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Remark on application of distribution function
inequality for Toeplitz and Hankel operators
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Abstract. In this paper we characterize the compact product of analytic Toeplitz op-
erator and Hankel operator, and the compact commutator of two Hankel operators, by
using some distribution function inequalities.
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1. Introduction

Let D be the open unit disk in the complex plane and \partial D be the unit
circle. Let dA denote the normalized Lebesgue measure on D and d\sigma denote
the normalized Lebesgue measure on \partial D . The Lebesgue space L^{2} is the
space of square integrable functions on \partial D and the Hardy space H^{2} is the
closed subspace of L^{2} which is spanned by analytic polynomials. For f in
L^{\infty} , the space of essentially bounded functions on the unit circle, Toeplitz
operator T_{f} and Hankel operator H_{f} on Hardy space H^{2} is defined by T_{f}g=

P(fg) and H_{f}g=J(I-P)(fg) , where P is the orthogonal projection from
L^{2} onto H^{2} and J is the unitary operator on L^{2} defined by Jg(w)=\overline{w}g(\overline{w}) .
It is easily seen that J^{2}=I , J(I-P)=PJ. This definition of Hankel
operator may not be standard because many authors call next operator 7\{f

Hankel operator: H_{f}g=(I-P)(fg) . Clearly H_{f} is bounded transformation
of H^{2} to (H^{2})^{\perp} and H_{f}=JH_{f} . H_{f} and H_{f} have many similar properties.
For example matrix representatioins of H_{f} and \mathcal{H}_{f} with respect to standard
basis of H^{2} and (H^{2})^{\perp} are both characterized that the entries on each
skew-diagonal direction are the same constant. In this paper we are mainly
interested in Hankel operator H_{f} .

Many authors have studied Toeplitz and Hankel operators with respect
to the compact operators, and I think one of the most beautiful results
of these operators are Axler-Chang-Sarason-Volberg theorem ([1], [13]).
In 1970’s they characterized the condition for the compactness of semi-
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comutator of Toeplitz operators by using function theory of H^{\infty} (Corona
theorem, see [7], and Chang-Marshall theorem [4], [11] etc.) and a distri-
bution function inequality. We remark that the idea to use the distribution
function inequality to study Toeplitz and Hankel operators were first ap-
peared in [1]. Also an elementary condition was obtained in [16] for the
compactness of semi-commutator of Toeplitz operator in 1990’s . These re-
sults are stated as follow:

Theorem 1.1 ([1], [13], [16]) Let C be the set of continuous complex
valued functions on \partial D . Then for f, g\in L^{\infty} , the following assertions are
equivalent.
(1) ([T_{f}, T_{g}):=)T_{f}T_{g}-T_{fg} is a compact operator on H^{2} .

(2) \lim_{zarrow\partial D}||\mathcal{H}_{\overline{f}}k_{z}||||’H_{g}k_{z}||=0 .
(3) For all m in M(H^{\infty}+C) , \overline{f}|_{\sup pm}\in H^{\infty}|_{\sup pm} or g|_{\sup pm}\in H^{\infty}|_{\sup pm}

(4) H^{\infty}[\overline{f}]\cap H^{\infty}[g]\subseteq H^{\infty}+C .

Here k_{z} is the normalized reproducing kernel in H^{2} and H^{\infty}[f] is the
closed algebra generated by H^{\infty} and f\in L^{\infty} , and supp m is the closed
support of representing measure of m (see Section 2 for precise definition).
By refining the techniques of Theorem 1.1, Gorkin and Zheng ([8]) char-
acterized the condition for the compactness of commutator of two Toeplitz
operators.

Theorem 1.2 ([8]) For f, g in L^{\infty} , the following assertions are equiva-
lent.
(1) ([T_{f}, T_{g}]=)T_{f}T_{g}-T_{g}T_{f} is a compact operator on H^{2} .
(2) \lim_{zarrow\partial D}||(\mathcal{H}_{\overline{f}}k_{z})\otimes(\mathcal{H}_{g}k_{z})-(H_{\overline{g}}k_{z})\otimes(\mathcal{H}_{f}k_{z})||=0 .
(3) For all m\in M(H^{\infty}+C) , one of the followings holds.

(a) f|_{\sup pm}\in H^{\infty}|_{\sup pm} and g|_{\sup pm}\in H^{\infty}|_{\sup pm} .
(b) \overline{f}|_{\sup pm}\in H^{\infty}|_{\sup pm} and \overline{g}|_{\sup pm}\in H^{\infty}|_{\sup pm} .
(c) There exist complex numbers a , b such that they are not zero at

the same time and that (af+bg)|_{\sup pm} is a constant.
(4) H^{\infty}[f, g] \cap H^{\infty}[\overline{f}, \overline{g}]\cap\bigcap_{(a,b)\neq(0},{}_{0)}H^{\infty} [af+bg , \overline{af+bg}] \subseteq H^{\infty}+C .

As special cases as above, we state here the results given by Brown and
Halmos [3] that T_{f}T_{g}-T_{fg}=0 if and only if \overline{f}\in H^{\infty} or g\in H^{\infty} and
that T_{f}T_{g}-T_{g}T_{f}=0 if and only if f, g\in H^{\infty} or \overline{f} , \overline{g}\in H^{\infty} or there exist
complex numbers a , b such that they are not zero at the same time and
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that af+bg is a constant.
In this paper we remark that we can characterize similarly conditions for

the compactness of the product of analytic Toeplitz operator and Hankel
operator (Theorem 4.3), and for the compactness of the commutator of
two Hankel operators (Theorem 4.8), by using some distribution function
inequalities stated in Section 3.

