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Fixed point indices of homeomorphisms
defined on the torus

Hisao SHIRAKI
(Received May 14, 2001; Revised January 25, 2002)

Abstract. Let h : T^{2}arrow T^{2} be a homeomorphism on the 2-dimensional torus T^{2}

isotopic to the identity map. We assume that two fixed points of h have been found.
Then, we classify all the other fixed points into Nielsen classes and find some relations
among fixed point indices of h .
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1. Introduction

Let X be a compact connected polyhedron and f : X -arrow X a contin-
uous map. Denote by Fix(/) the set of fixed points of f . The generalized
Lefschetz number L(f) is a topological invariant which is useful to study
fixed points.

Let h : T^{2}
-

T^{2} be a homeomorphism on the 2-dimensional torus
T^{2} isotopic to the identity map id. In this paper we consider its fixed
point set. In this case, the generalized Lefschetz number L(h) vanishes and
provides no information on fixed points. One of the methods extracting
some information on fixed points is to consider the restriction of h to some
complement T^{2}-C , where C is a finite set of fixed points. However the
set T^{2}-C is not compact, and the theory of the generalized Lefschetz
number cannot be applied. So we need to compactify the map h : T^{2}

-

T^{2} to a map f : X - X , which is called the blow-up of h [3 , p. 24]. By
this compactification, there may arise some fixed points of f which are not
fixed points of the original map h . However, these extra fixed points are
determined entirely by the derivatives of h on C if h is differentiate on C,
and we can obtain some information on fixed points of the original map h

by investigating fixed points of f .
In [9], the author considered the case of \# C =2 and showed that a

reduced form \hat{L}(f) of L(f) , which is a polynomial with one variable, is a
symmetric polynomial under a certain condition. This tells us that the fixed
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point indices obey a restriction which is unexpected from the definition of
\hat{L}(f) itself. It is known that the homomorphism on the fundamental group
of the punctured torus induced by h can be identified with a braid on two
strings. Therefore the induced homomorphism is written as a product of
certain braids \rho and \tau . The paper [9] treated only the special case where it
is expressed as the commutator \tau^{m}\rho^{n}\tau^{-m}\rho^{-n}(m, n\in Z) .

The purpose of the present paper is to show that the same result as in
[9] holds also in the general case. As in [9], our result is obtained not by a
geometric consideration but by the algebraic calculation using the result of
Huang and Jiang on the abelianized generalized Lefschetz number L(f)^{Ab}

[6] . Huang and Jiang derived a method of calculating L(f)^{Ab} in the case of
a compact surface X from the result of Fadell and Husseini [5], which gives
a method of calculating L(f) . The proof of our result uses their method of
the computation of L(f)^{Ab} .

2. Definition of generalized Lefschetz number

Let X be a compact connected polyhedron, and f : Xarrow X a continu-
ous map.

Definition 1 We shall classify Fix(/) by the following equivalence rela-
tion: x , y\in Fix(f) are said to be Nielsen equivalent if there exists a path q

from x to y such that q and f\circ q are homotopic relative to the end points
\{x, y\} .

Choose a base point x_{0}\in X and a path w from x_{0} to f(x_{0}) . Let
\pi_{1}(X, x_{0}) be the fundamental group of X relative to the base point x_{0} , and
let f_{\pi} : \pi_{1}(X, x_{0}) - \pi_{1}(X, x_{0}) be the composition:

\pi_{1}(X, x_{0})arrow\pi_{1}(*X, f(x_{0}))arrow\pi_{1}(X, x_{0})fw_{*} .

Definition 2 Two elements \alpha , \beta\in\pi_{1}(X, x_{0}) are said to be Reidemeister
equivalent if there is a \gamma\in\pi_{1}(X, x_{0}) such that \beta=f_{\pi}(\gamma)\alpha\gamma^{-1} .

Thus \pi_{1}(X, x_{0}) is devided into Reidemeister equivalence classes. Let
R(f) denote the set of Reidemeister equivalence classes, and ZR(f) the free
abelian group generated by the set R(f) .

Definition 3 For x\in Fix(f) , take a path \ell from x_{0} to x . The Reidemeis-
ter equivalence class represented by [w(fo\ell)\ell^{-1}]\in\pi_{1}(X, x_{0}) is called the
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coordinate of x , and is denoted by R(x) .

Note that R(x) is evidently independent of the choice of \ell . It is easy
to see that two fixed points are in the same Nielsen class if and only if they
have the same coordinate. Thus for a Nielsen class, its coordinate can be
defined.

Definition 4 For \alpha\in\pi_{1}(X, x_{0}) , let

Fix_{[\alpha]}(f)=\{x\in Fix(f)|R(x)=[\alpha]\} .

