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Congruences for the Burnside module

Ryousuke FUJITA
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Abstract. Let G be a finite group. Oliver-Petrie constructed a \Pi-complex for a finite
G-CW-complex and defined a Burnside module \Omega(G, \Pi) which consists of equivalent
classes of all \Pi-complexes. It is well-known that a congruence holds for the Burnside
ring. The purpose of this paper is to prove congruences for the Burnside module.
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1. Introduction

Throughout this paper let G be a finite group. Let X be a finite G-
CW-complex. T. tom Dieck [2, 3] proved that a congruence holds for the
Burnside ring:

\sum n(H, K)\chi(X^{K})\equiv 0 mod |N_{G}(H)/H| , (*)

(K)

where N_{G}(H) is the normalizer of H in G, |N_{G}(H)/H| is the order of
N_{G}(H)/H , \chi(X^{K}) is the Euler characteristic of X^{K} , the n(H, K) are some
integers, n(H, H)=1 , and the sum is taken over all G-conjugacy classes
(K) such that H is normal in K and K/H is cyclic. This congruence is
called the Burnside relation.

Let \Omega(G) be the Burnside ring, \Phi(G) the conjugacy class set of G , and
C(G) the ring of functions from \Phi(G) to \mathbb{Z} . Then we have

Theorem 1.1 [3, Chapter 4 (5.7)] The congruences (*) are a complete
set of congruences for the image of \varphi : \Omega(G)arrow C(G) , i.e . a function z\in

C(G) is contained in {\rm Im}(\varphi) if and only iffor all (H)\in\Phi(G) the congruence
(*)

\sum n(H, K)z(K)\equiv 0 mod |N_{G}(H)/H|

(K)

is satisfied.
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On the other hand, E. Laitinen and W. L\"uck defined the Lefschetz
ring [7]. Since it is well-known that the Burnside ring is isomorphic to the
Lefschetz ring, the similar congruence holds for the Lefschetz ring [9].

Next we shall state fundmental definitions and properties on \Pi-

complexes and the Burnside module. See our general reference R. Oliver-
T. Petrie [10] for details. Suppose that II is a partially ordered set and G
acts on it preserving the partially order. Let S(G) be the set of all sub-
groups of G . We regard S(G) as a G-set via the action (g, H)\mapsto gHg-1

(g\in G and H\in S(G) ) and as a partially ordered set via

H\leq K if and only if H\supseteq K (H, K\in S(G)) .

For any \alpha\in\Pi , we set

\Pi_{\alpha}=\{\beta\in\Pi|\beta\geq\alpha\} , and
G_{\alpha}=\{g\in G|g\alpha=\alpha\} .

In particular, G_{\alpha} is called an isotropy subgroup of G at \alpha . Let \rho : II -

S(G) be an order preserving G-map. A pair (\square , \rho) is called a G-poset if it
is satisfying the following condition: for any \alpha\in\Pi ,

\rho(\alpha)\triangleleft G_{\alpha} and \rho : \Pi_{\alpha}arrow S(G)_{\rho(\alpha)} is injective.

Note that S(G)_{\rho(\alpha)}=S(\rho(\alpha))\subset S(G_{\alpha}) and G_{\alpha}\subset G_{\rho(\alpha)}=N_{G}(\rho(\alpha)) , the
normalizer of \rho(\alpha) in G. As example of a G-poset consider (S(G), id) . A
G-poset (\Pi, \rho) is called complete if

\rho : \Pi_{\alpha}arrow S(G)_{\rho(\alpha)} is bijective for all \alpha\in\Pi .

There is a unique maximal element \mathfrak{m}\in\Pi for a complete G-poset (\Pi, \rho) .
For any G-space Y , we set

\Pi_{G}(Y)=\prod_{H\in S(G)}\pi_{0}(Y^{H})
(the disjoint union of \pi_{0}(Y^{H}) ’s).

Here Y^{H} is the Hinfixed point set of Y and \pi_{0}(Y^{H}) is the set of all connected
components of Y^{H} . For \alpha\in\Pi_{G}(Y) , there exists uniquely a subgroup H\in

S(G) such that \alpha\in\pi_{0}(Y^{H}) . Hence we can define a map \rho_{Y} : \Pi_{G}(Y) -arrow

S(G) by \alpha\mapsto H . In addition, \Pi_{G}(Y) is equipped with a partial order \leqq by

\alpha\leqq\beta if and only if \rho(\alpha)\supseteqq\rho(\beta) and |\alpha|\subseteqq|\beta|(\alpha, \beta\in\Pi_{G}(Y))
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where |\alpha| is the underlying space for \alpha\in\Pi_{G}(Y) . Thus we get a G-
poset (\square c(Y), \rho_{Y}) , which is called a G-poset associated to Y Note that
(\Pi_{G}(Y), \rho_{Y}) is complete.

