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Congruences for the Burnside module

Ryousuke FuJita
(Received August 13, 2001; Revised March 4, 2002)

Abstract. Let G be a finite group. Oliver-Petrie constructed a II-complex for a finite
G-CW-complex and defined a Burnside module (G, IT) which consists of equivalent
classes of all I[I-complexes. It is well-known that a congruence holds for the Burnside
ring. The purpose of this paper is to prove congruences for the Burnside module.

Key words: G-CW-complex, G-map, G-poset, Burnside module.

1. Introduction

Throughout this paper let G be a finite group. Let X be a finite G-

CW-complex. T. tom Dieck [2, 3] proved that a congruence holds for the
Burnside ring:

> n(H,K)x(X¥)=0 mod |Ng(H)/H], (%)
(K)

where Ng(H) is the normalizer of H in G, |Ng(H)/H]| is the order of
Ng(H)/H, x(X¥) is the Euler characteristic of XX the n(H, K) are some
integers, n(H, H) = 1, and the sum is taken over all G-conjugacy classes
(K) such that H is normal in K and K/H is cyclic. This congruence is
called the Burnside relation.

Let Q(G) be the Burnside ring, ®(G) the conjugacy class set of G, and
C(G) the ring of functions from ®(G) to Z. Then we have

Theorem 1.1 [3, Chapter 4 (5.7)] The congruences () are a complete
set of congruences for the image of ¢ : Q(G) — C(G), i.e. a function z €
C(G) is contained in Im(yp) if and only if for all (H) € ®(G) the congruence
(*)

> n(H,K)z(K)=0 mod |[Ng(H)/H|
(K)

is satisfied.
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On the other hand, E. Laitinen and W. Liick defined the Lefschetz
ring [7]. Since it is well-known that the Burnside ring is isomorphic to the
Lefschetz ring, the similar congruence holds for the Lefschetz ring [9].

Next we shall state fundmental definitions and properties on II-
complexes and the Burnside module. See our general reference R. Oliver-
T. Petrie for details. Suppose that II is a partially ordered set and G
acts on it preserving the partially order. Let S(G) be the set of all sub-
groups of G. We regard S(G) as a G-set via the action (g, H) — gHg™!
(g € G and H € S(G)) and as a partially ordered set via

H<K ifandonlyif HDO K (H,K € S(G)).
For any a € I, we set

N,={B8e€ll|B8>a}, and

Ga={9€G|ga=a}.

In particular, G, is called an isotropy subgroup of G at a. Let p : Il —
S(G) be an order preserving G-map. A pair (II, p) is called a G-poset if it
is satisfying the following condition: for any a € II,

p(a) AG, and p: Iy — S(G),e) is injective.

Note that S(G)y) = S(p(a)) C S(Ga) and G4 C Gpo) = Na(p(a@)), the
normalizer of p(a) in G. As example of a G-poset consider (S(G),id). A
G-poset (II, p) is called complete if

p: Iy — S(G)pa) is bijective for all o €11,

There is a unique maximal element m € II for a complete G-poset (IL, p).
For any G-space Y, we set

Me(Y)= [ mo(Y*") (the disjoint union of mo(Y*)’s).
HeS(G)

Here YH is the H-fixed point set of Y and mo(Y ) is the set of all connected
components of Y. For o € IIg(Y), there exists uniquely a subgroup H €
S(G) such that o € mo(Y ). Hence we can define a map py : llg(Y) —
S(G) by a — H. In addition, IIg(Y) is equipped with a partial order < by

o < if and only if p(a)2 p(8) and |a] C |8] (B € Ha(Y))
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where |a| is the underlying space for @ € IIg(Y). Thus we get a G-
poset (IIg(Y), py), which is called a G-poset associated to Y. Note that
(Ilg(Y), py) is complete.

Definition 1.2 Let a pair (II, p) be a G-poset. A finite G-CW-complex X
with a base point * is called a II-complez if it is equipped with a specified
set {Xo | a € II} of subcomplexes X, of X, satisfying the following four
conditions:

(i) =€ Xa,

(i) gXo=Xga forge G, aell,

(i) Xq &E X if o < inll, and

(iv) for any H € S(G),

XH = \/ Xo (the wedge sum of X,’s).
o€l with p(a)=H
We shall give some examples of II-complexes.
Example 1.3 Let (I, p) be a G-poset. For each o € II, we let the space
(G/p(c))* denote G/p(a) [[{*} (disjoint union) with

(G/p(a))y ={gp(a) | ga < B, g€ G} [[{*} for BellL
Then (G/p(a))™ admits a II-complex structure.
Example 1.4 Let f : X — Y be a G-map between finite G-CW-

complexes. We define

Yo =|a|, and

Xo =X (Y.
Let X denote the space X with the disjoint base point * . Similarly for Y *.
Then both X+ and Y+ are IIg(Y)-complexes. Let Cf stand for the mapping

cone of f and fo : Xo — Y, be the restriction of f. By setting (Cy)o = Cj,,
the space Cy can be also given the structure of II(Y)-complex.

