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Two variable subnormal completion problem

Chunji LI
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Abstract. Given m\geq 0 and a finite collection of pairs of positive numbers C=
\{(\alpha_{1}(k), \alpha_{2}(k))\}_{|k|\leq m}(|k|:=k_{1}+k_{2}) . The two variable subnormal completion problem
is to find necessary and sufficient conditions to guarantee the existence of a two vari-
able subnormal weighted shift whose initial weighted are given by C . Curto and Fialkow
solved this problem in the case m=1 , using the solution of truncated complex moment
problem. This paper obtained the representing measure in detail.

Key words: two variable weighted shift, subnormal completion problem, truncated com-
plex moment problem.

1. Introduction and Preliminaries

Let H be a Hilbert space and let \mathcal{L}(7\{) be the algebra of bounded
operators on H. For S, T\in \mathcal{L}(H) , we let [S, T]:=ST-TS;[S, T] is the
commutator of S and T For n\geq 1 we let H^{(n)} denote the orthogonal
direct sum of \prime H with itself n times. Given an n-tuple \mathbb{T}= (T_{1}, \ldots, T_{n}) of
operators on \mathcal{H} , we let [\mathbb{T}^{*}, \mathbb{T}]\in \mathcal{L}(H^{(n)}) denote the self-commutator of \mathbb{T} ,
defined by [\mathbb{T}^{*}, \mathbb{T}]_{ij}:=[T_{j}^{*}, T_{i}](1\leq i, j\leq n) . For instance, if n=2 ,

[\mathbb{T}^{*}, \mathbb{T}]=(\begin{array}{ll}[T_{1}^{*},T_{1}] [T_{2}^{*},T_{1}][T_{1}^{*},T_{2}] [T_{2}^{*},T_{2}]\end{array})

In analogy with the case n=1 , we shall say that \mathbb{T} is strongly hyponormal
(or simply hyponormal) if ([\mathbb{T}^{*}, \mathbb{T}]x, x)\geq 0 for all x\in\gamma\{(n) . Recall that
T is said to be normal if T is commuting and each T_{i} is normal operator.
An n-tuple S= (S_{1}, ., S_{n}) is subnormal if S is the restriction of a normal
n-tuple to a common invariant subspace.

Let \mathbb{Z}_{+}^{2}:=\mathbb{Z}_{+}\cross \mathbb{Z}_{+} and let l^{2}(\mathbb{Z}_{+}^{2}) be the Hilbert space of square
summable complex sequences indexed by \mathbb{Z}_{+}^{2} . For \alpha=(\alpha_{1}, \alpha_{2})\in l^{2}(\mathbb{Z}_{+}^{2}) ,
let W_{\alpha}\equiv(W_{\alpha_{1}}, W_{\alpha_{2}}) be the associated 2-variable weighted shift, acting on
l^{2}(\mathbb{Z}_{+}^{2}) as follows:

2000 Mathematics Subject Classification : 47B20,47B37.



22 c. Li

W_{\alpha_{t}}e_{k}:=\alpha_{i}(k)e_{k+\epsilon_{i}} (k\in \mathbb{Z}_{+}^{2}, i=1,2) ,

where \alpha_{i}(k)>0 for all k\in \mathbb{Z}_{+}^{2} , i=1,2 , and \{e_{k}\}_{k\in \mathbb{Z}_{+}^{2}} is the canonical

orthonormal basis for l^{2}(\mathbb{Z}_{+}^{2}) , \epsilon_{1}:=(1,0) and \epsilon_{2}:=(0,1) . Assume that
W_{\alpha} is commuting, i.e., \alpha_{i}(k+\epsilon_{j})\alpha_{j}(k)=\alpha_{j}(k+\epsilon_{i})\alpha_{i}(k) for all k\in \mathbb{Z}_{+}^{2} ,
i , j=1,2 . By Theorem 6.1 of [Cu], we have the following

Lemma 1.1 W_{\alpha} is hyponormal if and only if
(1) \alpha_{1}(k+\epsilon_{1})\geq\alpha_{1}(k) ,

(2) \alpha_{2}(k+\epsilon_{2})\geq\alpha_{2}(k) ,
(3) (\alpha_{1}^{2}(k+\epsilon_{1})-\alpha_{1}^{2}(k))(\alpha_{2}^{2}(k+\epsilon_{2})-\alpha_{2}^{2}(k))\geq(\alpha_{1}(k+\epsilon_{2})\alpha_{2}(k+\epsilon_{1})-

\alpha_{1}(k)\alpha_{2}(k))^{2} ,

for all k\in \mathbb{Z}_{+}^{2} .