The generalized Lefschetz number L(f) is defined as

L(f)= \sum_{[\alpha]\in R(f)}ind(Fix_{[\alpha]}(f))[\alpha]\in ZR(f)
,

where ind(Fix_{[\alpha]}(f)) is the fixed point index of Fix_{[\alpha]}(f) . For the definition
of the fixed point index, see [4], [7].

Fkom this definition, it is clear that the number of non-zero terms in
L(f) is a lower bound for the number of fixed points of f .

The notations above have a homological version obtained by abelianiz-
ing \pi_{1}(X, x_{0}) into the 1-dimensional homlogy group H_{1}(X) .

Definition 5 We shall classify Fix(/) by the following equivalence rela-
tion: x , y\in Fix(f) are said to be abelianized Nielsen equivalent if there
exists a path q from x to y such that [(f\circ q)q^{-1}] is the zero element of
H_{1}(X) .

Let x\in Fix(f) . We choose a path \ell from x_{0} to x . Then we can identify
the abelianized Nielsen class [x] with an element [w(fo\ell)\ell^{-1}] of Coker(f_{*}-

id) naturally, where f_{*} is the homomorphism on H_{1}(X) induced by f and
Coker(f_{*}-id)=H_{1}(X)/{\rm Im}(f_{*}-id) . This correspondence is evidently
independent of the choice of \ell .

Definition 6 For x\in Fix(f) , define R(x)^{Ab}=[w(f\circ\ell)\ell^{-1}]\in Coker(f_{*}-

id) . We call R(x)^{Ab} the abelianized coordinate of x .

Definition 7 For \gamma\in Coker(f_{*}-id) , let

Fix_{\gamma}(f)=\{x\in Fix(f)|R(x)^{Ab}=\gamma\} .
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Define the abelianization L(f)^{Ab} of L(f) as

L(f)^{Ab}=
\gamma\in c_{oker(f*}\sum_{-,id)}ind(Fix_{\gamma}(f))\gamma\in ZCoker(f_{*}-id)

,

where ZCoker(f_{*}-id) is the integral group ring of Coker(f_{*}-id) . From
this definition, it is clear that L(f)^{Ab} is a Laurant polynomial.

3. Statement of result

Let h:T^{2}arrow T^{2} be a homeomorphism isotopic to id, and let x_{1} , x_{2} be
distinct fixed points of h . Suppose that h is differentiate at x_{i} , and the
derivatives Dh(x_{i}) are non-singular (i=1,2) . Set C=\{x_{1}, x_{2}\} and M=
T^{2}-C . Then we can consider h:Marrow M . Let X be the compactification
of M obtained from T^{2} by blowing up each x_{i} to a circle S_{i}(i=1,2) , and
f : X -arrow X the extention of h [3 , p. 24].

Now, pick a base point x_{0} for M, and let a_{1} , a_{2} , b , c be the elements of
\pi_{1}(M, x_{0}) indicated in Figure 1.

Fig. 1.

We use the commutator notation [\alpha, \beta]=\alpha\beta\alpha^{-1}\beta^{-1} in groups. We
have that a_{1}=[b, c]a_{2}^{-1} and that \pi_{1}(M, x_{0}) is a free group of rank 3 gen-
erated by a_{2} , b , c . Therefore the 1-dimensional homology group H_{1}(M) is
an abelian group generated by a_{2} , b , c , and we have a relation a_{1}+a_{2}=0 .
Let \Lambda denote the group ring ZH_{1}(M) .
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We use the same notation h_{*} for the extention of h_{*} : H_{1}(M) - H_{1}(M)

to \Lambda . Since X is the compactification of M, we can identify \pi_{1}(X, x_{0}) with
\pi_{1}(M, x_{0}) naturally. Then the homomorphism f_{*} : H_{1}(X) - H_{1}(X) is
identified with the homomorphism h_{*} : H_{1}(M) - H_{1}(M) . Then H_{1}(X) is
generated by a_{2} , b , c , and we have

Coker(f*-id)= Za_{2}\oplus Zb\oplus Zc/{\rm Im}(f_{*}-id) . (1)

Now let us recall some facts about braids on the torus. The braids \rho_{i} , \tau_{i}

(i=1,2) used below are indicated in Figure 2.

Fig. 2.