Definition 1.2 Let a pair (\Pi, \rho) be a G-poset. A finite G-CW-complex X
with a base point * is called a \Pi -complex if it is equipped with a specified
set \{X_{\alpha}|\alpha\in\Pi\} of subcomplexes X_{\alpha} of X , satisfying the following four
conditions:

(i) *\in X_{\alpha} ,
(ii) gX_{\alpha}=X_{g\alpha} for g\in G , \alpha\in\Pi ,
(iii) X_{\alpha}\subseteqq X_{\beta} if \alpha\leqq\beta in \Pi , and
(iv) for any H\in S(G) ,

X^{H}=\alpha\in\Pi with\rho(\alpha)=H\vee X_{\alpha}
(the wedge sum of X_{\alpha} ’s).

We shall give some examples of \Pi-complexes.

Example 1.3 Let (\Pi, \rho) be a G-poset. For each \alpha\in\Pi , we let the space
(G/\rho(\alpha))^{+} denote G/\rho(\alpha)II\{*\} (disjoint union) with

(G/ \rho(\alpha))_{\beta}^{+}=\{g\rho(\alpha)|g\alpha\leq\beta, g\in G\}\prod\{*\} for \beta\in\Pi .

Then (G/\rho(\alpha))^{+} admits a \Pi-complex structure.

Example 1.4 Let f : X arrow Y be a G-map between finite G-CW-
complexes. We define

Y_{\alpha}=|\alpha| , and
X_{\alpha}=X^{\rho(\alpha)}\cap f^{-1}(Y_{\alpha}) .

Let X^{+} denote the space X with the disjoint base point * . Similarly for Y^{+}

Then both X^{+} and Y^{+} are \Pi_{G}(Y)-complexes. Let C_{f} stand for the mapping
cone of f and f_{\alpha} : X_{\alpha}arrow Y_{\alpha} be the restriction of f . By setting (C_{f})_{\alpha}=C_{f\alpha} ,
the space C_{f} can be also given the structure of \square c(Y) complete.

Let \mathcal{F} denote the family of all \Pi-complexes and define the equivalence
relation\sim on\mathcal{F} by

Z\sim W if and only if \chi(Z_{\alpha})=\chi(W_{\alpha}) for all \alpha\in\Pi(Z, W\in \mathcal{F})

where \chi(Z_{\alpha}) is the Euler characteristic of Z_{\alpha} .



120 R. Fujita

The set \Omega(G, \Pi)=\mathcal{F}/\sim is an abelian group via

[Z]+[W]=[Z\vee W] (Z, W\in \mathcal{F}) .

The zero element is the equivalence class of a point. We call \Omega(G, \Pi) the
Burnside module associated with a G-posel \Pi .

Let \alpha be any element of II and X a \Pi-complex. Construct a new space
X’ by attaching \alpha-cells G/\rho(\alpha)\cross D^{i} ’s to X . Each attachment map

\varphi : G/\rho(\alpha)\cross S^{i-1}arrow X

is defined such that \varphi(g\rho(\alpha)\cross S^{i-1})\subset X_{g\alpha} . The space X’ is equipped with
a \Pi-complex structure:

(X’)_{\beta}=X_{\beta}\cup(\cup\{g\rho(\alpha)\cross D^{i}|g\alpha\leq\beta, g\in G\}) for \beta\in\Pi .

Any \Pi-complex is constructed from one point by attaching \alpha-cells for \alpha\in

\Pi .

Proposition 1.5 [10, Proposition 1.5] One has

\Omega(G, \Pi)\cong\oplus \mathbb{Z}\alpha\in A^{\cdot}

Any finite \Pi -complex X is equivalent in \Omega(G, \Pi) to a sum of the form
\sum_{\alpha\in A}a_{\alpha}[(G/\rho(\alpha))^{+}] , and the map [X] - \{a_{\alpha}\}_{\alpha\in A} defines the group is0-
morphism.

The purpose of this paper is to establish congruences for the Burn-
side module. The main two theorem in this paper are the following. Let
\Phi(G_{\alpha}/\rho(\alpha)) be the conjugacy class set of G_{\alpha}/\rho(\alpha) . We define

S((G), \alpha)

= {K\in S(G)|(K/\rho(\alpha))\in\Phi(G_{\alpha}/\rho(\alpha)) and K/\rho(\alpha) is cyclic}.

