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Lie group-Lie algebra correspondences of unitary groups

in finite von Neumann algebras
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Abstract. We give an affirmative answer to the question whether there exist Lie
algebras for suitable closed subgroups of the unitary group U(H) in a Hilbert space
H with U(H) equipped with the strong operator topology. More precisely, for any
strongly closed subgroup G of the unitary group U(9) in a finite von Neumann al-
gebra 91, we show that the set of all generators of strongly continuous one-parameter
subgroups of G forms a complete topological Lie algebra with respect to the strong
resolvent topology. We also characterize the algebra 9t of all densely defined closed
operators affiliated with 2t from the viewpoint of a tensor category.
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1. Introduction and Main Theorem

Lie groups played important roles in mathematics because of its close
relations with the notion of symmetries. They appear in almost all branches
of mathematics and have many applications. While Lie groups are usually
understood as finite dimensional ones, many infinite dimensional symmetries
appear in natural ways: for instance, loop groups C*°(S!, G) [19], current
groups C°(M,G) [1], diffeomorphism groups Diff>°(M) of manifolds [3]
and Hilbert-Schmidt groups [6] are among well-known cases. They have
been extensively investigated in several concrete ways.

In this context, it would be meaningful to consider a general theory of
infinite dimensional Lie groups. One of the most fundamental infinite dimen-
sional groups are Banach-Lie groups. They are modeled on Banach spaces
and many theorems in finite dimensional cases are also applicable to them.
Since it has been shown that a Banach-Lie group cannot act transitively and
effectively on a compact manifold as a transformation group [18], however,
Banach-Lie groups are not sufficient for treating infinite dimensional sym-
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metries. After the birth of Banach-Lie group theory, more general notions of
infinite dimensional Lie groups have been scrutinized to date: locally convex
Lie groups [14], ILB-Lie groups [17], pro-Lie groups [7], [8] and so on. While
there are many interesting and important results about them, we note that
not all theorems in finite dimensional cases remain valid in these categories
and their treatments are complicated. For example, the exponential map
might not be a local homeomorphism and the Baker-Campbell-Hausdorff
formula may no longer be true [12].

We understand that the one of the most fundamental class of finite di-
mensional Lie groups are the unitary groups U(n) in such a sense that any
compact Lie group can be realized as a closed subgroup of them. From this
viewpoint, it would be important to study the infinite dimensional analogue
of it; that is, we like to explicate the Lie theory for the unitary group U(H)
of an infinite dimensional Hilbert space H. One of the most fundamental
question is whether Lie(G) defined as the set of all generators of continuous
one-parameter subgroups of a closed subgroup G of U(H) forms a Lie alge-
bra or not. For the infinite dimensional Hilbert space H, there are at least
two topologies on U(H), (a) the norm topology and (b) the strong operator
topology. We discuss the above topologies separately. In the case (a), U(H)
is a Banach-Lie group and for each closed subgroup the set Lie(G) forms a
Lie algebra. But it is well known that there are not many “nice” continuous
unitary representations of groups in H, and hence, U(H) with the norm
topology is very narrow. On the other hand, U(H) with the strong operator
topology (b) is important, because there are many “nice” continuous unitary
representations of groups in H—say, diffeomorphism groups of compact man-
ifolds, etc. However, the answer is negative to the question whether there
exists a corresponding Lie algebra or not. Indeed, by the Stone theorem,
the Lie algebra of U(H) coincides with the set of all (possibly unbounded)
skew-adjoint operators on H, but we cannot define naturally a Lie algebra
structure with addition and Lie bracket operations on it. This arises from
the problem of the domains of unbounded operators. For two skew-adjoint
operators A, B on ‘H, dom(A + B) = dom(A)Ndom(B) is not always dense.
Even worse, it can be {0} (see Remark 2.17). Because of this, the Lie theory
for U(H) has not been successful, although the group itself is a very natural
object. On the other hand, it is possible that even though the whole group
U('H) does not have a Lie algebra, some suitable class of closed subgroups of
it have ones. Indeed their Lie algebras Lie(G) are smaller than Lie(U(H)).
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We give an affirmative answer to the last question. Furthermore we
prove that for a suitable subgroup G, Lie(G) is a complete topological Lie
algebra with respect to some natural topology. We outline below the essence
of our detailed discussions in the text.

First, a group G to be studied in this paper is a closed subgroup of
the unitary group U(9) of some finite von Neumann algebra 9t acting on
a Hilbert space H. Clearly it is also a closed subgroup of U(H). The key
proposition is the following result of Murray-von Neumann (cf. Theorem
2.18):

Theorem 1.1 (Murray-von Neumann) The set MM of all densely defined
closed operators affiliated with a finite von Neumann algebra 9 on 'H,

T a A is a densely defined closed operator on H
"7 such that uAu* = A for all u € U(). ’

constitutes a *-algebra under the sum A + B, the scalar multiplication oA
(a € C), the product AB and the involution A*, where X denotes the closure
of a closable operator X.

The inclusion G C U(9M) implies Lie(G) C 9 and hence, for arbitrary
two elements A, B € Lie(G), the sum A+ B, the scalar multiplication
aA, the Lie bracket [A, B] := AB — BA are determined as elements of 91.
We can prove that they are again elements of Lie(G), which is not trivial.
Therefore Lie(G) indeed forms a Lie algebra which is infinite dimensional in
general. Thus if we do not introduce a topology, it is difficult to investigate
it. Then, what is the natural topology on Lie(G)? Since Lie(G) is a Lie
algebra, it should be a vector space topology. Furthermore, in view of the
correspondences between Lie groups and Lie algebras it is natural to require
the continuity of the mapping

exp : Lie(G) 3 A— et € G,

where G is equipped with the strong operator topology and e is defined by
the spectral theorem. Under these assumptions, a necessary condition for a
sequence {A,}52, C Lie(G) to converge to A € Lie(G) is given by

s- lim e = e, forallt € R.
n—oo
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This condition is equivalent to

s lim (A, + 1)t =(A+1)"".
n—oo

The latter convergence is well known in the field of (unbounded) operator
theory as the convergence with respect to the strong resolvent topology.
Therefore it seems natural to consider the strong resolvent topology for
Lie(G). However, there arises, unfortunately, another troublesome question
as to whether the vector space operations and the Lie bracket operation
are continuous with respect to the strong resolvent topology of Lie(G). For
example, even if sequences {A4,}5%,, {B,}52, of skew-adjoint operators
converge, respectively to skew-adjoint operators A, B with respect to the
strong resolvent topology, the sequences { A,,+ By, }°° ; are not guaranteed to
converge to A+ B (see Remark 3.3). We can solve this difficulty by applying
the noncommutative integration theory and proving that the Lie algebraic
operations are continuous with respect to the strong resolvent topology and
that Lie(G) is complete as a uniform space. Hence Lie(G) forms a complete
topological Lie algebra. Finally, let us remark one point: remarkably, Lie(G)
is not locally convex in general. Most of infinite dimensional Lie theories
assume the local convexity explicitly, but as soon as we consider such groups
as natural infinite dimensional analogues of classical Lie groups, there appear
non-locally convex examples.

We shall explain the contents of the paper. Section 2 is a preliminary
section. We recall the basic facts about closed operators affiliated with a fi-
nite von Neumann algebra and explain the generalization of the Murray-von
Neumann theorem for a non-countably decomposable case. In Section 3, we
introduce three topologies on the set 9 of all densely defined closed oper-
ators affiliated with a finite von Neumann algebra 1. The first topology
originates from (unbounded) operator theory, the second one is Lie theoret-
ical and the last one derives from the noncommutative integration theory.
We discuss their topological properties and show that they do coincide on
M. The main result of this section is Theorem 3.10 which states that 90
forms a complete topological *-algebra with respect to the strong resolvent
topology. In Section 4 constituting the main contents of the paper, we show
that Lie(G) is a complete topological Lie algebra and discuss some aspects
of it. The main result is given in Theorem 4.6. In Section 5, applying the
results of Section 3, we consider the following problem: What kind of un-
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bounded operator algebras can they be represented in the form of 9IM? We
give their characterization from the viewpoint of a tensor category. We show
that Z can be represented as 9 if and only if it is an object of the category
fRng (cf. Definition 5.2). The main result is Theorem 5.5, which says that
the category fRng is isomorphic to the category fvIN of finite von Neumann
algebras as a tensor category. In Appendix, we list up some fundamental
definitions and results of the direct sums of operators, the strong resolvent
convergence and the categories.

Notes. After finishing this work, the authors were informed from Pro-
fessor Daniel Beltita that recently he had written a paper whose subject was
closely related to ours [4]. Specifically, he proved related results to Lemma
3.12, Proposition 3.22, Theorem 4.6 and Proposition 4.10 (for more details,
see the remark after each result). On the other hand, the motivation and
technical details are quite different from ours. In particular, we defined
and focused on the strong resolvent topology and its connection with other
linear topologies on 9 and found that it plays more important roles than
the measure topology if 91 is not countably decomposable. Also, the above
topological analysis is a crucial part in the characterization of the tensor
category of M.

2. Preliminaries

In this section we review some basic facts about operator algebras and
unbounded operators. For the details, see [20], [25]. See also Appendix A
for the direct sums of operators.

2.1. von Neumann Algebras

Let H be a Hilbert space with an inner product (£,n), which is linear
with respect to 1. We denote the algebra of all bounded operators on H by
B(H). Let M be a von Neumann algebra acting on H. The set

M = {x € B(H);zy = yz, for all y € M}

is called the commutant of 9. The group of all unitary operators in 9 is
denoted by U(9). The lattice of all projections in 9t is denoted by P ().
The orthogonal projection onto the closed subspace K C H is denoted by
Px. For a projection p in 9, we denote 1 — p as p=.
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Definition 2.1 Let 91 be a von Neumann algebra acting on a Hilbert
space H.

(1) A von Neumann algebra with no non-unitary isometry is called finite.

(2) A von Neumann algebra is called countably decomposable if it admits at
most countably many non-zero orthogonal projections.

(3) A subset D of H is called separating for M if z£& = 0, x € M for all
& € D implies x = 0.

It is known that a von Neumann algebra 9t acting on a Hilbert space H
is countably decomposable if and only if there exists a countable separating
subset of H for 1.

Definition 2.2 Let 9t be a von Neumann algebra.

(1) A state 7 on 9 is called tracial if for all z,y € M,

T(zy) = 7(yz)

holds.
(2) A tracial state 7 is called faithful if 7(z*x) =0 (z € 9MM) implies x = 0.
(3) A tracial state 7 is called normal if it is o-weakly continuous.

It is known that a von Neumann algebra is countably decomposable and
finite if and only if there exists a faithful normal tracial state on it. For more
informations about tracial states, see [25].

Let 9 be a von Neumann algebra and p € 9t U 9 be a projection.
Define the set M, of bounded operators on the Hilbert space ran(p) as

{px|ran(p); T e m})

then 9, forms a von Neumann algebra acting on the Hilbert space ran(p)
and (9M,)" = (M), holds.

If (M, H) and (9N, KC) are von Neumann algebras and if there exists a
unitary operator U of H onto K such that

UMU* =M,

then (M, H) and (N, K) are said to be spatially isomorphic. The map 7 of
M onto N defined by
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p(x) =UzU*, z€IN,

in called a spatial isomorphism. The next Lemma is useful.

Lemma 2.3 Let (M, H) be a finite von Neumann algebra. Then there
exists a family of countably decomposable finite von Neumann algebras
{(My, Ho) o such that (MM, H) is spatially isomorphic to the direct sum

(D, Mo, D, Ha).

A von Neumann algebra 9 is called atomic if each non-zero projection
in 9 majorizes a non-zero minimal projection. It is known that a finite
von Neumann algebra is atomic if and only if it is spatially isomorphic to
the direct sum of finite dimensional von Neumann algebras M,,(C) (n € N),
where M,,(C) is the algebra of all n x n complex matrices.

A von Neumann algebra with no non-zero minimal projection is called
diffuse. It is known that every von Neumann algebra is spatially isomorphic
to the direct sum of some atomic von Neumann algebra M ,tomic and diffuse
von Neumann algebra 9Mgiguse. These von Neumann algebras Matomic and
Maiffuse are unique up to spatial isomorphism. We call Maiomic and Myiguse
the atomic part and the diffuse part of 9N, respectively.

2.2. Murray-von Neumann’s Result

The domain of a linear operator 7' on ‘H is written as dom(7") and the
range of it is written as ran(T). If T is a closable operator, we write T for
the closure of T'.

Definition 2.4 A densely defined closable operator T on H is said to be
affiliated with a von Neumann algebra 9 if for any w € U(IM), uTu* =T
holds. If T is affiliated with 90, so is T. The set of all densely defined closed
operators affiliated with 9t is denoted by 901. Each element in 9 is called a
affiliated operator.

Note that T is affiliated with 9% if and only if 2T C Tz for all x € 9.
Next, we define algebraic structures of unbounded operators in the style of
Murray-von Neumann [13].

Let x1,y1,%2,Y2,... be (finite or countable infinite number of) inde-
terminants. A non-commutative monomial with indeterminants {x;,y;}; is
a formal product z1z5...z,, where all z; equal to z; or y;. If n = 0, we
write this monomial as 1. A non-commutative polynomial p(x1,y1,...) is a
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formal sum of finite number of monomials. p(z1,yi,...) has the following
form:

q
Zap-z§p)...z£i) (¢g=1,2,...),
p(mlayla"') =\ p=1

0 (g=0).

Here, a, € C and we allow such a term as 0- 2123 ... 2, in this expression. If
there is a term with coeflicient 0, it cannot be omitted in the representation.
Hence z; is different from x1 4+ 0 - y; as non-commutative polynomials. If
there are two such terms as a - 21...2,, b+ 21...2,, we identify the sum of
them with the term (a+0b)-21 ... z,. The sum, the scalar multiplication and
the multiplication of non-commutative polynomials are defined naturally,
where we do not ignore the terms with 0 coefficients.

