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Analysis of strongly commuting self-adjoint operators
with applications to a spin-% neutral particle

with anomalous magnetic moment
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Abstract. Using strong commuting self-adjoint operators in the Minkowski space,
we showed that the operator concerning a neutral particle with an anomalous magnetic
moment is related to that of a free particle by a non-unitary transformation.
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1. Introduction

The Green’s functions of the Klein-Gordon equation and the Dirac equa-
tion in an external electromagnetic field were computed algebraically by
Vaidya et al. [V-F-H] and Vaidya and Hott [V-H]. In the preceding papers
([A-T] and [T]), we found that some ideas in [V-F-H] and [V-H] could be
justified from the view point of operator theory. And we have developed an
operator theory concerning a family of strongly commuting self-adjoint op-
erators in L?(R%) and @, , L*>(R?) (m > 2) and applied the theory to the
external field problem of a charged particle. Vaidya and Silva Filho [V-§]
also algebraically computed Green’s functions for a neutral particle with
an anomalous magnetic moment in an external plane-wave electromagnetic
field. The Green’s function G(x,z’) for a spin—% neutral particle with an
anomalous magnetic moment in an external plane-wave field F),, satisfies
the following equation,

(Vup" — ao - F —m)G(z,2") = §(z — 2'), (1)

where §(z—1z') is the Dirac’s delta-distribution on R*xR*, v, (1 = 0,1,2, 3)
are the gamma matrices, i.e., 7o is a 4 x 4 Hermitian matrix, v; (j =1,2,3)
is a 4 x 4 anti-Hermitian matrix such that v = F, 'yjz- =—F (Fisthe 4 x4
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unit matrix) and v, = =YY, p # v, i, v =0,1,2,3, and 0 - F = 0, F*
with o, = %('y,fyl, — YY) (1, v =0,1,2,3). Note that, in what follows, we
obey the Einstein’s rule as to summation with Greek indices. In [V-S], they
found algebraically an operator W satisfying

W p"W = = y,p" —ao - F, (2)

and showed that the Green function for a particle with an anomalous mag-
netic moment is also related to that for a free particle.

In this paper, we apply the operator theory developed in [A-T] and
[T] and justify the result of [V-S] and compute a Green’s function for a
spin—% neutral particle with an anomalous magnetic moment. Since some
v, are symmetric and some are anti-symmetric as matrices, we found that
Y#p, — ao - F'is not unitarily equaivarent to v,p*. However, we obtained W
in (2) as an operator on a dense domain as shown in Theorem 2.3 in Section
2. In Section 3, we discuss the corresponding integral kernels and then, in
Section 4, we apply these results to the external field problem.

2. Operator calculus in the Minkowski space

We first introduce some basic symbols. Let d > 2 be a natural number
and (guv)u,v=0,....d—1 be the metric tensor of the d-dimensional Minkowski
space M? with

1 (bn=v=0)

guw =% -1 (p=v#0) (b, v=0,1,...,d—1). (3)
0  (otherwise)

We denote a vector in M? (or the Euclidean space R?Y) as z =

(2%, 2!, ..., 297 1). For z* and (9w ) p,p=0.1,....d—1, the metric tensor of M

(or d x d matrix) defined in (3), we define =, by
xﬂ = gl“,.rl/. (4)

The indefinite inner product of M? is given by

d—1
vy = 2yt = gty =y’ = alyl. (5)
j=1
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We can also write zy = a#y,. The inverse of the matrix g =
(g,w/)u,uzo,l ..... d—1 is given by g_l = (g'uy),u,UZO,l ..... d—1 with g = Juv
(u, v=0,1,...,d — 1) so that we can write z* = g"x,,.

For each natural number m, we denote the m direct sum of the Hilbert
space L2(R%) by @™ L?(R?). For a linear operator A on a Hilbert space,
we denote its domain by D(A). For linear operators Ay (k= 1,...,m) on
L?(R%), we denote by @™ Ay the direct sum of A, on @™ L?(R?), that is

(@A) = {v = (whis e D LR v € DAY k= 1....m),

P Ay = {Aitin, $={ulin e D(@PA) 6

where D( - ) is operator domain.
For each a € M¢, the function az defines a self-adjoint multiplication
operator on L?(R%) with domain

D(az) = {y € L*(R?) | azyp € L*(R%)}. (7)
Let 0, be the generalized partial differential operator in z# acting in L?(R?).
Then, the operator p,, :=i8, (u=0,1,...,d— 1) is self-adjoint on L*(R?).

For each b € M%, we define a self-adjoint operator on L?(R?), denoted
by bp as follows:

Dibp) = {w e I*(RY)

/ bed(e) [ de < oo},
Rd

(bp) (€) := bEp(€), € D(bp), ae. € € RY (8)

where (&) = W Jra ¥(2)e™** d (€ € R?) is the Fourier transform of
with £z being the Minkowski inner product of £ and z as in (5).

In what follows, for simplicity, we denote the m direct sum @™ A of a
linear operator A on a Hilbert space by A. With this convention, both az
and bp are self-adjoint on @™ L2(R4).

For a complex m x m matrix A = (¢i;)ij=01,..d—1 (¢ij € C,i,j =
0,1,...,d — 1), we define a linear operator A on @™ L?(R%) as follows:
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D(A) = éL?(Rd),

(Ap) =D erjty, ¥ ={t}it, e P L*RY), k=1,....m  (9)

=1

It is easy to see that A is bounded. Moreover, if A is Hermitian, then A is
self-adjoint.
We introduce a subset Mg of M% x M¢ as follows:

My = {(a,b) € M x M| a # 0, b#0, ab = 0}.
We denote by M3°(R) the set of d x d real anti-symmetric matrices, that is,

MPR) ={f=fuw) | fur €ER, fuv = —fopr s v =0,1,...,d—1}. (10)

For each f,,, we have f*, = g"*fr,, fu." = furg™” and fH = gh* f".
For each a € M?, we define F, as follows:

Fo={feMFR)|a"fu, =0, v=0,1,...,d—1}. (11)

If f € F,, then we can see that a” f,” = a, f* = a,f", = 0.

For f € M3*(R) and p = 0,1,...,d — 1, we denote the direct sum of
operators @™ f*p, by f*p, for simplicity. Since f**p, is self-adjoint on
L?(R%), f*p, is self-adjoint on @™ L2(R?).