We now define

\tilde{\gamma}_{k}:=\{\alpha^{2}(10,0)\alpha_{2}^{2}(0,0)\alpha_{1}^{2}(0,0)t1 ..\cdot..\alpha^{2}(1k_{1}-1,0)\alpha_{2}^{2}(0,k_{2}-1)\alpha_{1}^{2}(k_{1}-1,0)\alpha_{2}^{2}(k_{1},0)(

.
\alpha_{2}^{2}(k_{1},k_{2}-1)ifk=(0,0)ifk_{1}\geq 1,k_{2}’=0ifk_{1}=0,k_{2}\geq 1ifk_{1},k_{2}\geq 1.’,

For a positive finite weight sequence \alpha , if there exists a positive infinite
sequence \hat{\alpha} whose initial weights are \alpha , then we call \hat{\alpha} is a completion of \alpha ,
or we say \alpha has a completion. If \hat{\alpha} is subnormal (or hyponormal), then we
say \alpha has a subnormal (or hyponormal) completion.

Generalized Berger Theorem ([CF4]) W_{\alpha} is subnormal if and only if
there exists a compactly supported positive Borel measure \mu on \mathbb{R}_{+}^{2} such that

\int t^{k}d\mu(t):=\int t_{1}^{k_{1}}t_{2}^{k_{2}}d\mu(t_{1}, t_{2})=\tilde{\gamma}_{k}
(k\in \mathbb{Z}_{+}^{2}) .

Two Variable Subnormal Completion Problem ([CF4]) Given m\geq

0 and a finite collection of pairs of positive numbers C= \{\alpha(k) \equiv

(\alpha_{1}(k), \alpha_{2}(k))\}_{|k|\leq m}(|k|:=k_{1}+k_{2}) , find necessary and sufficient condi-
tions to guarantee the existence of a two variable subnomal weighted shift
whose initial weights are given by C .

Given a closed subset K\subseteq \mathbb{C} and a doubly indexed finite sequence of
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complex numbers

\gamma : \gamma_{(0,0)} , \gamma_{(0,1)} , \gamma_{(1,0)} , \gamma_{(0,2)} , \gamma_{(1,1)} , \gamma_{(2,0)} , \ldots ,

\gamma_{(0,2n)} , \gamma_{(1,2n-1)} , ., \gamma_{(2n-1,1)} , \gamma_{(2n,0)} , (1.1)

where \gamma_{(0,0)}>0 and \gamma_{(j,i)}=\overline{\gamma_{(i,j)}} ,

the truncated K complex moment problem entails finding a positive Borel
measure \mu such that

\gamma_{(i,j)}=\int\overline{z}^{i}z^{j}d\mu (0\leq i+j\leq 2n) and supp \mu\subseteq K . (1.2)

Any sequence \gamma as in (1.1) is a truncated moment sequence and any measure
\mu as in (1.2) is a representing measure for \gamma .

For n\geq 1 , let m\equiv m(n)=(n+1)(n+2)/2 . For A\in M_{m}(\mathbb{C}) (the
m\cross m complex matrices), we denote the successive rows and columns
according to the following lexicographic-functional ordering: 1, Z,\overline{Z} , Z^{2} ,
\overline{Z}Z,\overline{Z}^{2} , ., Z^{n} , . . , \overline{Z}^{n} ; rows and columns indexed by 1, Z, Z^{2} , . ., Z^{n} are
said to be analytic. For the truncated moment sequence (1.1), we define
M(n)(\gamma)\in M_{m}(\mathbb{C}) as follows: for 0\leq i+j\leq n , 0\leq l+k\leq n , the entry in
row \overline{Z}^{l}Z^{k} and column \overline{Z}^{i}Z^{j} is

