On Hadamard difference sets with weak multiplier minus one

Dominic T. Elvira*
(Received April 16, 2001)

Abstract

A note on the intersection numbers of an Hadamard difference set (HDS) with weak multiplier -1 is given and a necessary condition for the existence of an HDS with weak multiplier -1 in the group $G=H \times \mathbb{Z}_{4}$, a direct product where H is any group of order u^{2} with $u \geq 1$, an odd integer is obtained.

Key words: difference set, Hadamard difference set, reversible difference set, multiplier, weak multiplier, intersection number.

1. Preliminaries

A (v, k, λ) difference set (DS) is a k-element subset D of a group G of order v such that every element $g \neq 1$ of G has exactly λ representations $g=d_{1} d_{2}^{-1}$ with $d_{1}, d_{2} \in D$. The order of a difference set D is the integer $n=k-\lambda$ and D is called non-trivial if $n>1$. A difference set D is called cyclic, abelian, etc., if the underlying group G has the respective property.

Many results have been obtained by studying difference sets in the context of the group ring $\mathbb{Z}[G]$ of a group G over the ring of integers \mathbb{Z}. For $X \subseteq G$ and $t \in \mathbb{Z}$, we denote $X^{t}=\left\{x^{t} \mid x \in X\right\}$. With this notation and viewing D as an element of $\mathbb{Z}[G], D$ satisfies the basic equation $D D^{-1}=$ $n+\lambda G$ from which it follows that $k^{2}=n+\lambda v$.

When $v=4 n$, we call D an Hadamard Difference Set (HDS). In this case, D has parameters of the form $\left(4 u^{2}, 2 u^{2}-u, u^{2}-u\right)$ for some $u \in \mathbb{Z}$ ([12], p.38). Refer to [1], [2], or [12] for a more detailed discussion on difference sets and Hadamard difference sets.

A mapping χ from an abelian group G into the nonzero complex numbers is called a character on G if $\chi(a b)=\chi(a) \chi(b)$ for any $a, b \in G$. We note that χ maps every element of G into an e-th root of unity where $e=\exp (G)$, the exponent of G. We denote by G^{*} the character group of G and by χ_{0},

[^0]we mean the principal character. Refer to [12] for the inversion formula and for some applications of characters of abelian groups to difference sets.

Let G be an abelian group and let t be an integer such that $(t,|G|)=1$ so that t induces an automorphism of G given by $x \rightarrow x^{t}$. If t has the property $D^{t}=D g$ for some $g \in G$, we call t a numerical multiplier of D. On the other hand, if G is non-abelian, there is no reason that t induces an automorphism of G. In this case, we call t a weak multiplier of D if $D^{t}=D g$ for some $g \in G$ (see [1]). If G is any group, without specifying whether it is abelian or non-abelian, we also call t a weak multiplier of D if t satisfies the above property. Thus we consider weak multipliers as the generalization of the usual concept of numerical multipliers. In addition, if D is a difference set in any group G with $D^{-1}=D$, we call D reversible (see [2]). If G is abelian, $D=D^{-1}$ if and only if $\chi(D)=\overline{\chi(D)}$ for every $\chi \in G$. Interested readers may refer to [1] for a comprehensive survey and latest results on abelian difference sets with multiplier -1 and those that are reversible.

There exist reversible difference sets in some non-abelian groups. The difference sets constructed by Miyamoto [11] and Ma [7] are non-abelian reversible difference sets. Also, the difference set with parameters $(100,45,20)$ constructed by Smith [13] is an example of a non-abelian reversible difference set with Hadamard parameters. We note that in Smith's construction, a Sylow 2-subgroup is not a direct factor of the group.

In Section two, we give a note on the intersection numbers of HDS's with weak multiplier -1 . We then obtain a necessary condition for the existence of an Hadamard difference set in the group $G=H \times \mathbb{Z}_{4}$, a direct product where H is any group of order u^{2} with $u \geq 1$, an odd integer in Section three.