Once a non-commutative polynomial p(z1,yi,...) is given we obtain a
new polynomial p(") (x1,y1,...) by omitting terms with coefficient a, = 0 in
the representation of p. We call p(")(z1,y1,...) the reduced polynomial of
p. We also define the adjoint element by xj =Y, y;r := x;. We also define
the conjugate polynomial of p by

q
L@ G a=120),
p($17y17"') =N p=1

0 (g =0).

Suppose there is a corresponding sequence {X;}; of densely defined
closed operators on H. For all ¢, we assume (z;,y;) corresponds to the
pair of the closed operators (X;, X). In this case we define a new opera-
tor p(X1, X7,...) obtained by substituting each {x;,y;} in the representa-
tion of p(x1,y1,...) of the pairs (X;, X;). More precisely, the domain of
p(X1, X7, ...) is defined according to the following rules:

(1) dom(0) = dom(1) = H,
0£:=0, 1£:=¢, forall € e H,

(2) dom(aX) := dom(X),
(aX)§ :=a(XE), forall e dom(aX),

(3) dom(X 4+Y) := dom(X) Ndom(Y),
(X+Y):=XE+YE forall € € dom(X +Y),
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(4) dom(XY) :={£ € dom(Y);Y¢ € dom(X)},
(XY)E 1= X(Y€), forall € € dom(XY),

where X and Y are densely defined closed operators on H and a € C. In
general, M is not a *-algebra under these operations. This is the reason
for the difficulty of constructing Lie theory in infinite dimensions. However,
Murray and von Neumann proved, in the pioneering paper [13], that for a
finite von Neumann algebra 90T, M does constitute a *-algebra of unbounded
operators, which we will explain more precisely in the sequel.

Murray-von Neumann proved the following results for a countably de-
composable case. Since we need to apply these results for a general finite
von Neumann algebra case, we shall offer the generalization of their proofs.
First of all, we recall the notion of complete density, which is important for
later discussions.

Definition 2.5 A subspace D C H is said to be completely dense for a
finite von Neumann algebra 9 if there exists an increasing net {p,}o C
P(9) of projections in 9 such that

(1) po /1 (strongly).
(2) poH C D for any «.

It is clear that a completely dense subspace is dense in H. We often
omit the phrase “for 9” when the von Neumann algebra in consideration
is obvious from the context.

Remark 2.6 In [13], Murray and von Neumann used the term “strongly
dense”. However, this terminology is somewhat confusing. Therefore we
tentatively use the term “completely dense”.

Lemma 2.7 Let MM be a countably decomposable, finite von Neumann
algebra on a Hilbert space H, T be a faithful normal tracial state on M. For
a subspace D C H, the following are equivalent.

(1) D is completely dense.
(2) There exists an increasing sequence {pn}5>, C P(IM) such that

pn /1 (strongly), ran(p,) C D.

(3) For every e > 0, there exists p € P(9M) such that
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r(pt) <e, pHCD.

Proof. Tt is clear that (2)=(1)=(3) holds. We shall prove (3)=-(2). By
assumption, for all n € N, there exists p, € P(9M) such that 7(p;}) < 1/27
and p,H C D. Put

Gn = /\ pr € P(ON).
k=n

Since ¢, < ¢n+1, the strong limit s-lim,, o g, =: ¢ € P(IM) exists. It holds
that

7(¢") = lim 7(g;) = lim T( (7 p?)

n— oo —00
k=n

oo o 1
< . 1 . i
< Jim 3 r(pr) < lim Y o =0,
k=n k=n
Therefore we have g = 1. O

Lemma 2.8 Let {(Mx, Ha)}rea be a family of countably decomposable,
finite von Neumann algebras. Let

b
M:=P M, H:=EPHa

AEA AEA

For each A € A, let Dy C H)y be a completely dense subspace for My. Then
@D1rcaDr CH is a completely dense subspace for M.

Proof. By Lemma 2.7, for each A € A, there exists an increasing sequence
{Pan e, C P(My) such that py, 1 (strongly) and ran(py,,) C Dy. For
a finite set F' C A, define

A
PFn = @AP%L

) Px.n ()\EF),
Prn=Y0 (e p).

Then we have pp, € P(M) and {pr,}(Fn) is an increasing net of projec-
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tions. Here, we define (F,n) < (F',n’) by FF C F/ and n < n’. It is clear

that pr, ' 1 (strongly) and ran(pr,) C @,c,Dxr. Hence @AGAD/\ is
completely dense. U

Remark 2.9 Lemma 2.7 does not hold if 991 is not countably decompos-
able. We will show a counterexample. Let

b —
H:=HFN), m:=Pm, D=rN)

teR teR teR

Here, all 901; are isomorphic copies of some finite von Neumann algebra on
??(N). By Lemma 2.8, D is completely dense for 901. Suppose (2) of Lemma
2.7 holds. Then there exists p,, € P(9) such that ran(p,) C D and p,, /1
(strongly). Represent p,, as @iprn (pr,n € P(MM;)). Then we have

@ran(pt,n) =ran(p,) C D :@2(1\1).

teR teR

Therefore for each n € N, there exists a finite set F,, C R such that p;,, =0
for t ¢ F,. Since F := .-, F,, C R is at most countable, there exists some
to ¢ F. Choose &) ¢ (2(N) to be a unit vector and £ := 0 (t # to).
Then for £ = {€W},cr € H, it follows that

Ipng = €1 = 3 [P = €01 = [l € = €

teR -0

= et =1
On the other hand, we have ||p,& — £||> — 0, which is a contradiction.

Proposition 2.10 (Murray-von Neumann [13]) Let 9 be a finite von
Neumann algebra on a Hilbert space H. Let {D;};2, C H be a sequence
of completely dense subspaces for M. Then the intersection (=, D; is also
completely dense.

The proof requires some lemmata.

Lemma 2.11  Proposition 2.10 holds if M is countably decomposable.

Proof. Let 7 be a faithful normal tracial state on 9t. By Lemma 2.7, for
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each ¢ > 0 and i € N, there exists p; € P(9) such that 7(p;") < /2% and
p;H C D;. Put

p:= [\ pi € P(M).

i=1

Then we have

o o0 o 8
T(pL):T(\/pf> <D T <) 5=
=1 =1 =1

pH = ):iH) C [ Ds.
=1 =1

Hence by Lemma 2.7, the intersection (;—, D; is completely dense. O

Lemma 2.12  Let {(9Mx, Ha) }rea be a family of countably decomposable,
finite von Neumann algebras. Put

b
M:=P M, H:=EPHa

AEA AEA

Let D C 'H be a completely dense subspace for 9M. Then for each A € A,
there exists some completely dense subspace Dy C Hy for My such that

@DA CcD.
AEA

Proof. By the definition, there exists an increasing net {py faca C P(9IM)
such that p, /' 1 (strongly) and ran(p,) C D. Let po =: ®xpr,a (Pra €
P(9y)). Then it holds that py o " 1 (strongly). Put

Dy = U ran(py o) C Ha.
a€A

We see that Dy is completely dense for My. It is clear that @ xeaADx CD
holds. Il
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Proof of Proposition 2.10. Since 9 is finite, there exists a family of count-
ably decomposable, finite von Neumann algebras {(9%y, Hx)}rxea and a uni-
tary operator U : 'H — @, Hx such that UMU* = @, Mr. Put
D} := UD;. To prove the proposition, it suffices to prove that (2, D} is
completely dense for @, ., Mx. By Lemma 2.12, for each i € N, there exist
completely dense subspaces Dy ; C Hy for My such that D] D @ xeaDxi-
Then it follows that

Aot ) (@) - @ (o)
=1 =1 ‘€A A€EA Ni=1

By Lemma 2.11, (2, Dy ; is completely dense for 0. Therefore by Lemma

2.8, @Ae/\(ﬂf; Dy,i) is completely dense for @,., My, which implies
Ny, D; is also completely dense for @, o, M. O

Proposition 2.13 (Murray-von Neumann [13]) Let 9 be a finite von
Neumann algebra. Then for each X € M and a completely dense subspace
D for I, the subspace

{€ € dom(X); X¢ € D}

is also completely dense. In particular, dom(X) is completely dense for all

X e M.

Proof.  See [13]. O

Proposition 2.14 (Murray-von Neumann [13]) Let 9 be a finite von
Neumann algebra.

(1) Ewvery closed symmetric operator in I is self-adjoint.

(2) There are no proper closed extensions of operators in M. Namely, if X,
Y € M satisfy X CY, then X =Y.

(3) Let {X;}; be a (finite or infinite) sequence in 9. The intersection of
domains

Dp = (] dom(p(X1, X7, X2, X3,...))
peP

of all unbounded operators obtained by substituting {X;}; into the non-
commutative polynomial p(x1,y1,...) is completely dense for I, where
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P is the set of all non-commutative polynomials with indefinite elements
{zisyiti-

Proof.  See [13]. O

Remark 2.15 Murray-von Neumann proved (1) of Proposition 2.14 using
Cayley transform, but there is a simpler proof. We record it here.

Proof. Let A € 9 be a symmetric operator. It is easy to see that A + 4
is injective. Let A + i = u|A + i| be its polar decomposition. From the
injectivity, u*u = Py g1 = 1. Since M is finite and vu™ = Prn(ati),
we see that Tan(A + i) = H. On the other hand, since A is closed and
symmetric, ran(A + ¢) is closed. Therefore we obtain ran(A +1i) = H. By
the same way, it holds that ran(A — ¢) = H, which means A is a self-adjoint
operator. Il

Similarly, we see that for X € 9 the injectivity of X is equivalent to
the density of ran(X).

Lemma 2.16 (Murray-von Neumann [13])  Let 9 be a finite von Neumann

algebra and {X;}; be a (finite or infinite) sequence in M. Let

p($1,yl,$27y27 . .‘), Q($17y173€2792, . --), 7’(331,y1,»’627y27 . )

be non-commutative polynomials and p(Xy, X{, X2, X5,...) be an operator
obtained by substituting (x;,v;) by (X;, X).

(1) p(X1, X7, X9, X5, ...) is a densely defined closable operator on H, and

(X1, X7, X2, X3,...) € M.

(2) pr(r)(xl,yl,...) :q(’")(:zl,yl,...), then

p(X1, X3,...) =q(X1, X7, ...).

Namely, the closure of the substitution of operators depends on a reduced
polynomial only.

(3) pr(xlayla"')+ = q(xlvyla"'); then

{p(Xl,Xf,...)}* — (X1, X7, ).
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(4) Ifap($1;y17---) ZQ(xlyyla---) (Oé € (C), then

o {p(X, X1, )} = a(X XL,

(5) pr(l"l)yl?' . ) +Q($17y1a' . ) = r(xlayla"')} then

p(Xl,Xik,)—i-q(Xl,Xf,) :T(Xl,Xf,...).

(6) pr(xbyl?' . ) : Q(xbyla o ) = 7“(37173417- . ')7 then

p(Xl,Xik,)q(Xl,Xf,) :T(Xl,Xik,...).

Proof.  See [13]. O

Remark 2.17 Lemma 2.16 (1) is not trivial. Indeed one can construct
a pair of densely defined closed operators whose intersection of domains is
{0}. See, e.g., [10], [21].

In summary, we have the following theorem.

Theorem 2.18 (Murray-von Neumann [13])  For an arbitrary finite von
Neumann algebra M, the set M forms a *-algebra of unbounded operators,
where the algebraic operations are defined by'

(X, Y)— X+Y, (a, X) — aX,
(X,Y)— XY, X — X"
To conclude these preliminaries, we shall show a simple but useful
lemma.

Lemma 2.19 Let 9 be a finite von Neumann algebra, A be an operator
in M. If D is a completely dense subspace of H contained in dom(A), then
it is a core of A. That is, Alp = A.

Proof. From the complete density of D, there exists an increasing net of
closed subspaces { M, }, of H with P, := Py, € 9t such that

laX equals aX when a # 0. However, dom(0 - X) = H # dom(X).
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Do ::UMaCD

is dense in ‘H. Define Ay := Alp,. Take an arbitrary u € U(9). Let
¢ € Dy = dom(Ayp), so that there is some « such that & € M,. Then we
have

A€ = uA = Aué = AuP, &
= AP, u§ = AgP,ué
= A()Uf
Therefore uAy C Apu holds. Since u € U(M') is arbitrary, we have uAgu™ =

Ag. Taking the closure of both sides, we see that Ay = uAgu*. This means
Aoy € M. Therefore, it follows that

Ag=Apc A=A

Therefore by Proposition 2.14, we have Ay = A. O

2.3. Converse of Murray-von Neumann’s Result
The converse of Theorem 2.18 is also true. We shall give a proof here.

Lemma 2.20 Let 9 be a von Neumann algebra acting on a Hilbert space
H. Assume that, for all A, B € M, the domains dom(A + B) and dom(AB)
are dense in H. Then A+ B and AB are densely defined closable operators
on H and the closures A + B and AB are affiliated with 9 for all A, B € M.

Proof. By the assumption, A + B is densely defined and

(A+B)" D A"+ B".
Since the right hand side is densely defined, A + B is closable. As same as
the above, we see that AB is closable. Affiliation property is easy. O

Remark 2.21 Let 91 be a von Neumann algebra. It is easy to check that
aA (o € C, A € M) is always densely defined closable and its closure aAd
is affiliated with 9. Moreover 901 is closed with respect to the involution

A— A%

Theorem 2.22 Let 9 be a von Neumann algebra acting on a Hilbert
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space H. Assume that, for all A, B € M, the domains dom(A + B) and
dom(AB) are dense in H. If the set MM forms a *-algebra with respect to the
sum A+ B, the scalar multiplication oA (o € C), the multiplication AB
and the involution A*, then M is a finite von Neumann algebra.