Let F denote the family of all II-complexes and define the equivalence
relation ~ on F by

Z ~W if and only if x(Zs) =x(W,) forall a €l (Z,W € F)

where x(Z,) is the Euler characteristic of Z,,.
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The set 2(G,II) = F/~ is an abelian group via
Z] + W] =[ZVW] (Z,W€F).

The zero element is the equivalence class of a point. We call £2(G,II) the
Burnside module associated with a G-poset 11.

Let o be any element of IT and X a II-complex. Construct a new space
X' by attaching a-cells G/p(a) x D¥s to X. Each attachment map

0:G/pla) x 81 = X

is defined such that ¢(gp(a) x S*~1) C X,q. The space X' is equipped with
a II-complex structure:

(X")g=XgU (U{gp(a) xD'|ga<p, g€ G}) for pell

Any II-complex is constructed from one point by attaching o-cells for a €
I1.

Proposition 1.5 [10, Proposition 1.5] One has
QG = Pz
acA

Any finite Il-complex X is equivalent in Q(G,II) to a sum of the form

> aca 3al(G/p(a))?], and the map [X] — {aa}aca defines the group iso-
morphism.

The purpose of this paper is to establish congruences for the Burn-
side module. The main two theorem in this paper are the following. Let
®(G./p(c)) be the conjugacy class set of Go/p(a). We define

S((G), )
={K € S(G) | (K/p(a)) € ®(Go/p(a)) and K/p(a) is cyclic}.

Theorem 1.6 Let a be an element of 1I. Then we have

|Ga/p(a)]
KG.S;(G),a) ING. /o) (K/p())]

- ¢(1K/p()]) - x(X5) =0 mod |Ga/p(a)],

where ¢(|K/p(a)|) is the number of generators of the cyclic group K/p(a).
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Moreover we define a group homomorphism
Xo : 2(G,1I) - Z

by Xa([X]) = x(Xa) for [X] € £2(G,II) and o € II. Noting that Xy, =
gXa, amap f: Xq — Xgo; T+ gz is a homeomorphism. Now, a quotient
set ITI/G consists of all orbits of IT under G. Let A C II be a complete set
of representatives for II/G. Then we introduce a new function defined by

=P x: 260 - Pz

acA acA

X(1X]) = D xa(IX]).

acA

One verifies that the map ¥ is a injective group homomorphism.

Theorem 1.7 If a G-poset (I1, p) is complete, one has

Im(;’c . Q(G,TI) — @Z)
acA

o 1Ga/ ()
‘{( Jedz| 3 NG/ oie) (K /()]

aEA  KeS((G),a)

(1K /p(@)])- Tayr) =0 mod IGa/p(a)I},

where T, (k) 1S some integer such that

To (K = p(a))
Za,(K) = Za:g (K # p(a), B is some element of II with
g p(B) =K, B<a).

This paper is organized as follows. In Section 2, we prove the main two
theorem. Finally we give an example of [(I’heorem 1.7

2. Proofs of the main results

Proof of Theorem 1.6.. Let (II, p) be a G-poset and G, the isotropy sub-
group at .. Given a Il-complex X, we see the G /p(a)-CW-complex X ple)
is equipped with a II-complex structure as following:

(xP), = XA forall o€l
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By our definition of the II-complex, it can be shown that X{;("‘) = X, for
all a € I. Let x(X) be the Euler characteristic of X, and x(X) = x(X) —
1. Note that a map f : Fo(Go/p(@)) — Z; K/p(a) — x(XE) satisfies
a Burnside relation. By Burnside’s lemma [9, Lemma 4.1}, we have the
desired result. d

We need the following lemma to prove the Theorem 1.7

Lemma 2.1 Suppose that a G-poset (I1, p) is complete. Let a be an el-
emnet of Il and K a subgroup with K D p(a). For a Il-complex X, it holds
that

MXE) = > X(Xp).
BEIl with p(B)=K, B<a
Proof. Recall that
xK = \V Xp.
BEIl with p(B)=K

We set H = p(a). Let {a1,09,...,an} = {y € II | p(y) = H}. After
renumbering the a;, we may assume that o; = a. Observe that

XH=Xo VXV VX .
Immediately,
XK=xEvxEv. vxK.