2. On the intersection numbers of HDS's

Let H and K be groups such that $G=H K$ with H normal in G and $H \cap K=1$. A mapping "-" given by $\overline{h k}=k$ where $h \in H$ and $k \in K$ is a homomorphism from G to K. Also, we have $\bar{g}=g$ if $g \in K$ and $H g=H \bar{g}$ for every $g \in G$ and as a set $\bar{G}=K$. If D is a difference set in G, the integers $d_{\bar{g}}=|D \cap H g|$ are called the intersection numbers of D with respect to H.

Let G be any group of order $4 m^{2} u^{2}$ with $m, u \geq 1$ and $(2 m, u)=1$. Assume G contains a normal subgroup H of order u^{2} such that the factor
group $\bar{G}=G / H$ is abelian. By Schur-Zassenhaus Theorem, G contains a subgroup K such that $G=H K$ and $H \cap K=1$ (see p. 221 in [5]). If G contains an HDS D then D has parameters $\left(4 m^{2} u^{2}, 2 m^{2} u^{2}-m u, m^{2} u^{2}-\right.$ $m u$) and D satisfies

$$
\begin{equation*}
D D^{-1}=m^{2} u^{2}+\left(m^{2} u^{2}-m u\right) G . \tag{2.1}
\end{equation*}
$$

Let $G=\sum_{g \in K} H g$ so that $D=\sum_{g \in K} D_{g} g$ where $D_{g} \subseteq H$. Clearly, $d_{g}=$ $\left|D_{g}\right|$ for every $g \in K$.
Theorem 2.1 Let G be any group of order $4 m^{2} u^{2}$ with $m, u \geq 1$, $(2 m, u)=1$. Assume $G=H K$ where H is a normal subgroup of G of order $u^{2}, H \cap K=1$ and $G / H \cong K$ is abelian. If G contains an HDS D with weak multiplier -1 then:
(i) for every $g \in K, d_{g}=\frac{1}{2} u\left(u+l_{g}\right)$ where $l_{g} \in\{ \pm 1\}$.
(ii) Set $A=\left\{g \in K \mid l_{g}=1\right\}$ and $B=\left\{g \in K \mid l_{g}=-1\right\}$. Then A and B are complementary HDS's in K with weak multiplier -1 and with parameters

$$
\begin{equation*}
\left(4 t^{2}, 2 t^{2}-t, t^{2}-t\right) \tag{2.2}
\end{equation*}
$$

where $t=m$ and $-m$, respectively.
Proof. Assume $D^{-1}=D h k$ for some $h \in H$ and $k \in K$ so that $\overline{D^{-1}}=\bar{D} k$. We have $\bar{D}=\sum_{g \in K} d_{g} g \in \mathbb{Z}[K]$ where $0 \leq d_{g} \leq u^{2}$ and $\bar{D} \bar{D}^{-1}=m^{2} u^{2}+$ $\left(m^{2} u^{2}-m u\right) u^{2} K$. Then

$$
\chi(\bar{D})= \begin{cases}2 m^{2} u^{2}-m u & \text { if } \chi=\chi_{0} \text { on } K \\ \epsilon_{\chi} m u & \text { if } \chi \neq \chi_{0} \text { on } K\end{cases}
$$

where $\epsilon_{\chi} \in\left\{ \pm \sqrt{\chi\left(k^{-1}\right)}\right\}$ and $\sqrt{\chi\left(k^{-1}\right)}$ is a $2 e$-th root of unity, $e=\exp (K)$.
For a fixed $g \in K$, we have $\sum_{\chi \in K^{*}} \chi\left(\bar{D} g^{-1}\right)=4 m^{2} d_{g}$ by the inversion formula. On the other hand,

$$
\sum_{\chi \in K^{*}} \chi\left(\bar{D} g^{-1}\right)=2 m^{2} u^{2}-m u+m u \sum_{\chi_{0} \neq \chi \in K^{*}} \epsilon_{\chi} \chi\left(g^{-1}\right)
$$

where $\chi(g)$ is an e-th root of unity. Thus

$$
\begin{equation*}
4 m^{2} d_{g}=2 m^{2} u^{2}-m u+m u l_{g}^{\prime} \tag{2.3}
\end{equation*}
$$

where $l_{g}^{\prime}=\sum_{\chi_{0} \neq \chi \in K^{*}} \epsilon_{\chi} \chi\left(g^{-1}\right)$, an algebraic integer. We note that

$$
\begin{equation*}
\left|l_{g}^{\prime}\right| \leq 4 m^{2}-1 \tag{2.4}
\end{equation*}
$$