We define G, a subset of F,, as follows:

Go ={fE€Fal| " frn =d"a,, p,v=0,...,d—1}. (12)

We say that two self-adjoint operators on a Hilbert space strongly com-
mutes if their spectral measures commute. The following fact is well known

(e.g., Theorem VIII. 13 in [R-S)).

Lemma 2.1 Let A and B be self-adjoint operators on a Hilbert space.
Then the following two statements are equivalent.

(1) A and B strongly commute.
(2) For all s, t € R, e¥*4eiB = ¢itBeisA

Using this lemma, we can prove the following statement.
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Lemma 2.2 Let (a,b) € My. If f € Fq, then ax,bp and f*p, strongly
commute for allp=0,...,d—1.

Proof. See Lemma 2.2 in [A-T]. O

Let Bieal(RY) be the set of real-valued Borel measurable functions on
R which are almost everywhere finite with respect to the d-dimensional
Lebesgue measure. Let E,;(-) and Epy,(-) be the spectral measures of ax
and bp, respectively. Then there exists a unique joint spectral measure E( -)
such that E(By X By) = Eqy(B1)Ey,(B2) (where By, By are Borel sets in R).
Let u be a Borel measurable function on R?. Then, by functional calculus,
we can define a linear operator u(axz,bp) on L%(R?) as follows:

u(az, bp) = /R2 u(A1, A2) dE(A1, A2). (13)

We denote by L*(R%) the set of essentially bounded Borel measur-
able functions on R? and denote by ||l the essential supremum of
¢ € L>®(R?). The subset of real-valued functions in L>°(R?) is denoted

L2 (RY). In what follows, for simplicity, we mean by a bounded function
on R? an element of L (R%). If u is real-valued then u(az, bp) is self-adjoint.
If u € L>®(R?), then u(ax, bp) is bounded.

Let N = {1,2,3,...} and Ny = N U {0}. For r € Ny, we denote by
o (R™) the set of r times continuously differentiable real-valued functions
on R™ and by B"(R") the set of bounded functions v in C]_,;(R") such
that the partial derivatives of u of order j (j = 0,1,...,r) is bounded on
R™.

We say that a real-valued function v = v(x1,22) on R? is in the set
%TOO(R2) (r € No) if v(-,z2) € B"(R) for a.e. z2 € R and the function
Al = 87213 is bounded on R? for j = 0,1,...,r.

Let u € BL>°(R?). For f € M#(R) and u=0,1,...,d — 1, we denote
(fp)* := f py. Since, by Lemma 2.2, ax,bp and (fp)* strongly commute
forall u =0,...,d —1, u(azx,bp) and (fp)* strongly commute. We set

CT

=) ﬂ D(u(az,bp)"(fp)** ... (fp)**).  (14)

n,k€ENg p1,...,p4n=0

Let S(R?) be the set of rapidly decreasing functions on RY. D, is dense

u, fp
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in @™ L*(R?) since @™ S(R?) C D%, For each pp = 0,1,...,d — 1, we
have a self-adjoint operator

M"(u, fp) = u(az, bp)(fp)* D (15)

fp’

We sce that MO(u, fp), M(u,fp),..., M42(u, fp) and M(u, fp)
strongly commute by the strong commutativity of u(ax,bp) and (fp)*.
Let Go,G1,...,G4_1 and I' be m x m regular matrices satisfying

(i) Each iGy,...,iG4—1 and Gy is Hermitian

and {G,,G,} =29 FE (p,v=0,1,...,d—1), (16)
(ii) I'is Hermitian and I'? = E, (17)
(i) G, =—-I'G, (n=0,1,...,d—1), (18)

where E is the unit matrix and, for linear operators (or matrices) A and B,
we denote

[A,B] .= AB — BA, {A,B}:=AB + BA. (19)

There exists such a set of matrices. For example, let d = 4 and {’y“}szo be
the gamma matrices as explained in Introduction. Then, putting

GO = 70, G] =7 (.7 = 17 27 3)7 r= V5 = i’YO’Yl’YZ’Y3a (20)

we see that Go,iG1,1G2,iG3 and I" are Hermitian and satisfying (16), (18)
and (17). By (16) and (18), for each k = 1,...,d — 1, G;I" is Hermitian.
On the other hand, Gyl is anti-Hermitian.

Let u € BL>°(R?), (a,b) € Mg and f € F,. We define a closed operator
M(u, f,G,T') on @™ L?(RY) as follows:

M(u, f,G,I") = M¥(u, fp)G,T

d—1
= M°(u, fp)Gol" + Y Mi(u, fp)G,I. (21)

Jj=1

Since Gyl is anti-symmetric, M (u, f,G,I") may not be symmetric. (How-
ever, since G, I" is Hermitian for p # 0, Zj;ll M (u, fp)G;I is essentially



Analysis of strongly commuting self-adjoint operators 107

self-adjoint on @™ L%(R?).)
Lemma 2.3 Let f € M%(R), f € F, and u € BH>(R?).
(1) {M(u, f,G,I)}* = {u(az,bp)}* fMprfu"p on DY

u,fp*

(2) If f € Fan Gy, {M(u, f,G,I)}* = {u(az,bp)bp}* on D,.

Proof. (1) Let ¢ € D2y, Since u(az, bp) strongly commute with (fp)¥,

d—1
{M(u, f,G, )} = {u(az, bp)}” < — PPt p + > f“fmf"’“pyﬂ
k=1

d—1

— {u(az, bp)}? Z S0 fA2PA(GoGr + GrGo)
k=1

— {u(az,bp)}* Y fpu fIpAGiG .

i=1
i#]

Using GG + GxGg = O and

d—1 d—1
S PP AGiGiw = Y U, fP G Gitp
d—1
== [P paGiGip,
we see that
d—1
> P fPpa(GoGr + GrGo)p =0 and
k=1
d—1
D P paGiGip = 0.

Thus for ¢ € D77y,
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d—1
{M(u, f,G, )} = {u(az, bp)}? ( — PO s+ f*’“mf”’“pu) v
k=1

d—1
= {u(az, bp)}? < — AP+ f““mf’“”m)tb
k=1

= {u(az, bp) > Fprfu” potp.

(2) If f € Gy, using strong commutativity, we see that

{u(az, bp)}> FM*pafu” pup = {ulaz, bp)}* (bp)*¢h = {u(az, bp)bp}>ep

for ¢ € D° O

u,fp*

Using Lemma 2.3, we can prove the following statement.