2. Preliminary

For f in L^{\infty} we define the another operator S_{f} on (H^{2})^{\perp} called dual-
Toeplitz operator by s_{fg}=(I-P)(fg) . Next are elementary properties of
these operators.

Lemma 2.1 For f and g in L^{\infty} , the fallowings hold.
(1) H_{f}^{*}=H_{f^{*}} , where f^{*}(w)=\overline{f(\overline{w})} .
(2) H_{f}^{*}H_{g}=H_{f}^{*}H_{g}=T_{\overline{f}g}-T_{\overline{f}}T_{g} .
(3) T_{f}^{*}H_{g}=H_{g}T_{f}*ands_{f}H_{g}=H_{g}T_{f} if f\in H^{\infty} .

Proof. They are computed easily by the definitions. \square

For f and g in L^{2} , f\otimes g is the operator of rank one on L^{2} defined by
(f\otimes g)h=\langle h, g\rangle f . For z\in D and w\in\partial D , let k_{z}(w) be the normalized
reproducing kernel in H^{2} defined by (1-|z|^{2})^{1/2}/(1-\overline{z}w) , and let \varphi_{z} be

\varphi_{z}(w)=\frac{z-w}{1-\overline{z}w} .

Then it is easily seen that \varphi_{z} is in H^{\infty} , \varphi_{z}^{-1}=\varphi_{z} , |\varphi_{z}’(w)|=|k_{z}(w)|^{2} and
I-T_{\varphi_{z}}T_{\overline{\varphi_{z}}} is the rank one projection k_{z}\otimes k_{z} .

Let B be a Douglas algebra (i.e. closed algebra between H^{\infty} and L^{\infty} )
and denote M(B) be the maximal ideal space (space of nonzero complex
homomorphisms) of B . It is known that H^{\infty}+C is the smallest Douglas
algebra and its maximal ideal space M(H^{\infty}+C) is identified to M(H^{\infty})\backslash D .
By the Corona theorem (see [7]) D is dense in M(H^{\infty}) . For m in M(H^{\infty})

there is a unique representing measure \mu_{m} on M(L^{\infty}) . The closed supprot
of this measure \mu_{m} is called support set of m and denoted by supp m. The
supprot set is a weak peak set ([9] page 207) and H^{\infty}|_{\sup pm} is a uniformly
closed subalgebra of C(suppm) ([6] page 57). Next lemmas are useful for
our arguments.
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Lemma 2.2 ([8]) For f in L^{\infty} and m in M(H^{\infty}+C) , the following
assertions are equivalent
(1) f|_{\sup pm}\in H^{\infty}|_{\sup pm} .
(2) lim \inf_{zarrow m}||H_{f}k_{z}||_{2}=0 (if and only if \lim_{zarrow m}||H_{f}k_{z}||_{2}=0).

(3) There is a net \{z_{\alpha}\} which converges to m such that
lim \inf_{z_{\alpha}arrow m}||H_{f}k_{z_{\alpha}}||_{2}=0 .

Lemma 2.3 ([14]) For f in L^{\infty} and m in M(H^{\infty}+C) , the following
assertions are equivalent
(1) \overline{f}|_{\sup pm}\in H^{\infty}|_{\sup pm} and f(m)=0 .
(2) lim \inf_{zarrow m}||T_{f}k_{z}||_{2}=0 (if and only if \lim_{zarrow m}||T_{f}k_{z}||_{2}=0).
(3) There is a net \{z_{\alpha}\} which converges to m such that

lim \inf_{z_{\alpha}arrow m}||T_{f}k_{z_{\alpha}}||=0 .

3. Distribution function inequality

For f in L^{1} , denote the Hardy-Littlewood maximal function of f by
M(f) and, for h\in L^{2} and 1<r<2 , let \Lambda_{r}h(w)=[M(|h|^{r})(w)]^{1/r} For
w in \partial D , let \Gamma_{w} denote the angle with vertex w and opening \pi/2 which is
bisected by the radius to w . The set of points z in \Gamma_{w} saisfying |z-w|<\gamma

is denoted by \Gamma_{w,\gamma} for 0<\gamma<1 . For h in L^{1} and 0<\epsilon<1 , we define the
truncated Lusin integral of h to be

[A_{\epsilon}(h)](w)=[ \int_{\Gamma_{w,\epsilon}}|\nabla h(z)|^{2}dA(z)]\frac{1}{2}

where h(z) is the classical harmonic extension of h i.e.

h(z)= \int_{\partial D}h(w)P_{z}(w)d\sigma(w) ,

where P_{z}(w) is Poisson kernel. This integral is finite for almost all w in
\partial D([10]) . I_{z} is the closed subarc of \partial D with center z/|z| and the measure
\delta(z)=1-|z| . The Lebesgue measure of subset E of \partial D is denoted by |E| .
For f is in L^{2} , we put f_{+}=Pf and f_{-}=(I-P)f .