From (2.3), we get $2 m u-1+l_{g}^{\prime} \equiv 0(\bmod 4 m)$. Since u is odd, we obtain $l_{g}^{\prime} \equiv 1-2 m(\bmod 4 m)$. Let $l_{g}^{\prime}=1-2 m+4 m r_{g}$ for some integer r_{g}. Using (2.4), one can easily show that $-m<r_{g} \leq m$. Substituting the expression for l_{g}^{\prime} in (2.3), we have $d_{g}=\frac{1}{2} u\left(u-1+2 r_{g}\right)$ and so $d_{g}=\frac{1}{2} u\left(u+l_{g}\right)$ where $l_{g}=-1+2 r_{g}$. As $|D|=\sum_{g \in K} d_{g}=2 m^{2} u^{2}-m u$, we get $\sum_{g \in K} \frac{1}{2} u(u+$ $\left.l_{g}\right)=2 m^{2} u^{2}-m u$ and so $\sum_{g \in K} l_{g}=-2 m$. From (2.1), we also have

$$
\sum_{g \in K} D_{g} D_{g}^{-1}=m^{2} u^{2}+\left(m^{2} u^{2}-m u\right) H
$$

and so $\sum_{g \in K} d_{g}^{2}=m^{2} u^{2}+\left(m^{2} u^{2}-m u\right) u^{2}$. Substituting the expression for d_{g} to this last equation gives $\sum_{g \in K} l_{g}^{2}=4 m^{2}$. As l_{g} is odd and $|K|=4 m^{2}$, we get $l_{g}^{2}=1$ which gives $l_{g}= \pm 1$. Hence $d_{g}=\frac{1}{2} u\left(u+l_{g}\right)$ where $l_{g} \in\{ \pm 1\}$.

To prove the second statement, we note that

$$
\bar{D}=\frac{1}{2} u(u+1) A+\frac{1}{2} u(u-1)(K-A)=\frac{1}{2} u(u-1) K+u A .
$$

As $|\bar{D}|=2 m^{2} u^{2}-m u$ and $|K|=2 m^{2}$, we obtain $|A|=2 m^{2}-m$. Moreover, as $\chi(\bar{D})=\epsilon_{\chi} m u$ where $\epsilon_{\chi} \in\left\{ \pm \sqrt{\chi\left(k^{-1}\right)}\right\}$ for every $\chi_{0} \neq \chi \in K^{*}$, we have $\chi(A)=\epsilon_{\chi} m$ and so $A A^{-1}=m^{2}+\left(m^{2}-m\right) K$ by the inversion formula. Since $\bar{D}=\frac{1}{2} u(u-1) K+u A$ and $D^{-1}=D h k$, we have $A^{-1}=A k$. Thus A is an HDS in K with weak multiplier -1 and with parameters in (2.2).
Example 2.2 Let G be a group of order $4 p^{2 \alpha}$ with $\alpha \geq 1$ and $p \geq 3$, a prime. Let $H \in \operatorname{Syl}_{p}(G)$, the set of all Sylow p-subgroups of G and set $n_{p}=$ $\left|\operatorname{Syl}_{p}(G)\right|$. By Sylow Theorem, $n_{p}=1$ unless $p=3$ in which case we have $n_{3}=1$ or 4. Thus if $p>3$, a Sylow p-subgroup H is always normal in G and so $G=H G_{2}$ where G_{2} is a Sylow 2-subgroup of G. Let $G_{2}=\left\{1, x_{1}, x_{2}, x_{3}\right\}$ and let $D=D_{0}+D_{1} x_{1}+D_{2} x_{2}+D_{3} x_{3}$ where $D_{i} \subset H,(0 \leq i \leq 3)$ be an HDS in G with weak multiplier -1. By Theorem 2.1, the intersection numbers of D with respect to H are $\left\{d_{0}, d_{1}, d_{2}, d_{3}\right\}=\left\{\frac{1}{2} p^{\alpha}\left(p^{\alpha}-1\right), \frac{1}{2} p^{\alpha}\left(p^{\alpha}-1\right)\right.$, $\left.\frac{1}{2} p^{\alpha}\left(p^{\alpha}-1\right), \frac{1}{2} p^{\alpha}\left(p^{\alpha}+1\right)\right\}$ where $d_{i}=\left|D_{i}\right|$. In particular, if we set $\alpha=1$ and $p=5$ then the intersection numbers are $\left\{d_{1}, d_{2}, d_{3}, d_{4}\right\}=\{15,10,10,10\}$. The reversible HDS constructed by Smith in the group $\langle x, y, z| x^{5}=y^{5}=$ $\left.z^{4}=[x, y]=1, z x=x^{2} z, z y=y^{2} z\right\rangle$ is an example where these intersection numbers hold true (see [1], p. 410 for a particular example of D).