Theorem 2.1 Let f € F, NG, and u € BH°(R?). Then

{M(u, f,G,I)}"yp

_ {{u(am,bp)bp}n¢ (if n is even) (22
M((u, f,G,I'){u(az,bp)bp}™ =11 (if n is odd)

for all ¥ € D

u, fp*

Proof. Let ¢ € D%, and ¥, = {M(u, f,G,I")}"p. We can easily

show (22) by induction. Equation (22) is clear for n = 1,2 from Lemma
2.3. Suppose that Wy, = {u(ax,bp)bp}? 4y and Wy, = M(u, f,G,I")
{u(az, bp)bp}?*~2ap for some k € N. Then, by Lemma 2.3, Wo, Wop | €

Djffp and

{M(u, f,G,I)y** Ve = {M(u, f,G,T)}* Ty
= {u(az, bp)bp}z\I’gk = {u(az, bp)bp}z(kH)z/;
and, by the strong commutativity of u(ax,bp), bp and (fp)*,
{M(u, [,G, 1)} 07y
={M(u, f,G, 1)} @1 = {u(ax, bp)bp}* Yoy,
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= {u(az,bp)bp}> M (u, f, G, I'){u(az, bp)bp}* 24
= M (u, f, G, T'){u(az, bp)bp}** D24,

This implies (22) for arbitrary n € IN. O

Now, we suppose that the real-valued function u(A1, A2)Ay is in
B1>°(R?). Then, the self-adjoint operator wu(az,bp)bp is bounded on
@" L2(RY). Then, by Theorem 2.1, {M(u, f,G,I")}?* is bounded on
@" L2(RY) for all k € N.

Using (22), for all f € F, NGy, u € BL°(R?) and ¢ € D

e fpr W have

" (M, 1,6, 0

!

Nt
Z(

n—0 n.
N/ gy
=2 o {tu(az, bp)bp}* 4
k=0 )

[(N—l)/Q] (_1)k

HitGul(fp) ulaz,bp) Y0
k=0

{tu(az, bp)bp}*Fp,
(teR). (23)

EgN/Q] (2k)' {tu(aw bp)bp}?* and Z(N D72 {tu(azx, bp)bp}?* c

(2k+1)'
verge, in norm for all t € R as N — oo and (fp)*u(az,bp) [(N 1)/2]

(2k+1),{t u(az,bp)bp}?k1h converges for all t € R as N — oo. And using
the closedness of (fp)*, we have

> O i, 1.6, 1)y
n=0
Z )op}**ep

k=0

o~ (=D*

+it G, I'(fp)'u(az, bp) Z m{t u(azx, bp)bp}Fap. (24)

We denote the operator e?M(w./,G.I) 1y



110 N. Tominaga and Y. Furihata

: = (it)m
M .G — Z (Gl n)' {M(u, f,G,I")}" Ip

n=0
Since M(u, f,G,I') may not be self-adjoint, e®*M (/.. may be non-
unitary and unbounded in general.
Lemma 2.4 Let f € F, NGy, u € BL°(R?) and u(A1, A\2) N2 be in
BL(R2). Then, for all p € DX s

Proof. For all ¢ € D, limy oo Son_ o HEE 101 (0, f,G, 1)} =
7,(5+t)M(u .G, F)d) and

N . n
S PO i 5.6, 1))
n=0 :

N (is)i S atym
-y j' {M(u, £,G, D)} Y =AM (u, f, G, )}
=0 7 m=0 "
[N/2] ok N=2k ym
= ((2]1;‘ {su(a:v,bp)bp}% Z (;;{M(U,f, Ga F)}m'lp
k=0 m=0
(N-1)/2] (—1)

+ it G, I (fp)Hu(ax,bp) Z {su(am bp)bp}>"

Zs @k+ 1)

N- 2kt (jym
> M f.G D).
m=0 ’
Note that, for each j € Np, limy_ o ZN J (Zt) {M(u, f{,G, ")}y =
K
ItM(uf,G D)y and Z[N/2] ((2,1;' {su(az, bp)bp}2k and Z(N 1)/2] (éki)l)!
{su(az,bp)bp}?* converge in norm. By the closedness of (fp)*, we have
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N . n
im > W{M(u,f, G. 1)}

N—o0 —

{su ar bp)bp}2k th(ufG[‘)dJ

M

k=0
0o 1 k A

+it GJ(fp)ﬂu(ax,bp)Z oy sl b)) POy
k=0 '

— elSM(uvava) eltM(u,f,G,F),(p
Hence, for all ’l,b = Dz?fp’ ei(S-‘rt)M(u,f,G,F),lp = eiSM(u’vaJ—‘)eitM(u’.ﬂG»F)/ll).
O

We apply Lemma 2.4 with ¢ = —s, then, for ¢ € D%

eisM(u,f,G,F)e—isM(u,f,G,F),l'b — e—isM(u,f,G,F)eisM(u,f,G,F),l'b — 'l,b

For an operator A bounded on D(A) which is a dense subset of a Hilbert
space 7, we also denote by A the extension of A to . From Lemma 2.4
and Lemma 5.7 in [A-T], if u(A;, A2) A2 is in BL2°(R?), u(ax, bp)bp leaves
D(p,) invariant and

[p”, u(az, bp)bp] = ia,01u(ax, bp)bp (26)

(We denote Oyu(ax,bp) : @alu ax,bp) on @L2 Rd )

on D(p,). If u(A1, A2) A2 is in B2°(R?), then u(ax, bp)bp leaves D(p,p,) N
D(pyp,) invariant and

pupyulax, bp)bp = iu(ax, bp)bp pup, + id1u(azx, bp)bp(a,p, + a.p,)
— aya,0%u(az, bp)bp (27)

<We denote du(ax,bp) : @6 (azx,bp) on @LQ(Rd)>
k=1

on D(pupy) N D(pupy)-
Let the operator
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O=-p*=0;-» (28)

be the free d’Alembertian with D(0) := ﬂd : o D(p2). O is essentially self-
adjoint on S(R?). We denote the closure of (I by Hy. We also denote by [J
the direct sum of operators @™ 0 on @™ L?(RY).

A vector x € M satisfying 22 = 0 is called a null vector. We denote by
Ny the set of null vectors in M?. From (27), we have the following lemma.

Lemma 2.5 Letu € B%°(R?), (a,b) € My, f € F, and a € Ny. And let
w(A1, A2) Ao be in B2°(R2?). Then, for each A= 0,1,...,d — 1, u(ax,bp)bp
leaves D(O) invariant and

Ou(az, bp)bptp = iu(ax,bp)bp O — 2i01u(ax, bp)bpapip, (29)
for all 4 € D(O).