Proposition 1 (Birman [1]) The pure 2-braid group on T^{2} admits the
following presentation:

Generators: \rho_{1} , \rho_{2} , \tau_{1} , \tau_{2} .
Relations: [\rho_{1}, \rho_{2}]=[\tau_{1}, \tau_{2}]=1 , A_{12}=[\tau_{2}^{-1}, \rho_{1}] , A_{12}^{-1}=[\rho_{2}^{-1}, \tau_{1}] ,

A_{12}^{-1}=(\tau_{1}\tau_{2})A_{12}^{-1}(\tau_{2}^{-1}\tau_{1}^{-1}) , A_{12}=(\rho_{1}\rho_{2})A_{12}(\rho_{2}^{-1}\rho_{1}^{-1}) ,

where A_{12}=[\tau_{1}, \rho_{1}] .

Now we choose an isotopy \{h_{t}\} : T^{2}arrow T^{2} , where h_{0}=id , h_{1}=h . Then
\{h_{t}\} determines a subset h_{t}(C)=\{h_{t}(x_{1}), h_{t}(x_{2})\} of T^{2} with 2 points for
each t . The subset h_{t}(C) determines a braid [2], [8]. The braid represented
by h_{t}(C) depends on the choice of an isotopy \{h_{t}\} . We can choose the
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isotopy \{h_{t}\} so as to satisfy h_{t}(x_{2})=x_{2} for any t(0\leq t\leq 1) . Let \sigma_{C}

denote the braid represented by h_{t}(C)=\{h_{t}(x_{1}), x_{2}\} . It is easy to see that
the braid \sigma_{C} is uniquely determined. Moreover, it is written as a product
of \rho_{1}^{\pm 1} or \tau_{1}^{\pm 1} uniquely.

For brevity, we shall write a=a_{2} , \rho=\rho_{1} , \tau=\tau_{1} . Then \sigma_{C} is ex-
pressed as \tau^{m_{1}}\rho^{n_{1}}\cdot\cdot\tau^{m_{s}}\rho^{n_{s}}(m_{i}, n_{i}\in Z, 1\leq i\leq s) . We have the following
propositon:

Proposition 2

f_{*}(a)=a ,

f_{*}(b)=(n_{1}+\cdot +n_{s})a+b ,

f_{*}(c)=-(m_{1}+\cdot +m_{s})a+c .

The proof of this proposition will be given in the next section. From
this proposition, we have

{\rm Im}(f_{*}-id)=(m_{1}+\cdot\cdot+m_{s})Za+(n_{1}+ \cdot+ns)Za . (2)

Here, we use the following notation:

mZa= {m’a|m’ is a multiple of m}.

We use the following notation:

gcd(0, i)=|i| for any integer i ,

gcd(i, j)=gcd(|i|, |j|) for non-zero integers i , j .

Let d denote gcd(m_{1}+ +m_{s}, n_{1}+\cdot +n_{s}) . From (1), (2), we have

Coker(f_{*}-id)=(Z/dZ)a\oplus Zb\oplus Zc . (3)

Note that in the case of d=0, we have Z/dZ=Z, and in the case of d\neq 0 ,
we have Z/dZ=Z_{d} , where Z_{d} is a cyclic group of order d . Therefore we
have

Z[(Z/dZ)a]=\{
Z[a] (d=0) ,
Z[a]/\langle a^{d}-1\rangle (d\geq 1) ,

where Z[a] is the ring of polynomials on a , and Z[a]/\langle a^{d}-1\rangle is the factor ring
of polynomials on a classified by the ideal \langle a^{d}-1\rangle . Thus L(f)^{Ab} becomes
a polynomial on a , b , c .
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Let \hat{L}(f) denote the reduced form of L(f)^{Ab} obtained by substituting
1 for b and for c. It is clear that \hat{L}(f) is a Laurant polynomial on a and the
number of terms in \hat{L}(f) is a lower bound for the number of fixed points
of f .

Definition 8 For x\in Fix(f) , let I(x) be the coefficient of a in the abelian-
ized coordinate R(x)^{Ab}\in(Z/dZ)a\oplus Zb\oplus Zc . We call I(x) the intersection
number of x .

This number coincides, modulo d , with the usual notion of an intersec-
tion number of the loop w(f\circ\ell)\ell^{-1} with the segment connecting x_{1} to x_{2} .
For each [i]\in Z/dZ , where i\in Z , let Fix_{[i]}(f) be the set of fixed points
having intersection number [i] , i.e. , Fix_{[i]}(f)=\{x\in Fix(f)|I(x)=[i]\} .
Then we have

\hat{L}(f)=\sum_{[i]}
ind (Fix_{[i]}(f))a^{[i]}\in Z[(Z/dZ)a] .

Definition 9 A Laurant polynomial P(a)\in Z[(Z/dZ)a] is called sym-
metr^{*}ic if there exists an integer \epsilon which satisfies the following equality:

P(a)\equiv a^{2\epsilon}P(a^{-1}) (mod a^{d}\equiv 1 ),

in other words, P(a) is symmetric if it is written as P(a)=a^{\epsilon}Q(a) , where
Q(a)\equiv Q(a^{-1}) (mod a^{d}\equiv 1 ). We call [\epsilon]\in Z/dZ the center of the poly-
nomial P(a) .