Theorem 1.6 Let \alpha be an element of \Pi . Then we have

\sum \frac{|G_{\alpha}/\rho(\alpha)|}{|N_{G_{\alpha}/\rho(\alpha)}(K/\rho(\alpha))|}

K\in S((G),\alpha)

, \phi(|K/\rho(\alpha)|)\cdot\overline{\chi}(X_{\alpha}^{K})\equiv 0 mod |G_{\alpha}/\rho(\alpha)| ,

where \phi(|K/\rho(\alpha)|) is the number of generators of the cyclic group K/\rho(\alpha) .
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Moreover we define a group homomorphism

\overline{\chi}_{\alpha} : \Omega(G, \Pi)arrow \mathbb{Z}

by \overline{\chi}_{\alpha}([X])=\overline{\chi}(X_{\alpha}) for [X]\in\Omega(G, \Pi) and \alpha\in\Pi . Noting that X_{g\alpha}=

gX_{\alpha} , a map f : X_{\alpha}arrow X_{g\alpha};x\mapsto gx is a homeomorphism. Now, a quotient
set \Pi/G consists of all orbits of II under G . Let A \subset\Pi be a complete set
of representatives for \Pi/G . Then we introduce a new function defined by

\overline{\chi}=\oplus\alpha\in A\overline{\chi}_{\alpha}
:

\Omega(G, \Pi)arrow\alpha\in A\oplus \mathbb{Z}
,

\overline{\chi}([X])=\oplus\alpha\in A\overline{\chi}_{\alpha}([X])
.

One verifies that the map \overline{\chi} is a injective group homomorphism.

Theorem 1.7 If a G-poset (\square , \rho) is complete, one has

Im (\overline{\chi} : \Omega(G, \Pi)arrow\alpha\in A\oplus \mathbb{Z})

=\{ (x_{\alpha})\in\oplus \mathbb{Z}| \sum \frac{|G_{\alpha}/\rho(\alpha)|}{|N_{G_{\alpha}/\rho(\alpha)}(K/\rho(\alpha))|}

\alpha\in A K\in S((G),\alpha)

. \phi(|K/\rho(\alpha)|)\cdot x_{\alpha,(K)}\equiv 0 mod |G_{\alpha}/\rho(\alpha)|\} ,

where x_{\alpha,(K)} is some integer such that

x_{\alpha,(K)}= \{\sum_{\beta}^{x_{\alpha}}x_{\beta} (K=\rho(\alpha))(K\neq\rho(\alpha),\beta issomeelemenl\rho(\beta)=K,\beta<\alpha)

.
of II with

This paper is organized as follows. In Section 2, we prove the main two
theorem. Finally we give an example of Theorem 1.7.

2. Proofs of the main results

Proof of Theorem 1.6. Let (\Pi, \rho) be a G-poset and G_{\alpha} the isotropy sub-
group at \alpha . Given a \Pi-complex X , we see the G_{\alpha}/\rho(\alpha)- CW-complex X^{\rho(\alpha)}

is equipped with a \Pi-complex structure as following:

(X^{\rho(\alpha)})_{\alpha}=X_{\alpha}^{\rho(\alpha)} for all \alpha\in\Pi .
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By our definition of the \Pi-complex, it can be shown that X_{\alpha}^{\rho(\alpha)}=X_{\alpha} for
all \alpha\in\Pi . Let \chi(X) be the Euler characteristic of X , and \overline{\chi}(X)=\chi(X)-

1 . Note that a map f : \mathcal{F}_{c}(G_{\alpha}/\rho(\alpha))arrow \mathbb{Z};K/\rho(\alpha)\mapsto\overline{\chi}(X_{\alpha}^{K}) satisfies
a Burnside relation. By Burnside’s lemma [9, Lemma 4.1], we have the
desired result. \square

We need the following lemma to prove the Theorem 1.7.

Lemma 2.1 Suppose that a G-poset (\Pi, \rho) is complete. Let \alpha be an el-
emnet of II and K a subgroup with K\supset\rho(\alpha) . For a \Pi -complex X , it holds
that

\overline{\chi}(X_{\alpha}^{K})=\sum_{w\beta\in\Pi ith\rho(\beta)=K,\beta<\alpha}\overline{\chi}(X_{\beta})
.