Proof. Step 1. We first show that all closed symmetric operators affiliated
with 901 are automatically self-adjoint. Let A be a closed symmetric operator
affiliated with 9. Define operators B € M and C € M as

1

| [ — -
Bi=S(A+ A7), Ci= (A=A,

then B and C are self-adjoint and A = B + iC holds because I is a *-
algebra. Since A is symmetric, we see that

1 1
CD Z(A—A ) D Z(A_A) :0|dom(A)‘

By taking the closure, we obtain C' = 0. Hence A = B is self-adjoint.

Step 2. We shall prove that 9 is finite. Let v be an arbitrary isometry
in 9. By the Wold decomposition, there exists a unique projection p € 9
such that ran(p) reduces v, s := v|;an(p) € M, is a unilateral shift operator
and u := V|an(pry € Mo is unitary. It is easy to see that

kerl —s= {0}, kerl—s"={0},
so that we can define the closed symmetric operator 7" on ran(p) as follows:
T:=i(l+s)(1—s)"".

We immediately see that T is affiliated with the von Neumann algebra 9,,.
Define the operator A on H = ran(p) @ ran(p*) by

A=T6¢& 0ran(p¢)7
then A is a closed symmetric operator and it is affiliated with 991. From Step
1., A is self-adjoint, so that T is also self-adjoint. Since the Cayley transform

of a self-adjoint operator is always unitary and the Cayley transform of T is
s, § is unitary. This implies p = 0 because a unilateral shift operator admits
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no non-zero reducing closed subspace on which it is unitary. Hence v = u is
unitary. 0

3. Topological Structures of I

In this section we investigate topological properties of 9. We need these
results in the next section. We first endow 91 with two topologies, called
the strong resolvent topology and the strong exponential topology. The
former is (unbounded) operator theoretic and the latter is Lie theoretic.
To show that these two topologies do coincide and 91 forms a complete
topological *-algebra with respect to them, we introduce another topology,
called the 7-measure topology which originates from the noncommutative
integration theory. They seem quite different to each other, but in fact they
also coincide. The main topic of the present section is to study correlations
between them.

3.1. Strong Resolvent Topology

First of all, we define the topology called the strong resolvent topology
on the suitable subset of densely defined closed operators. Let H be a
Hilbert space. We call a densely defined closed operator A on H belongs to
the resolvent class ZC(H) if A satisfies the following two conditions:

(RC.1) there exist self-adjoint operators X and Y on H such that the in-
tersection dom(X) Ndom(Y) is a core of X and Y,
(RC.2) A=X+1iY, A*=X —iY.

Note that (RC.1) implies dom(X)Ndom(Y") is dense, so X +iY and X —
1Y are closable. Thus X + 7Y and X — Y are always defined. Furthermore,
we have

(A+A") = (X +iY + X —4iY) D X|dom(X)ndom(Y)-

N | —

1
2
Since A + A* is closable and by (RC.1), we get
11—
5A +A* D X.

As X is self-adjoint, X has no non-trivial symmetric extension, we have

1
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Therefore, X is uniquely determined. As same as the above, Y is also unique
and

1
%A_A =Y.

We denote

Re(A) = X — %A+A*, Tm(A) = Y — %A )
1

Also note that bounded operators and (possibility unbounded) normal op-

erators belong to ZC(H).
Now we endow ZC(H) with the strong resolvent topology (SRT for
short), the weakest topology for which the following mappings

H#C(H) > Ar— {Re(4) — i}’l € (|B(H),SOT)
and
HC(H) > Ar— {Im(A) — i}_l € (B(H),SOT)

are continuous. Thus a net {A, }, in ZC(H) converges to A € ZC(H) with
respect to the strong resolvent topology if and only if

{Re(Aq) =i} '€ — {Re(4) =i} ¢, {Im(Aq) —i} '€ — {Im(A) -} '€,

for each ¢ € H. This topology is well-studied in the field of unbounded
operator theory and suitable for the operator theoretical study. We denote
the system of open sets of the strong resolvent topology by Osgrr.

Let 9t be a finite von Neumann algebra on a Hilbert space H. We shall
show that 9 is a closed subset of the resolvent class ZC(H). This fact
follows from Proposition 2.10, Theorem 2.18, Lemma 2.19 and the following
lemmata.

Lemma 3.1 Let M be a finite von Neumann algebra on a Hilbert apace
H, A be in M. Then there exist unique self-adjoint operators B and C in
M such that

A=B+iC.
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Proof. Put

11— 1
B:=-A+ A* = —A — A*.
2 4, O 27

Applying Proposition 2.10, dom(B) and dom(C') are dense in ‘H. Hence B
and C are closed symmetric operators affiliated with 9. By Proposition
2.14, in fact, B and C are self-adjoint. As 90 is a *-algebra, we have

A=B+iC. U

Lemma 3.2 Let M be a finite von Neumann algebra. Then M is closed
with respect to the strong resolvent topology.

Proof. Let {Ay}o C 9 be a net converging to A € ZC(H) with respect
to the strong resolvent topology. Then, for all u € U(9'), we have

{uRe(A)u* — i} ' = u{Re(A) — i} 1u* =5 lign u{Re(A,) — i} tu*
=s- lién{uRe(Aa)u* —i} =5 ligl{Re(Aa) —i}t
={Re(4) —i} 7.

This implies Re(A4) belongs to 9. As same as the above, we obtain Im(A) €
M. Thus so is A = Re(A) + Im(A). O

Remark 3.3 In general, the strong resolvent topology is not linear. In-
deed, there exists sequences {4, }22,, {Bn}52 of self-adjoint operators and
self-adjoint operators A, B such that the following conditions hold:

(1) {A,}32, and {B,}52; converge to A and B in the strong resolvent
topology, respectively.

(2) A, + B, is essentially self-adjoint for each n € N.

(3) A+ B is essentially self-adjoint.

(4) {An + Bn}:):l converges to some self-adjoint operator C' in the strong
resolvent topology, but C' # A + B.

For the details, see [23]. However, as we see in the sequel, the strong resol-
vent topology is linear on 9.

The next lemma is important in our discussion.
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Lemma 3.4 Let 9 be a finite von Neumann algebra acting on a Hilbert
space H. Then the following are equivalent:

(1) 9 is countably decomposable,
(2) (M, SRT) is metrizable as a topological space,
(3) (M, SRT) satisfies the first countability aziom.

Proof. (1) = (2). Let {{x}r be a countable separating family of unit
vectors in H for M. For each A, B € M, we define

A(A,B) = 3 o | (Re(4) i} 6 — {Re(B) — i}~

k

£ 3 L) )6 — (1) - i) e

It is easy to see that the above d is a distance function on the space M, and
the topology induced by the distance function d coincide with the strong
resolvent topology on 9.

(2) = (3) is trivial.

(3) = (1). Let S C P(9M) be a family of mutually orthogonal nonzero
projections in M. Since (M, SRT) satisfies the first countability axiom, the
origin 0 € 901 has a countable fundamental system of neighborhoods {Vj }.
Put

Sk:={peS;p¢Vi},

then S = |J, Sk. This follows from the Hausdorff property of the strong
resolvent topology. Next we show that each Sy is a finite set. Suppose S
is an infinite set, then we can take a countably infinite subset {p,;n € N}

of Si. Define

N
=s- I .
pi=s Ngnoonz_:lpn

For every £ € 'H we see that
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n n—1
”Pn§|| = anf - ang
=1 =1
n n—1
<D pat —ng + Hpg— D pné ‘
i=1 1=1
— 0.

Thus p,, converges strongly to 0. By Lemma B.1, this implies p,, converges
to 0 with respect to the strong resolvent topology. Hence there exists a
number n € N such that p, € Vi. This is a contradiction to p, € Sg.
Therefore Sj is a finite set. From the above arguments, we conclude that
S =, Sk is at most countable. O

Remark 3.5 As we see in the sequel, (9, SRT) is a Hausdorff topological
linear space. Thus in the case that 9t satisfies conditions (1), (2) or (3) of
Lemma 3.4, (M, SRT) is metrizable with a translation invariant distance
function. In particular, it is also metrizable as a uniform space.

Finally, we state one lemma.

Lemma 3.6 Let MM be a finite von Neumann algebra acting on o Hilbert
space H. Then the strong resolvent topology and the strong operator topology
coincide on the closed unit ball M.

Proof. Note that if a von Neumann algebra is finite, then the involution is
strongly continuous on the closed unit ball. The lemma follows immediately
from this fact, Lemma B.1 and Lemma B.5. O

See Appendix B for more informations of the strong resolvent topology.

3.2. Strong Exponential Topology

Next we introduce a Lie theoretic topology on M. Let H be a Hilbert
space. For each A € ZC(H), each SOT-neighborhood V" at 1 € B(H) and
each compact set K of R, we define W(A;V, K) the subset of ZC(H) by

efitRe(A)eitRe(B) c VY,
W(A;V, K) := {B e #C(M):; }

e~itim(A)ithn(B) ¢ 7 vt € K.

then {W(A;V,K)}a vk is a fundamental system of neighborhoods on
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Z#C(H). We denote the system of open sets of the topology induced by
this fundamental system of neighborhoods by Osgr, and call this topology
the strong exponential topology (SET for short). Note that a net {Ax}rea
in ZC(H) converges to A € ZC(H) in the strong exponential topology if
and only if

eitRe(AA)é- _ eitRe(A)é-7 eitIm(A;)g _ €itlm(A)€,

for each £ € H, uniformly for ¢ in any finite interval. This topology is
important from the viewpoint of Lie theory. Indeed it can be defined by the
unitary group U(H) only. Before stating the main theorem in this section,
we study relations between the strong resolvent topology and the strong
exponential topology.

Lemma 3.7 Let 9 be a countably decomposable finite von Neumann al-
gebra acting on a Hilbert space H. Then (I, SET) is metrizable as a topo-
logical space.

Proof.  Let {{,}, be a countable separating family of unit vectors in H for
9. For each A, B € M we define

Z Z 2n+m S HeitRe(A)gn _ 6itRe(B)€nH

n m=1 7]

I Z Z 2n+m Heitlm(A)fn B eitlm(B)gnH'

n m=1 7]

It is easy to see that the above d is a distance function on the space M, and
the topology induced by the distance function d coincide with the strong
exponential topology on 1. (]

Lemma 3.8 Let M be a countably decomposable finite von Neumann alge-
bra. Then the strong resolvent topology and the strong exponential topology
coincide on IN.

Proof. This follows immediately from Lemma 3.4, Lemma 3.7 and Lemma
B.2. O

Remark 3.9 Similar to the above argument, one can prove that the strong
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resolvent topology and the strong exponential topology coincide on ZC(H)
if the Hilbert space H is separable. But the authors do not know whether
this is true or not if H is not separable. However we can show the following
theorem.

The next is the main theorem in this section.

Theorem 3.10 Let 9 be a finite von Neumann algebra acting on a Hilbert
space H. Then M is a complete topological *-algebra with respect to the
strong resolvent topology. Moreover the strong resolvent topology and the
strong exponential topology coincide on IN.

Throughout this section, we prove the above theorem.

3.3. T-Measure Topology
We first prove Theorem 3.10 in a countably decomposable von Neumann
algebra case. In this case, we can use the nonmmutative integration theory
thanks to a faithful normal tracial state. We shall introduce the T7-measure
topology. Let 99t be a countably decomposable finite von Neumann algebra
acting on a Hilbert space H. Fix a faithful normal tracial state 7 on 9.
The 7-measure topology (MT for short) on 90 is the linear topology whose
fundamental system of neighborhoods at 0 is given by
N(e,6) = {A c 0. there exists a projectionlp eMm }’
such that ||Ap|| <e, T7(p—) <6

where € and 6 run over all strictly positive real numbers. It is known that
M is a complete topological *-algebra with respect to this topology [16]. We
denote the system of open sets with respect to the T-measure topology by
O,. Note that the 7-measure topology satisfies the first countability axiom.

Remark 3.11 In this context, the operators in 9 are sometimes called
T-measurable operators [5].

Thus there are two topologies on 90, the strong resolvent topology and
the 7-measure topology. It seems that these two topologies are quite differ-
ent. However, in fact, they coincide on M, i.e.,

Lemma 3.12 Let 9 be a countably decomposable finite von Neumann
algebra acting on a Hilbert space H. Then the strong resolvent topology and
the T-measure topology coincide on M. In particular, M forms a complete
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topological *-algebra with respect to the strong resolvent topology. Moreover
the T-measure topology is independent of the choice of a faithful normal
tracial state T.

This lemma is the first step to our goal.

Remark 3.13 This result is also obtained by D. Beltita [4, Corollary 3.7].

3.4. Almost Everywhere Convergence

To prove Lemma 3.12, we define almost everywhere convergence. Let
M be a countably decomposable finite von Neumann algebra on a Hilbert
space H.

Definition 3.14 A sequence {A,,}5°, C 9 converges almost everywhere
(with respect to 9) to A € M if there exists a completely dense subspace
D such that

(i) Dc N2, dom(A,) Ndom(A),
(ii) A& converges to A for each £ € D.

We shall investigate the relations between the almost everywhere con-
vergence and the other topologies.

Lemma 3.15 Let {A,}32, C 9 be a sequence, A € M. Suppose A,
converges to A in the T-measure topology, then there exists a subsequence
{An, 152, of {An}5%, such that A, converges almost everywhere to A.

Proof.  For all j € N, we can take n; € N and p; € P(9) which satisfy the
following conditions:

(An, — A)p;|| < 1/27, 'r(pjl) <1/27, nj <njpi.

