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On Hadamard difference sets with weak
multiplier minus one

Dominic T. ELVIRA*
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Abstract. A note on the intersection numbers of an Hadamard difference set (HDS)
with weak multiplier -1 is given and a necessary condition for the existence of an HDS
with weak multiplier-l in the group G=H\cross \mathbb{Z}_{4} , a direct product where H is any group
of order u^{2} with u\geq 1 , an odd integer is obtained.
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1. Preliminaries

A (v, k, \lambda) difference set (DS) is a k-element subset D of a group G of
order v such that every element g\neq 1 of G has exactly \lambda representations
g=d_{1}d_{2}^{-1} with d_{1} , d_{2}\in D . The order of a difference set D is the integer
n=k-\lambda and D is called non-trivial if n>1 . A difference set D is called
cyclic, abelian, etc., if the underlying group G has the respective property.

Many results have been obtained by studying difference sets in the
context of the group ring \mathbb{Z}[G] of a group G over the ring of integers \mathbb{Z} . For
X\subseteq G and t\in \mathbb{Z} , we denote X^{t}=\{x^{t}|x\in X\} . With this notation and
viewing D as an element of \mathbb{Z}[G] , D satisfies the basic equation DD^{-1}=

n+\lambda G from which it follows that k^{2}=n+\lambda v .
When v=4n, we call D an Hadamard Difference Set (HDS). In this

case, D has parameters of the form (4u^{2},2u^{2}-u, u^{2}-u) for some u\in \mathbb{Z}([12] ,
p. 38). Refer to [1], [2], or [12] for a more detailed discussion on difference
sets and Hadamard difference sets.

A mapping \chi from an abelian group G into the nonzero complex num-
bers is called a character on G if \chi(ab)=\chi(a)\chi(b) for any a , b\in G . We note
that \chi maps every element of G into an e-th root of unity where e=\exp(G) ,
the exponent of G . We denote by G^{*} the character group of G and by \chi_{0} ,
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we mean the principal character. Refer to [12] for the inversion formula and
for some applications of characters of abelian groups to difference sets.

Let G be an abelian group and let t be an integer such that (t, |G|)=1
so that t induces an automorphism of G given by x -arrow x^{t} . If t has the
property D^{t}=Dg for some g\in G , we call t a numerical multiplier of D .
On the other hand, if G is non-abelian, there is no reason that t induces
an automorphism of G. In this case, we call t a weak multiplier of D if
D^{t}=Dg for some g\in G (see [1]). If G is any group, without specifying
whether it is abelian or non-abelian, we also call t a weak multiplier of D
if t satisfies the above property. Thus we consider weak multipliers as the
generalization of the usual concept of numerical multipliers. In addition, if
D is a difference set in any group G with D^{-1}=D , we call D reversible
(see [2]). If G is abelian, D=D^{-1} if and only if \chi(D)=\overline{\chi(D)} for every
\chi\in G . Interested readers may refer to [1] for a comprehensive survey and
latest results on abelian difference sets with multiplier -1 and those that
are reversible.

There exist reversible difference sets in some non-abelian groups. The
difference sets constructed by Miyamoto [11] and Ma [7] are non-abelian re-
versible difference sets. Also, the difference set with parameters (100, 45, 20)
constructed by Smith [13] is an example of a non-abelian reversible differ-
ence set with Hadamard parameters. We note that in Smith’s construction,
a Sylow 2-subgroup is not a direct factor of the group.

In Section two, we give a note on the intersection numbers of HDS’s
with weak multiplier -1. We then obtain a necessary condition for the
existence of an Hadamard difference set in the group G=H\cross \mathbb{Z}_{4} , a direct
product where H is any group of order u^{2} with u\geq 1 , an odd integer in
Section three.

2. On the intersection numbers of HDS’s

Let H and K be groups such that G=HK with H normal in G and
H\cap K=1 . A mapping “–,, given by \overline{hk}=k where h\in H and k\in K is a
homomorphism from G to K. Also, we have \overline{g}=g if g\in K and Hg=H\overline{g}

for every g\in G and as a set \overline{G}=K . If D is a difference set in G, the integers
d_{\overline{g}}=|D\cap Hg| are called the intersection numbers of D with respect to H .