Assume that a braid \sigma is written as a product of \rho^{\pm 1} or \tau^{\pm 1} i.e., \sigma=

\tau^{m_{1}}\rho^{n_{1}}\cdot\cdot\tau^{m_{s}}\rho^{n_{S}}(m_{i}, n_{i}\in Z, 1\leq i\leq s) . We define a non-negative integer
d(\sigma) as follows:

d(\sigma)=gcd(m_{1}+\cdot\cdot+m_{s}, n_{1}+\cdot\cdot+n_{s}) .

Assume d(\sigma)\neq 1 . If s\geq 2 , we define an integer \epsilon(\sigma) as follows:

\epsilon(\sigma)=-\sum_{k=2}^{s}m_{k}(\sum_{l=1}^{k-1}n_{l}) .

If s=1 , let an integer \epsilon(\sigma)=0 .

Theorem Let h : T^{2}arrow T^{2} 6e a homeomorphism isotopic to the identity
map, and let x_{1} , x_{2} be distinct fixed points of h . Suppose that h is differen-
tiable at x_{i} , and the derivatives Dh(x_{i}) are non-singular (i=1,2) . Set C=
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\{x_{1}, x_{2}\} and M=T^{2} -C. Let X be the compactification of M by blowing
up x_{1} and x_{2} , and f : Xarrow X the extention of h : Marrow M . Assume
d(\sigma_{C})\neq 1 . Then \hat{L}(f) is a symmetric polynomial with center [\epsilon(\sigma_{C})] .

Example
(A) Let \sigma_{C}=\tau^{4}\rho\tau^{-6}\rho^{-3}\tau^{2}\rho^{2} , then d(\sigma_{C})=0 and \epsilon(\sigma_{C})=10 .

We have
\hat{L}(f)=a^{10}(2a^{7}+a^{6}-2a^{5}-18a^{4}+29a^{3}-2a^{2}-49a+76

-49a^{-1}-2a^{-2}+29a^{-3}-18a^{-4}-2a^{-5}+a^{-6}+2a^{-7}) .
(B) Let \sigma_{C}=\tau^{-1}\rho^{3}\tau^{2}\rho^{-2}\tau\rho\tau^{2}\rho^{6} , then d(\sigma_{C})=4 and \epsilon(\sigma_{C})=-11 .

We have
\hat{L}(f)=a^{[1]}(-52a^{[2]}+128a^{[1]}-186a^{[0]}+128a^{[-1]}-52a^{[-2]}) (mod a^{4}\equiv

1) .
(C) Let \sigma_{C}=\tau^{3}\rho^{-2}\tau^{-1}\rho\tau^{4}\rho^{3}\tau^{-2}\rho^{-4}\tau\rho^{2} , then d(\sigma_{C})=5 and \epsilon(\sigma_{C})=8 .

We have
\hat{L}(f)=a^{[3]}(-71a^{[2]}+199a^{[1]}-258a^{[0]}+199a^{[-1]}-71a^{[-2]}) (mod a^{5}\equiv

1) .

Remark Theorem asserts that there are some relations among fixed point
indices as follows:

In the case of d(\sigma_{C})=0 ,
ind(Fix_{\epsilon(\sigma_{C})-i}(f))=ind(Fix_{\epsilon(\sigma_{C})+i}(f)) for any positive integer i .

In the case of d(\sigma c)\geq 2 ,
ind(Fix_{[\epsilon(\sigma_{C})-i]}(f))=ind(Fix_{[\epsilon(\sigma_{C})+i]}(f)) for any positive integer i .

4. The Jacobian matrix and Lefschetz numbers

We first review some facts on the relation between the Jacobian matrix
and fixed points obtained by Fadell and Husseini [5], Huang and Jiang [6].
Fadell and Husseini devised a method of computing L(f) for surface maps.
Let X be a surface with boundary, and f : Xarrow X a continuous map.
Choose a base point x_{0} and a path w from x_{0} to f(x_{0}) . Choose a free basis
\{a_{1}, . . , a_{n}\} for \pi_{1}(X, x_{0}) . For \varphi\in Aut\pi_{1}(X, x_{0}) , let

J( \varphi)=(\frac{\partial\varphi(a_{i})}{\partial a_{j}})_{1\leq i,j\leq n}
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be the Jacobian matrix in Fox calculus. This is an n\cross n matrix in
Z\pi_{1}(X, x_{0}) , the group ring of \pi_{1}(X, x_{0}) . Fadell and Husseini [5] proved
that the element [1]-[tr(J(f_{\pi}))] of ZR(f) coincides with L(f) .