Put p := V2, Aiey pe € P(OM), then ran(p) = U2 Nre; ran(px). On the
other hand,

T(pt) = Eﬁif( \/p?> < lim » 7 (pi)
k=l k=l

< li L
1m —
T l—oo 2k
k=l

=0.
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Therefore, H = ran(p) = ;= ; Nre; ran(py). This implies

Dy := U ﬂ ran(py)

I=1k=l

is completely dense. Let D; be the intersection of the domains of all non-
commutative polynomials of operators {A,,, A, pr}3>,, where we do not
take closure for each non-commutative polynomial of operators. Then D; is
also completely dense and so is D := DyND;. Take £ € D, then there exists
ko € N such that £ € (= ko ran(pg). Consequently, for all k& > kg, we get

& =pr&, pr€ € dom(A)Ndom(Ag), & € dom(A)Ndom(Ag),

and
1(An, = ]| = [[(An, = A)ps¢|
< [[(An; — A)p; | - €]
1
< o el —o.
Thus A,,, converges almost everywhere to A. O

Lemma 3.16 Let {A,}2°, be a sequence in MM converging almost every-
where to A € M. Suppose {A,,* 122 also converges almost everywhere to
A*, then {A,}52, converges to A in the strong resolvent topology.

Proof. 1t is easy to check that Re(A,) and Im(A,,) converge almost every
where to Re(A) and Im(A), respectively. Applying Lemma B.1 and Lemma
2.19 to Re(4,,) and Im(A,,), we see that Re(4,,) and Im(A,,) converge to
Re(A) and Im(A) in the strong resolvent topology, respectively. This implies
{A,,}22, converges to A in the strong resolvent topology. O

The following is well-known:

Lemma 3.17 Let X be a metric space, {z,}2>; C X be a sequence, x €
X. Suppose for each subsequence {xy, }7>, of {xn}oe, has a subsequence
{zny, Y21 of {zn, }32y which converges to x, then x, converges to x.
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3.5. Proof of Lemma 3.12
We shall start to prove Lemma 3.12. We prove that the system of open
sets of the strong resolvent topology Osrr and the system of open sets of the

T-measure topology O, coincide on M. Let {A4,}52; C M be a sequence,
Aem.

Osrr C O,: Suppose that {A,}52; converges to A in the T-measure topol-
ogy. Let {A,, }72, be an arbitrary subsequence of {A4,,}>2,. By Proposition
3.15, there exists a subsequence {A,, }72; of {Ay, }32, such that {4, }2,
and {Ap, “}2; converge almost everywhere to A and A*, respectively. Ap-
plying Lemma 3.16, Ankl converges to A in the strong resolvent topology.
This implies A,, converges to A in the strong resolvent topology, by Lemma
3.17. Thus we get Oggrr C O,.

O, C Osgr: Suppose that {A4,}22, converges to A with respect to the
strong resolvent topology. First we consider the case that A, and A are
self-adjoint. Let |A,| =: [;¥ AdE,(\) and |A] =: [;° AdE()) be spectral
resolutions of |A,| and |A|, respectively. Fix an arbitrary positive number
e > 0. It is clear that s-limy_ E([0,\)) = 1, so there exists a positive
number A > 0 such that 7(E([0,A))1) < &, where we can take A > 0 which
is not a point spectrum of |A|. Indeed, self-adjoint operators have at most
countable point spectra, as 9 is countably decomposable. Next we define a
continuous function ¢ on R as follows:

0 if A < —2A,

XA —2A if —2A <\ < —A,
d(\) = { A if —A < A<A,

CAF2A ifA <A< 24,

0 if 2A < \.

Let |p(An)—o(A)| =: fooo AdF, (X) be a spectral resolution of |¢(A,,)—¢(A4)|,
e be a spectral measure of A. Note that E(]0,A)) = e((—A,A)). For each
§eH,
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& AB(0.AN0 = [ MlE e

_ / S(N)(E, e(N)E)
(—AA)

_ /R S(N)(E, e(N)E([0, A))E)
= (€, p(A)E(]0, A))E).

Thus we have AE([0,A))¢ = ¢(A)E([0,A))E. Similar to the above argument,
we get A, E,([0,A))¢ = ¢(A,)E,([0,A))§. Therefore, for all £ € H, we see
that

(A — A{EL([0,A)) A E([0,A)) A Fo([0,))}¢]|*
= |[{6(An) — (A HEA([0, 1)) A B(0,A)) A Fu([0,)) 3¢
= |[16(An) — S(A){Ea(0,4)) A E([0,A)) A F([0,)) 3¢
- /[ N B (0,4)) 7 B0, ) A Fuff0, D3l
< €2|lg]|.
This implies
H(An - A){En([07 A)) A E([OvA)) A Fn([07‘€))}|| S €.
On the other hand,
T({Ea([0,A)) A E([0,A)) A Fo([0,€)})
< 7(Ba([0,A))1) + 7(E([0, A)) + 7(Fn([0,)) )
< 7(Ba([0,A)1) + & + 7(Fo([0,€)) ).

By Lemma B.4, |A,| converges to |A| in the strong resolvent topology, as
the function

RoA— (N —i)"teC
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is bounded continuous. By Lemma B.3,

En([oa A)) = En((_la A))
SOoT
— E((-=1,A)) = E([0,A)).
Thus for all sufficiently large number n € N,

T(En([0,A))7) = 7(E([0,A)") + 7(E([0, A)) — E([0,A)))
<e+e=2.

Furthermore, by Lemma B.4, ¢(A4,,) converges strongly to ¢(A). We obtain
that for each £ € H,

l¢(An) — o(A) ]l = [{o(An) — o(A)}¢]| — 0.
Applying Lemma B.1 and Lemma B.3 to [¢(A,) — ¢(A)|, we see that

Fo([0,€)) = Fu((—1,¢)) 295 1.

Hence, for all sufficiently large numbers n € N, 7(F,([0,¢))1) < e. Thus,
for all sufficiently large numbers n € N, we have

T({En([0,4)) A E([0,A)) A Fo([0,€))} ) < 4e.

From the above argument, we conclude that A, converges to A in the 7-
measure topology. In a general case, self-adjoint operators Re(A4,) and
Im(A,,) converge to Re(A4) and Im(A) in the strong resolvent topology, re-
spectively. By the above argument, we see that Re(A,,) and Im(A,,) converge
to Re(A) and Im(A) in the 7-measure topology, respectively. Since the ad-
dition is continuous with respect to the 7-measure topology, A, converges
to A in the T-measure topology. This implies O, C Osgr. Hence the proof
of Lemma 3.12 is complete.

Remark 3.18 We referred to the proof of Theorem 5.5 of the paper [24]
to prove the inclusion O, C Oggr.

3.6. Direct Sums of Algebras of Unbounded Operators
To prove Theorem 3.10 in a general case, we show some facts about
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the direct sums of unbounded operators. See Appendix A for the defini-
tion of the direct sums of unbounded operators. The next lemma follows
immediately from Lemma A.3.

Lemma 3.19 Let H,, be a Hilbert space, H be the direct sum Hilbert space
of {Ha}a. For each o, we consider a net {Aq x}ren of self-adjoint operators
on He and self-adjoint operator A, on Hy. Set

Ay = @aAa,)\a
and
A= DA,

on the Hilbert space 'H.

1) Ay converges to A in the strong resolvent topology if and only if each
g g 9Y Yy
{Aa.}ren converges to A, in the strong resolvent topology.
(2) A converges to A in the strong exponential topology if and only if each
{Aa x}ren converges to A, in the strong exponential topology.

Proof. (1) By Lemma A.3, we have
(Ax— i)' =@®a(Aapr —9) 7", (A—i) ' =@a(Aa —i) "

The necessary condition is trivial. On the other hand, it is easy to see that
{(Ax —1i)"1}rea converges to (A —i)~! on ©,H,. Since @D Ha is dense in
@, Ho and {(Ax — i)~ }rea is uniformly bounded, the sufficient condition
follows.

(2) Similar to the proof (1). O

The next lemma is the key to prove Theorem 3.10.

Lemma 3.20 Let M, be a finite von Neumann algebra acting on H,,, and
put

M .= @Dﬁa.

«

Then
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- I,

holds. The sum, the scalar multiplication, the multiplication and the invo-
lution are given by

(Aa + Ba),
) = ®a(ANAy), forall X € C,

(AaBa

(Aa

(BaAa) + (BaBa) = ®a
)\(@a «

(Pada)(@aBa) = Da(AaBa),

(@a a) = Da )

In addition, if each M, is countably decomposable, then M is a complete
topological *-algebra with respect to the strong resolvent topology, and the
strong resolvent topology coincides with the strong exponential topology on
Mm.

Proof. We shall prove this lemma step by step.

Step 1. We first show that €, MM, C M. Indeed let oA, € B, Ma.
By Lemma A.1 and Lemma A.4, each unitary operator u € U(9') can be
written as u = @4 Uq, where u, € U(M,). Thus we have

U(Bala) = Pa(uals) C Ba(Aqts) = (BaAa)u.

This implies o Ao € M.

Step 2. We show that the converse inclusion M C D, M,,. For each
G, we put

4p = ®a(Japln,) € M,

where o4 is the Kronecker delta and 14, is the identity operator on H,.
From Lemma A.1, g3 is a projection and

ran(gs) = (P (GasHa) =: Hp.

[e%

Let A € 9 be a self-adjoint operator. We would like to prove 4 € @, M.
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Since gz € M’, we have ggA C Agp for all 5. This implies that each ﬂﬁ
reduces A. We denote reduced part of A to 7'25 by Aﬂﬁ. Aﬂﬁ is obviously
self-adjoint. For each (3, we consider natural unitary operator vg : Hg —
7:(ﬁ. Then the operator Ag := ’UZ;AﬂB vg is again self-adjoint. To prove A =
Do, we take an arbitrary £ € @adom(Aa). Since v,£(@) € dom(Aﬂa) C
dom(A), we see that

&= Z 0o € dom(A).

e
finite sum

Therefore we obtain

(@ada)é = {viAVLE ™} = D Avag™

finite sum

= A( > vaéa)) = A¢.

e
finite sum

Hence (EBO‘AO‘)|®Qdom(Aa) C A. By Lemma A.2, we have ®,A, C A.
On the other hand, both of &,A4, and A are self-adjoint and self-adjoint
operators have no non-trivial self-adjoint extension. These facts implies
@A, = A. Next we show that each A, is in 9M,. Taking arbitrary unitary
operators u, € U(ON))) and putting u := @, uq, then by Lemma A.4, u is a
unitary operator in 9. Since A € 9, we see that

(Batia)(@ada) = A C At = (Bada)(@alia).

Thus for all o, uaAq C Aqtq holds. This implies A, € M., for all . Hence
Ae@, M,

Next we consider an arbitrary element A € 9. Putting B := Re(A4),
C := Im(A), then A = B+1iC. Since B and C are self-adjoint, by the
above argument, there exist operators B, € ﬁg\and C, € M, such that
B = ®,B, and C = &,C, holds. Set D := @, (dom(B,) N dom(Cy)).
Since dom(B,,)Ndom(C,,) is a core of B, + iC,, D is a core of G, (B, + 1Cy,)
by Lemma A.2. We observe that

A=B+iC > (B+iC)|p = { ®a (Ba +iCy) }|p,
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so that A D @, (B, +iC,) follows. Now we use Step 1., then we see that
®a(Ba +iC,) € M because B, +iC, € M, for all a. Since M is a fi-
nite von Neumann algebra, Lemma 2.14 means that A = @a(m) €
@D, M,. Hence M = P, M,, follows.

Step 3. We shall show the formulae with respect to the sum, the scalar
product, the product and the involution. The formulae with respect to the
scalar product and the involution are trivial. We first provg\the formula of
the sum. Let ®oAq, ®aBa € P, M, = M. Put D, := @, (dom(A,) N
dom(B,)). Since dom(A4,)Ndom(B,) is a core of A, + By, D4 is a core of
@a(Aq + By). We observe that

(Bada) + (BaBa) D { ®a (Aa + Ba) }p.,

so that

(Bala) + (BaBa) D ®u(Aq + Ba)

follows. Since both sides are elements in 9, we have

(DaAa) + (BaBa) = ®a(Aa + Ba).

Next, to show the formula of the product, we put Dy :=
P, dom(A,B,). Since dom(AyB,) is a core of AyB,, Dy is a core of
Da(AaBa). We observe that

(@aAa)(@aBa) D { @a (AaBa)}‘D_H

so that

(Bada)(@aBa) D Pa(AaBa)

follows. Since both sides are elements in 9, we have

(@aAa)(@aBa) = @Q(M).

Hence the proof of Step 3. is complete.

In the sequel, we assume that each 91, is countably decomposable.
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Note that, by Lemma 3.12, each 9, is a complete topological *-algebra
with respect to the strong resolvent topology.

Step 4. Let {A)}xea be a net in M, A be an element of 9. Corre-
sponding to M = B, M,,, we can write them as follows:
A)\ = @aAa,)u Aa,)\ € ﬁa
A=d,A,, A, €M
We shall show that Ay converges to A with respect to the strong resolvent

topology if and only if each {A, x}rea converges to A, with respect to the
strong resolvent topology. From Step 3., we obtain

RG(A)\) = @aRe(Aa,A)a Im(AA) = @alm(AaJ\)v
Re(A) = ®,Re(An), Im(A) = ®oIm(Ay),

so that, by Lemma 3.19, the above equivalence of convergence follows.

By Step 3. and Step 4., we see that 9 forms a topological *-algebra with
respect to the strong resolvent topology. Next, to prove the completeness,
we prepare some facts.