Theorem 2.2 Let u € BY°(R?), (a,b) € My, f € FaNGy,. And let
w(A1, A2) Az be in BL2(R?). Then, for all ¢ € D32y, e M1GDyy s in
D(p,) and

puefitM(u,f,G,F),lp

= e*itM(“ﬁG’F)pM?,b + ta#e*“M(“’f’G’F)alu(ax, bp)(fp) Gal'y, (30)
e_itM(“’f’G’F)Gup”'l,b + tGua“e_“M(“’f’G’F)alu(ax, bp)(fp))‘G)\F'l/J.

(31)
Proof. For each ¢ € D:° “ppo let
Waap = 2 u, £,G.I)}"
N2
— ,;) @) {tu(azx, bp)bp}**p
- N1/

— it G Iu(az, bp)(fp)" Z m{tu(aﬂf ,bp)bp} e,

k=0

(teR). (32)
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Since u(ax,bp)bp and u(az,bp) leave D(p,) invariant, we see that
Wn € D(p,) and

puWnY = Wnp,p + ta, Wn_101u(az, bp)(fp))‘G,\sz.

Since Imy_ oo Wy = e~ @M@f.G gy and puWn1 converges, by the
closedness of p,,, e M (W/,G D is in D(p,,) and we obtain (30).
To prove (31), we use
Gu{u(az, bp)(fp)*GrI'} "4

u(az, bp) (fp)* Gl {u(az, bp)bp}" ' Gutp
= +2u(az, bp)(fp){ulaz, bp)bp}" I (nis odd) .
{u(az, bp)bp}" Gy (n is even)

Thus, by (18),
G p"Wn = G ,Wnp'yp +tGa" Wiy_101u(ax, bp)(fp)AG,\sz

(_g)n {u(afc, bp)(fp))‘GAF}nil
- T'u(az, bp)(fp).p"y
+ G, a" Wy _101u(az, bp)(fp) Gl .

= WNGupu'l/’ +2 Z
n:odd

Since (fp).p*p =0 by f € M35(R?), we have
G.p"WnY = WyGphah + tGLa" W _101u(az, bp) (fp)*GaT.

We conclude (31) as N — oo. O

For all ¢ € D%y, we can see that the right hand side of (30) is in D3y

Using Lemma 2.4 and Theorem 2.2, we obtain the following theorem.

Theorem 2.3 Letu € SBI’O"(RQ), (a,b) € My, f € FoNGy. Suppose that

uw(A1, A2) Ao be in BL>°(R?). Then:

(1) Forall+p € DYy,
eitM(u,f,G,F)pue—itM(u,f,G,F),lp

= {pu + tayOru(az, bp)(fp)*Grl }ep. (33)
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(2) Forally € Dy,

ez‘tM(u,f,G,F)G'up,ue—itM(u,f,G,F),l’b
= {Gup“ +tGua“f)lu(am,bp)(fp))‘G,\F}'(/). (34)

Let a =band f € F,NG,. Then a® = 0 and f**f\,, = a*a,. Hence we
have the following theorem.

Theorem 2.4 Let u € B>»*(R?), a € Ny and f € FaNGy. And let
w(A, A2) Ao be in B2°(R?). Then:

(1) Forallyp € DYy,

p#puefitM(u,f,G,F)Ip

= e MMLGI) L0 phap + 2t01u(az, ap)ap(fp) GAl }4
= e_“M(“’f’G’F){GHp“ + tGua“ﬁlu(al‘,ap)(fp)/\G')\F}Q'l,b. (35)
That is, for all ¥ € Dy,
¢ItM (1. f.G.T) [ —itM(w.f.G.T)
— —{G#p“ +tGa" Ovu(ax, ap)(fp)’\GAF}2¢. (36)
(2) The following operator equality holds:

M (. f,GT) p o=t M (u,f,G,T)

= —{Gup“ + tGuaﬂalu(aac,ap)(fp)AGAF}z rDi‘,’fp' (37)

Proof. (1) Let ¢ € D%, Since, for all 9 € D%, the right hand side of

(30) is in Dgofp, we can define p#p“e_“M(“’f’G’F)zp and

pﬂpuefitM(u,f,G,F),lp

= pue ML D) pafy 4 tatp, e~ M T gy (ax, ap) (fp) Gal

= e~ M(w.f,G.I) {p“p“ + 2to1u(az, ap)ap(fp)/\GAF}Q/J. (38)
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For all ¢» € D2°, . we have

u,fp’
{Gup“ + tG#a“alu(ax,ap)(fp)’\GAF}21/)
= pup"t + 2t01u(az, ap)ap(fp)*GrI'p. (39)

Since {p,p" + 2to1u(ax, ap)ap(fp) Gl }1p € D, | by Lemma 2.5,

u, fp?
eltM(uvava) De_ZtM(th’G’F)/lp

= —{pup* + 2td1u(az, ap)ap(fp) GaI '}

= —{G#p“ + tGuaﬂﬁlu(aaz,ap)(fp)/\GAF}Z'tp. (40)
. . . .. m d
(2) Since O is essentially self-adjoint on @™ S(R?) and @™ S(R?) € DX s
[ is essentially self-adjoint on D5, . It gives (37). O

3. Calculation of integral kernels

For Hy = 0, e®*fo (s € R\ {0}) is an integral operator in the sense that

(Mo () 5 Ag(z, ) v(y) dy, ¥ € L'RY N LR, (41)

with
ez’a(s)w(d72)/4

_ i(z—y)?/4s
Ag(z,y) = W‘f( v /s, (42)

where £(s) is the sign function, that is, e(s) = 1 if s > 0 and e(s) = —1 if
s < 0.
For e**f0 we can write

(e10) (a {/ A wy%()dy} e @ (LR N X RY).
k=1 (43)

We denote { [z As(z,y)Vn(y dy}k L by Jra Ds(z,y)(y) dy.
We use the follwmg lemma in [A-T)] (Lemma 6 3).
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Lemma 3.1 Let F € L¥(R"), a € M? and (a,b;), (b;j,br) € My, for
7, k=1,...,r. Then

(F(CLI, blpa LR pr)eiSHoq/)) (SU)

biy — bix by — brx
= F PP AS ) Y 44
/R ) <a:c, 5e T o > (z,9)¥(y) dy (44)

for all € LY(R?) N L?(R%) and s € R\ {0}.