Let f : X - X be the extension of h : Marrow M . We follow the
notations in the previous sections and in [6]. Recall that \pi_{1}(X, x_{0}) is a free
group of rank 3 generated by a_{1} , b , c , and \Lambda is identified with ZH_{1}(X) .
Define a map B : Aut \pi_{1}(X, x_{0}) - GL(3, \Lambda) by

B(\varphi)=J(\varphi)^{Ab} ,

where J(\varphi) is defined with respect to the basis \{a_{1}, b, c\} and Ab denote the
abelianization operator of the group ring Z\pi_{1}(X, x_{0}) .

We can write down the automorphisms \rho^{\pm 1} , \tau^{\pm 1} in terms of the basis
\{a_{1}, b, c\} as follows [9, p. 116]:

\rho : \{a_{1}bc\mapsto\mapsto\mapsto a^{\frac{}{1}1}bcca_{1}c^{-1} , \rho^{-1} : \{\begin{array}{l}a_{1}\mapsto c^{-1}a_{1}cb\mapsto c^{-1}a_{1}cb,c\mapsto c\end{array} (4)

\tau : \{a_{1}bc\mapsto\mapsto\mapsto a_{1}cbba_{1}b^{-1} , \tau^{-1} : \{\begin{array}{l}a_{1}\mapsto b^{-1}a_{1}bb\mapsto bc\mapsto b^{-1}a_{1}^{-1}bc\end{array} (5)

Using (4), (5), we can consider every braid that is written as a product
of \rho^{\pm 1} or \tau^{\pm 1} as an element of Aut \pi_{1}(X, x_{0}) . Therefore, \sigma_{C} is considered as
an element of Aut \pi_{1}(X, x_{0}) . From Proposition [6, p. 121], we can assume
that f_{\pi}=\sigma_{C} .

Let \mu c stand for the projection H_{1}(X)arrow Coker(f_{*}-id) as well as
for its extension \Lambdaarrow ZCoker(f_{*}-id) . Huang and Jiang [6] derived the
equality:

1 -tr (\mu_{C}B(\sigma_{C}))=L(f)^{Ab} , (6)

which is easily obtained by the formula of Fadell and Husseini [5] quoted
above.

Let \nu(\varphi) denote the homomorphism on H_{1}(X) and on \Lambda induced by \varphi\in

Aut \pi_{1}(X, x_{0}) . We should note that B is not a homomorphism. However
we have the product formula:

B(\varphi\psi)=B(\varphi)^{\nu(\psi)}B(\psi) for \varphi , \psi\in Aut\pi_{1}(X, x_{0}) , (7)
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where the superscript \nu(\psi) means applying the substitution \nu(\psi) to every
entry of the matrix B(\varphi) .

Proof of Proposition 2. Rom (4), (5), we have:

\nu(\rho) : \{ab\mapsto\mapsto c\mapsto aa+bc
’

\nu(\rho^{-1}) : \{\begin{array}{l}a\mapsto ab\mapsto-a+bc\mapsto c\end{array} (8)

\nu(\tau) : \{ab\mapsto\mapsto c\mapsto ab-a+c , \nu(\tau^{-1}) : \{\begin{array}{l}a\mapsto ab\mapsto bc\mapsto a+c\end{array} (9)

The proposition is proved by (8), (9). \square

5. Proof of Theorem

Definition 10 Let m be an integer. Let G_{m} be the set of 3\cross 3 matrices
A=(x_{ij}(a))_{1\leq i,j\leq 3} whose elements are polynomials on a satisfying the

following equalities:
(i) x_{11}(a)=1 , x_{21}(a)=x_{31}(a)=0 ,
(i) x_{ij}(a)=a^{2m}x_{ij}(a^{-1}) (i, j=2,3) ,

(iii) x_{1j}(a)=(a-1)\overline{x_{1j}}(a) (j=2,3) ,

where \overline{x_{1j}}(a) are polynomials on a ,
(iv) det A=a^{2m} .

It is easy to verify that if A\in G_{m} , B\in G_{n} , then AB\in G_{m+n} , A^{-1}\in

G_{-m} .
For a braid \sigma which is expressed as a product of \rho^{\pm 1} or \tau^{\pm 1} , let B’(\sigma)

denote the simplified matrix of B(\sigma) obtained by substituting 1 for b and
for c , i.e. , B’(\sigma)=B(\sigma)|b=c=1 .

Lemma 1 Let \sigma=\rho^{r}\tau^{m}\rho^{n}\tau^{-m}\rho^{-n}\rho^{-r} , where m, n, r\in Z . Then B’(\sigma)\in

G_{mn} .