Lemma 3.1 (D.F.I , for \mu_{f}[16] ) Fix l>2 . T/ien, for all p , r\in(1,2)
with 1/l+1/r=1/p^{1)} \^a d sufficiently large a>0 , There exist C_{a}>0 such

1)There exist l , p, r like this. For 0<\epsilon<(l-2)/2 , we may put p=l/(l-\epsilon) and
r=pl/(l-p) .
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that

|\{w\in I_{z} : A_{2\delta(z)}(H_{f}u)(w)<a[|f_{-}-f_{-}(z)|^{l}(z)]^{1/l} \inf_{w\in I_{z}}\Lambda_{r}(u)(w)\}|

\geq C_{a}|I_{z}|

for all f\in L^{\infty} , u\in H^{\infty} and 1/2<|z|<1 . Moreover, the constant C_{a} can
be chosen to satisfy \lim_{aarrow\infty}C_{a}=1 .

We will next prove the distributioin function inequality for operator S_{f} .

Lemma 3.2 (D.F.L for S_{f} ) Fix l>2 . Then for all p , r\in(1,2) with
1/l+1/r=1/p and a>0 sufficiently large, there exists C_{a}>0 such that

|\{w\in I_{z} : A_{2\delta(z)}(S_{f}u)(w)<a[|f|^{l}(z)]^{1/l} \inf_{w\in I_{z}}\Lambda_{r}(u)(w)\}|\geq C_{a}|I_{z}|

for all f\in L^{\infty} , u\in(H^{2})^{\perp}and 1/2<|z|<1 . Moreover, the constant C_{a}

can be chosen to satisfy \lim_{aarrow\infty}C_{a}=1 .

Proof For u\in(H^{2})^{\perp} and 1/2<|z|<1 , we write S_{f}u as S_{f}u=(I-
P)(fu)=(I-P)u_{1}+(I-P)u_{2} where u_{1}=fu\chi 2I_{z} and

u_{2}=fu\chi_{\partial D\backslash 2I_{z}}\square

.
Remainder of the proof is similar to the proof of [16] Theorem 6.

Remark 3.1 We can prove the similar distribution function inequalities
for operators T_{f} , H_{f}^{*} and H_{f} . But they are not used in this paper, so we
will not mention here.

By using Lemma 3.1 and 3.2, we can prove the next distribution func-
tion inequality, which will be used after in order to characterize the condi-
tion for compactness of product of analytic Toeplitz operator and Hankel
operator.

Proposition 3.3 Fix l>2 . Then, for all p , r\in(1,2) with 1/l+1/r=
1/p and sufficiently large a>0 , there exists C_{a}>0 such that

|\{w\in I_{z} : A_{2\delta(z)}(S_{f}u)(w)A_{2\delta(z)}(H_{g}v)(w)<a^{2}[|f|^{l}(z)]^{1/l}

\cross[|g_{-}-g_{-}(z)|^{l}(z)]^{1/l}\inf_{w\in I_{z}}\Lambda_{r}(u)(w)\inf_{w\in I_{z}}\Lambda_{r}(v)(w)\}|

\geq C_{a}|I_{z}| (3.1)

for all f and g in L^{\infty} , u in (H^{2})^{\perp} , v in H^{\infty} and 1/2<|z|<1 . Moreover,
the constant C_{a} can be chosen to satisfy \lim_{aarrow\infty}C_{a}=1 .
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For f , g in L^{\infty} and u , v in H^{2} , we define B_{\gamma}(u, v)(w) by

B_{\gamma}(u, v)(w)= \int_{\Gamma_{w,\gamma}}|\nabla(H_{f}u)\nabla(H_{g}*v)-\nabla(H_{g}u)\nabla(H_{f}*v)|dA(z) .

For z\in D we define F_{z} to be

F_{z}=(H_{f}k_{z})\otimes(H_{g}^{*}k_{z})-(H_{g}k_{z})\otimes(H_{f}^{*}k_{z})

Lemma 3.4 Asuume that for some \lambda\in \mathbb{C} , H_{f}k_{z}\perp H_{g-\lambda f}k_{z} or H_{f}^{*}k_{z}\perp

H_{g-\lambda f}^{*}k_{z} . Then

||F_{z}|| \leq[||H_{f}k_{z}||_{2}^{2}||H_{g-\lambda f}^{*}k_{z}||_{2}^{2}+||H_{g-\lambda f}k_{z}||\begin{array}{l}22\end{array}||H_{f}^{*}k_{z}||_{2}^{2}]\frac{1}{2}

\leq\sqrt{2}||F_{z}||

for all z\in D .

Proof. The proof is similar to [8] Lemma 2.8. \square

Proposition 3.5 Fix f, g\in L^{\infty} . For all l\in(2,3) and sufficiently large
a>0 , there exist K_{a}>0 and r\in(1,2) ,

|\{w\in I_{z} : B_{2\delta(z)}(u, v)(w)

<a^{2}N_{l}||F_{z}||^{\frac{l-1}{l}} \inf_{w\in I_{z}}\Lambda_{r}(u)(w)\inf_{w\in I_{z}}\Lambda_{r}(v)(w)\}|\geq K_{a}|I_{z}|

for all 1/2<|z|<1 and u, v\in H^{\infty} , where N_{l}>0 depends only on l .
Moreover constant K_{a} can be choosen to satisfy \lim_{aarrow\infty}K_{a}=1 .

Proof. By using Lemma 3.4 the proof is similar to [8] page 105\sim 108.
\square

4. Main result

Lemma 4.1 Asume K is a compact operator on H^{2} . Then

\lim_{zarrow\partial D}||K-T_{\varphi_{z}}^{*}KT_{\varphi_{z}}||=0 and \lim_{zarrow\partial D}||K-T_{\varphi_{z}}KT_{\varphi_{\overline{z}}}||=0 .