Without the assumption that the HDS admits -1 as a multiplier, McFarland also gave a proof of a case of Theorem 2.1 in the group $G=G_{2} \times G_{p}$ where p is an odd prime, $G_{p}=\mathbb{Z}_{p} \times \mathbb{Z}_{p}$ and G_{2} is an abelian group of order $2^{2 a+2}$ with exponent 2 if $p \equiv 1(\bmod 4)$ and exponent 2 or 4 if $p \equiv 3(\bmod 4)$ (see Lemma 4.2 of $[8]$).

Theorem 2.1 is also related to abelian reversible HDS's. We note that there exists a reversible HDS in $\mathbb{Z}_{2^{a+1}} \times \mathbb{Z}_{2^{a+1}}$ for every $a \geq 0$ by a construction of Dillon [3]. On the other hand, McFarland in [9] proved that there exists no reversible HDS in the abelian group $G_{2} \times G_{p}$ where G_{2} is an abelian group of order $2^{2 a+2}$ and $\left|G_{p}\right|=p^{2 \alpha}$ where $p>3$ is a prime and α is an odd integer. The group $\mathbb{Z}_{2^{a}} \times \mathbb{Z}_{2^{a}} \times \mathbb{Z}_{2} \times \mathbb{Z}_{2} \times \mathbb{Z}_{3} \times \mathbb{Z}_{3}$ contains a reversible HDS for every $a \geq 0$ (see [1]) and if we let $G=\mathbb{Z}_{2^{a+1}} \times \mathbb{Z}_{2^{a+1}} \times \mathbb{Z}_{3} \times \mathbb{Z}_{3}$ then there exists a reversible HDS in G when $a=0$ by a construction of Turyn [14]. However when $a=1$, Xiang [15] gave a proof on the non-existence of a reversible HDS in G. The case $a>1$ in G is still an open problem.

In the next section, we study the HDS's with multiplier -1 in the group $G=H \times \mathbb{Z}_{4}$, a direct product with $|H|=u^{2}, u \geq 1$, an odd integer and obtain a necessary condition for the existence of these HDS's in G.

3. On HDS's with weak multiplier $\mathbf{- 1}$ in a direct product

Let G be a group with $G \cong H \times \mathbb{Z}_{4}$, a direct product where H is any group of order $u^{2}, u \geq 1$, an odd integer. Let $\mathbb{Z}_{4}=\langle x\rangle$ and suppose D is an HDS in G with weak multiplier -1 . We can write

$$
\begin{equation*}
D=A_{0}+A_{1} x+A_{2} x^{2}+A_{3} x^{3} \tag{3.1}
\end{equation*}
$$

where $A_{i} \subseteq H$ for $i=0,1,2,3$. Let $\left|A_{i}\right|=a_{i}$ be the intersection numbers of D with respect to H. By Theorem 2.1, the following lemma is immediate.