Step 5. Fix an arbitrary ag and let V(@0) be an arbitrary SOT-open
set in M,,. Set V(@ = M, (a # ap) and V := @Z V(). Then V is
a SOT-open set in M. Indeed, since for any z = ®,x, € V, we have
Tay € V(@) there exists a positive number ¢ > 0 and finitely many vectors

(ao) € Hags---» (a0) Ha, such that

Y — 20y )EL || < e} c V@0,

ﬂ Yy € maoa
Set &) := 0 (a # a), then we get & € @, Ha and

ve (V{yeMl(y—2)&l <e} V.
k=1

Since MNp—;{y € M; |(y — 2)&|| < €} is a SOT-open set in M, V is a SOT-
open set.
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Step 6. Fix an arbitrary ag. Let W(*) be an arbitrary SRT-
neighborhood at 0 € 9M,,,. Set W™ := M, (o # ap) and W := P, W,
Then W is a neighborhood at 0 € 9. Indeed, 0 € W is trivial. On
the other hand, since 0 € 9,,, there exists finitely many SOT-open sets
Vi) Vi) in 9, such that

0€ () {A€May; {Re(A) —i} ", {Im(A) —i} ' e VoY c wileo),
k=1

Put Vk(a) =My (a0 # ap) and Vj, 1= @g Vk(a), then, by Step 5., each V}, is
a SOT-open set in 91 and

0¢€ ﬁ {AeM;{Re(4) —i} ", {Im(A) —i} ' eV} C W
k=1

By the definition of the strong resolvent topology,
[ {A € M; {Re(A) — i}, {Im(A) — i} ' € Vi }
k=1

is a open set, so that W is a SRT-neighborhood at 0 € 9.

Step 7. We shall give a proof of the completeness of M. Let { Ay }ren be
a Cauchy net in M. For each A € A we can write as Ay = Dadar € P, Mm,,.
Fix an arbitrary ao and let W(®) be an arbitrary SRT-neighborhood at
0 € My,. Set W) =M, (o # ag) and W := D, W(@) | then, by Step 6.,
W is a SRT-neighborhood at 0 € 9. Therefore there exists \g € A such that
Ay —A, € Wfor all \, p > Ag. Since Ay — A, = ®a(Aa,r — Aa,p), this
implies that Aq, x — Aag.u € W (o) for all A, u > Ao. Hence {Aag 2 }Iren is a
Cauchy net in 90%,,. We now use the completeness of M, , then there exists
an element A,, € M,, such that Aqgx — Aa,- Since g is arbitrary, so
that this means that for each a, there exists an element A, € M, such that
Aqx — Ay, Put A:= ®,A,, then, by Step 4., we conclude that Ay — A.
Thus 9 is complete.

Step 8. The strong resolvent topology coincides with the strong expo-
nential topology on 9. This fact follows from Lemma 3.8 and Lemma 3.19.
O
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Lemma 3.21 Let (M, H) and (M, K) be spatially isomorphic finite von
Neumann algebras. If a unitary operator U of H onto K induces the spatial
isomorphism, then the map

o.M —N, X — UXU*

is a *-isomorphism. Moreover ® is a homeomorphism with respect to the
strong resolvent topology and the strong exponential topology.

Proof. Tt is easy to see that ®(X) € N for all X € M. Thanks to Proposi-
tion 2.14 (2), it is not difficult to show that @ is a unital *~homomorphism:

UX+Y)U* =UXU*+UYU"
UXY)U* =UXU-UY U
UX*U* = (UXU*)*.

Furthermore, it is straightforward to verify that ® is invertible, the inverse
of which is given by 1 3 Y +— U*YU € M. Topological property is trivial.
O

3.7. Proof of Theorem 3.10

We shall give a proof of Theorem 3.10. By Lemma 2.3, there exists a
family of countably decomposable finite von Neumann algebras {9, }, such
that 901 is spatially isomorphic onto @Z M. From Lemma 3.21, there exists
a *-isomorphism of 9 onto P, M., which is homeomorphic with respect
to the strong resolvent topology and the strong exponential topology. By
Lemma 3.20, @, M, is complete topological *-algebra, so that so is 9.
Hence the proof of Theorem 3.10 is complete.

3.8. Local Convexity
We study the local convexity of (9, SRT) here.

Proposition 3.22 Let 9 be a finite von Neumann algebra. Then the
following are equivalent.

(1) (9, SRT) is locally conver.
(2) M is atomic.

Remark 3.23 D. Beltita proved a similar result for a type II; von Neu-
mann algebra case (see Remark 2.6 in [4]).
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We need some lemmata to prove the above proposition.

Lemma 3.24 Let 9 be an atomic finite von Neumann algebra, then
(9N, SRT) is locally convez.

Proof. Every atomic finite von Neumann algebra is spatially isomorphic
to the direct sum of matrix algebras {M,, (C)}rca, where each M, (C) is
the algebra of all ny x n) complex matrices. Thus we should only prove this
lemma in the case that 9 is equal to @lj\e A M, (C). Note that

b

M = @Mnx(c) = @Mn)\ ((C) = @Mnx(c)-

AEA AEA AEA

Let py be a semi-norm on M defined by

pa(x) = [|lzall, @ = @rerzr € M= M, (C).
AEA

Then the strong resolvent topology on 9% coincides with the locally con-
vex topology induced by the semi-norms {py}rea because there is only one
Hausdorff linear topology on a finite dimensional linear space. Hence the
proof is complete. O

Lemma 3.25 Let M be a diffuse finite von Neumann algebra, then there
exists no non-zero SRT-continuous linear functional on 9.

Proof. Suppose there exists a non-zero SRT-continuous linear functional
f on M and we shall show a contradiction. Since, by Lemma 3.6, the
restriction of f onto M is a o-strongly continuous linear functional on 9
and 9 is SRT-dense in 91, there exists a projection ey in M such that

f(eo) 75 0.
Step 1. For any orthogonal family of non-zero projections {e,}22; of

M, f(en) =0 except at most finitely many n € N. Indeed, put

1
0 — if f(e, 0,
A= Z anen, €M,  ay = f(en) it flen) #
n=1 0 if f(en) =0,
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where convergence of A is in the strong resolvent topology. Then we have

FA) = anflen)= Y 1<o0,

f(en)¢0

so that f(e,) = 0 except at most finitely many n € N.

Step 2. For any e € P(OM) with f(e) # 0, there exists ¢/ € P(9M)
such that 0 # ¢ < e and f(¢/) = 0. Indeed, since M is diffuse, there
exists an orthogonal family of non-zero projections {e,, }5%; in 9t such that
e =) ,>16n By Step 2., J := {neN; f(e,) # 0} is a finite set. In

particular,
e =e— Z en # 0
neJ

satisfies f(e’) = 0.

Step 3. We shall get a contradiction. By Step 2., we can take a maximal
orthogonal family of non-zero projections {e,}aca in M such that e, < eg
and f(eq) = 0. Let e := " 4 €a. The maximality of {eq}aca and Step 2.
implies e = eg. Thus we have

0# fleo) = Y flea) =0,

acA

which is a contradiction. Hence there exists no non-zero SRT-continuous
linear functional on 9. O

Lemma 3.26 Let M, be an atomic finite von Neumann algebra, My be
a diffuse finite von Neumann algebra and M := M, @b IMq be the direct
sum von Neumann algebra. Denote the conjugate spaces of (M., SRT) and
(M, SRT) by (M,)* and (IMN)* respectively. For each f € (M,)*, we define

I(f) € (M)* as

I(f)(A® B) := f(A), A®BeM=m,PHM,,

then I is a bijection between (M,)* onto (IN)*.

Proof.  This follows immediately from Lemma 3.25. |
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Proof of Proposition 3.22. We have only to prove (1)=(2). Since 9 is
spatially isomorphic to the direct sum of an atomic von Neumann algebra
Matomic and a diffuse von Neumann algebra 9Mgiguse, it is enough to show
that Maigruse = {0}. Suppose Maituse # {0} and take y € Myifruse \{0}-
Then, by local convexity of 9, there exists a SRT-continuous linear func-
tional f on 9 such that f(0 @ y) # 0. However this is a contradiction by
Lemma 3.26. O

Similarly one can prove the following proposition.

Proposition 3.27 Let 9 be a finite von Neumann algebra. Then the
following are equivalent.

(1) There exists no non-zero SRT-continuous linear functional on M.

(2) M is diffuse.

4. Lie Group-Lie Algebra Correspondences

In this section we state and prove the main result of this paper. As ex-
plained in the introduction, Lie theory for U(H) is a difficult issue. What one
has to resolve for discussing the Lie group-Lie algebra correspondence is a
domain problem of the generators of one parameter subgroups of G C U (H).
The second to be discussed is a continuity of the Lie algebraic operations.
However we can show that, for any strongly closed subgroup G of unitary
group U (M) of some finite von Neumann algebra 9, there exists canoni-
cally a complete topological Lie algebra. Since there are continuously many
non-isomorphic finite von Neumann algebras on H, there are also varieties of
such groups. We hope that the “Lie Groups-Lie Algebras Correspondences”
will play some important roles in the infinite dimensional Lie theory. We
study the SRT-closed subalgebra of 9, too.

4.1. Existence of Lie Algebra

Let 91 be a finite von Neumann algebra acting on a Hilbert space H.
Recall that a densely defined closable operator A is called a skew-adjoint
operator if A* = —A, and A is called essentially skew-adjoint if A is skew-
adjoint.

Remark 4.1 In general, the strong limit of unitary operators is not nec-
essarily unitary. It is known that U(9) is strongly closed in B(H) if and
only if 9 is a finite von Neumann algebra.
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Definition 4.2 For a strongly closed subgroup G of U(9), the set
g =Lie(G) := {4;A" = -A on H, et e @, forallte R}
is called the Lie algebra of G. The complexification g¢ of g is defined by
gc:={A+iB;A B¢€g}.

If G =U(M), we sometimes write g as u(9M).

At first sight, it is not clear whether we can define algebraic operations
on g. However,

Lemma 4.3  Under the above notations, g C 9 holds.

Proof. Let u € U(M) and A € g. By definition, we have e'4u = uet4.
Taking the strong derivative on each side, we have uA C Awu. Since u is
arbitrary we obtain uA = Aw, which implies A € 9. O

Therefore the sum A + B and the Lie bracket AB — BA are well-defined
operations in 91, but it is not clear whether they belong to g again. The
following Lemma 4.5 guarantees the validity of the name “Lie algebra”.
The former part of the proof is based on the two lemmata established by
Trotter-Kato and E. Nelson, which are of importance in their own.

Lemma 4.4 (Trotter-Kato, Nelson [15]) Let A, B be skew-adjoint opera-
tors on a Hilbert space H.

(1) If A+ B is essentially skew-adjoint on dom(A)Ndom(B), then it holds
that

et(AJrB) =g lim (etA/netB/n)"’

n—oo

for allt e R.
(2) If (AB — BA) is essentially skew-adjoint on

dom(A?) Ndom(AB) N dom(BA) Ndom(B?),
then it holds that

2
et[A,B] =g lim (6_ t/nAe— t/nBe t/nAe t/rLB)”7

n—oo
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for allt > 0, where [A, B] := AB — BA.

Lemma 4.5 Let G be a strongly closed subgroup of U(IM). Then g is a
real Lie algebra with the Lie bracket [X,Y] = XY —Y X.

Proof. Let A, B € g. It suffices to prove that A + B and AB — BA belong
to g. Since dom(A)Ndom(B) is completely dense, A+ B is essentially skew-
adjoint. Therefore by Lemma 4.4 (1), we have ¢!4TB) ¢ G° = G for all
t € R. This implies A + B € g. It is clear that AA € g for all A € R. On the
other hand, as AB — BA is essentially skew-adjoint on

D :=dom(AB)Ndom(BA)N dom(AQ) N dom(BQ),

since D is completely dense by Proposition 2.10 and AB — BA € 9. There-
fore by Proposition 4.4 (2), we have e(4B=B4) ¢ G for all t > 0. Thanks to
the unitarity, this equality is also valid for ¢ < 0. Thus we obtain [A, B] € g.
The associativity of the algebraic operations follows from the Murray-von
Neumann’s Theorem 2.18. O

Now we state the main result of this paper, whose proof is almost com-
pleted in the previous arguments.

Theorem 4.6 Let G be a strongly closed subgroup of the unitary group
U(OM) of a finite von Neumann algebra M. Then g is a complete topological
real Lie algebra with respect to the strong resolvent topology. Moreover, gc
is a complete topological Lie *-algebra.

Remark 4.7 In Theorem 3.6 of [4], D. Beltita proved a similar result to
Theorem 4.6 for G = U(9M) case, where M is of countably decomposable

type.

Proof of Theorem 4.6. The Lie algebraic properties are proved in Lemma
4.5. By Lemma 3.10, we see that g and g¢ are SRT-closed Lie subalgebras
of M. As the algebraic operations (X,Y) — X +Y, [X,Y] are continu-
ous with respect to the strong resolvent topology, so that the topological
properties follow. O

Remark 4.8 It is easy to see that for G = U(9M), its Lie algebra u(M) is
equal to {4 € M; A* = —A} and the exponential map

exp : u(M) — U(M)
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is continuous by Lemma B.2 and surjective by the spectral theorem.

Proposition 4.9 Let My, My be finite von Neumann algebras on Hilbert
spaces Hi, Ha respectively. Let G; be a strongly closed subgroup of U(IMN;)
(i = 1,2). For any strongly continuous group homomorphism ¢ : G; —
G, there exists a unique SRT-continuous Lie algebra homomorphism @ :
Lie(Gy) — Lie(Gy) such that p(e?) = e®A) for all A € Lie(Gy). In par-
ticular, if Gy is isomorphic to Gy as a topological group, then Lie(G1) and
Lie(G2) are isomorphic as a topological Lie algebra.