In this section, we suppose that (a,b) € My, f € F,NFpNGy and a, b €
Na. Moreover, suppose that u(Ai,A2) and u(A1, A2)A2 are in L, (R?).
Then, for all ¢ € D7, the closed operators eFM(w.f.G.I) can be written

k
izM(ufG’F),lp 2 : ) ax bp)bp}2k¢
o~ (-DF

+i G, (fp)" w(az, bp) kzo i i e ,bp)bp}*ap.
(45)
Let
H(u, f,G, ) = eMSGD) foe=iMu.f.6.1), (46)
For all ¢ € D7%;,,, we have

i H M f.GLD) gy — iM (s f,G.T) gisHo o —iM (u, f,G.T)

eiM(u,f,G,F)e—iM(s)eisHo,l/)’

where M(s) = "o M (u, f, G, I')e~ "0 and, for ¢ = e**"oep (¢ € Dy2;),

- o ()"
= i 52 C e

n=0

N -
= lim e " S {M(u, f,G,I)}"e Mg

n=0

_ estoesz(uJﬂG,F)efsto d)
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Let a#(s) = esHogheisHo and X (s) = ei*Hoqre=Ho. Then x#(s) =
o + 2spH and X (s) = ax + 2sap on S(RY). Since ax + 2sap is essentially
self-adjoint on C$°(R?), we can see that X (s) = ax + 2sap.

The operator X (s) strongly commutes with ax, ap, bp and (fp)*. Also
note that p* strongly commutes with Hy. Hence, by functional calculus, we

have
e Hoy(az, bp)bpe Ho = u(m, bp) bp, (47)

cisHo (fp)“u(ax, bp)e—isHo _ (fp)HU(M7 bp)7 (48)

and for ¢ = e**Hoqp (¢p € D “rp)s

isHo = (_1)k 2k ,—isHo
e*fioy " oy Lulaz, tp)bp} e

> Nk )
= Z ( 1). {u(m, bp)bp} F

e (fp)*u(az, bp) Z {u az,bp)bp}*Fe 0 ¢

k:O 2k:+ 1)!

N G ) L Jpe—
'{u az + 2sap, bp) bp} .

= (fp)u(ez+25ap.59) 3 i

k=0

Hence

u(az + 2sap, bp) bp} o

— iGMF(fp)“u(aa: + 2sap, bp)

Z {u az + 2sap, bp) bp} ()
k=

— oM, £GT) g

where uy = u(azx + 2sap, bp) and, for all ¢ € D° "o
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€iSH(u’f’G7F)’¢ _ ei{M(u,f,G,F)fM(us,f,G,F)}eisHow

oo

) — u(ax + 2sap, bp) }bp] e“H%p

k=0

+1 G#F(fp)“{u(ax, bp) — u(az + 2sap, bp)}

00 1)k _— is
" Z:;J%Jrl[{“ ax, bp) — u(az + 2sap, bp) bop) e 0w,

Now we define

8

2k

Fi(x1,29,23) = x3) —u(xy + 251‘2,:03)}363]

= cos [{u(ml, x3) — u(zy + 2sT2, 73) }a3), (49)
and

Fy(x1, 29, 23) = {u(r1, v3) — u(r1 + 2512, 23)}

X kZ:O 21{?; {u(z1, 23) — u(z1 + 2522, 563)}1‘3]

If 23 # 0, then we have

1.
Fo(zq, 20, 23) = - sin [{u(z1,23) — u(wy + 2522, x3) }a]. (50)

Note that

1
Fy(x1,29,0) = hm0 . sin [{u(xl,xg) —u(zy + 28562,‘%3)}1‘3}
Tr3— 3

= u(x1,0) — u(xy + 2s24,0).
By the above calculation, we have
e_ZSH(u»f7G7F)¢

= Fi(az, ap, bp)e"*Hoep + iGI(fp)" Fa(az,ap, bp)e**Hoyp  (51)
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for all ¢ € Dg°;,. It is obvious that F1, Fy € L (R?3). Hence, by Lemma
3.1, for all p € @™ {L'(R?) N L?2(R?)} and s € R\ {0},

(F1 (aa: ap, bp)e'*Ho 1[)) (x)

byfbaz by —bx\ | by — bx
cos —u\ ay,
2s 2s

As(z, y)(y)dy, (52)

and
(Fy(az, ap, bp)e"*ovp) (x)
_/ 2s “in [{u(am by—b:v) —u(a by—b:v)}by—b:c]
~ Jra by — bz T 2s Y os 2s
X As(z,y)¥(y) dy. (53)

We say that ¢ € L'(R%) N L?(R?) is in the set D, if, for all j =
0,...,d—1, 29(x) (x = (2°,...,2971)) is in L'(R%). Since S(RY) C D,
D, is dense in L?(R%).

Lemma 3.2 Letu € L
Then, forall ¥ € D,,

i / 2s sin 1wl az by — bx —ula by —bx\ | by — bx
A Jra by — bz T 2s Y os 25
X Ag(@,y)P(y) dy
_/ fog = fran [ (L by b by —ba\ Y by — ba
~ JRa by — bx T 2s Yo 2s
x As(z, y)(y) dy. (54)

Proof. Let

Sy(@,y) 2s . by — bz by —bx\ | by — bx
s(z,y) = in |[qul az, —ul ay,
4 by — bx 2s Yo 2s

and ¥(z) = [ga Ss As(z,y)Y(y)dy. Let x4+ h? = (20, ... 2971 27 +

R?)NCYR?), f € FanFy and a, b € Ny.

real(
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i
i,z

L xd 1) (kP € R) for j =0,1,...,d — 1. Then

wa x—i—hj) U(z)

[ S S sinal

AS({E + hjvy) B As(l',y)
hi

+ Ss(z,y) Y(y)dy.  (55)

Since f € F, N Fp, we have

d—1

-SS £ hJ) - SS x,
<h°,~~-}}zgl-l>~°jzofw = fﬁ @.9) _ 0, (56)
and
li S wj Ag(z+ R y) — Ag(z,y)
(ho,-..7;trtirl—1)~>0j§::of Ss(x7y) h

s(@,9)As(2,y), (57)

for almost everywhere y. We set |h?| < 1 for j = 0,...,d — 1. Since
Y € LY(R?) and ¢/ € LY(R?) for all j = 0,...,d — 1, there exists a
function G(z,y) independent on (h°, ..., h%~1) such that G(x,-) € L'(R%)
and

d—1 ;
(Su(z+ ki, y) — Sz, A
Zf“]{ - 53 @ y)As(erh’,y)
=0

(o) 2D = BEDy) < Gay.

