x Ko (2) flw)dy + B (b~ o) (a)

=2 > Cikm(bla) —c** / (b(y) = b))
j=1 k=0
x = E(E)fw)dy + B (b~ ™))

m—1
= 3" Cim(b(@) — )" Bl f(z) + B ((b— )™ f) ().
3=0

Thus, using the same method as in the proof of and the proof
of Lemma 7.1 in [7], and noting that M™*! ~ My ., 1ym, We obtain the
desired estimate. 0

Proof of Lemma 9. It suffice to show that the lemma holds for ||b|| gm0 <
1. Since we have the weighted version of (see [7]):

w({z € R*: Mf(z) > X\, M# f(z) < \e})
< Cew({z € R": M f(x) > A\/2}),

similar to the proof of Lemma, 6, we have

su
t>g ‘I’m(l/t)

< C [IIbllsao(1 +log™ |1b]|5a0)]™
w({z € R*: M™ f(y) > t}).

7wz € R : Ms(B." (f))(z) > t})

1
X su
156 m(1/2)

Thus, by the iterating argument, similar to the proof of [Lemma 7, we gain
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the estimate of the Lemma, 9. O

Now, follows from and 9, we omit the details.

The proof of is based on and a version of the
Calderon-Zygmund decomposition (see Theorem 3.4 in [4]), which can ob-
tained by the same way as that of Theorem 1.2 in [4], almost without
changing any words.

The proof of depends on and [Theorem 3. A
similar argument as in the proof of Theorem 1.6 in will give us the
desired inequality. We omit the details.

Corollary Let 1 < p< oo, a > n/p—(n+1)/2 and m € N. Suppose
be BMO(R") andw € Ap. Then,

B3 (Dl Loy < ClIblBwol flle(w),
for all f € LP(R™,w).
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