Let G be any group of order 4m^{2}u^{2} with m, u\geq 1 and (2m, u)=1 .
Assume G contains a normal subgroup H of order u^{2} such that the factor
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group \overline{G}=G/H is abelian. By Schur-Zassenhaus Theorem, G contains a
subgroup K such that G=HK and H\cap K=1 (see p. 221 in [5]). If G

contains an HDS D then D has parameters (4m^{2}u^{2},2m^{2}u^{2}-mu, m^{2}u^{2}-

mu) and D satisfies

DD^{-1}=m^{2}u^{2}+(m^{2}u^{2}-mu)G . (2.1)

Let G= \sum_{g\in K}Hg so that D= \sum_{g\in K}D_{g}g where D_{g}\subseteq H . Clearly, d_{g}=

|D_{g}| for every g\in K .

Theorem 2.1 Let G 6e any group of order 4m^{2}u^{2} with m, u\geq 1 ,
(2m, u)=1 . Assume G=HK where H is a normal subgroup of G of
order u^{2} , H\cap K=1 and G/H\cong K is abelian. If G contains an HDSD
with weak multiplier -1 then:
(i) for every g\in K , d_{g}= \frac{1}{2}u(u+l_{g}) where l_{g}\in\{\pm 1\} .
(ii) Set A=\{g\in K|l_{g}=1\} and B=\{g\in K|l_{g}=-1\} . Then A and

B are complementary HDS ’s in K with weak multiplier-1 and with
parameters

(4t^{2},2t^{2}-t, t^{2}-t) (2.2)

where t=m and -m, respectively.

Proof. Assume D^{-1}=Dhk for some h\in H and k\in K so that \overline{D^{-1}}=\overline{D}k .
We have \overline{D}=\sum_{g\in K}d_{g}g\in \mathbb{Z}[K] where 0\leq d_{g}\leq u^{2} and \overline{D}\overline{D}^{-1}=m^{2}u^{2}+

(m^{2}u^{2}-mu)u^{2}K . Then

\chi(\overline{D})=\{

2m^{2}u^{2}-mu if \chi=\chi_{0} on K
\epsilon_{\chi}mu if \chi\neq\chi_{0} on K

where \epsilon_{\chi}\in\{\pm\sqrt{\chi(k^{-1})}\} and \sqrt{\chi(k^{-1})} is a 2e-th root of unity, e=\exp(K) .
For a fixed g\in K , we have \sum_{\chi\in K^{*}}\chi(\overline{D}g^{-1})=4m^{2}d_{g} by the inversion

formula. On the other hand,

\sum_{\chi\in K^{*}}\chi(\overline{D}g^{-1})=2m^{2}u^{2}-mu+mu\sum_{xo\neq x\in K^{*}}\epsilon_{\chi}\chi(g^{-1})

where \chi(g) is an e-th root of unity. Thus

4m^{2}d_{g}=2m^{2}u^{2}-mu+mul_{g}’ (2.3)
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where l_{g}’= \sum_{xo\neq x\in K^{*}}\epsilon_{\chi}\chi(g^{-1}) , an algebraic integer. We note that

|l_{g}’|\leq 4m^{2}-1 . (2.4)

Rom (2.3), we get 2mu-1+l_{g}’\equiv 0 (mod 4m). Since u is odd, we obtain
l_{g}’\equiv 1-2m (mod 4m). Let l_{g}’=1-2m+4mr_{g} for some integer r_{g} . Using
(2.4), one can easily show that -m<r_{g}\leq m . Substituting the expression
for l_{g}’ in (2.3), we have d_{g}= \frac{1}{2}u(u-1+2r_{g}) and so d_{g}= \frac{1}{2}u(u+l_{g}) where
l_{g}=-1+2r_{g} . As |D|= \sum_{g\in K}d_{g}=2m^{2}u^{2}-mu , we get \sum_{g\in K}\frac{1}{2}u(u+

l_{g})=2m^{2}u^{2}-mu and so \sum_{g\in K}l_{g}=-2m . From (2.1), we also have

\sum_{g\in K}D_{g}D_{g}^{-1}=m^{2}u^{2}+(m^{2}u^{2}-mu)H

and so \sum_{g\in K}d_{g}^{2}=m^{2}u^{2}+(m^{2}u^{2}-mu)u^{2} . Substituting the expression for
d_{g} to this last equation gives \sum_{g\in K}l_{g}^{2}=4m^{2} . As l_{g} is odd and |K|=4m^{2} ,
we get l_{g}^{2}=1 which gives l_{g}=\pm 1 . Hence d_{g}= \frac{1}{2}u(u+l_{g}) where l_{g}\in\{\pm 1\} .

To prove the second statement, we note that

\overline{D}=\frac{1}{2}u(u+1)A+\frac{1}{2}u(u-1)(K-A)=\frac{1}{2}u(u-1)K+uA .