Lemma 3.1 If D is an $H D S$ with weak multiplier -1 in $G \cong H \times \mathbb{Z}_{4}$ where H is a group of order $u^{2}, u \geq 1$, an odd integer then $\left\{a_{0}, a_{1}, a_{2}, a_{3}\right\}=$ $\left\{\frac{1}{2} u(u-1), \frac{1}{2} u(u-1), \frac{1}{2} u(u-1), \frac{1}{2} u(u+1)\right\}$.
Lemma 3.2 We can assume that $D^{-1}=D$.
Proof. Suppose $D^{-1}=D g x^{i}$ where $g \in H$ and $i \in\{0,1,2,3\}$. If $i \in\{1,3\}$ then $a_{0}=a_{i+2}$ and $a_{2}=a_{i}$ where the subscripts are integers modulo 4. This contradicts Lemma 3.1. If $D^{-1}=D g x^{2}$ then $D_{1}=D x$ satisfies $D_{1}^{-1}=D_{1} g$. Thus $D^{-1}=D g$ for some $g \in H$.

We now assume $D^{-1}=D g$ for some $g \in H$. Then

$$
\begin{equation*}
A_{0}^{-1}=A_{0} g, A_{1}^{-1}=A_{3} g, A_{2}^{-1}=A_{2} g, A_{3}^{-1}=A_{1} g \tag{3.2}
\end{equation*}
$$

By (3.2), we have $A_{0}^{-1}=A_{0} g$ and by taking the inverse of both sides, we get $A_{0}=g^{-1} A_{0}^{-1}=g^{-1} A_{0} g$. Thus $g A_{0}=A_{0} g$. Similarly, $g A_{2}=A_{2} g$. Also by (3.2), $A_{1}^{-1}=A_{3} g$ and $A_{3}^{-1}=A_{1} g$. Then $A_{1}=g^{-1} A_{3}^{-1}=g^{-1} A_{1} g$ which gives $g A_{1}=A_{1} g$. Similarly, $g A_{3}=A_{3} g$.

Finally, we note that the order of g is odd, and so $\langle g\rangle=\left\langle g^{2}\right\rangle$. Thus $g=g^{2 t}$ for some integer t and we have $\left(D g^{t}\right)^{-1}=D g^{t}$. Thus we can assume that $D^{-1}=D$.

By Lemma 3.2, we can now assume $D^{-1}=D$. From (3.1), we have the following:

$$
\begin{equation*}
A_{0}^{-1}=A_{0}, A_{1}^{-1}=A_{3}, A_{2}^{-1}=A_{2}, A_{3}^{-1}=A_{1} \tag{3.3}
\end{equation*}
$$

By substituting (3.1) into $D D^{-1}=u^{2}+\left(u^{2}-u\right) G$ and equating the coefficients of x^{i} on both sides for $i \in\{0,1,2,3\}$, we obtain four equations. Also, by substituting the expressions in (3.3) into these four equations we get:

$$
\begin{align*}
\left(A_{0}\right)^{2}+A_{1} A_{3}+A_{3} A_{1}+\left(A_{2}\right)^{2} & =u^{2}+\left(u^{2}-u\right) H \tag{3.4}\\
A_{0} A_{1}+A_{1} A_{0}+A_{2} A_{3}+A_{3} A_{2} & =\left(u^{2}-u\right) H \tag{3.5}\\
\left(A_{1}\right)^{2}+A_{0} A_{2}+A_{2} A_{0}+\left(A_{3}\right)^{2} & =\left(u^{2}-u\right) H \tag{3.6}\\
A_{0} A_{3}+A_{3} A_{0}+A_{1} A_{2}+A_{2} A_{1} & =\left(u^{2}-u\right) H \tag{3.7}
\end{align*}
$$

By (3.3) and Lemma 3.1, it is immediate that only two cases can hold for the values of the a_{i} 's, namely: $\left\{a_{0}, a_{2}\right\}=\left\{\frac{1}{2} u(u+1), \frac{1}{2} u(u-1)\right\}$ and $a_{1}=a_{3}=\frac{1}{2} u(u-1)$.

We now assume $u>1$. By Feit-Thompson Theorem on groups of odd order, $H \neq H^{\prime}$ where $H^{\prime}=[H, H]$, the commutator subgroup of H (see [4]). Let $\bar{H}=H / H^{\prime}$.