Hence, by the dominated convergence theorem, we have
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Fpa¥(x)

_ hm wa a:—i—hj) U(z)

LhA=1)—

d—1 ;
. . i Ss(x+h],y)—53(x,y) j
- 1 N . A j
Z/va (R0 it f { oo+ Hy)

o, hd=1)=0 hJ
b b )_) J:(]

Y(y) dy

i As ﬂf‘i‘hj,y _As z,y
+ Ss(z+ 1, y) ( h]) ( )}

U _fUA
_i/RdiWSs(x,y)As(w,y)%(y) dy

fryn — friay

R by — bx
) by — bx by — bx by — bx
- Ag(x, .
X sin [{u(aw, P > u(ay, P > } o } (x,y)¥(y) dy
Hence, we obtain (54). O

For v = {1}, we also denote (), := 5. And for a matrix M, we
denote the (i, j)-th component of M by (M),;. By (52), (53) and Lemma
3.2, we obtain the following theorem.

Theorem 3.1 Letu € L% (R*)NCY(R?), f € FuNFyNGp and a, b € Ny.
Then, for all ¥ € @™ D, and s € R\ {0},

(€i8H(u’f’G’F)’l,b)k($)

by — b by —b by —b
:/Rd CoS Hu(am, y25 az> —u(ay, y28 $>} y28 x]As(x,y)l/Jk(y)dy

~ Ffryn — frray
Gy | L2 T
+2]§:1( I )kJAd by—bx

. by — bx by — bx by — bx
X sin [{u(am, 9 > u(ay, 95 >} %9 ]As(xay)wj(y) dy

(58)
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We denote { (e (.G My, 1m Ty

(eiSH(u’f’G’F)’l,b) (SC)

I e R e | e P R

frAys — [Py

R by — bx

X sin Hu(ax by%bx> - u<ay, b%f“) } by%bx] Ay(z, )9 (y) dy.
(59)

+iG, T

4. Application to the external field problem with anomalous
magnetic moment

In this section, we apply the operator theory developed in the preced-
ing sections to the plane-wave external electromagnetic field mentioned in
Introduction and calculate the Green’s function for a spin—% neutral particle
with anomalous magnetic moment.

We consider a quantum system of such a particle moving in the
Minkowski spsce M? under the influence of an electromagnetic field F =
(Fuv)pv=o0,....d—1, & tensor field on M.

A plane wave is characterized by the field strength tensor

dA
dg

where ¢ = ax with a null vector a € M?%, A4 € CY(R), F := A" and f,,
(u,v=0,1,...,d — 1) are constants satisfying

F[LU:fp,l/ :fuuF(§>7 ,U,,V:O,l,...,d—l, (60)

f/uwzifl/p«? a)\f)‘l’:()’ /L,I/:O,l,...,dfl, (61)
and the normalization condition
furfr, = aua,, A\p,v=01,....d—1. (62)

Let € > 0 be a parameter and u. = u.(t) be a function in C! _(R),

depending on e with the folloiwing properties:
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(i) tu. € B'(R) (63)
(ii) supltu.| < C with C a constant independent of ¢. (64)
teR
1
(iii) lin%] ue(t) = - (te R\ {0}). (65)
A simple example of u. is u.(t) = m% In what follows, we assume that
a € Nd.
Let A € B!(R) and we set
wg()\l, )\2) = A()\l)ue()\g) (66)
Then, for all ¢ € Dg° ),
eitM(wE’f’G’F)’l/)
Z Jue (bp)bp}*Fep
k=0

oo

+t G, I (fp)* Alaz)us(bp) Z 2k+ {tA(ax)uE(bp)}%,(/J (67)

We apply
M(we, f,G,T").

k:O

Theorem 2.3 and Theorem 2.4 with M(u, f,G,I") =
We denote the operator M (we, f,G,I") with b = a by

Ma(w67 fu Gu F)

Theorem 4.1
(1) Forall A€

and

1
B(R) and ¢ € DY 4.,
eitMa(ws7f7G7F)pue*itMa(ws,f,G’F)w

= {p" + ta" F(az)uc(ap) f*py GAT }1p, (68)

eitMa (wa 7f7G7F) Gupﬂe_itMa (wsvava)/l/J

= {G”p’“‘ + tG#a“F(ax)ug(ap)f”ApVGAF}tb. (69)
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(2) For all A€ B%(R) and ¥ € D 4
¢#tMa(we,f,G.1) =it Ma(we,f.GT) g
= —{pﬂp"w + 2tF(ax)u5(ap)apf”)‘pyGAF}zp
=—{G.p" + tGua“F(ax)us(ap)f”Ap,,GAF}QQ/J. (70)
Next, we apply Theorem 3.1 with v = w.. Let
H.:= H(w., f,G,I). (71)

Theorem 4.2 For allv € @™ D, and s € R\ {0},
(€iSH5’l/))k($>

— [} cosatan) — tapuc () P gyt d

— [P yn — frray

+1i ;(G“F)kj e ay—az

« sin {{Amy) ~ A(az)}u. <y2‘ x) w- “3] A1) () dy,
(72)

where (G, 1); is the (k, j)-th component of the matriz G, I .

We next consider the limit € — 0. Let
1
u_1(t) = o te R\ {0}, (73)

and w_l(/\l, )\2) = A(Al)u_l(Ag) with A € %I(R)

Lemma 4.1 Let D = ();cn, mi:}..,uk=0 D((ap)=I(fp)*r ... (fp)H*+).
Then for all ¢ € D, we have
iitMa(wE,f,G,F),lp

lim e
e—0

— eiitMa(w—lmf’GﬁF)rl’b

= {cos[tA(az)] +i G, (fp)"(ap)~ " sin[tA(ax)] }p. (74)
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Proof.  Since, by (24), for all ¢ € D,

eiz‘tMams,f,G,F)Qp

+it G, I'(fp)' Alax)uc(ap Z
k:O

Jue(ap)ap}* 4
e " {t Alaxu(ap)ap)ep, (75)

by the functional calculus, we can show that

gl_% eiitMa(wE’f’G’F)’l/)
Z )P
s 2k+1
+iG, I (fp)* kzo 2k:+1 {tA ax)} P
= cos[tA(ax)|p + i GAT(fp)* (ap) ™' sin[tA(ax)]ep. O