M(n)_{(l,k)(i,j)}=\gamma_{(i+k,j+l)} . (1.3)

For example, if n=1 , the quadratic moment problem for \gamma : \gamma_{(0,0)} , \gamma_{(0,1)} ,
\gamma_{(1,0)} , \gamma_{(0,2)} , \gamma_{(1,1)} , \gamma_{(2,0)} corresponds to

M(1)=(\begin{array}{lll}\gamma_{(0,0)} \gamma_{(0,1)} \gamma_{(1,0)}\gamma_{(1,0)} \gamma_{(1,1)} \gamma_{(2,0)}\gamma_{(0,1)} \gamma_{(0,2)} \gamma_{(1,1)}\end{array}) ,

and if n=2, the quartic moment problem for \gamma : \gamma_{(0,0)} , \gamma_{(0,1)} , \gamma_{(1,0)} , \gamma_{(0,2)} ,
\gamma_{(1,1)} , \gamma_{(2,0)} , \gamma_{(0,3)} , \gamma_{(1,2)} , \gamma_{(2,1)} , \gamma_{(3,0)} , \gamma_{(0,4)} , \gamma_{(1,3)} , \gamma_{(2,2)} , \gamma_{(3,1)} , \gamma_{(4,0)} corre-
sponds to

M(2)=(_{\gamma_{(1,1)}}^{\gamma_{(1,0)}}\gamma_{(0,0)}\gamma_{(0,1)}\gamma_{(0,2)}\gamma_{(2,0)}
\gamma_{(0,2)}\gamma_{(1,1)}\gamma_{(0,1)}\gamma_{(2,1)}\gamma_{(1,2)}\gamma_{(0,3)} \gamma_{(3,0)}\gamma_{(1,1)}\gamma_{(2,0)}\gamma_{(1,0)}\gamma_{(1,2)}\gamma_{(2,1)} \gamma_{(0,3)}\gamma_{(1,2)}\gamma_{(0,2)}\gamma_{(0,4)}\gamma_{(1,3)}\gamma_{(2,2)} \gamma_{(1,1)}\gamma_{(3,1)}\gamma_{(1,2)}\gamma_{(2,1)}\gamma_{(2,2)}\gamma_{(1,3)}

\gamma_{(2,0)}\gamma_{(3,0)}\gamma_{(2,1)}\gamma_{(2,2)}\gamma_{(3,1)}\gamma_{(4,0))} (1.4)
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The quadratic moment problem was solved completely. In fact, it was shown
that \gamma has a representing measure if and only if M(1)\geq 0[CF4 , TheO-
rem 6.1]. But the quartic moment problem hasn’t solved completely, so far
(see [CF1-4], [JLLL], [Li] etc).

A solution to the complex moment problem can provide a solution to the
two variable subnormal completion problem ([CF4]). First, let \mathbb{C}[t_{1}, t_{2}]_{m+1}

be the set of complex polynomials in t_{1} and t_{2} of total degree at most
m+1 , and let \tilde{\phi} be the complex linear functional on \mathbb{C}[t_{1}, t_{2}]_{m+1} induced
by \tilde{\gamma} :=\{\tilde{\gamma}_{|k|\leq m+1}\} , i.e. , \tilde{\phi}(t_{1}^{k_{1}}t_{2}^{k_{2}})

:=\tilde{\gamma}_{(k_{1},k_{2})} , 0\leq i+j\leq m+1 , define
\gamma_{(i,j)}:=\tilde{\phi}((t_{1}-it_{2})^{i}(t_{1}+it_{2})^{j}) . Then there exists a subnormal completion
for C if and only if the associated truncated complex moment problem for
\{\gamma_{k}\}_{|k|\leq m+1} admits a solution. Curto and Fialkow solved this problem in
the case m=1([CF4]) , using the solution of truncated complex moment
problem. This paper obtained the representing measure in detail.

All of the calculations in this paper were obtained with the help of the
software tool Mathematica [Wol].