Lemma 3.3 For every $\chi \in \bar{H}^{*}, \chi \neq \chi_{0}$, we have $\chi\left(\overline{A_{1}}\right)=\chi\left(\overline{A_{3}}\right)=0$.
Proof. Let $\chi \in \bar{H}^{*}, \chi \neq \chi_{0}$ and set $\alpha_{i}=\chi\left(\overline{A_{i}}\right),(0 \leq i \leq 3)$. From (3.4) (3.7), we have

$$
\begin{align*}
& \alpha_{0}^{2}+2 \alpha_{1} \alpha_{3}+\alpha_{2}^{2}=u^{2} \tag{3.8}\\
& \alpha_{0} \alpha_{1}+\alpha_{2} \alpha_{3}=0 \tag{3.9}
\end{align*}
$$

$$
\begin{align*}
& \alpha_{1}^{2}+2 \alpha_{0} \alpha_{2}+\alpha_{3}^{2}=0 \tag{3.10}\\
& \alpha_{0} \alpha_{3}+\alpha_{1} \alpha_{2}=0 \tag{3.11}
\end{align*}
$$

By (3.9) and (3.11), $\left(\alpha_{0}+\alpha_{2}\right)\left(\alpha_{1}+\alpha_{3}\right)=0$ and so $\alpha_{0}=-\alpha_{2}$ or $\alpha_{1}=-\alpha_{3}$. If $\alpha_{0}=-\alpha_{2}$, by (3.8) we have $\alpha_{0}^{2}+\alpha_{1} \alpha_{3}=\frac{u^{2}}{2} \in \mathbb{Z}$ as the left hand side is an algebraic integer. Since $u \geq 1$ is odd, this is a contradiction. Therefore $\alpha_{1}=-\alpha_{3}$. From (3.8) and (3.9), respectively, we get

$$
\begin{align*}
& \alpha_{0}^{2}-2 \alpha_{1}^{2}+\alpha_{2}^{2}=u^{2} \tag{3.12}\\
& \alpha_{1}\left(\alpha_{0}-\alpha_{2}\right)=0 . \tag{3.13}
\end{align*}
$$

By (3.13), $\alpha_{1}=0$ or $\alpha_{0}=\alpha_{2}$. If $\alpha_{0}=\alpha_{2}$, then by (3.12), $\alpha_{0}^{2}-\alpha_{1}^{2}=\frac{u^{2}}{2} \in \mathbb{Z}$, again a contradiction. Thus $\alpha_{1}=0$ and so $\alpha_{3}=0$.

Theorem 3.4 Let $G \cong H \times \mathbb{Z}_{4}$ where H is any group of order u^{2} with $u \geq 1$, an odd integer. If G contains an HDS with weak multiplier -1 then u divides $\left|H^{\prime}\right|$ where $H^{\prime}=[H, H]$.

Proof. By Lemma 3.3, we have $\chi\left(\overline{A_{1}}\right)=0$ for every $\chi \in \bar{H}^{*}, \chi \neq \chi_{0}$. Thus $A_{1} H^{\prime}=s H$ for some integer s by the inversion formula (see [12]). As $|H|=u^{2},\left|A_{1}\right|=\frac{1}{2} u(u-1)$ and $\left(u, \frac{u-1}{2}\right)=1, u$ must divide $\left|H^{\prime}\right|$.

We note that if G is a cyclic group containing an HDS then $G \cong H \times \mathbb{Z}_{4}$ where $|H|=u^{2}, u \geq 1$, an odd integer by a result of Turyn [14]. The above theorem then gives an alternate proof of the non-existence of non-trivial cyclic HDS's with multiplier -1 which was proven also by McFarland and Ma in [10]. Moreover, if $u=p$, an odd prime, then clearly G cannot contain an HDS with weak multiplier -1 .

Corollary 3.5 If $u=p q$ where $p>q$ are primes then G does not contain an HDS with weak multiplier -1 .

Proof. Let $P \in \operatorname{Syl}_{p}(H)$. We have $|H|=p^{2} q^{2}$ and by Theorem 3.4, $p q$ divides $\left|H^{\prime}\right|$. Let $t=\left|N_{H}(P)\right|$, where $N_{H}(P)$ is the normalizer of P in H. Then $t \in\left\{p^{2}, p^{2} q, p^{2} q^{2}\right\}$. If $t=p^{2} q$ then $\left|\operatorname{Syl}_{p}(H)\right|=q \equiv 1 \bmod (p)$. As $p>q$, this case cannot occur. If $t=p^{2} q^{2}$ then $H=N_{H}(P)$ and so $P \triangleleft H$. Thus $H^{\prime} \leq P$ and so $p q$ does not divide $\left|H^{\prime}\right|$. This is a contradiction.