Proof. From (4), (5), the matrix B for the automorphisms \rho^{\pm 1} , \tau^{\pm 1} :
\pi_{1}(X, x_{0}) - \pi_{1}(X, x_{0}) become [9, p. 117]
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B(\rho)=(\begin{array}{lll}c 0 a^{-1}(a-1)-a a 00 0 l\end{array}) ,

B(\rho^{-1})=(\begin{array}{llll}c^{-1} 0 a^{-1}c^{-1}(1- a)c^{-1} a^{-1} a^{-1}c^{-1}(1- a)0 0 1 \end{array}) ,

B(\tau)=(\begin{array}{llll}b a^{-1}(a -1) 00 1 01 0 a^{-1}\end{array}) ,

B(\tau^{-1})=(\begin{array}{llll}b^{-1} a^{-1}b^{-1}(1- a) 00 1 0-ab^{-1} b^{-1}(a-1) a\end{array})

These expressions and the product formula (7) enable one to calculate
B(\sigma) . Here, we shall calculate in the case of m, n , r\in N. Let
B(\rho^{r})^{\nu(\tau^{m}\rho^{n}\tau^{-m}\rho^{-n}\rho^{-r})}B(\tau^{m}\rho^{n})^{\nu(\tau^{-m}\rho^{-n}\rho^{-r})}|_{b=c=1} denote (\alpha_{ij}(a)) , and let
B(\tau^{-m}\rho^{-n})^{\nu(\rho^{-r})}B(\rho^{-r})|_{b=c=1} denote (\beta_{ij}(a)) . To avoid complexity, we use
abbreviation as follows:

A_{n}^{m}= \sum_{k=1}^{n}a^{km} .

Then, we have

\alpha_{11}=a^{m(n-r)}-a^{-mr}(a-1) \{a^{n-m}(r+1)A_{m}^{n}A_{n}^{m-1}

-r(a^{n-m+1}A_{n}^{m-1}+a^{mn})A_{m}^{r-1}\} ,

\alpha_{12}=a^{n+r-1}(a-1)\{A_{m}^{-r}+ra^{-1}(a-1)\sum_{k=1}^{m-1}A_{k}^{1-r}a^{-k}\} ,

\alpha_{13}=a^{-(m+1)(r+1)}(a-1)\{ra^{r(m+1)}-a^{n+r}A_{m}^{r}A_{n}^{m-1}+ra^{r}(a-1)

\cross(aA_{m}^{r-1}\sum_{k=1}^{n-1}A_{k}^{m-1}a^{k}+A_{m}^{r-1}A_{n}^{m}-A_{m}^{r}.\sum_{k=1}^{n-1}A_{k}^{m-1}a^{k})+A_{m+1}^{r}A_{n}^{m}\} ,
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\alpha_{21}=a^{-m(r+1)}\{a^{m(n+1)}(arA_{m}^{r-1}-A_{r}^{1}(A_{m}^{r-1}+1))-a^{(m+1)r+n+1}

\cross A_{n}^{m-1}+a^{n+1}A_{n}^{m-1}(arA_{m}^{r-1}-A_{m}^{r-1}A_{r}^{1}+A_{m}^{r}(A_{r}^{1}-r))\} ,

\alpha_{22}=a^{n+r}-a^{n}(a-1) \{a^{-(mr+1)}A_{m}^{r}A_{r}^{1}+a^{r-1}(a^{-1}A_{r}^{1}-r)

\cross\sum_{k=1}^{m-1}A_{k}^{1-r}a^{-k}\} ,

\alpha_{23}=-a^{-(mr+m+1)}(a-1)A_{r}^{1}(a^{-r}A_{m+1}^{r}A_{n}^{m}-a^{n}A_{m}^{r}A_{n}^{m-1})

+a^{r-m}(A_{n-1}^{m}-a^{n}A_{n-1}^{m-1})+a^{-m}(r-a^{-1}A_{r}^{1})

\cross\{(a-1)\{a^{-mr}(A_{m}^{r-1}A_{n}^{m}+(aA_{m}^{r-1}-A_{m}^{r})\sum_{k=1}^{n-1}A_{k}^{m-1}a^{k})\}+1\} ,

\alpha_{31}=a^{1-mr}\{a^{n-m}A_{n}^{m-1}(aA_{m}^{r-1}-A_{m}^{r})+a^{mn}A_{m}^{r-1}\} ,

\alpha_{32}=a^{n+r-1}(a-1)\sum_{k=1}^{m-1}A_{k}^{1-r}a^{-k} ,

\alpha_{33}=a^{-m}\{(a-1)\{a^{-mr}(A_{m}^{r-1}A_{n}^{m}+ (aA_{m}^{r-1}-A_{m}^{r}) \sum_{k=1}^{n-1}A_{k}^{m-1}a^{k})\}+1\} ,