2. Subnormality of C and the representing measure

First, if m=1 , for convenience, let C =\{(\sqrt{a}, \sqrt{b}), (\sqrt{c}, \sqrt{d}), (\sqrt{e}, \sqrt{f})\}

where a , 6, c , d , e , f are positive numbers with bc=af . In this case we
have

\tilde{\gamma}_{(0,0)}=1 , \tilde{\gamma}_{(1,0)}=a , \tilde{\gamma}_{(0,1)}=b ,
\tilde{\gamma}_{(2,0)}=ae , \tilde{\gamma}_{(1,1)}=af , \tilde{\gamma}_{(0,2)}=bd .

Now we can define

\gamma_{(0,0)}=1 , \gamma_{(0,2)}=ae-bd+2afi .
\gamma_{(0,1)}=a+bi , \gamma_{(1,1)}=ae+bd ,
\gamma_{(1,0)}=a-bi , \gamma_{(2,0)}=ae-bd-2afi .

Hence,

M(1)=(\begin{array}{lll}1 a+bi a-bia-bi ae+bd ae-bd-2afia+bi ae-bd+2afi ae+bd\end{array})

Using \{\gamma_{(i,j)}\}_{0\leq i+j\leq 2} as a data, assume that a compacted representing mea-
sure \nu has been found, i.e.,
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\int\overline{z}^{i}z^{j}d\nu(z,\overline{z})=\gamma_{(i,j)} (0\leq i+j\leq 2) .

Let d\mu(t_{1}, t_{2}):=d\nu(t_{1}+t_{2}i, t_{1}-t_{2}i) . It is easy to show that the following
result.

Proposition 2.1 \mu is a compactly supported positive Borel measure on
\mathbb{R}_{+}^{2} which interpolates \tilde{\gamma} .

The solution of quadratic moment problem implies that C has a sub-
normal completion if and only if M(1)\geq 0 . By Lemma 1.1, we first have
the following

Proposition 2.2 Given C=\{(\sqrt{a}, \sqrt{b}), (\sqrt{c}, \sqrt{d}), (\sqrt{e}, \sqrt{f})\} , where a , b ,
c , d , e , f are positive numbers with bc=af . Then C has a hyponormal
completion if and only if

a\leq e , b\leq d , b(a-c)^{2}\leq a(d-b)(e-a) . (2.1)

In the sequel, we thus assume that the condition (2.1) is hold. For a
positive n\cross n matrix A, we denote by [A]_{k}(k\leq n) the compression of A to
the first k rows and columns. We want to know the representing measure.
Let r be the rank of matrix M(1) .

Theorem 2.3 If r=1 , then the representing measure of C is \mu=\delta_{(a,b)} .

Proof If r=1 , then det M(1)=a(e-a)(d-b)-b(a-c)=0, and
det [M(1)]_{2}=a(e-a)+b(d-b)=0 . Hence a=c=e, b=d. Since bc=

af , we also have b=d=f. Hence C =\{(\sqrt{a}, \sqrt{b}), (\sqrt{a}, \sqrt{b}), (\sqrt{a}, \sqrt{b})\} . So,

\nu=\gamma_{(0,0)}\delta_{\frac{\gamma(0,1)}{\gamma(0,0)}}-

Thus, \mu=\delta_{(a,b)} . \square

If r=2 , then det M(1)=a(e-a)(d-b)-b(a-c)=0, and det [M(1)]_{2}=

a(e-a)+b(d-b)>0 . Hence e>a or d>b . Thus we have three cases.
(1) e>a and d=b; It implies a=c and b=d=f. Hence C=

\{(\sqrt{a}, \sqrt{b}), (\sqrt{a}, \sqrt{b}), (\sqrt{e}, \sqrt{b})\} .
(2) e=a and d>b ; It implies a=c=e and b=f. Hence C =

\{(\sqrt{a}, \sqrt{b}), (\sqrt{a}, \sqrt{d}), (\sqrt{a}, \sqrt{b})\} .
(3) e>a and d>b .
We first consider the cases (1) and (2).

Theorem 2.4 C=\{(\sqrt{a}, \sqrt{b}), (\sqrt{a}, \sqrt{b}), (\sqrt{e}, \sqrt{b})\} admits a subnormal
completion if e>a , and the representing measure is
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\mu=\frac{a(e-a)}{(x-a)^{2}+a(e-a)}\delta_{(x,b)}+\frac{(x-a)^{2}}{(x-a)^{2}+a(e-a)}\delta(\frac{a(x-e)}{x-a},b)

(for any x\neq a).