We now assume $t=p^{2}$. Then $N_{H}(P)=P$ and so $P \leq Z\left(N_{H}(P)\right)$. By a theorem of Burnside (see Theorem 7.4.3 in [5]), there exists a subgroup $Q \triangleleft H$ such that $H=Q P \triangleright Q$. Thus $H^{\prime} \leq Q$ and again $p q$ does not divide
$\left|H^{\prime}\right|$.
We observe that Theorem 3.4 cannot rule out the non-existence of an HDS with weak multiplier minus one in the group $G=H \times \mathbb{Z}_{4}$ with $|H|=$ $u^{2}, u \geq 1$, an odd integer unlike that of the abelian case. We also note that Corollary 3.5 does not include the case $p=q$ in which case $|H|=p^{4}$.

We also mention here that another topic worth considering is the HDS's in all groups of order $4 p^{2}$ with $p \geq 5$, a prime. A list of all the isomorphism classes of these groups was given by liams in [6]. In the same paper, Iiams proved the non-existence of non-trivial HDS's in some of these groups. The other remaining cases may still be open.

Acknowledgment I thank Professor Yutaka Hiramine, my research adviser for all his guidance and support.

References

[1] Beth T., Jungnickel D. and Lenz H., Design Theory. 2nd ed., Vol. 1, 2, Cambridge: Cambridge University Press (1999).
[2] Davis J.A. and Jedwab J., A Survey of Hadamard Difference Sets. Groups, Difference Sets, and the Monster. de Gruyter-Berlin-New York (1995), 145-156.
[3] Dillon J.F., Difference Sets in 2-Groups. Contemp. Math. 111, Providence (1990), 65-72.
[4] Feit W. and Thompson J.G., Solvability of Groups of Odd Order. Pacific Journal of Mathematics 13 (1963), 775-1029.
[5] Gorenstein D., Finite Groups. Harper and Row, New York (1968).
[6] Iiams J.E., On Difference Sets in Groups of Order $4 p^{2}$. Journal of Comb. Theory A 72 (1995), 256-276.
[7] Ma S.L., A Family of Difference Sets having-1 as an Invariant. European Journal of Comb. 10 (1989), 273-274.
[8] McFarland R.L., Necessary Conditions for Hadamard Difference Sets. D. RayChaudhuri, editor, IMA Vol. Math. Appli. 21: Coding Theory and Design Theory. Springer-Verlag, New York (1990), 112-122.
[9] McFarland R.L., Sub-Difference Sets of Hadamard Difference Sets. Journal of Combinatorial Theory (A) 54 (1990), 112-122.
[10] McFarland R.L. and Ma S.L., Abelian Difference Sets with Multiplier minus one. Arch. Math. 54 (1990), 610-623.
[11] Miyamoto M., A Family of Difference Sets having -1 as an Invariant. Hokkaido Math. Journal 12 (1983), 24-26.
[12] Pott A., Finite Geometry and Character Theory. Lecture Note 1601, SpringerVerlag, Berlin (1995).
[13] Smith K.W., Non-Abelian Hadamard Difference Sets. Journal of Combinatorial Theory (A) 70 (1995), 144-156.
[14] Turyn R.J., Character Sums and Difference Sets. Pacific Journal of Mathematics (1965), 319-346.
[15] Xiang Q., On Reversible Abelian Hadamard Difference Sets. Journal of Statistical Planning and Inference 73 (1998), 409-416.

Mathematics Department
Philippine Normal University
Taft Avenue, Manila
Philippines
E-mail: dtelvira@lycos.com

[^0]: 2000 Mathematics Subject Classification : Primary 05B10; Secondary 05B20.
 *The author is a faculty member of Philippine Normal University (PNU), Manila on study leave at Kumamoto University under a Monbusho grant.