It follows from Theorem 2.3 that, for all ¥ € D,

puefitMa(w&ﬁGI),(b _ efitMa(w&ﬁGI)p‘u,lp

+taye”Malwe FEN G D(fp)F (ax)ue (ap)ip (76)

converges as ¢ — 0. Hence, by the closedness of p,, e~ MM u-1,1,G.1) gy ¢
D(py) and

pue_itMa(wfl’f’G’F)’llJ — B_itMa(wfl’f’G’F)pM'lp

+ taye” ML ED G (fp) ) F(ax) (ap) .
(77)

Since, for all ¢ € D, e!Mw-1,1,G.I) g =itM(w—1,£.G. Iy — 4y we have

eitMa(wfl7f7G,F)pMe—itMa(w—1,f,GﬂF),lp

= put +ta,GAI'(fp)*F(az)(ap) "4 (78)
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and
¢itMa(W-1,0.G.T) G phte=itMa(w-1,1,G.T)y,
= G +1G,a" G (fp) F(ax)(ap) ~'4p. (79)
Note that (76) converges to (77) and
Hoye—itMa(we f.G.D)y,

= ¢~ Ma(we,[,G.I) foapy — 2te_itM“(w5’f’G’F)Guf(fp)“F(ax)ug(ap)ap'qb.
(80)

Taking € — 0, we obtain
Hye—tMa(w-1,£.G.T) g
= ¢~ tMa(w-1,,G.I) Foapy — 2te*”M“(w*1’f’G’F)Guf(fp)”F(ax)d; (81)
and
¢itMa(w 1, f,GoT) fo o= itMa(w1,£,G.T) )
= Hop — 2tG, I'(fp)" F(ax)yp
=—{G.p" + tGua“F(ax)(ap)_l(fp)/\GAF}21/). (82)

Let d = 4 and €,,43 be 1 or —1, if (uraf) forms an even, or odd
permutation of (0123), and be zero otherwise. For the numerical tensor f,,,
its dual *f,, is defined as follows:

1

*fuu = §€w/aﬁfa/8 O‘vﬁa#al/ =0,1,2,3. (83)

*f, are restricted by Maxwell equations,
a *fuu = 07 w, V= 0a1a2737 (84)
Furfr, =0, (85)

and the normalization condition
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“fux*fr, = apan, A p,v=0,1,23. (86)
For the regular matrices Gy, ..., G3 satisfying (16),
I' :=iGyG1G2G3 (87)
satisfies (17) and (18). We define
0 = 4[Car G (88)
Using *f**p,GaI" =i f*"*p, G — %G”p,,aagfaﬁ, we have
a'G( ) Gl = —a'G( *fp) G — apaagfaﬁ.
Hence,
a'G,(*fp) G\ = —%apaagf"‘ﬁ. (89)
Thus, for all ¢» € D, we have from (79) and (89),
eitMa(w_1, *f,G,F)G#puefitMa(wfl, *f,G,F)¢
~{ G- jr o . (90)
By (46) and (71), we have
Hop = etMa(waaf’va)Hoe_tMa(wsvf»va)fd). (91)

By the dominated convergence theorem, we have, for ¥ € @™ D, and
s € R\ {0},
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lim (ei3H5¢)k(a€)

e—0

_ A Jim cos {{A(ay) — Afaz)}ue <ay — ”) W ax] Az, y)ve(y) dy

dae—0 2s 2s
= [Py — Ry
+ZkZ:1(G“ ki /Rd sy ay — ax
. ay —axr\ ay —axr
X sin [{A(ay) — A(az)}ue ( or ) 5 ]As@:, Y)Ui(y) dy

_ /R cos{A(ay) — Afaz)} A (w,y)iu(y) dy

m

—i) (Gul)
j=1 R4

x sin{A(ay) — A(az)}As (2, y)¥;(y) dy. (92)

We denote e?*Hap := lim._,q e**Heap.

Finally we consider the implications of the preceeding results for ap-
proximate Green’s functions of neutral particle with an anomalous elec-
tromagnetic moment in an external plane-wave electromagnetic field. The
Green’s functions of H + m? may be defined as the limit of ¢ — 0 of
Gie =T fooo eisH gFism®—se g iy 4 suitable sense, where ¢ > 0 is a con-
stant parameter.

Let p > 0 be a constant and ¥ = {Yp}},, ¢ = {or}}, be in
@™ S(RY). We define

(Gﬁ:,eqvb) k (l‘)

frAyn — friay

ay —azx

_ = / / e=554 05 cost Alay) — Alaz) }Asa(z, y) e (y) dyds
p JRA

S . = —setism? fu)\yA - fﬂAl’)\
:FJZ:;(GMF)M/p /Rd € ay — ax
x sin{A(ay) — A(az) }Ass(x, y)Y,(y) dyds, (93)

and
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, GP =7 / / —ss:l:ism2
<¢ Z Z p RIxR4

k=1

x cos{A(ay) — A(az)}Axs(z,y)dr(z)r(y) dydzds

+ Z Z G I)gj / / —S&‘:I:ist f“AyA - f’u/\fEA
J

=1 j—=1 dywRd ay —ax
x sin{A(ay) — A(az)}Ass(z, y) ()1 (y) dydads. (94)

For each p and ¢, (93) and (94) are absolutely convergent. Since A (x,y)

as a function s has singularity of order % at s = 0, we introduce the

cutoff parameter p in the above integral. In particular, for d > 3, then
fpoo eﬂsmzAis(x, y)ds is absolutely convergent and, by the dominated con-
vergence theorem, we see that

: P
lim (¢, G% )

m [o'e) 9
k=1"YP Ri4xR4

x cos{A(ay) — A(az)}Axs(z,y) o (2)p(y) dydzds

¢ZZG ij/ / o—ism? [ n = [

k=1 j=1 dywRd ay — axr
x sin{A(ay) — A(az)} Ay (2, y)on(2)0;(y) dydzds.  (95)

We set ¢* := {¢p}, for ¢ € S(RY), k = 1,...,m, where ¢, is the
complex conjugate of ¢y.