Theorem 2.5 C=\{(\sqrt{a}, \sqrt{b}), (\sqrt{a}, \sqrt{d}), (\sqrt{a}, \sqrt{b})\} admits a subnormal
completion if d>b , and the representing measure is

\mu=\frac{b(d-b)}{(y-b)^{2}+b(d-b)}\delta_{(a,y)}+\frac{(y-b)^{2}}{(y-b)^{2}+b(d-b)}\delta(a,\frac{b(y-d)}{y-b})

(for any y\neq b).

The proofs of Theorem 2.4 and Theorem 2.5 are similar to the proof of
the following Theorem 2.6, which is the case (3).

Theorem 2.6 If r=2 and a<e , b<d , then the representing measure
of C is

\mu:=\rho_{0}\delta_{(x,y)}+\rho_{1}\delta_{(s,t)} ,

where

b(d-b)x+a(b-f)y=ab(d-f) , (2.2)

s= \frac{(a-x)(ae-bd)+2af(b-y)-x(a^{2}+b^{2})+a(x^{2}+y^{2})}{(a-x)^{2}+(b-y)^{2}} , (2.3)

t= \frac{(y-b)(ae-bd)+2af(a-x)-y(a^{2}+b^{2})+b(x^{2}+y^{2})}{(a-x)^{2}+(b-y)^{2}} , (2.4)

\rho_{0}=\frac{(s-a)(s-x)+(t-b)(t-y)}{(x-s)^{2}+(y-t)^{2}} , (2.5)

\rho_{1}=\frac{(x-a)(x-s)+(y-b)(y-t)}{(x-s)^{2}+(y-t)^{2}} . (2.6)

Proof. If r=2, then there exist \alpha , \beta\in \mathbb{C} such that \overline{Z}=\alpha 1+\beta Z . In fact,

\alpha=\frac{2ab((d-f)+(c-e)i)}{a(e-a)+b(d-b)} and

\beta=\frac{(b^{2}-a^{2}+ae-bd)+2a(b-f)i}{a(e-a)+b(d-b)} .

We must take an atom z_{0} of the representing measure \nu on the line
\overline{z}=\alpha+\beta z with z_{0}\neq a+bi . If we let z_{0}=x+yi , then we have (2.2). If



Two variable subnomal completion problem 27

we let the another atom of the representing measure \nu is z_{1}=s+ti , then
we have (2.3), (2.4). Finally we can obtain the densities (2.5), (2.6). \square

Example 2.7 Let a=1 , b=1 , d=2, e=2. If we choose c=2,

f=2. Then all conditions of Proposition 2.2 are satisfied. Thus C=
\{(1,1), (\sqrt{2}, \sqrt{2}), (\sqrt{2}, \sqrt{2})\} admits a subnormal completion. In this case,
\gamma_{(0,0)}=1 , \gamma_{(0,2)}=4i , \gamma_{(0,1)}=1+i , \gamma_{(1,1)}=4 , \gamma_{(1,0)}=1-i , \gamma_{(2,0)}=-4i .
Thus

M(1)=(\begin{array}{llll}1 1+i 1 -i1-i 4 -4i 1+i 4i 4 \end{array}) \geq 0 .

Since det [M(1)]_{2}=2 and det M(1)=0, rank M(1)=2 , and \alpha=0 , \beta=-i .
Take z_{0}\neq 1+i , and satisfies \overline{z}+iz=0 . So if we choose z_{0}= \frac{1+i}{2} . Then
z_{1}=3(1+i) . \rho 0=\frac{4}{5} , \rho_{1}=\frac{1}{5} . Hence the associated measure is

\mu=\frac{4}{5}\delta_{(\frac{1}{2},\frac{1}{2})}+\frac{1}{5}\delta_{(3,3)} .