Proof. Let X be an element in Lie(G7). From the strong continuity of ¢,
t — p(e!X) is a strongly continuous one-parameter unitary group. Therefore
by Stone theorem, there exists uniquely a skew-adjoint operator ®(X) on
Hs such that p(etX) = e!®(X). This equality implies ®(X) € Lie(Gs). Since
 is strongly continuous, thanks to Lemma 4.4, we see that

etcb([X,Y]) _ (p(et-[X,Y})
= ¢(s- lim [e” t/nX o=\/t/nY gy/t/nX, t/nY]n)
=s- lim [QD(B_ t/nX)(,O(6_ t/nY)SD(6 t/nX)(’O(6 t/nY)]n
=s- lim [ei\/%q)(x)e*M¢(Y)6M¢(X)€M¢(Y)]n

_ te(X).0()]

for all ¢ > 0. Taking the inverse of unitary operators, the equality
et PIXNYD) = t®(X), (V)] is also valid for all t < 0. Therefore from the
uniqueness of a generator of one-parameter group, we have ®([X,Y]) =
[®(X),®(Y)]. Similarly, we can prove that ® is linear. Thus, ® is a Lie al-
gebra homomorphism. The SRT-continuity of ® follows from the continuity
of ¢ and the definition of the strong exponential topology. O

As above, G has finite dimensional characters. On the other hand, it
also has an infinite dimensional character.

Proposition 4.10 Let 9 be a finite von Neumann algebra, then the fol-
lowing are equivalent.

(1) The exponential map exp : u(M) > X — exp(X) € U(M) is locally in-
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jective. Namely, the restriction of the map onto some SRT-neighborhood
of 0 € M is injective.
(2) O is finite dimensional.

Remark 4.11 D. Beltita proved a similar result for a type II; factor case
(see Corollary 4.4 in [4]).

Proof of Proposition 4.10. (2)=(1) is trivial. We should only prove that
(1)=(2).

Step 1. For each orthogonal family of non-zero projections in 9, its
cardinal number is finite. Indeed if there exists a orthogonal family of non-
zero projections in 9 whose cardinal number is infinite, we can take a
countably infinite subset of it and write it as {p,}52 . Since p,, converges
strongly to 0, it also converges to 0 in the strong resolvent topology. Define
Xy := 2mip, # 0. Since the spectral set of p, is {0,1}, we have e =1 for
all n € N, while x,, converges to 0 in the strong resolvent topology. This
implies that the map exp(-) is not locally injective, which is a contradiction.

Step 2. 9 is atomic. Indeed if 9 is not atomic, the diffuse part of
it is not {0}. Thus we can take an infinite sequence of non-zero mutually
orthogonal projections in 9. But this is a contradiction to Step 1.

Step 3. We shall show that 9t is finite dimensional. By Step 2., 9 is
spatially isomorphic to the direct sum of a family {M,,, (C)}rea (nx € N),
where M,,, (C) is the algebra of all ny x ny complex matrices. By Step 1.,
the cardinal number of A is finite. Hence 91 is finite dimensional. U

Remark 4.12 Lie(G) is not always locally convex, whereas most of infinite
dimensional Lie theories, by contrast, assume local convexity. Indeed, by
Proposition 3.22, u(9M) is locally convex if and only if 9 is atomic.

4.2. Closed Subalgebras of M
Next, we characterize closed *-subalgebras of 9.

Proposition 4.13 Let 9 be a finite non Neumann algebra on a Hilbert
space H, # be a SRT-closed *-subalgebra of MM with 14. Then there exists
a unique von Neumann subalgebra M of MM such that # = N.

Remark 4.14 A von Neumann subalgebra of a finite von Neumann alge-
bra is also finite.
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Proof of Proposition 4.13. Put
N := {x € #Z;z is bounded}.

Since 0,1 € 91, M is not empty. We first show that 91 is a von Neumann
algebra. It is clear that 91 is a subalgebra of 9t. Thus it is enough to check
that 91 is closed with respect to the strong* operator topology. Let {z,}
be a net in M converging to x € N with respect to the strong™ operator
topology. So we have

Re(zq) — Re(x), Im(zs) — Im(z)
with respect to the strong* operator topology. By Lemma B.1,
Re(zq) — Re(x), Im(zs) — Im(z)

with respect to the strong resolvent topology. As Re(z,) € #Z, Im(z,) € Z
and Z is SRT-closed, we see that Re(z) € Z and Im(z) € #. Therefore

x = Re(z) + ilm(x) € Z.

Since x is bounded, x belongs to 1. Thus 91 is a von Neumann algebra.
Next, we show that Z C 9. Let A be an element of #. It is enough to
consider the case that A is self-adjoint. Put

oo

Ca:= | J ran(Ea([-n,n))),

n=1

where F4(+) is the spectral measure of A. C4 is completely dense and all
elements of C 4 are entire analytic vectors for A. Thus we have for all £ € Cy,

Therefore the sequence

—_—\ OO

J

itA)7I
>

=t 7
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converges almost everywhere to e®*4. By Proposition 3.16, it converges to
e with respect to the strong resolvent topology. Since % is SRT-closed
and e is bounded, we get ¢4 € M. This implies A belongs to N.
On the other hand, by the definition of M, M C Z. Since M is a SRT-
closure of M, we see that < C Z. Thus we conclude that N = Z.
Finally, we show that the uniqueness for 91. Let £ be a von Neumann
subalgebra of 9 satisfying £ = #. Then, we have
N = {x € M; x is bounded}
={z € Z;x is bounded}
= {z € £;z is bounded}
=£.

Thus D is unique. O

Corollary 4.15 Let I be a finite non Neumann algebra on a Hilbert space
H, g be a real SRT-closed Lie subalgebra of u(dN). Then the following are

equivalent:

(1) there exists a von Neumann subalgebra M of M such that g = u(N),
(2) 1y € g and for all A, B € g, i(AB + BA) € g.

In the above case, N is unique.

Proof. First of all, we shall show (1) = (2). Since u(M) C N, we have
i(AB + BA) € 9. On the other hand,

u(M) = {X € X* = —X).

Thus i(AB + BA) € u(M) = g. Next we shall show (2) = (1). By direct
computations, we see that

#:={X+1Y eMX, Y eg}

is a SRT-closed *-subalgebra of 9. Thus, by Proposition 4.13, there is a
von Neumann subalgebra O of 9t such that Z = M. Then we see that
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g={X €eZ X" =X}
= {X e X* = X}
= u(M).

Finally, we show the uniqueness for 91. Let £ be a von Neumann subalgebra
of M satisfying u(£) = g. Then, we have

N={X+iV;X, Y euM)}
={X+iV;X, Y eu()}
=g
By the uniqueness of Proposition 4.13, we get 91 = £. O

5. Categorical Characterization of 9

5.1. Introduction

In this last section we turn the point of view and consider some categor-
ical aspects of the *-algebra 901. Especially, we determine when a *-algebra
Z of unbounded operators on a Hilbert space H turns out to be of the form
M, without any reference to von Neumann algebraic structure in advance.
As is well known, there are many examples of *-algebra of unbounded op-
erators that is not of the form 9. For example, many O*-algebras [22] are
not related to any affiliated operator algebra. Therefore, the appropriate
condition to single out suitable class of *-algebras of unbounded operators
are necessary. For this purpose, we define the category fRng of unbounded
operator algebras and compare this category with the category fvIN of finite
von Neumann algebras and show that both of them have natural tensor cat-
egory structures (cf. Appendix C). Furthermore, we will see that they are
isomorphic as a tensor category, in spite of the fact that the object in fRng
is not locally convex in general while the one in fvIN is a Banach space.
However, the algebraic structures of 9 and 9 are very similar and in fact
they constitute isomorphic categories. To begin with, let us introduce the
structure of tensor category into fRng.

5.2. fvN and fRng as Tensor Categories
Now we turn to the question of characterizing the category fRng of
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*_algebras of unbounded operators which are realized as 9%, where 9 is a
von Neumann algebra acting on a Hilbert space. is well known that the
usual tensor product (91, Ms) — Ny @ My of von Neumann algebras and
the tensor product of o-weakly continuous homomorphisms (¢1, ¢2) — ¢1 ®
¢> makes the category of finite von Neumann algebras a tensor category.
Therefore we define:

Definition 5.1 The category fvIN is a category whose objects are pairs
(M, H) of a finite von Neumann algebra 91 acting on a Hilbert space H
and whose morphisms are o-weakly continuous unital *-homomorphisms.
The unit object is (Clg, C). The tensor functor is the usual tensor product
functor of von Neumann algebras. The definition of left and right unit
constraint functors might be obvious.

If we are to characterize the objects in fRng, we must settle some sub-
tleties due to the fact that we cannot use von Neumann algebraic structure
from the outset. However, this difficulty can be overcome thanks to the
the notion of the strong resolvent topology and the resolvent class whose
definitions are independent of von Neumann algebras (See Section 3). We
define fRng as follows.

Definition 5.2 The category fRng is a category whose objects (%, H)
consist of a SRT-closed subset Z of the resolvent class 2% (H) on a Hilbert
space ‘H with the following properties:

(1) X +Y and XY are closable for all X, Y € Z.

(2) X +Y, aX, XY and X* again belong to % for all X, Y € # and
aeC.

(3) Z forms a *-algebra with respect to the sum X + Y, the scalar multi-
plication aX, the multiplication XY and the involution X*.

(4) 1y €Z%.

The morphism set between (%#1,H1) and (%2, Hz2) consists of SRT-
continuous unital *-homomorphisms from %; to %-.

Remark 5.3 From the definition of fRng, it is not clear whether, for each
objects in fRng, its algebraic operations are continuous or not. However,
the next lemma shows that & is a complete topological *-algebra.

Lemma 5.4 Let (Z,H) be an object in fRng. Then there exists a unique
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finite von Neumann algebra 9 on H such that Z = M. Furthermore,
M =ZNB(H) holds.

Proof. Define M := % N B(H). Then one can prove that M is von Neu-
mann algebra by the same way as in Proposition 4.13.

We next show that Z C 9. Let A € % be a self-adjoint operator.
Define the dense subspace C 4 according to the spectral decomposition of A:

Ca = ran(Ea([-n,n))),
where
A= /R MEAN)

is the spectral decomposition of A. Since all £ € Cy4 is an entire analytic
vector for A, we have

iAo N (itA)F
= lim D e

k=0

for all t € R. Let 94 be a von Neumann algebra generated by {E4(J);J €
B(R)}, where B(R) is the one dimensional Borel field. Since 94 is abelian,
it is a finite von Neumann algebra. It is also clear that

B,:=Y (Zk,) e MANZ
k=0 )

and e € M 4. Since C4 is completely dense for M4, B,, converges almost

everywhere to e in (M 4). As My is finite, we see that B,, converges to
e*4 in the strong resolvent topology. On the other hand, % is SRT-closed
and therefore ¢4 € % N B(H) = M, for all t € R. This implies A4 € M.
For a general operator B € %, using real-imaginary part decomposition
B = Re(B) + ilm(B), we have B € 9.

We shall show that 9 C #Z. Let A € M and A = U|A| be its polar
decomposition, then U € 9 C Z and |A| € M. Let [A| =: [;° AdE|/(N)
be the spectral decomposition of |A|. Put
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Ty = / B4 (\) € M C %,
0

then x,, converges to |A| in the strong resolvent topology. Thus |A| € Z.
Therefore A = U|A| € Z.
The finiteness of 91 follows immediately from Theorem 2.22. O

Note that for each finite von Neumann algebra 9 on a Hilbert space
H, (O, H) is an object in fRng.
The main result of this section is the next theorem.

Theorem 5.5 The category fRng is a tensor category. Moreover, fRng
and fvN are isomorphic as a tensor category.

To prove this theorem, we need many lemmata. The proof is divided
into several steps.

Next, we will define the tensor product #; ® %5 of objects Z; (i = 1,2)
in fRng (cf. Definition 5.9). For this purpose, let us review the notion of
the tensor product of closed operators. Let A, B be densely defined closed
operators on Hilbert spaces H, IC, respectively. Let A ®¢ B be an operator
defined by

dom(A ®g B) := dom(A) ®alg dom(B),
(A®o B)(E®n) := A¢ ® By, ¢ e dom(A), ne dom(B).

It is easy to see that A ®( B is closable and denote its closure by A ® B.

Lemma 5.6 Let 90y, My be finite von Neumann algebras acting on Hilbert
spaces Hy, Ha, respectively. Let A € My and B € My. Then we have
AR BeM Q M,.

Proof.  Let z; € M, (i = 1,2). For any ¢ € dom(A) and n € dom(B), we
have (21 ® x2)(§{ ® 1) € dom(A ®y B) and

{(z1 @ 22)(A®0 B)}(§ ©n) = {(A®0 B)(z1 ®22)}(§ @ ).

Therefore, by the linearity, we have (x1 ® x2)(A®o B) C (A®y B)(x1 ® x2).
Since (M1 @ M)’ = M| ® M, is the strong closure of M| ®a1g M5, we have

y(A® B) C (A® B)y, forally € (M; @ My)'.
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Therefore by the limiting argument, we have y(A ® B) C (A ® B)y, which
implies A ® B is affiliated with 9t @ 9M-. O

Lemma 5.7 Let A, B be densely defined closed operators on Hilbert spaces
H, K with cores Da,Dp respectively. Then D := Dy Qag Dp is a core of
A®B.

Proof.  From the definition of A ® B, for any ¢ € dom(A ® B) and for any
e > 0, there exists some (, = Y ;| & ®n; € dom(A) ®,1; dom(B) such that

IC—¢ll<e, (A®B)—(A® B)(| <e.
Put

C = max {[|&], [ A&} +1> 0.