Proof. Recall that

X^{K}=\vee X_{\beta}\beta\in\Pi with\rho(\beta)=K^{\cdot}

We set H=\rho(\alpha) . Let \{\alpha_{1}, \alpha_{2}, . . , \alpha_{m}\}=\{\gamma\in\Pi|\rho(\gamma)=H\} . After
renumbering the \alpha_{i} , we may assume that \alpha_{1}=\alpha . Observe that

X^{H}=X_{\alpha_{1}}\vee X_{\alpha_{2}}\vee\cdot . \vee X_{\alpha_{m}} .

Immediately,

X^{K}=X_{\alpha_{1}}^{K}\vee X_{\alpha_{2}}^{K}\vee \cdot\vee X_{\alpha_{m}}^{K} .

For an element \beta , since a G-poset (\Pi, \rho) is complete, there exists an element
\alpha\in\Pi such that \rho(\alpha)=H , \beta\leq\alpha_{1}=\alpha . Hence we have

X_{\alpha}^{K}=X^{K}\cap X_{\alpha}=\vee X_{\beta}\beta\in\Pi with\rho(\beta)=K,\beta\leq\alpha ’

and thereby prove our assertion. \square

Recall that A \subset\Pi is a complete set of representatives for \Pi/G . Let
\alpha_{i} , \alpha_{j} be elements of A. Now, we give an order \leq*onA :

\alpha_{i}\leq_{*}\alpha_{j} if and only if g\alpha_{i}\leq\alpha_{j} for some g\in G ,

where\leq is the order on \Pi . We write \leq for \leq*\cdot

Proof of Theorem 1.7. First we use S for the right side, and Im for the
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left side in the equation of Theorem 1.7. Let A=\{\alpha_{1}, ., \alpha_{m}\} . By [5,
Lemma 1.80], we can arrange elements of A such that

\alpha_{i}\leq\alpha_{j}\Rightarrow i\leq j .

Define a map P_{\leq k} : \oplus_{i=1}^{m}\mathbb{Z}_{\alpha_{i}} -arrow\oplus_{i=1}^{k}\mathbb{Z}_{\alpha_{i}} by k coordinate maps p_{i} :
\oplus_{i=1}^{m}\mathbb{Z}_{\alpha_{i}}arrow \mathbb{Z}_{\alpha_{i}} such that

P\leq k(x)=(p_{1}(x), . ., p_{k}(x)) ,

where each \mathbb{Z}_{\alpha_{i}} is a copy of \mathbb{Z} . Note that S\subset\oplus_{i=1}^{m}\mathbb{Z}_{\alpha_{i}} . It will now suffice
to prove that

P_{\leq m}(S)=P\leq m({\rm Im}) .

We proceed by induction on k . In the case where k=1 , the map P_{\leq 1} means

\oplus \mathbb{Z}_{\alpha_{i}}i=1marrow \mathbb{Z}_{\alpha_{1}} ; (x_{\alpha_{i}})\mapsto x_{\alpha_{1}} .

Take an element [(G/G)^{+}]\in\Omega(G, \Pi) . Then we have

{\rm Im}\ni\overline{\chi}([(G/G)^{+}])=(\overline{\chi}_{\alpha_{i}}([(G/G)^{+}]))_{\alpha_{i}}=(1,1, \ldots, 1) .

Thus we obtain

1\in P_{\leq 1}({\rm Im}) ,

and so we get

P_{\leq 1}({\rm Im})=\mathbb{Z}_{\alpha_{1}} .

Since Im is a subset of S by Theorem 1.6 and Lemma 2.1, it follows that
P_{\leq 1}({\rm Im})\subset P_{\leq 1}(S) . Clearly \mathbb{Z}_{\alpha_{1}}\supset P_{\leq 1}(S) . Therefore, P_{\leq 1}({\rm Im})=P_{\leq 1}(S) .

Suppose that P_{\leq k-1}(S)=P_{\leq k-1}({\rm Im}) . Let y=(y_{\alpha_{1}}, y_{\alpha_{2}} , . ., y_{\alpha_{k-1}} , y_{\alpha_{k}} ,
y_{\alpha_{k+1}} , ., y_{\alpha_{m}} ) be an element of S. By assumption, there exists an element

x= (x_{\alpha_{1}}, x_{\alpha_{2}}, \ldots, x_{\alpha_{k-1}}, x_{\alpha_{k}}, x_{\alpha_{k+1}}, ., x_{\alpha_{m}})\in{\rm Im}

such that x_{\alpha_{1}}=y_{\alpha_{1}} , x_{\alpha_{2}}=y_{\alpha_{2}} , . . ., x_{\alpha_{k-1}}=y_{\alpha_{k-1}} . Then we have

z=y-x
= (0, 0, \ldots, 0, y_{\alpha_{k}}-x_{\alpha_{k}}, y_{\alpha_{k+1}}-x_{\alpha_{k+1}}, ., y_{\alpha_{m}}-x_{\alpha_{m}})\in S .