As |\overline{D}|=2m^{2}u^{2}-mu and |K|=2m^{2} , we obtain |A|=2m^{2}-m . Moreover,
as \chi(\overline{D})=\epsilon_{\chi}mu where \epsilon_{\chi}\in\{\pm\sqrt{\chi(k^{-1})}\} for every \chi_{0}\neq\chi\in K^{*} , we have
\chi(A)=\epsilon_{\chi}m and so AA^{-1}=m^{2}+(m^{2}-m)K by the inversion formula.
Since \overline{D}=\frac{1}{2}u(u-1)K+uA and D^{-1}=Dhk , we have A^{-1}=Ak . Thus A is
an HDS in K with weak multiplier-l and with parameters in (2.2). \square

Example 2.2 Let G be a group of order 4p2\alpha with \alpha\geq 1 and p\geq 3 , a
prime. Let H\in Sy1_{p}(G) , the set of all Sylow p-subgroups of G and set n_{p}=

|Sy1_{p}(G)| . By Sylow Theorem, n_{p}=1 unless p=3 in which case we have
n_{3}=1 or 4. Thus ifp>3 , a Sylow p-subgroup H is always normal in G and
so G=HG_{2} where G_{2} is a Sylow 2-subgroup of G . Let G_{2}=\{1, x_{1}, x_{2}, x_{3}\}

and let D=D_{0}+D_{1}x_{1}+D_{2}x_{2}+D_{3}x_{3} where D_{i}\subset H , (0\leq i\leq 3) be an HDS
in G with weak multiplier -1. By Theorem 2.1, the intersection numbers

ofDwithrespecttoHare\{d_{0},d_{1}, d_{2},d_{3}\}=\{\frac{1}{2}p^{\alpha}(p^{\alpha}-l),\frac{1}{2}p^{\alpha}(p^{\alpha}-l)\frac{1}{2}p^{\alpha}(p^{\alpha}-1),\frac{1}{2}p^{\alpha}(p^{\alpha}+1)\}whered_{i}=|D_{i}|.Inparticu1ar,ifweset\alpha=1and
’

p=5 then the intersection numbers are \{d_{1}, d_{2}, d_{3}, d_{4}\}=\{15,10,10,10\} .
The reversible HDS constructed by Smith in the group \langle x , y , z|x^{5}=y^{5}=

z^{4}=[x, y]=1 , zx=x^{2}z , zy=y^{2}z\rangle is an example where these intersection
numbers hold true (see [1], p. 410 for a particular example of D).
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Without the assumption that the HDS admits -1 as a multiplier, Mc-
Farland also gave a proof of a case of Theorem 2.1 in the group G=G_{2}\cross G_{p}

where p is an odd prime, G_{p}=\mathbb{Z}_{p}\cross \mathbb{Z}_{p} and G_{2} is an abelian group of order
2^{2a+2} with exponent 2 if p\equiv 1 (mod 4) and exponent 2 or 4 if p\equiv 3 (mod 4)
(see Lemma 4.2 of [8]).

Theorem 2.1 is also related to abelian reversible HDS’s. We note that
there exists a reversible HDS in \mathbb{Z}_{2^{a+1}}\cross \mathbb{Z}_{2^{a+1}} for every a\geq 0 by a con-
struction of Dillon [3]. On the other hand, McFarland in [9] proved that
there exists no reversible HDS in the abelian group G_{2}\cross G_{p} where G_{2} is an
abelian group of order 2^{2a+2} and |G_{p}|=p^{2\alpha} where p>3 is a prime and \alpha is
an odd integer. The group \mathbb{Z}_{2^{a}}\cross \mathbb{Z}_{2^{a}}\cross \mathbb{Z}_{2}\cross \mathbb{Z}_{2}\cross \mathbb{Z}_{3}\cross \mathbb{Z}_{3} contains a reversible
HDS for every a\geq 0 (see [1]) and if we let G=\mathbb{Z}_{2^{a+1}}\cross \mathbb{Z}_{2^{a+1}}\cross \mathbb{Z}_{3}\cross \mathbb{Z}_{3} then
there exists a reversible HDS in G when a=0 by a construction of bryn
[14]. However when a=1 , Xiang [15] gave a proof on the non-existence of
a reversible HDS in G . The case a>1 in G is still an open problem.

In the next section, we study the HDS’s with multiplier-l in the group
G=H\cross \mathbb{Z}_{4} , a direct product with |H|=u^{2} , u\geq 1 , an odd integer and
obtain a necessary condition for the existence of these HDS’s in G .