\beta_{11}=1 ,
\beta_{12}=-a^{n+r+1}(a-1)A_{m}^{n+r} ,

\beta_{13}=a^{-1}(a-1)\{(n+r-a^{-(n+1)}(a^{-r}A_{r}^{1}+A_{n}^{1}))A_{m}^{n+r}

-(n+r)a^{m(n+r)}\} ,

\beta_{21}=a^{-(n+r)}A_{n+r}^{1} ,
\beta_{22}=a^{-(n+r)} ,
\beta_{23}=a^{-(n+r+1)}A_{n+r}^{1}-(n+r) ,
\beta_{31}=-A_{m}^{1} ,

\beta_{32}=a^{-(n+r)}(a-1)\sum_{k=1}^{m}A_{k}^{n+r-1}a^{k} ,

\beta_{33}=(a-1)\{ra^{-1}(a^{-n}A_{m}^{n+r}A_{n}^{1}-a^{m+1}(a^{-n}A_{n}^{1}-1)A_{m}^{n+r-1})
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+a^{-n}(a^{-(r+1)}A_{r}^{1}-r) \sum_{k=1}^{m}A_{k}^{n+r-1}a^{k}+a^{m}A_{m}^{n+r-1}(n-a\sum_{k=1}^{n}A_{k}^{-1})

+A_{m}^{n+r} \sum_{k=1}^{n}A_{k}^{-1}\}+a^{m} .

Denote B’(\sigma)=(x_{ij}(a))_{1\leq i,j<3} . Since x_{ij}(a)= \sum_{k=1}^{3}\alpha_{ik}\beta_{kj}(i, j=1,2,3) ,
we can show that B’(\sigma)\in G_{mn}^{-} by calculating straightforwardly. We can
also prove the lemma in the case of m, n, r\in Z by a similar argument
described above. \square

Now, we need the following lemma which is a generalization of results
in [9, p. 120].

Lemma 2 Let \sigma=\tau^{m_{1}}\rho^{n_{1}}\cdot\cdot\tau^{m_{s}}\rho^{n_{s}} , where m_{1}+ +m_{s}=n_{1}+ \cdot+

n_{s}=0(m_{i}, n_{i}\in Z, 1\leq i\leq s, s\geq 2) . Then B’(\sigma)\in G_{\epsilon(\sigma)} .

Proof. We shall prove the lemma by induction.

Case 1: Consider the case of s=2. In this case, the lemma is a special
case of Lemma 1 of r=0 since \epsilon(\sigma)=-m_{2}n_{1}=m_{1}n_{1} .

Case 2: Consider the case of s=3, i.e., \sigma=\tau^{m_{1}}\rho^{n_{1}}\tau^{m_{2}}\rho^{n_{2}}\tau^{m_{3}}\rho^{n_{3}} , where
m_{1}+m_{2}+m_{3}=n_{1}+n_{2}+n_{3}=0 . Let \sigma_{1} , \sigma_{2} denote \tau^{m_{1}}\rho^{n_{1}}\tau^{-m_{1}}\rho^{-n_{1}} ,
\rho^{n_{1}}(\tau^{m_{1}+m_{2}}\rho^{n_{2}}\tau^{m_{3}}\rho^{n_{1}+n_{3}})\rho^{-n_{1}} respectively. From Lemma 1 we have
B’(\sigma_{1})\in G_{m_{1}n_{1}} and B’(\sigma_{2})\in G_{(m_{1}+m_{2})n_{2}} . Since \sigma=\sigma_{1}\sigma_{2} , we obtain

B’(\sigma)=B’(\sigma_{1})B’(\sigma_{2})\in G_{m_{1}n_{1}+(m_{1}+m_{2})n_{2}}=G_{\epsilon(\sigma)} .

Case 3: Now, suppose that the lemma is proved for all s(2\leq s\leq p, p\geq

3) . We shall prove the lemma in the case of s=p+1 , i.e., \sigma=\tau^{m_{1}}\rho^{n_{1}}

\tau^{m_{p+1}}\rho^{n_{p+1}} , where m_{1}+\cdot +m_{p+1}=n_{1}+ +n_{p+1}=0 . To avoid
complexity, we use abbreviation as follows:

M= \sum_{k=1}^{p-1}m_{k} , N= \sum_{k=1}^{p-1}n_{k} .