Proof. First part of this lemma is [16] Lemma 2. We will prove the second
part. K can be approximated by finite sum of the form f\otimes g where f and
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g is in H^{2} , so we may put K=f\otimes g . Because of

\overline{z}-\varphi_{\overline{z}}(w)=\frac{1-|z|^{2}}{1-zw}warrow 0a.e . (zarrow\partial D) ,

by Lebesgue dominated theorem ||\overline{z}F-\varphi_{\overline{z}}F||_{2}arrow 0 and ||zF-\varphi_{z}F||_{2}arrow 0

when zarrow\partial D for all F\in L^{2} . Therefore, for all \xi in \partial D , ||\overline{\xi}F-\varphi_{\overline{z}}F||_{2}arrow 0

and ||\xi F-\varphi_{z}F||_{2}arrow 0 when z -arrow\xi and

||f\otimes g-T_{\varphi_{z}}(f\otimes g)T_{\varphi_{\overline{z}}}||

\leq||(\xi f-T_{\varphi_{z}}f)\otimes(\xi g)||+||(T_{\varphi_{z}}f)\otimes(\xi g-T_{\overline{\varphi_{\overline{z}}}}g)||

\leq||\xi f-\varphi_{z}f||||g||+||f||||\xi g-\overline{\varphi_{\overline{z}}}g||

arrow 0(zarrow\xi)

This proves the second part of this Lemma. \square

Remark 4.1 As we show later, in the case where K=H_{f}H_{g}-H_{g}H_{f} , K is
compact operator on H^{2} if and only if \lim_{zarrow\partial D}||K-T_{\varphi_{z}}^{*}KT_{\varphi_{z}}||=0 (The-
orem 4.8 (2)\Rightarrow(1)) and in the case where K=T_{f}H_{g}(f\in H^{\infty}, g\in L^{\infty}) ,
K is compact operator on H^{2} if and only if \lim_{zarrow\partial D}||K-T_{\varphi_{z}}KT_{\varphi_{\overline{z}}}||=0

(Theorem 4.3 (2)\Rightarrow(1) ).

Proposition 4.2 If TfH_{g}=0 where f\in H^{\infty} and g\in L^{\infty} , then f=0
or g\in H^{\infty} .

Proof. By using Brown-Halmos techniques in [3], we can prove easily.
\square

Next theorem is a characterization for the compactness of the product of
analytic Toeplitz operator and Hankel operator, concerning Proposition 4.2.

Theorem 4.3 For f\in H^{\infty} and g\in L^{\infty} , the following assertions are
equivalent.
(1) T_{f}H_{g} is a compact operator on H^{2} .
(2) \lim_{zarrow\partial D}||T_{f}k_{z}||||H_{g}^{*}k_{z}||=0 .
(3) For all m\in M(H^{\infty}+C) , f|_{\sup pm}=0 or g^{*}|_{\sup pm}\in H^{\infty}|_{\sup pm} .
(4) H^{\infty}[\overline{f}, fg^{*}]\cap H^{\infty}[g^{*}]\subseteq H^{\infty}+C .

Proof. (1)\Rightarrow(2) : By Lemma 2.1 and 4.1
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||T_{f}H_{g}-T_{\varphi_{z}}T_{f}H_{g}T_{\varphi_{\overline{z}}}||=||T_{f}H_{g}-T_{f}T_{\varphi_{z}}T_{\varphi_{z}}^{*}H_{g}||

=||T_{f}(k_{z}\otimes k_{z})H_{g}||=||T_{f}k_{z}||||H_{g}^{*}k_{z}||

arrow 0(zarrow\partial D)

(2)\Rightarrow(1) : For all u , v in H^{\infty} , by Littlewood-Paley formula (cf. [17]
page 167),

\langle T_{f}H_{g}v, u\rangle=\langle H_{g}v, T_{\vec{f}}u\rangle=\langle H_{g}v, JP(\overline{f}u)\rangle

=\langle H_{g}v, (I-P)J(\overline{f}u)\rangle=\langle H_{g}v, (I-P)f^{*}(Ju)\rangle

=\langle H_{g}v, S_{f^{*}}Ju\rangle

= \int_{D}\nabla(7\{_{g}v)\nabla(S_{f^{*}}Ju)\log\frac{1}{|z|}dA(z)

= \int_{|z|>R}+\int_{|z|\leq R}=I_{R}+II_{R}

where R is in (1/2, 1). Here \nabla means gradient and means inner product
of \mathbb{C}^{2} . We can easily check that there is a compact operator K_{R} such that
II_{R}=\langle K_{R}v, u\rangle .

Claim We define —l(z)=[|f^{*}|^{l}(z)]^{1/l}[|g_{-}-g_{-}(z)|^{l}(z)]^{1/l} for z\in D and
l>2 . Then there exists a constant C>0 such that

|I_{R}|\leq C--(z)||u||_{2}||v||_{2}|^{\sup_{z|>R}-l}

for all R\in(1/2,1) and l>2 .