3. On HDS’s with weak multiplier -1 in a direct product

Let G be a group with G\cong H\cross \mathbb{Z}_{4} , a direct product where H is any
group of order u^{2} , u\geq 1 , an odd integer. Let \mathbb{Z}_{4}=\langle x\rangle and suppose D is
an HDS in G with weak multiplier-l. We can write

D=A_{0}+A_{1}x+A_{2}x^{2}+A_{3}x^{3} (3.1)

where A_{i}\subseteq H for i=0,1,2,3 . Let |A_{i}|=a_{i} be the intersection numbers of
D with respect to H . By Theorem 2.1, the following lemma is immediate.

Lemma 3.1 If D is an HDS with weak multiplier -1 in G\cong H\cross \mathbb{Z}_{4}

where H is a group of order u^{2} , u\geq 1 , an odd integer then \{a_{0}, a_{1}, a_{2}, a_{3}\}=

\{\frac{1}{2}u(u-1), \frac{1}{2}u(u-1), \frac{1}{2}u(u-1), \frac{1}{2}u(u+1)\} .

Lemma 3.2 We can assume that D^{-1}=D .

Proof Suppose D^{-1}=Dgx^{i} where g\in H and i\in\{0,1,2,3\} . If i\in\{1,3\}

then a_{0}=a_{i+2} and a_{2}=a_{i} where the subscripts are integers modulo 4. This
contradicts Lemma 3.1. If D^{-1}=Dgx^{2} then D_{1}=Dx satisfies D_{1}^{-1}=D_{1}g .
Thus D^{-1}=Dg for some g\in H .
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We now assume D^{-1}=Dg for some g\in H . Then

A_{0}^{-1}=A_{0}g , A_{1}^{-1}=A_{3}g , A_{2}^{-1}=A_{2}g , A_{3}^{-1}=A_{1}g . (3.2)

By (3.2), we have A_{0}^{-1}=A_{0}g and by taking the inverse of both sides, we
get A_{0}=g^{-1}A_{0}^{-1}=g^{-1}A_{0}g . Thus gA_{0}=A_{0}g . Similarly, gA_{2}=A_{2}g . Also
by (3.2), A_{1}^{-1}=A_{3}g and A_{3}^{-1}=A_{1}g . Then A_{1}=g^{-1}A_{3}^{-1}=g^{-1}A_{1}g which
gives gA_{1}=A_{1}g . Similarly, gA_{3}=A_{3}g .

Finally, we note that the order of g is odd, and so \langle g\rangle=\langle g^{2}\rangle . Thus
g=g^{2t} for some integer t and we have (Dg )^{-1}t =Dg1 . Thus we can assume
that D^{-1}=D . \square

By Lemma 3.2, we can now assume D^{-1}=D . From (3.1), we have the
following:

A_{0}^{-1}=A_{0} , A_{1}^{-1}=A_{3} , A_{2}^{-1}=A_{2} , A_{3}^{-1}=A_{1} . (3.3)

By substituting (3.1) into DD^{-1}=u^{2}+(u^{2}-u)G and equating the coeffi-
cients of x^{i} on both sides for i\in\{0,1,2,3\} , we obtain four equations. Also,
by substituting the expressions in (3.3) into these four equations we get:

(A_{0})^{2}+A_{1}A_{3}+A_{3}A_{1}+(A_{2})^{2}=u^{2}+(u^{2}-u)H (3.4)

A_{0}A_{1}+A_{1}A_{0}+A_{2}A_{3}+A_{3}A_{2}=(u^{2}-u)H (3.5)

(A_{1})^{2}+A_{0}A_{2}+A_{2}A_{0}+(A_{3})^{2}=(u^{2}-u)H (3.6)

A_{0}A_{3}+A_{3}A_{0}+A_{1}A_{2}+A_{2}A_{1}=(u^{2}-u)H . (3.7)

By (3.3) and Lemma 3.1, it is immediate that only two cases can hold
for the values of the a_{i} ’s, namely: \{a_{0}, a_{2}\}=\{\frac{1}{2}u(u+1), \frac{1}{2}u(u-1)\} and
a_{1}=a_{3}= \frac{1}{2}u(u-1) .

We now assume u>1 . By Feit-Thompson Theorem on groups of odd
order, H\neq H’ where H’=[H, H] , the commutator subgroup of H (see [4]).
Let \overline{H}=H/H’ .

Lemma 3.3 For every \chi\in\overline{H}_{:}^{*}\chi\neq\chi_{0} , we have \chi(\overline{A_{1}})=\chi(\overline{A_{3}})=0 .