In order to find the representing measure in the case of rank M(1)=3 ,
i.e., det M(1)>0 , first, we take y that satisfies

2 {\rm Re}((\gamma_{(0,1)}\gamma_{(2,0)}-\gamma_{(1,1)}\gamma_{(1,0)})\gamma_{(2,0)}y)+(\gamma_{(1,1)}-|\gamma_{(0,1)}|^{2})|y|^{2}

=(\gamma_{(1,1)}^{2}-|\gamma_{(0,2)}|^{2})^{2} . (2.7)

Let

\beta_{1}:=(\gamma_{(1,1)}^{2}-|\gamma_{(0,2)}|^{2})\gamma_{(0,2)}+(\gamma_{(0,1)}\gamma_{(2,0)}-\gamma_{(1,1)}\gamma_{(1,0)})y

\beta_{2}:=(\gamma_{(2,0)}\gamma_{(0,1)}-\gamma_{(1,0)}\gamma_{(1,1)})\gamma_{(0,2)}+(\gamma_{(1,0)}^{2}-\gamma_{(2,0)})y

\beta_{3}:=(\gamma_{(1,0)}\gamma_{(0,2)}-\gamma_{(0,1)}\gamma_{(1,1)})\gamma_{(0,2)}+(\gamma_{(1,1)}-|\gamma_{(0,1)}|^{2})y

\beta_{4}:=(\gamma_{(1,1)}^{2}-|\gamma_{(0,2)}|^{2})\gamma_{(1,1)}

\beta_{5}:=(\gamma_{(2,0)}\gamma_{(0,1)}-\gamma_{(1,0)}\gamma_{(1,1)})\gamma_{(1,1)}

\beta_{6}:=(\gamma_{(1,0)}\gamma_{(0,2)}-\gamma_{(0,1)}\gamma_{(1,1)})\gamma_{(1,1)} .

Then the atoms of \mu(y) are the 3 distinct roots of

(det M(1))^{2}z^{3}=\beta_{3}\beta_{4}-\beta_{1}\beta_{6}+((\det M(1))\beta_{1}+\beta_{3}\beta_{5}-\beta_{2}\beta_{6})z

+(\det M(1))(\beta_{2}+\beta_{6})z^{2} . (2.8)
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Example 2.8 If we choose a=1 , b=1 , c=1 , d=4, e=4, f=1 . Then
all conditions of Proposition 2.2 are satisfied. Thus C=\{(1,1), (1, 2), (2, 1)\}

admits a subnormal completion. In this case, \gamma_{(0,0)}=1 , \gamma_{(0,1)}=1+i ,
\gamma_{(1,0)}=1-i , \gamma_{(0,2)}=2i , \gamma_{(1,1)}=8 , \gamma_{(2,0)}=-2i . Hence

M(1)=(\begin{array}{llll}1 1 +i 1-i1-i 8 -2i1+i 2i 8\end{array})

And det [M(1)]_{2}=6 and det M(1)=36 . So r=3 . To find the representing
measure, first we take y that satisfies (2.7), i.e.,

4 {\rm Re}((1+i)y)+|y|^{2}=600 .

So we let y=2(-1+i)+4\sqrt{19}(1+i) . Then

\beta_{1}=-48(\sqrt{19}-2i) , \beta_{4}=480 ,
\beta_{2}=-12(1+i) , \beta_{5}=-48(1-i) ,
\beta_{3}=24\sqrt{19}(1+i) , \beta_{6}=-48(1+i) .

Then the atoms of \mu(y) are the 3 distinct roots of

9z^{3}+15(1+i)z^{2}+4(7\sqrt{19}-4i)z-32(1+i)(2\sqrt{19}+i)=0 .

By using Mathematica, we can obtain the following atoms and densities

z_{0}\approx-1.50812-5.43922i , \rho_{0}\approx 0.0591804 ,
z_{1}\approx-2.15249+2.69381i , \rho_{1}\approx 0.189787 ,
z_{2}\approx 1.99394+1.07875i , \rho_{2}\approx 0.751104 .

Thus the representing measure is

\mu:=\rho_{0}\delta_{({\rm Re} z_{0},{\rm Im} z_{0})}+\rho_{1}\delta_{({\rm Re} z_{1},{\rm Im} z_{1})}+\rho_{2}\delta_{({\rm Re} z_{2},{\rm Im} z_{2})} .
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