Proof of the claim. By Proposition 3.3, there exist r\in(1,2) and a , K_{a}>

0 such that

|\{w\in I_{z} : A_{2\delta(z)}(S_{f^{*}}Ju)(w)A_{2\delta(z)}(H_{g}v)(w)

<a^{2}--_{l}-(z) \inf_{w\in I_{z}}\Lambda_{r}(Ju)(w)\inf_{w\in I_{z}}\Lambda_{r}(v)(w)\}|\geq K_{a}|I_{z}|

for all u , v\in H^{\infty} , 1/2<|z|<1 . Fix R\in(1/2,1) . For w in \partial D , define

\rho(w)=\max\{\gamma : A_{\gamma}(S_{f^{*}}Ju)(w)A_{\gamma}(H_{g}v)(w)

\leq a^{2} sup —_{l}(z)\Lambda_{r}(Ju)(w)\Lambda_{r}(v)(w)\} .
|z|>R
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Then,

\int_{\partial D}A_{\rho(w)}(S_{f^{*}}Ju)(w)A_{\rho(w)}(\mathcal{H}_{g}v)(w)d\sigma(w)

\leq a^{2-}|^{\sup_{z|>R}-}-l(z)\int_{\partial D}\Lambda_{r}(Ju)\Lambda_{r}(v)d\sigma

\leq a^{2-}|^{\sup_{z|>R}-l}-(z)||\Lambda_{r}(Ju)||_{2}||\Lambda_{r}v||_{2}
.

Because Hardy-Littlewood maximal function is L^{p}(p\in(1, \infty)) bounded
(cf. [7] page 24) and \frac{2}{r}\in(1,2) , there exists A_{r}>0 such that

||\Lambda_{r}(Ju)||_{2}=||M(|u^{*}|^{r})^{1/r}||_{2}=||M(|u^{*}|^{r})||_{2/r}^{1/r}

\leq A_{r}(|||u^{*}|^{r}||_{2/r})^{1/r}=A_{r}||u^{*}||_{2}=A_{r}||u||_{2} .

Moreover there exist A_{r}’>0 such that

\int_{\partial D}A_{\rho(w)}(S_{f^{*}}Ju)(w)A_{\rho(w)}(\mathcal{H}_{g}v)(w)d\sigma(w)

\leq a^{2-}A_{r}A_{r}’-(z)||u||_{2}||v||_{2}|^{\sup_{z|>R}-l}
. (4.1)

On the other hand, let \chi_{w} denote the characteristic function of \Gamma_{w,\rho(w)} .
Then

\int_{\partial D}A_{\rho(w)}(S_{f^{*}}Ju)(w)A_{\rho(w)}(7\{_{g}v)(w)d\sigma(w)

= \int_{\partial D}(\int_{\Gamma_{w,\rho(w)}}|\nabla(S_{f^{*}}Ju)|^{2}dA(z))^{\frac{1}{2}}(\int_{\Gamma_{w,\rho(w)}}|\nabla(\mathcal{H}_{g}v)|^{2}dA(z))^{\frac{1}{2}}d\sigma(w)

\geq\int_{\partial D}\int_{|z|>R}\chi_{w}(z)|\nabla(S_{f^{*}}Ju)||\nabla(\mathcal{H}_{g}v)|dA(z)d\sigma(w) .

If we define E_{z}=\{w\in I_{z} : \rho(w)\geq 2(1-|z|)\} , then by Proposition 3.3

|E_{z}|\geq K_{a}|I_{z}|=K_{a}(1-|z|)

for all |z|>R . Because z is in \Gamma_{w,\rho(w)} for w in E_{z} ,

\int_{\partial D}A_{\rho(w)}(S_{f^{*}}Ju)(w)A_{\rho(w)}(?\{_{9}v)(w)d\sigma(w)

\geq\int_{|z|>R}|E_{z}||\nabla(S_{f^{*}}Ju)||\nabla(H_{g}v)|dA(z)
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\geq K_{a}\int_{|z|>R}|\nabla(S_{f^{*}}Ju)||\nabla(\mathcal{H}_{g}v)|(1-|z|)dA(z)

\geq K_{a}\int_{|z|>R}|\nabla(S_{f^{*}}Ju)||\nabla(7\{_{g}v)|\log\frac{1}{|z|}dA(z)

\geq K_{a}|I_{R}| (4.2)

Therefore by combining (4.1) and (4.2), we have

|I_{R}|\leq C--(z)||u||_{2}||v||_{2}|^{\sup_{z|>R}-l}
.

For all u , v\in H^{\infty} , | \langle(T_{f}H_{g}-K_{R})v, u\rangle|\leq C\sup_{|z|-}^{-}>R^{-}l(z)||u||_{2}||v||_{2} and

||T_{f}H_{g}-K_{R}||\leq C--(z)|^{\sup_{z|>R}-l} . (4.3)

On the other hand, if we fix 2<l<3 , then

—l(z)=[|f^{*}|^{l}(z)]^{1/l}[|g_{-}-g_{-}(z)|^{l}(z)]^{1/l}

=[|f|^{l}(\overline{z})]^{1/l}[|(g_{-})^{*}-(g_{-})^{*}(\overline{z})|^{l}(\overline{z})]^{1/l}

\leq[|f|^{2}(\overline{z})]^{(l-1)/2l}[|f|^{\frac{2}{3-l}}(\overline{z})]^{(3-l)/2l}

\cross[|(g_{-})^{*}-(g_{-})^{*}(\overline{z})|^{2}(\overline{z})]^{(l-1)/2l}

[|(g_{-})^{*}-(g_{-})^{*}(\overline{z})|^{2/(3-l)}(\overline{z})]^{(3-l)/2l}

\leq C||T_{f}k_{\overline{z}}||^{(l-1)/l}||?\{_{g^{*}}k_{\overline{z}}||^{(l-1)/l}||(I-P)(g^{*}o\varphi_{\overline{z}})||_{\frac{\frac 122}{3-l}}

\leq C_{l}||T_{f}k_{\overline{z}}||^{(l-1)/l}||\mathcal{H}_{g^{*}}k_{\overline{z}}||^{(l-1)/l} (\#)

arrow 0(zarrow\partial D)

We use the boundedness of (I – P) on L^{p} where p\in(1, \infty) for (\#) and
the assumption for the last limit operation. Therefore, by (4.3), T_{f}H_{g} is a
compact operator.