Proof. Let \chi\in\overline{H}^{*} , \chi\neq\chi_{0} and set \alpha_{i}=\chi(\overline{A_{i}}) , (0\leq i\leq 3) . From
(3.4)-(3.7), we have

\alpha_{0}^{2}+2\alpha_{1}\alpha_{3}+\alpha_{2}^{2}=u^{2} (3.8)

\alpha_{0}\alpha_{1}+\alpha_{2}\alpha_{3}=0 (3.9)
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\alpha_{1}^{2}+2\alpha_{0}\alpha_{2}+\alpha_{3}^{2}=0 (3.10)

\alpha_{0}\alpha_{3}+\alpha_{1}\alpha_{2}=0 . (3.11)

By (3.9) and (3.11), (\alpha_{0}+\alpha_{2})(\alpha_{1}+\alpha_{3})=0 and so \alpha_{0}=-\alpha_{2} or \alpha_{1}=-\alpha_{3} .
If \alpha_{0}=-\alpha_{2} , by (3.8) we have \alpha_{0}^{2}+\alpha_{1}\alpha_{3}=\frac{u^{2}}{2}\in \mathbb{Z} as the left hand side is
an algebraic integer. Since u\geq 1 is odd, this is a contradiction. Therefore
\alpha_{1}=-\alpha_{3} . Prom (3.8) and (3.9), respectively, we get

\alpha_{0}^{2}-2\alpha_{1}^{2}+\alpha_{2}^{2}=u^{2} (3.12)

\alpha_{1}(\alpha_{0}-\alpha_{2})=0 . (3.13)

By (3.13), \alpha_{1}=0 or \alpha_{0}=\alpha_{2} . If \alpha_{0}=\alpha_{2} , then by (3.12), \alpha_{0}^{2}-\alpha_{1}^{2}=\frac{u^{2}}{2}\in \mathbb{Z} ,
again a contradiction. Thus \alpha_{1}=0 and so \alpha_{3}=0 . \square

Theorem 3.4 Let G\cong H\cross \mathbb{Z}_{4} where H is any group of order u^{2} with
u\geq 1 , an odd integer. If G contains an HDS with weak multiplier-1 then
u divides |H’| where H’=[H, H] .

Proof. By Lemma 3.3, we have \chi(\overline{A_{1}})=0 for every \chi\in\overline{H}^{*} , \chi\neq\chi_{0} .
Thus A_{1}H’=sH for some integer s by the inversion formula (see [12]). As
|H|=u^{2} , |A_{1}|= \frac{1}{2}u(u-1) and (u, \frac{u-1}{2})=1 , u must divide |H’| . \square

We note that if G is a cyclic group containing an HDS then G\cong H\cross \mathbb{Z}_{4}

where |H|=u^{2} , u\geq 1 , an odd integer by a result of Turyn [14]. The above
theorem then gives an alternate proof of the non-existence of non-trivial
cyclic HDS’s with multiplier-l which was proven also by McFarland and
Ma in [10]. Moreover, if u=p, an odd prime, then clearly G cannot contain
an HDS with weak multiplier -1.

Corollary 3.5 If u=pq where p>q are primes then G does not contain
an HDS with weak multiplier-1.

Proof. Let P\in Sy1_{p}(H) . We have |H|=p^{2}q^{2} and by Theorem 3.4, pq

divides |H’| . Let t=|N_{H}(P)| , where N_{H}(P) is the normalizer of P in H .
Then t\in\{p^{2},p^{2}q,p^{2}q^{2}\} . If t=p^{2}q then |Sy1_{p}(H)|=q\equiv 1 mod (p). As
p>q , this case cannot occur. If t =p^{2}q^{2} then H=N_{H}(P) and so P\triangleleft H .
Thus H’\leq P and so pq does not divide |H’| . This is a contradiction.

We now assume t=p^{2} . Then N_{H}(P)=P and so P\leq Z(N_{H}(P)) . By
a theorem of Burnside (see Theorem 7.4.3 in [5]), there exists a subgroup
Q\triangleleft H such that H=QP\triangleright Q . Thus H’\leq Q and again pq does not divide
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|H’| . \square

We observe that Theorem 3.4 cannot rule out the non-existence of an
HDS with weak multiplier minus one in the group G=H\cross \mathbb{Z}_{4} with |H|=
u^{2} , u\geq 1 , an odd integer unlike that of the abelian case. We also note that
Corollary 3.5 does not include the case p=q in which case |H|=p^{4} .

We also mention here that another topic worth considering is the HDS’s
in all groups of order 4p2 with p\geq 5 , a prime. A list of all the isomorphism
classes of these groups was given by Iiams in [6]. In the same paper, Iiams
proved the non-existence of non-trivial HDS’s in some of these groups. The
other remaining cases may still be open.

Acknowledgment I thank Professor Yutaka Hiramine, my research ad-
viser for all his guidance and support.
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