For an element 3, since a G-poset (I1, p) is complete, there exists an element
a € II such that p(a) = H, 8 < a1 = a. Hence we have

xK=xKnx,= \V X3,
BEII with p(8)=K, <

and thereby prove our assertion. ll

Recall that A C II is a complete set of representatives for II/G. Let
aj, aj be elements of A. Now, we give an order <, on A:

a; <, o if and only if go; < a; for some g € G,

where < is the order on II. We write < for <,.

Proof of [Theorem 1.7. First we use S for the right side, and Im for the
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left side in the equation of [Theorem 1.7 Let A = {ay,...,an}. By [5,
Lemma 1.80], we can arrange elements of A such that

aigaj::#z'Sj.

Define a map Pfk : 697;1 Zai - EB?=1 Za,- by k coordinate maps p;
@;11 Lo; — L, such that

P<k(z) = (p1(2), - - -, pr()),

where each Z,, is a copy of Z. Note that S C @, Z,,. It will now suffice
to prove that

Pgm(S) = Psm(lm).
We proceed by induction on k. In the case where k = 1, the map P<; means

m
@Zai - Zal; (xai) = Za; -

i=1
Take an element [(G/G)"] € Q(G,II). Then we have

Im 5 X([(G/G)™]) = (Xai ((G/G) N))a = (1,1,.., 1).
Thus we obtain

1 € P<;(Im),
and so we get

Pgl (Im) = Za1 .

Since Im is a subset of S by [Theorem 1.6/ and Lemma 2.1], it follows that
Psl(Im) C Pgl(S). Clearly Zal D PSl(S). Therefore, Pgl(:[m) = PSI(S)-
Suppose that PSk—-l(S) = P_<_k—1(Im)' Let y= (yala Yasys -+ s Yap_13 Yags

Yags1s - - > Yam) De an element of S. By assumption, there exists an element
T = (TaysTags - +» Tag_1s Tag) Tagyrs - - - Tam) € IM

such that To, = Yoys Tay = Yagy -+ s Tag_; = Ya,_,- Lhen we have
z2=yYy—x

= (070"°'707ka _xakayak+1 _mak+1a‘-*7yam _xam) € S
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Here we let Zo, = Yo, ~ Ta,, a0d nax = [ygoctfilba - 1K/ p(a)))-

Consider the case of @ = aj. Then we have

Z Moy K * 2oy, (K) =0 mod |Ga,/p(ak)l.
KeS((G)yo)

Observe that the coefficient z,, (k) (K # p(ax)) is equal to )5z, where
B is some element of II with p(3) = K, 8 < ax. Thus the above equation
implies

Moy, p(ar) * Pak,(p(ax)) = 0 mod |Ga,/p(ck)l-
Note that

|G/ po)]
NGak/p(ak)(p(ak)/p(ak))l

- @(|lp(ar)/plak)|) = 1.

nak’p(ak) = |

That is,
2o, =0 mod |Gq,/p(ak)l

On the other hand, we have

D x((G/p(ar)) ™)
acA
k-1
= (%a([(G/p(cx)™])) peu = (0,0,...,0,1Ga,/p(ai)l, . ..).

Hence there exists an integer a € Z such that

y_x_a()za((G/p(ak))+)) =(0,0,...,0,0,...).

That is,

y =z +a (Xa((G/p(ak))¥)) + (0,0,...,0,0,...).

By induction, we see immediately that

P<k(y) = P<k (z + a(Xa((G/p(ok)) ™)) € P<k(Im).

This completes the proof. O

Finally we wish to give an example of [Theorem 1.7 Let p be a prime
number. We set G = C,, (a cyclic group of order p). Since S(G) = {{e}, G}
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(e is the unit element of G), and the G-action on S(G) is trivial, a Burn-
side module Q(G, S(G)) is a free abelian group generated by [(G/{e})"],
[(G/G)*]. Clearly ®(G) = {{e}, G}.

First, consider the case of a = {e}. Since S((G), o) = {{e}, G}, we get

|G| |G| _
Gl 1 Tie},(feh) + Gl (p—1) 2(e},6) =0 mod p.
That is,

T{e},({e}) = T{e},(¢) mod p.

By Theorem 1.7, there exists a II-complex X such that x(X{e}) = Z(e},({e})
and X(Xg) = Z{c},(c)- Thus we have

X(X{(e}) = X(X@) mod p.

In particular, if X has a II-complex structure as follows:
o fl 1

the previous expression implies
X(X) = x(X®)  mod p.

Next for a = G, since S((G), a) = {G}, we obtain

1
1 l-zg =0 mod 1.

Immediately,
:I:G',(G) =0 mod 1.

This equation is true for any integer, and so there is no relation for II-
complexes.
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