(2)\Rightarrow(3) : Fix m in M(H^{\infty}+C) . By the Corona theorem there is a
net \{z\} in D which converges to m. By (2) we have lim \inf_{zarrow m}||Tfk_{z}||=0

or lim \inf_{zarrow m}||H_{g^{*}}k_{z}||=0 . From Lemma 2.3, lim \inf_{zarrow m}||T_{f}k_{z}||=0 if and
only if \overline{f}|_{\sup pm}\in H^{\infty}|_{\sup pm} and f(m)=0 but because of f\in H^{\infty} , we
easily have f|_{\sup pm}=0 . On the other hand if lim \inf_{zarrow m}||H_{g^{*}}k_{z}||=0 ,
then we have g^{*}|_{\sup pm}\in H^{\infty}|_{\sup pm} by Lemma 2.2.

(3)\Rightarrow(2) : If (2) is false, then there exists a net \{z\} in D such that it
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converges to m\in M(H^{\infty}+C) and that lim \sup_{zarrow m}||T_{f}k_{z}||||H_{g}^{*}k_{z}||>\delta>0 .
Then we can lead easily to the contradiction from each condition of (3).

(3)\Rightarrow(4) : For all m\in M(H^{\infty}+C) , by (3) it is easily seen that m is
multiplicative on H^{\infty}[\overline{f}, fg^{*}] or H^{\infty}[g^{*}] . So we have m\in M(H^{\infty}[\overline{f}, fg^{*}]\cap

H^{\infty}[g^{*}]) . Therefore M(H^{\infty}+C)\subseteq M(H^{\infty}[\overline{f}, fg^{*}]\cap H^{\infty}[g^{*}]) and by Chang-
Marshall theorem we have (4).

(4)\Rightarrow(3) : By Sarason’s result (see [8] Lemma 1.3.) we have M(H^{\infty}+

C)\subseteq M(H^{\infty}[\overline{f}, fg^{*}])\cup M(H^{\infty}[g^{*}]) . Fix m in M(H^{\infty}+C) . If m\in

M(H^{\infty}[\overline{f}, fg^{*}]) and m\not\in M(H^{\infty}[g^{*}]) , then by [8] Lemma 1.5. \overline{f}|_{\sup pm}\in

H^{\infty}|_{\sup pm} and (fg^{*})|_{\sup pm} = (f|_{\sup pm})(g^{*}|_{\sup pm}) \in H^{\infty}|_{\sup pm} and
g^{*}|_{\sup pm}\not\in H^{\infty}|_{\sup pm} . Therefore we have f|_{\sup pm}=0 . On the other hand,
if m is in M(H^{\infty}[g^{*}]) , then we have g^{*}|_{\sup pm}\in H^{\infty}|_{\sup pm} . \square

Remark 4.2 If we put f(z)=z –1 and g(z)=\overline{b(z)} where b is the
Blaschke product whose zero points approach 1 along the real axis, then
this is the example that TfH_{g}(f\in H^{\infty}) is a compact operator although
f\neq 0 and g\not\in H^{\infty}+C .

Remark 4.3 Because of T_{f}\mathcal{H}_{g}^{*}J=T_{f}H_{g}^{*} , we have directly the character-
ization for the compactness of T_{f}7\{_{9}^{*} from this theorem.

As a special case of Theorem 4.3 we have the next corollary.

Corollary 4.4 For f in L^{\infty} , the following assertions are equivalent
(1) H_{f} is a compact operator on H^{2} .
(2) \lim_{zarrow\partial D}||H_{f}k_{z}||=0 .
(3) For all m\in M(H^{\infty}+C) , f|_{\sup pm}\in H^{\infty}|_{\sup pm} .
(4) f\in H^{\infty}+C .

Remark 4.4 The equivalence of (1) and (4) is the well-known result by
Hartman, and the equivalence of (1) and (2) is proved in [2]. Also by using
equivalence of (1), (3) and (4), we get Sarason’s result:

Corollary 4.5 ([12])
(1) H^{\infty}+C= { f\in L^{\infty} ; f|_{\sup pm}\in H^{\infty}|_{\sup pm}for all m\in M(H^{\infty}+C) }.
(2) QC=(H^{\infty}+C)\cap\overline{(H^{\infty}+C)}

= { f\in L^{\infty} ; f|_{\sup pm} is a constant for all m\in M(H^{\infty}+C) }.

Proof We will show (2): f is in QC if and only if H_{f} and H_{\overline{f}} are com-
pact operators on H^{2} if and only if f|_{\sup pm}\in H^{\infty}|_{\sup pm} and \overline{f}|_{\sup pm}\in
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H^{\infty}|_{\sup pm} for all m in M(H^{\infty}+C) . Therefore f|_{\sup pm} is a constant for all
m in M(H^{\infty}+C) , because supp m is the anti-symmetric set. \square

Before proving characterization of essentially commuting Hankel oper-
ators, we state the next results as special cases. The proofs are not difficult
by using Brown-Halmos techniques in [3].