Let \sigma_{1} , \sigma_{2} and \sigma_{3} denote \tau^{m_{1}}\rho^{n_{1}}\cdot\cdot\tau^{m_{p-1}}\rho^{n_{p-1}}\tau^{-M}\rho^{-N} , \tau^{M}\rho^{N}\tau^{-M}\rho^{-N}

and \tau^{M}\rho^{N}\tau^{m_{p}}\rho^{n_{p}}\tau^{m_{p+1}}\rho^{n_{p+1}} respectively. From the hypotheses of induc-
tion, we have B’(\sigma_{1})\in G_{\epsilon(\sigma_{1})} , B’(\sigma_{2})^{-1}\in G_{-MN} , and B’(\sigma_{3})\in G_{\epsilon(\sigma_{3})} .
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Hence,

B’(\sigma_{1})B’(\sigma_{2})^{-1}B’(\sigma_{3})\in G_{\epsilon(\sigma_{1})-MN+\epsilon(\sigma_{3})} .

Therefore, since \epsilon(\sigma_{1})-MN+\epsilon(\sigma_{3})=\epsilon(\sigma) and

B’(\sigma)=B’(\sigma_{1})B’(\sigma_{2})^{-1}B’(\sigma_{3}) ,

we have B’(\sigma)\in G_{\epsilon(\sigma)} . This completes the proof of the lemma. \square

Proof of Theorem. Recall that \sigma_{C}=\tau^{m_{1}}\rho^{n_{1}} \cdot\tau^{m_{s}}\rho^{n_{s}}(m_{i}, n_{i}\in Z , 1\leq

i\leq s) . For brevity, we shall write d=d(\sigma_{C}) . Let \mu_{C}’ : Z[a]arrow Z[a]/\langle a^{d}-1\rangle

be the natural projection. Prom (3), (6), we have

1 -tr (\mu_{C}’B’(\sigma_{C}))=\hat{L}(f) .

Therefore, to prove the theorem, we have only to show that 1-tr (\mu_{C}’B’(\sigma_{C}))

is symmetric.
In the case of d=0, then \mu_{C}’B’(\sigma_{C})=B’(\sigma_{C}) and the theorem is easily

proved from Lemma 2.
We shall prove the theorem in the case of d\geq 2 .

Case 1: First, we consider the case of s=1 . For n\in Z , we define an
integer s(n) as 1, 0, and -1 in the case of n>0 , n=0, and n<0
respectively. For brevity, we shall write m=m_{1} , n=n_{1} . Then we have

\mu_{C}’B’(\sigma_{C})=(\begin{array}{lll}1 ma^{-1}(a-1) n(m+1)a^{-1}(a-1)-s(n)A_{|n|}^{1} 1 n-s(n)A_{|n|}^{1}s(m)A_{|m|}^{1} m-s(m)A_{|m|}^{1} mn+1-s(mn)|n|A_{|m|}^{1}\end{array})

Then \hat{L}(f) is a symmetric polynomial with center [0]\in Z_{d} since a^{i}(a+\cdot.+

a^{|m|})\equiv a+ \cdot+a^{|m|} (mod a^{d}\equiv 1 ) for any i\in Z .

Case 2: Secondly, we consider the case of s\geq 2 . Let

\sigma_{1}=\tau^{m_{1}}\rho^{n_{1}} . \tau^{m_{s}}\rho^{n_{s}}\tau^{-M}\rho^{-N} , \sigma_{2}=\tau^{M}\rho^{N}\tau^{-M}\rho^{-N}

and \sigma_{3}=\tau^{M}\rho^{N} ,

where M= \sum_{k=1}^{s}m_{k} , N= \sum_{k=1}^{s}n_{k} , then we have

B’(\sigma_{C})\equiv B’(\sigma_{1})B’(\sigma_{2})^{-1}B’(\sigma_{3}) (mod a^{d}\equiv 1 ). (10)
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By Lemma 2, we have

B’(\wedge\sigma_{1})\in G_{\epsilon(\sigma_{1})} , B’(\sigma_{2})^{-1}\in G_{-MN} . (11)

Since \mu_{C}’B’(\sigma_{3}) can be obtained as in Case 1 by substituting \sigma_{3} for \sigma_{C} , we
have from (11) that

B’(\sigma_{1})B’(\sigma_{2})^{-1}B’(\sigma_{3})\equiv(**1 x_{22}(a)x_{32}(a)* x_{33}(a)x_{23}(a)*) (mod a^{d}\equiv 1 ),

(12)

where x_{ij}(a)=a^{2\epsilon(\sigma_{C})}x_{ij}(a^{-1})(i, j=2,3) .

From (10), (12), we can obtain the consequence of Theorem in the case
of d\geq 2 , because x_{ij}(a) are symmetric polynomials with center [\epsilon(\sigma_{C})]

(i, j=2,3) . We complete the proof of Theorem. \square
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