Since Dp is a core of B, there exists n; € Dp such that

£ € £ €
|l < —, ||Bmi— Bnf| < —.
”771 771 H ncﬂ H T,Z le H nc
Put

0" = max {|l0f . |Brll} +1> 0.

Similarly, since Dy is a core of A, there exists £ € D4 such that

£

H&' — ff” < olk HA& - AffH <

3
nC"’

Define (© := fo ®mn; € D. Then we have

=1

1€ = ¢l < NS = Cell + (16 = ¢l

§s+ZH§i®m—€f®an

i=1

n n
<et+ Y sem -G+ ||6Gon —& e
i—1 -1
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<e+ ) N&lln =5+ l& — &l
i=1 i=1

Furthermore,

I(A® B)¢ — (A® B)(°|
< [(A® B)¢ = (A® B)¢[| + [(A® B)(. — (A@ B)(7||

<e+ Y |lA& @ By — AL @ Brf|

i=1

<e+ > ||A& @ By — A @ Bf|| + ) || A& ® Byt — A&S @ Bf |

=1 =1

<e+ Y [lAGIBn — Bngl + > A& — A& ||| B |

=1 =1

<5—|—ZC +Z C’.
= 3¢ (**)

(x) and (*x) implies D is a core of A ® B. O

Next lemma says that the tensor product of algebras of affiliated oper-
ators has a natural *-algebraic structures.

Lemma 5.8 Let 9, M be finite von Neumann algebras acting on Hilbert
spaces H, K respectively. Let A,C € M, B, D € M. Then we have

(1) (A® B)(C® D)= AC ® BD.

(2) (A® B)* = A* ® B*.

8) A+C®B+D=A9B+A®@D+C®B+C&D.
(4) MA@B)=XM®B=A®\B (A€ C).
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Proof. (1) From Proposition 2.13, Dy := {£ € dom(C); C¢ € dom(A)} is a
core of AC and Dy := {n € dom(D); Dn € dom(B)} is a core of BD. Define
D := D; ®alg D2, which is a core of AC ® BD. Since

dom((A® B)(C ® D)) D dom((A® B)(C ® D)) > D,

it holds that for any ¢ = >"1" | & ®n; € D, we have

(A©B)(C@D)C = > AC& © BDy, = (AC® BD) S & @ n,

=1 =1

= (AC ® BD)(.

Therefore (A ® B)(C ® D) D (AC® BD)|p. Since D is a core of AC ® BD,
we have (by taking the closure)

(A® B)(C ® D) > AC ® BD.

Since both operators belong to 9 ® MM by Lemma 5.6, we have

(A® B)(C ® D) = AC ® BD.

by Proposition 2.14(2).

(2) It is easy to see that (A® B)* D A*®B*. Since (A® B)* and A*® B*
are closed operators belonging to M ® N, we have (A ® B)* = A* ® B* by
Proposition 2.14 (2).

(3) and (4) can be easily shown in a similar manner as in (1). O

Now we shall define the tensor product %) ® %2 of (#1,Hi) and
(%2, H2) in Obj(fRng). Let M; be finite von Neumann algebras on H;
such that Z; = M; (i = 1,2), respectively (cf. Lemma 5.4). From Lemma
5.8, the linear space # ®ag #> spanned by {A; @ As; A, € Z;,1 = 1,2}
is a *-algebra. Since #) ®ag #2 is a subset of M; ® My, it belongs to
K€ (H1 @ Hz). Therefore:

Definition 5.9 Under the above notations, we define %1 @ %> to be the
SRT-closure (for H; @ Hz) of %1 ®a1g H2.

Lemma 5.10 Let %Z; (i = 1,2) be as above. Then % @ %o is also an
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object in fRng. More precisely, if Z; = M;, where M; is a finite von
Neumann algebra (i = 1,2), then M1 @ My = My @ My.

Proof.  We first show that I @ My C My @ My. Let T; € M; (i = 1,2).
Then we can show that T} ® To € My @ My by Lemma 5.6. Therefore by
the linearity, we obtain

ﬁl ®alg ﬁZ C ml@ EUIQ-

As the left hand side is SRT-closed in ZC(H; ® Hz), we have My @ My C
M, @ My. Next we prove that M @ My C M ® M. It is clear that
My Darg Mo C M, @ My. By the Kaplansky density theorem and Lemma
3.6, we have M; @ My C M; ® My. By taking the SRT-closure, we obtain
93?1@9%2 Cﬁ1®ﬁ2. O

The above Lemma says that (%1 @ %2, H1 ® Hz) is again an object in
fRng.

Next, we discuss the extension of morphisms in fvIN to ones in fRng.
It requires some steps.

Lemma 5.11  Let (M, H1), (Mo, Ha) be finite von Neumann algebras.
Then the mapping

(O, SRT) x (My, SRT) — (M1 @ My, SRT),
(A,B)— A® B,

s continuous.

Proof.  Let {An}a C My, {Bata C My be SRT-converging nets and A €
M1, B € My, be their limits respectively. We should only show that the net
{A, ® B, }o converges to A ® B in the strong resolvent topology.

Step 1. The above claim is true if all A,, B, A and B are self-adjoint.
Indeed, since

cit(Aa®l) _ itda g 1, CIHABY) _ (itA g

hold, we easily see that A, ® 1 converges to A ® 1 in the strong exponential
topology. Thus, by Theorem 3.10, the SRT-convergence of A, ® 1 to A® 1
follows. Similarly 1® B, converges to 1® B in the strong resolvent topology.
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Therefore, by Lemma 5.8 and the SRT-continuity of the multiplication, we
have

Aa ® By = (A ®@1)(1®By) - (A®1)(1®B)=A® B.

Step 2. In a general case, by Lemma 5.8, we obtain

Ao ® By = (Re(Aq) +iIm(Aq)) @ (Re(Ba) + idm(Ba))

= Re(A4n) ® Re(Bqy) + iRe(Aq) ® Im(B,,)

+ilm(A,) ® Re(B,) — Im(A,) @ Im(B,,)

— Re(A) ® Re(B) +iRe(A) ® Im(B)

+ilm(A) ® Re(B) — Im(A) ® Im(B)
=A®B.

Hence the proof of Lemma 5.11 is complete. O

Lemma 5.12 Let M be a finite von Neumann algebra on a Hilbert space
H and e is a projection in MM, then M, is also finite.

Proof. Well-known. O

Lemma 5.13 Let A be a densely defined closed operator on a Hilbert space
H, K be a closed subspace of K such that PcA C APx. Then the operator
B := Algom(a)nk is a densely defined closed operator on K.

Proof. This is a straightforward verification. g

The next proposition guarantees the existence and the uniqueness of the
extension of morphisms in fvIN to the morphisms in fRng. Note that the
claim is not trivial, because many o-weakly continuous linear mappings be-
tween finite von Neumann algebras cannot be extended SRT-continuously to
the algebra of affiliated operators. Indeed, we can not extend any o-weakly
continuous state on a finite von Neumann algebra 9t SRT-continuously onto
M if M is diffuse.

Proposition 5.14  Let 91, My be finite von Neumann algebras on Hilbert
spaces Hi, Ha respectively.
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(1) For each SRT-continuous unital *-homomorphism ® : 9y — My,
the restriction ¢ of ® onto My is a o-weakly continuous unital *-
homomorphism from 9My to Ms.

(2) Conversely, for each o-weakly continuous wunital *-homomorphism
e M — My, there exists a unique SRT-continuous unital *-
homomorphism ® : MMy — My such that Dlon, = .

Proof. (1) We have to prove that ® maps all bounded operators to bounded
operators. For any v € U(9;) and € € dom(®(u)*®(u)), we have

(€]l = (€, D(u)*D(u)€) = (&, P(uu)€)
= (£, ®(1)¢) = ll¢]”*.

Since dom(®(u)*®(u)) is a (completely) dense subspace, ®(u) € My and
®(u) is an isometry. Therefore the finiteness of My implies ®(u) € U(My).
Thus, we see that ®(U(M;)) C U(M). Since any element in M; is a linear
combination of U(M;), & maps M; into M,. To show that ¢ is o-weakly
continuous, it is sufficient to prove the (o-) strong continuity on the unit ball,
because it is a homomorphism. Since the strong resolvent topology coincides
with the strong operator topology on the closed unit ball by Lemma 3.6, ¢
is strongly continuous on the closed unit ball. Therefore ¢ is a o-weakly
continuous homomorphism.

(2) Regard ¢ as a composition of a surjection ¢’ : My — (M) and
the inclusion map ¢ : (M) — IM,. Note that the o-weak continuity of
¢ implies (M) is a von Neumann algebra. Since ¢’ is surjective, from
Theorem IV.5.5 of [25], there exists a Hilbert space K, a projection e’ €
PO, ® B(K)) and a unitary operator U : €'(H; ® K) = Hs such that

P (@) =U(x 1) U*

for all z € 9. Now we would like to define the extension ® of ¢’ to
M; — ©(M;). Then we define @’ as follows:

' (X)=U(X®1)eU*, X €M;.
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reduction by e’

ﬁl X (Cl}C (ﬁl & (CllC)e’

More precisely, we define
Z=(X®1)e :=€(X ®1)|ran(e)ndom(xe1), @' (X):=UZU".

We have Z € (M ® Clk).s. Indeed, since €/ commutes with 9 @ Cly, it
reduces the operator X ® 1 and therefore by Lemma 5.13, (X ® 1) is a
densely defined closed operator on ran(e’). Since (My) = ('), for each
von Neumann algebra 9t and f € P(9), the affiliation property is manifest.
In addition, by Lemma 5.12, (M ® Clx). is a finite von Neumann algebra.
Next, we prove the map M > X — (X ® 1) € (M; @ Clg) is a SRT-
continuous unital *-homomorphism. The continuity follows from Lemma
5.11. To prove that it is a *-homomorphism, we have to show that for X,
Y e I,

, =X @D+ (Y ®1)e,

e

(X+Y)®1), =
)or =

(XY ®1) , =(X@1)e(Y @1)e

((X ® 1)6’ * (X* ® 1)6’
To prove the first equality, by Lemma 5.8, we see that
(X+Y)@l), =Xe1+Y®1),
DX+ (Y ®1)

Taking the closure, by Lemma 2.14, we have

(X+Y)@1), =X @)+ (Y ©1)e

The others are proved in a similar manner. Next, by Lemma 3.21, the
correspondence MMy 3 X +— U(X ®@ 1) U* € o(My) C My defines a SRT-
continuous unital *-homomorphism @’ which is clearly an extension of ¢’.
Therefore by considering ® := +/ o ® : M; — My is the desired extension
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of ¢, where // : ®(9M;) — My is the mere inclusion. Finally, we prove
the uniqueness of the extension. Let ¥ be another SRT-continuous unital
*_homomorphism such that ¥|gy, = ¢. Let X € 9. Then from the SRT-
density of My in M, there exists a net {x,} C M; such that lim, v, = X
in the strong resolvent topology. Therefore we have

U(X)= li;n U(zy) = li;n o(Tq)

= lién O(z,) = D(X). O

The next lemmata, together with Lemma 5.10, implies that fRng is a
tensor category.

Lemma 5.15 Let %;, .%; (i = 1,2) be objects in Obj(fRng). If ¥ : % —
A, YUy : Ky — S are SRT-continuous unital *~homomorphisms, then there
exists a unique SRT-continuous unital *-homomorphism ¥ : %1 Q@ KXo —
S ® Sy such that V(AR B) = U1 (A)@Vs(B), for all A € %1 and B € %>.
We define ¥, @ Uy to be the map V.

Proof.  Let 1); be the restrictions of ¥; onto M; (i = 1,2). Then 1); is a o-
weakly continuous unital *-homomorphism from 9; to 9;, where M; = .7;.
Thus there exists a o-weakly continuous unital *-homomorphism ¢ from
M @ My to My ® Ny such that

Y @y) =1(7) @Pa(y), €M, y€ M.

By Proposition 5.14, there exists a SRT-continuous unital *-homomorphism
U from %1 Q %5 to /1 Q@ Y whose restriction to 9; ® My is equal to
. For all A € %1, B € %5, we can take nets {zq}o C My, {Yata C Mo
converging to A, B in the strong resolvent topology, respectively. Therefore,
by Proposition 5.11, we have

V(A® B) =lim¥(za @ ya) = lime1 (za) @ ¥2(ya)
:liénlIll(xa)(@\Ilg(ya) :\Ifl(A)®\I/2(B> U
Lemma 5.16  Let (%;, H;) (i = 1,2,3) be objects in fRng. Then we have

a unique *-isomorphism which is homeomorphic with respect to the strong
resolvent topology:
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(%1 @ K2) @ K3 = I\ @ (H2 @ K3)
(X1 X2)® X3 — X1 ® (Xe® X3), foral X; € %;

We denote the map as az, %, %, -

Proof. Let 9M; be a finite von Neumann algebra such that %; = 9; (i =
1,2,3). Let ap be the *-isomorphism from (9 ® M) ® M3 onto My @
(M3 @ M3) defined by (1 Rz2)Rx3 — 1@ (x2®@x3). By Lemma 5.10, both
(M @ My) @ M3 and My @ (M, @ M3) are generated by (N @ Ny) ® M3
and My @ (Mo ® M3), respectively. Therefore by Proposition 5.14, ag can
be extended to the desired *-isomorphism ag, %, %;- O

Proposition 5.17 fRng is a tensor category.