Proposition 4.6 ([15]) Let f and g be in L^{\infty} . Then H_{f}H_{g}-H_{g}H_{f}=0

if and only if there are complex numbers a , b such that they are not zero at
the same time and that af+bg is in H^{\infty} .

Corollary 4.7 ([15]) Let f be in L^{\infty} . Then H_{f} is the nomal operator if
and only if there is a complex number \alpha such that its absolute value is 0 or
1 and that f+\alpha f^{*} in H^{\infty} .

Concerning Proposition 4.6, we have the following:

Theorem 4.8 Fix f and g in L^{\infty} . Then the following assertions are
equivalent.
(1) ([H_{f}, H_{g}]=)H_{f}H_{g}-H_{g}H_{f} is a compact operator on H^{2} .
(2) ||F_{z}||=||(H_{f}k_{z})\otimes(H_{g}^{*}k_{z})-(H_{g}k_{z})\otimes(H_{f}^{*}k_{z})||arrow 0(zarrow\partial D) .
(3) For all m\in M(H^{\infty}+C) , one of the following conditions holds.

(a) f|_{\sup pm}\in H^{\infty}|_{\sup pm} and g|_{\sup pm}\in H^{\infty}|_{\sup pm} .
(b) f^{*}|_{\sup pm}\in H^{\infty}|_{\sup pm} and g^{*}|_{\sup pm}\in H^{\infty}|_{\sup pm} .
(c) There exist a , b\in \mathbb{C} , such that they are not zero at the same time

and that (af+bg) |_{\sup pm}\in H^{\infty}|_{\sup pm} and (af+bg)^{*}|_{\sup pm}\in

H^{\infty}|_{\sup pm} .
Moreover if f, g\in\overline{H^{\infty}} , the following is also equivalent.

(4) H^{\infty}[f, g] \cap H^{\infty}[f^{*}, g^{*}]\cap\bigcap_{(a,b)\neq(0,0)}H^{\infty} [af+bg, (af+bg)^{*} ] \subseteq H^{\infty}

+C.

Proof. (1)\Rightarrow(2) : By Lemma 4.1

||H_{f}H_{g}-H_{g}H_{f}-T_{\varphi_{z}}^{*}(H_{f}H_{g}-H_{g}H_{f})T_{\varphi_{z}}||

=||H_{f}(I-T_{\varphi_{\overline{z}}}T_{\varphi_{\overline{z}}}^{*})H_{g}-H_{g}(I-T_{\varphi_{\overline{z}}}T_{\varphi_{\overline{z}}}^{*})H_{f}||

=||H_{f}(k_{\overline{z}}\otimes k_{\overline{z}})H_{g}-H_{g}(k_{\overline{z}}\otimes k_{\overline{z}})H_{f}||

=||(H_{f}k_{\overline{z}})\otimes(H_{g}^{*}k_{\overline{z}})-(H_{g}k_{\overline{z}})\otimes(H_{f}^{*}k_{\overline{z}})||

arrow 0(zarrow\partial D)
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(2)\Rightarrow(1) : For all u , v\in H^{\infty} , by Littlewood-Paley formula

\langle(H_{f}H_{g}-H_{g}H_{f})u, v\rangle

=\langle H_{g}u, H_{f}*v\rangle-\langle H_{f}u, 7\{_{g^{*}}v\rangle

= \int_{D}[\nabla(\mathcal{H}_{g}u)\cdot\nabla(H_{f}*v)-\nabla(H_{f}u)\nabla(H_{g}*v)]\log\frac{1}{|z|}dA(z)

= \int_{|z|>R}+\int_{|z|\leq R}=I_{R}+II_{R}

where R \in(\frac{1}{2},1) . It is easily seen that there is a compact operator K_{R} on
H^{2} such that IIr=(Kru, v\rangle and by Proposition 3.5 and by the similar ar-
gument of [8] page 102\sim 104 we have |I_{R}| \leq C\sup_{|z|>R}||F_{z}||^{(l-1)/l}||u||_{2}||v||_{2}

for some constant C, and we have (1).
(2)\Leftrightarrow(3):(\Rightarrow) Fix m in M(H^{\infty}+C) . By the Corona theorem

there is a net z which converges to m. If lim \inf_{zarrow m}||H_{f}k_{z}||_{2}=0 and
lim \inf_{zarrow m}||H_{f}^{*}k_{z}||_{2} =0 then f|_{\sup pm} \in H^{\infty}|_{\sup pm} and f^{*}|_{\sup pm} \in

H^{\infty}|_{\sup pm} by Lemma 2.2 and this is the case of (a, b)=(1,0) in (c) of
(3). We first asume that lim \inf_{zarrow m}||H_{f}k_{z}||_{2}\geq c>0 . If we put \lambda_{z}=

\langle H_{g}k_{z}, H_{f}k_{z}\rangle/||H_{f}k_{z}||^{2} , then |\lambda_{z}|\leq||g||_{\infty}/c . Therefore we may think there
is a complex number a such that \lambda_{z} -a when z - m . By using Lemma
3.4 there is a constant C independent of z such that,

||H_{f}k_{z}||^{2}||H_{g-af}k_{z}||^{2}+||H_{g-af}k_{z}||^{2}||H_{f}^{*}k_{z}||^{2}\leq C\{||F_{z}||^{2}+|\lambda_{z}-a|^{2}\}

arrow 0(zarrow m)