Theorem 4.3 Let d > 3. Then, there are unique tempered distributions
G satisfying

GLp @ w) = lim (6", G4 ). (96)

Proof. Let BL(¢,v) := lim._o(@*, G4 1) for the cutoff parameter p > 0.
Since
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m

Lol <X [T sl i)dads

+ZZ|(GMF)1<J"L /Rded | Fyn — ff |

k=1j=1

" sin{A(ay) — A(az)}
ay — ax

\|Ais<x,y>||¢k<x>||wk<y>dydxds
07)

and there exist some C7 and Cy such that

[ sl dydeds
p RIxR4

< Ol ey bl s ey / / F#2gn — s
p R4xR4

" sin{A(ay) — A(ax)}

ay — azx

‘IAis(axy)l!m(a:)llwk(y)\dydwds

< Collok |l sy 1Yk s(re

we see that B (¢,1) are separately continuous bilinear functionals on
P S(RY) x @™ S(RY). Hence, by the nuclear theorem, there are
unique tempered distributions G satisfying G (¢ ® ) = Bi(¢,¢) =
lim, o (¢*, G% ). O

Let d = 4 and we take *f* defined (83) as f*”. Suppose that A(t) is
slowly increasing C'*°-function. Let

Ci (d)a ¢) = Bi <<tG,upu - %tF(CLZE‘) to—aﬁfaﬁ - m> ¢7 ’(p) )

where ‘G and ‘0,4 are transposed matrices of G and oag = £[Ga,Ggl,
respectively. We see that C% (¢, 1)) are separately continuous bilinear func-
tionals on @™ S(RY) x @™ S(R?). Hence, by the nuclear theorem, there
are unique tempered distributions HY satisfying



Analysis of strongly commuting self-adjoint operators 131

HE(p@1p) = CL(, 1)
= Bf. <(tGMp“ - %tF(ax) oapf™? — m) o, 7,[1> (98)

HY(¢p ® 1) are not exactly Green’s functions of 'G,p' —
%tF (az)loapf*” — m, since p # 0. However, it suggests that it gives some
approximate Green’s functions in distribution sense.

Remarks For p > 0 and v := {¢p}7,, ¢ = {¢x}7, in @™ S(RY), let
(¢, GL ) = (9", GL . 1) + (9", GL . o¥) (99)

with

(", G o) =TFiy /p /R o e 5 F 5 cos{ A(ay) — A(az)}

k=1
X Axs(z,y) ok (z)n(y) dydrds (100)

and

m m 5y —f”Al'
*7 G G 1—1 7ssizsm2 f Yx A
(@ ety =33 G [ [

x sin{A(ay) — A(ax)}Ass(x, y)or(x);(y) dydxds.
(101)

Moreover, as for the term (¢*, G’i’g’l@b), the following statement holds.

Theorem 4.4 Let d > 3. Then, there exist unique tempered distributions
G4,1 satisfying

Gia(9® ) = lim lim (¢°,GL . 9. (102)
Proof. Let 0 < p <1 and

(¢*,Gh 1)y =Tr.1(P, ) + 5% .1 () (103)

with
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T, . , — T - = —setism? {A —A
RUAIEEDY [ e cosada) - Afar))
X Ass(,y)or (@) 0r (y) dydzds
m 1
S° , — T —setism? A —_A
L@y =5iX [ e s - Afa)}

X Az, y)or(x) 0 (y) dydads

Since

1  —setism
e . . .
Si7€71(¢7 ¢) — :FZ / f(elA(ait)(ﬁk’ eiZSHOGZA(ay)wk) dS
p

Ti

Ms EMS

/ 1 ﬂ( —id(ar) g, - eFisHo iAW)y Y g
p

B
Il

1

there exist lim. o lim, o S _ ; (¢, ) and lim. o lim,_.o(¢*, G/} _ 1%). Let

Se1(, ) 1= lim lim S (§,4), Bua($,9) = lim lim (¢7, G _1%)
and - T (¢, %) = im T < 1(¢, ).

Then By 1(¢,v) =T+ 1(¢, ) + S+ 1(¢p, ¢). Since

Ti1(p,¢) = :leg/l /Rded cos{A(ay) — A(az)}

X Ais(:p y)(ﬁk( )77/%( )dydxds,

and

1

St1(p, ) =TFi

:FZZ/
k=177

zA(ax)¢ iiSHoeiA(ay)q/}k) ds

l\')\}—t

1
—iA(az)qbk’ eiisHoe—iA(ay)¢k) ds

l\DM—~
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we can see that T4 1(¢p,¢)| < Ci||@|Ll|¥|lr and |Stq1(p, )| <
Ca||@|| L2 |9 || L2, where Cy and Cy are positive constants. Hence By 1 (¢, )
are separately continuous bilinear functionals on @™ S(R%) x @™ S(R?)
and, by the nuclear theorem, there are unique tempered distributions satis-

fylng G:I:,l(¢ ® ﬂb) = B:I:,l((b’ ¢) = lim6—>0 1imp—>0<¢*7 Gfﬁ:,s,l¢>' O

Acknowledgements We thank the anonymous referee for his variable
comments on our previous draft.

[A-T]

[R-5]

[V-F-H]

[V-H]

[V-5]

References

Arai A. and Tominaga N., Analysis of a family of strongly commuting
self-adjoint operators with applications to perturbed d’Alembertians and
the external field theorem in quantum field theory. Hokkaido Mathemat-
ical Journal 25 (1996), 259-313.

Reed M. and Simon B., Methods of Modern Mathematical Physics Vol. I:
Functional Analisis. Academic Press, New York, 1972.

Tominaga N., Analysis of a family of strongly commuting self-adjoint op-
erators with applications to perturbed Dirac operators. Hokkaido Math-
ematical Journal 26 (1997), 565-596.

Vaidya A. N., Farina C. and Hott M. B., Algebraic calculation of the
Green function for a spinless charged particle in a external plane-wave
electromagnetic field. J. Phys. A. Math. Gen. 21 (1988), 2239-2247.
Vaidya A. N. and Hott M., Green function for a spin-% particle in a
external plane wave electromagnetic field. J. Phys. A. Math. Gen. 24
(1991), 2437-2440.

Vaidya A. N. and da Silva Filho P. B., Green function for a charged spin-
% particle with anomalous magnetic moment in a plane-wave external
electromagnetic field. J. Phys. A. Math. Gen. 32 (1999), 6605-6612.



134 N. Tominaga and Y. Furihata

Norio TOMINAGA

Asahikawa National College of Technology
Shunkodai 2-2

Asahikawa 071-8142, Japan

E-mail: tominaga@asahikawa-nct.ac.jp

Yasuhiko FURIHATA

Asahikawa National College of Technology
Shunkodai 2-2

Asahikawa 071-8142, Japan

E-mail: furi@asahikawa-nct.ac.jp