Proof. We define the tensor product ® : fRng x fRng — fRng by
(%1, H1) @ (Ko, Ha) = (%1 @ Ho, H1 @ Ha)

and for two morphisms ¥, : (%;, H;) — (7, K;) (i = 1,2), define ¥; ® U,
according to Lemma 5.15. The unit object is I := (Cl¢, C). The associative
constraint az, %, %, is the map defined in Lemma 5.16. The naturality of
g, %,.%; follows from Proposition 5.14. The definition of left (resp. right)
constraint A. (resp. p.) might be clear. Now it is a routine task to verify
that the data (fRng,®, I, a, A, p) constitutes a tensor category. O

Now we will prove that fvIN is isomorphic to fRng as a tensor category.
Define two functors € : fvIN — fRng, F : fRng — fvIN.

Definition 5.18 Define two correspondences £, F as follows:
(1) For each object (9, H) in fvN,
EOM,H) = (M, H),

which is an object in fRng. For each morphism ¢ : 0ty — My in fvIN,
E(p) : My — My is the unique SRT-continuous extension of ¢ to My,
so that £(¢p) is a morphism in fRng by Proposition 5.14.

(2) For each object (#,H) in fRng,

F(%,H) = (%1 B(H),H).
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For each morphism ® : #1 — %- in fRng, F(®) := ®|4, n% (1), which

is a morphism in fvIN by Proposition 5.14.

Lemma 5.19 & and F are tensor functors.

Proof. 'We define the tensor functor (€, hy, hs), where

hi : (Cle,C) -5 (Cle, C) = £((Cle, €)),

ha (M1, Hy), (M2, Ha)) : My @ My 2400 @ M,

can be taken to be identity morphisms thanks to Lemma 5.15. It is clear that
E(lon) = lgy, where lgp and lg; are identity map of 9t and M, respectively.
Let 4 BAN My 22, M3 be a sequence of morphisms in fvIN. Let =z € 9MN;.

It holds that

E(p2 0 p1)(@) = (p2 0 p1) (@) = E(p2)(p1(x))

— E(p2)(Ep1) (@) = {E(g2) 0 E(p1)}(@):

By Proposition 5.14 (2), we have E(p20¢1) = E(p2)oE(¢1). Therefore & is a
functor. The conditions for (€, hy, ha) to be a tensor functor are described as
the following three diagrams, the commutativity of which are almost obvious

by Proposition 5.14 and “~” symbols are followed from Lemma 5.16.

(ﬁ1®ﬁ2)®ﬁ3 *N>ﬁ1® (ﬁg@ﬁg)

id id
(9ﬁ1® 93?2)@%3 O ﬁ1® (9312@93?3)

id id
(M @ My) @ M3 —— M1 @ (My @ M3)
_ — . — XR1—X
com S Mo C >
1dl @) T 1di O T

CEZM——~Com Me C—>Ma C
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Thus, (£, h1,hs2) is a tensor functor. The proof that (F,h},h}) is a tensor
functor, including the definitions of hf, hf, are easier. O

Now we are able to prove the main theorem easily.

Proof of Theorem 5.5. We will show that £ and F are the inverse ten-
sor functor of each other. By Lemma 5.19, they are tensor functors. Let
(M;, H;) (¢ = 1,2) be in Obj(fvN). Let ¢ : 9y — My be a morphism in
fvIN. Proposition 5.14 implies ¢ = (F o £)(p). By Proposition 5.4, we have

(Qﬁl,HZ) = (ﬁz N %(Hz),Hz) = (]-"05)(93?1,7{1),

therefore F o £ = idgyn.
Let (%;,H;) (i =1,2) be objects in fRng, ¥ : (f%’l,Hl)iﬂ (%2, H2) be

a morphism in fRng. By Proposition 5.4, we have %Z; = 9; for a unique
(9M;, H;) in Obj(fvIN). Similarly, we can prove that

(Z#i, Hi) = (€ o F)(Z#i, Hi), (EoF)(P) =2,

hence £ o F = idfrng- Il

Finally, we remark the correspondence of factors in fvIN and ones in
fRng. Recall that, for a *-algebra 7, its center Z (<) is defined by

Z(d) :={x € o;xy =yx, forally € o}.

Z(g/) is also a *-algebra.

Proposition 5.20 Let MM be a finite von Neumann algebra on H. The
following conditions are equivalent.

(1) The center Z(OM) of M is trivial. Le., Z(M) = Cly.
(2) The center Z(9M) of M is trivial.

Proof. (1) = (2) is evident.

(2) = (1). Let A € M be a self-adjoint element of the center Z(M). For
any u € U(M'), we have uAu* = A. Therefore from the unitary covariance
of the functional calculus, it holds that u(A4 — i)~!'u* = (A —i)~! and
(A—i)t e MNIM = Cl. Hence (A —i)~! = al for some a € C.
By operating A — ¢ on both sides, we see that A € C1. For a general

closed operator A € Z(9), we know that there is a canonical decomposition
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A =Re(A) +i Im(A). Since A belongs to Z(9), Re(A), Im(A) also belong
to Z(9M) = C1. Therefore A € C1. O
A. Direct Sums of Operators

We recall the theory of direct sums of operators and show some facts.
We do not give proofs for well-known facts. See e.g., [2].

Let {Hq}a be a family of Hilbert spaces and H = @, Hqo be the direct
sum Hilbert space of {Ha}a, i-€.,

H = {5 = {06 e Hay DO NIE)7 < oo.}.
For a subspace D, of H,, we set
GB Dy = {¢ = {1, e H; €@ e D,, € =0 except finitely many a.}.

It is known that @aDa is dense in ‘H whenever each D,, is dense in H,,.

Next we recall the direct sum of unbounded operators. Let A, be a
(possibly unbounded) linear operator on H,. We define the liner operator
A=d,A, on H as follows:

dom(A) := {5 = {1} e H;¢™ e dom(An), D [|Aa”|? < oo.},

(A6)@ .= A, ¢ e dom(A).

A is said to be the direct sum of {As}qo. It is easy to see that if each A, is
a densely defined closed operator then so is A. In this case,

A* — @QAQ*

holds. The following lemmata are well-known.
Lemma A.1 Assume the above notations.

(1) AeB(H) if and only if each A, is in B(Hy) and sup, ||[Aa| < 00. In

this case,
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[A[] = sup || Aq]|

holds.
(2) A is unitary if and only if each A, is unitary.
(3) A is projection if and only if each A, is projection. In this case,

ran(A4) = @ ran(A,)

o

holds.

Lemma A.2 Assume that each A, is closed. Let D, be a core of Ag.
Then @,Dq is a core of A.

Lemma A.3 Assume that each A, is (possibly unbounded) self-adjoint.

(1) A is self-adjoint.
(2) For any complex valued Borel function f on R,

f(A) = @ozf(Aoa)
holds.

Finally, we study the direct sum of algebras of operators. Let .7, be a
set of densely defined closed operators on H,. Put

P S = {Badai Aa € Fu}.

Note that each element in €, .7, is a densely defined closed operator on
H =&, Ha. If each .7, consists only of bounded operators, we also define

b
@ya = { Do Ta;Ta € Lo, sup ||za|l < oo.}.
o
«

By Lemma A.1, each element in EBZ Yo is bounded. The following is also
well-known.

Lemma A.4 Let M, be a von Neumann algebra acting on H,, and put
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b
M = @Sﬁa.

Then M is a von Neumann algebra acting on H = @, Ha. The sum, the
scalar multiplication, the multiplication and the involution are given by

Furthermore the followings hold.

(1) 2 = &, M.
(2) M is a finite von Neumann algebra if and only if each M, is a finite
von Neumann algebra.

We call @I; M, the direct sum von Neumann algebra of {IM,} .

B. Fundamental Results of SRT
Let H be a Hilbert space. The following lemmata are well-known [20]:

Lemma B.1 Let {Ax}reca be a net of self-adjoint operators on H, A
be a self-adjoint operator on 'H, and D be a dense subspace of H which is
a core of A and D C ()¢, dom(Ax) N dom(A). Suppose for all £ € D,
limyep AxE = AE, then Ay converges to A in the strong resolvent topology.

Lemma B.2 Let {A,}22, be a sequence of self-adjoint operators on H,
A be a self-adjoint operator on H. Then A, converges to A in the strong
tAn converges strongly to e for allt € R.
A #A is uniform on every finite

resolvent topology if and only if e
In this case, the strong convergence of e'*» to e

interval of t.

Lemma B.3 Let {A,}52, be a sequence of self-adjoint operators on 'H,
A be a self-adjoint operator on H. Suppose A, converges to A in the strong
resolvent topology, then E 4, ((a,b)) converges strongly to Ea((a,b)) for each
a,b € R witha <b and a,b ¢ o,(A), where 0,(A) is the set of point spectra
of A.
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Lemma B.4 Let {A,}22, be a sequence of self-adjoint operators on H,
A be a self-adjoint operator on H. Suppose A,, converges to A in the strong
resolvent topology, then for all complex valued bounded continuous function
fonR, f(A,) converges strongly to f(A).

Lemma B.5 Let {z)}rca be a net of bounded self-adjoint operators on
H, x be a bounded self-adjoint operator on H. Suppose that

sup ||z < oo,
AEA

and x) converges to x in the strong resolvent topology, then x) converges
strongly to x.

C. Tensor Categories

We briefly review the definition of tensor categories. For more details
about category theory, see MacLane [11] (we follow the style in Kassel [9,
Chapter XI]).

Definition C.1 Let ¢,%” be categories, F,G be functors from ¢ to €.
A natural transformation 0 : F — G is a function which assigns to each
object A in % a morphism 0(A) : F(A) — G(A) of ¢’ in such a way that
for every morphism f: A — B in %, the following diagram commutes:

F(4) 22 g(a)

f(f)l O lg(f)

F(B) 22 g(B)

If 6(A) is an invertible morphism for every A, we call 6 a natural isomor-
phism.

Definition C.2 A tensor category (¢,®,1,a,\, p) is a category €
equipped with

(1) a bifunctor ® : € x ¢ — € called a tensor product?,

2This implies (f' ® ¢') o (f ® g) = (f' o f) ® (¢’ o g) for all morphisms in €, and
14 ®1p = 1agp for all objects in €.
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(2) an object I in € called a unit object,
(3) a natural isomorphism a : ®(® X 1¢)? — ®(l¢ X ®) called an associa-
tivity constraint.

(3) means for any objects A, B,C in ¢, there is an isomorphism a4 g ¢ :
(A® B)®@ C — A® (B ® C) such that the diagram

(A®B)®C ——22 . A®(B®C)
(f®g)®hi O lf@(g@h)
(A'®@B)&C' *a’,8’,0’ A'® (B ©C)

commutes for all morphisms f, g, h in %.

(4) a natural isomorphism A : ®(I x 1¢)* — 14 (resp. p: @(lg x I) — 1)
called a left (resp. right) unit constraint with respect to I.

(4) means for any object A in €, there is an isomorphism Ay : I ® A — A
(resp. pa : A® I — A) such that the following two diagrams commute:

T@ A4 4 Aol 254

11®fl O lf f®11i O lf
)‘A’ Par

I®AIHA/ A/®IHAI

for each morphism f : A — A’ in ¥. These functors and natural isomor-
phisms satisfy the Pentagon Axiom and the Triangle Aziom. Namely, for
all objects A, B,C and D, the following diagrams commute:

3®(® X 1) is the composition of the functors ® X 1l : (¢ x €) X € — € x € and
®:CXEC€—C.

4] x 1< is the functor from € to ¥ x € given by A+ (I, A) for all objects in € and
f— (1r, f) for all morphisms in %.
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aa,B,c®lp

(AeB)®C)® D

(A®(Bel)eD
aagB,C,D O A®(B®C)® D)
ilmaa,c,p

A® (B® (C®D))

QA B,CQD

(A® B)® (C ® D)

QA I,B

(A )® B Ae (I ®B)
pPaA®lp 1a®AB
A®B

Definition C.3 Let (%,®,1,a, )\, p), (¢/,®,I',a’, N, p’) be tensor cate-
gories.

(1) A triple (F, hy, ho) is called a tensor functor from € to €' if F : € —
¢’ is a functor, h; is an isomorphism I’ = F(I) and hy is a natural
isomorphism ®(F x F)% & F®, and they satisfy

AF(A),F(B),F(O)
_— >

(F(A)® F(B)) @ F(C) F(A) @ (F(B)® F(C))

hz(A:B)®1}-(c')i lly-(A)@)hz(Byc)
F(A® B)® F(C) o F(A) @ F(BxC)
hz(A®B,C)i lhz(A,B@)C)
F((A® B)®C) F(A® (B (C))
F(aa,B,c)
A/ /
I F(A) —N 0 F(a) FA) oI TN Fa)
h1®1]-'(A)\L O T.’F()\A) 1F(A)®h1l O T}-(,DA)
FDeFA) s FI0A)  FA)FD) 5 FAs)

S®(F x F) is a functor € x € — € which assigns F(A) ® F(B) for each object (A, B)
in ¥ x ¢ and F(f) ® F(g) for each morphism (f,g) in € x €.
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for all objects A, B,C' in %.

(2) A natural tensor transformation n : (F, h1, ha) — (F', ki, hY) between
tensor functors from ¢ to ¢’ is a natural transformation F — F’ such
that the following diagrams commute:

F(I) FA) e F(B) Y2 ra s B)
h1
I O n(I) n(A)®n(B) O n(A®DB)
W,
hl A,
F(I) FA) e 7B 222 F (40 B)

for all objects A, B in €. If 1 is also a natural isomorphism, it is called
a natural tensor isomorphism.

(3) A tensor equivalence between tensor categories €, %" is a tensor functor
F : € — €' such that there exists a tensor functor F' : ¢’ — € and
natural tensor isomorphisms 7 : lgr — FoF and 6 : F' o F = 1. If
n and 6 can be taken to be identity transformations, then we say % is
isomorphic to €’ as a tensor category.
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