Therefore ||H_{g-af}^{*}k_{z}|| -0 and ||H_{g-af}k_{z}||||H_{f}^{*}k_{z}||arrow 0 when z - m. By
using Lemma 2.2, we have

(g-af)^{*}|_{\sup pm}\in H^{\infty}|_{\sup pm} and (g-af)|_{\sup pm}\in H^{\infty}|_{\sup pm}

(4.4)

or

(g-af)^{*}|_{\sup pm}\in H^{\infty}|_{\sup pm} and f^{*}|_{\sup pm}\in H^{\infty}|_{\sup pm} (4.5)

If (4.4) is true, then this is the case of (c). On the other hand (4.5) is
equivalent to f^{*}|_{\sup pm}\in H^{\infty}|_{\sup pm} and g^{*}|_{\sup pm}\in H^{\infty}|_{\sup pm} , and this
is the case of (b). When lim \inf_{zarrow m}||H_{f}^{*}k_{z}||_{2}\geq c>0 we also have (3)
similarly.
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(\Leftarrow) If (2) is false, then there exist \delta>0 and net \{z\} such that it
converges to m and that lim \sup_{zarrow m}||F_{z}||\geq\delta . On the other hand

||F_{z}||\leq||H_{f}k_{z}||||H_{g+af}^{*}k_{z}||+||H_{g+af}k_{z}||||H_{f}^{*}k_{z}||

for all a in \mathbb{C} . Therefore each of the condition (3) leads to ||F_{z}|| -arrow 0 when
zarrow m , and this is the contradiction.
(3)\Leftrightarrow(4) : The proof is similar to [8] Lemma 1.1. \square

Remark 4.5 If f|_{\sup pm} \in H^{\infty}|_{\sup pm} is equivalent to f^{*}|_{\sup pm} \in

H^{\infty}|_{\sup pm} , then the condition of Theorem 4.8 (3) become more simple. But
f|_{\sup pm}\in H^{\infty}|_{\sup pm} is not equivalent to f^{*}|_{\sup pm}\in H^{\infty}|_{\sup pm} generally.

For \lambda\in\partial D let M_{\lambda}=\{m\in M(H^{\infty}) : m(\chi_{1})=\lambda\} where \chi_{1}(w)=w

for w in \partial D and we call M_{\lambda} the fiber over \lambda . Put f(z)= \exp(\frac{z+i}{z-i}) for
z\in D . Then f is the singular inner function. Because f(z) tends to 0 when
z approaches i along the imaginaly axis, there exists m in the fiber M_{i} such
that m(f)=0 by [9] page 161. If \overline{f}|_{\sup pm}\in H^{\infty}|_{\sup pm} , then f|_{\sup pm} is a
constant, and f|_{\sup pm}=0 . But we have a contradiction because |f|=1 on
M(L^{\infty}) (Silov boundary of H^{\infty} ) and supp m\subset M(L^{\infty})\cap M_{i} ( [5] page 156).
Therefore \overline{f}|_{\sup pm}\not\in H^{\infty}|_{\sup pm} . On the other hand we have \overline{f}^{*}|_{\sup pm}=1\in

H^{\infty}|_{\sup pm} because f=1 on M_{-i} by the two theorems in [9] page 161.

As corollary we can characterize the essentially normal Hankel operators
concerning Corollary 4.7. The operator A is said to be the essentially normal
if A^{*}A-AA^{*} is a compact operator.

Corollary 4.9 For f\in L^{\infty} , the following assertions are equivalent.
(1) H_{f} is an essentially normal operator.
(2) ||H_{f}k_{z}\otimes H_{f}k_{z}-H_{f}^{*}k_{z}\otimes H_{f}^{*}k_{z}|| -arrow 0(zarrow\partial D) .
(3) There exists a\in \mathbb{C} whose absolute value is 1 or 0 such that (f+

af^{*})|_{\sup pm}\in H^{\infty}|_{\sup pm} and (\overline{a}f+f^{*})|_{\sup pm}\in H^{\infty}|_{\sup pm} .

Moreover if f, g\in\overline{H^{\infty}} the following is also equivalent.
(4) \bigcap_{|a|=1},{}_{0}H^{\infty}[f+af^{*}, \overline{a}f+f^{*}]\subseteq H^{\infty}+C .

Proof. (1)\Rightarrow(3) : If H_{f} is an essentially normal, the condition (a), (b) of
Theorem 4.8 (3) are both f|_{\sup pm} and f^{*}|_{\sup pm} in H^{\infty}|_{\sup pm} , and this is
the case of a=0 for (3). Next the condition (c) of Theorem 4.8 (3) is that
there exist a , b\in \mathbb{C} such that they are not zero at the same time and that

(af+bf^{*})|_{\sup pm}\in H^{\infty}|_{\sup pm} and (\overline{b}f+\overline{a}f^{*})|_{\sup pm}\in H^{\infty}|_{\sup pm} .
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If |a|\neq|b| , then f|_{\sup pm} and f^{*}|_{\sup pm} are in H^{\infty}|_{\sup pm} and we have the
case a=0 of (3). If |a|=|b| we have (3) clearly. Remainder of the proof is
easy by Theorem 4.8. \square
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