124 R. Fujita

Here we let z_{\alpha_{i}}=y_{\alpha_{i}}-x_{\alpha_{i}} , and n_{\alpha,K}= \frac{|G_{\alpha}/\rho(\alpha)|}{|N_{G_{\alpha}/\rho(\alpha)}(K/\rho(\alpha))|} \phi(|K/\rho(\alpha)|) .
Consider the case of \alpha=\alpha_{k} . Then we have

\sum_{K\in S((G),\alpha_{k})}n_{\alpha_{k},K}z_{\alpha_{k},(K)}\equiv 0
mod |G_{\alpha_{k}}/\rho(\alpha_{k})| .

Observe that the coefficient z_{\alpha_{k},(K)}(K\neq\rho(\alpha_{k})) is equal to \sum_{\beta}z_{\beta} , where
\beta is some element of II with \rho(\beta)=K , \beta<\alpha_{k} . Thus the above equation
implies

n_{\alpha_{k},\rho(\alpha_{k})} z_{\alpha_{k},(\rho(\alpha_{k}))}\equiv 0 mod |G_{\alpha_{k}}/\rho(\alpha_{k})| .

Note that

n_{\alpha_{k},\rho(\alpha_{k})}= \frac{|G_{\alpha_{k}}/\rho(\alpha_{k})|}{|N_{G_{\alpha_{k}}/\rho(\alpha_{k})}(\rho(\alpha_{k})/\rho(\alpha_{k}))|} \phi(|\rho(\alpha_{k})/\rho(\alpha_{k})|)=1 .

That is,

z_{\alpha_{k}}\equiv 0 mod |G_{\alpha_{k}}/\rho(\alpha_{k})| .

On the other hand, we have

\alpha\in A\oplus\overline{\chi}([(G/\rho(\alpha_{k}))^{+}])

=(\overline{\chi}_{\alpha}([(G/\rho(\alpha_{k}))^{+}]))_{\alpha\in A}= |G_{\alpha_{k}}/\rho(\alpha_{k})| , . .).

Hence there exists an integer a\in \mathbb{Z} such that

y -x -a (\overline{\chi}_{\alpha}((G/\rho(\alpha_{k}))^{+}))= .).

That is,

y=x+a(\overline{\chi}_{\alpha}((G/\rho(\alpha_{k}))^{+}))+ .).

By induction, we see immediately that

P_{\leq k}(y)=P_{\leq k}(x+a(\overline{\chi}_{\alpha}((G/\rho(\alpha_{k}))^{+})))\in P_{\leq k}({\rm Im}) .

This completes the proof. \square

Finally we wish to give an example of Theorem 1.7. Let p be a prime
number. We set G=C_{p} (a cyclic group of order p). Since S(G)=\{\{e\}, G\}
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(e is the unit element of G), and the G-action on S(G) is trivial, a Burn-
side module \Omega(G, S(G)) is a free abelian group generated by [(G/\{e\})^{+}] ,
[(G/G)^{+}] . Clearly \Phi(G)=\{\{e\}, G\} .

First, consider the case of \alpha=\{e\} . Since S((G), \alpha)=\{\{e\}, G\} , we get

\frac{|G|}{|G|} 1x_{\{e\},(\{e\})}+ \frac{|G|}{|G|} (p-1)x_{\{e\},(G)}\equiv 0 mod p.

That is,

x_{\{e\},(\{e\})}\equiv x_{\{e\},(G)} mod p.

By Theorem 1.7, there exists a \Pi-complex X such that \overline{\chi}(X_{\{e\}})=x_{\{e\},(\{e\})}

and \overline{\chi}(X_{G})=x\{e\},(G) . Thus we have

\overline{\chi}(X_{\{e\}})\equiv\overline{\chi}(X_{G}) mod p.

In particular, if X has a \Pi-complex structure as follows:

X_{\alpha}=\{
X (\alpha=\{e\})

X^{G} (\alpha=G) ,

the previous expression implies

\chi(X)\equiv\chi(X^{G}) mod p.

Next for \alpha=G , since S((G), \alpha)=\{G\} , we obtain

\frac{1}{1} 1\cdot x_{G,(G)}\equiv 0 mod 1.

Immediately,

x_{G,(G)}\equiv 0 mod 1.

This equation is true for any integer, and so there is no relation for II-
complexes.
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