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Motivic interpretation of Milnor K-groups attached
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Abstract. In the paper [Som90], Somekawa conjectures that his Milnor K-group

K(k, G1, . . . , Gr) attached to semi-abelian varieties G1, . . . , Gr over a field k is iso-

morphic to Extr
Mk

(Z, G1[−1]⊗· · ·⊗Gr[−1]) whereMk is a certain category of motives

over k. The purpose of this note is to prove this conjecture, when the varieties Gi

are Jacobians of smooth curves over a perfect field and we take Mk as Voevodsky’s

category of motives DMeff
− (k).
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1. Introduction

To unify the Moore exact sequence and the Bloch exact sequence,
K. Kato defined the generalized Milnor K-groups attached to finite family
of semi-abelian varieties over a base field k in [Som90]. (See also [Kah92]).
Given semi-abelian varieties G1, . . . , Gr over k, one defines K(k, {Gi}r

i=1)
= F/R, where F is the group

⊕

E/k:finite

G1(E)⊗ · · · ⊗Gr(E)

and R is a subgroup generated by various elements corresponding to the
projection formula relation and Weil reciprocity relation; for the precise
definition, see Section 2. This group is a generalization of the Milnor K-
group as the following example shows.

Example 1.1 (cf. [Som90, 1.4]) In the notation above, if G1 = G2 =
· · · = Gr = Gm, the following equality holds.

K
(
k, {Gi}r

i=1

)
= KM

r (k).
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Further generalizations were proposed and studied by W. Raskind and
M. Spiess [RS00] and R. Akhtar [MilKt], [ZerCy] and [TorMi]. In [Som90],
Somekawa conjectures that the Somekawa K-groups should be motivic co-
homology groups attached to semi-abelian varieties. More precisely

Conjecture 1.2 (Somekawa conjecture) Let G1, . . . , Gr be semi-abelian
varieties over k, then we have the canonical isomorphism

K
(
k, {G}r

i=1

) ∼→ Extr
Mk

(
Z,

r⊗

i=1

Gi[−1]
)

where Mk is a certain category of motives over k and Gi[−1] means 1-motif
(cf. [Del74]).

In this paper we will examine this conjecture, if we take Mk as Voevod-
sky’s category of motives DMeff

− (k).

Main Theorem 1.3 (Somekawa conjecture for Jacobian varieties) Let
(C1, a1), . . . , (Cn, an) be pointed projective smooth geometrically connected
curves over perfect field k. Then we have the isomorphism

K
(
k, {J}n

i=1

) ∼→ HomDMeff
− (k)

(
Mgm(Spec k),Z

(
n∧

i=1
(Ci, ai)

)
[n]

)

where Ji is the Jacobian of Ci and Z(
n∧

i=1
(Ci, ai)) := C∗(

⊗n
i=1 Ztr(Ci, ai))

·[−n].

2. Proof

First, we will briefly review the definition of mixed K-groups from
[ZerCy] and [RS00].

2.1 Let k be a field, and X a smooth quasi-projective varieties over k. We
use the notation CH0(X) for the group of zero-cycles on X modulo rational
equivalence. If G is a group scheme defined over k and A is k-algebra, we
use the notation G(A) for the group of A-rational points, i.e., the set of
morphisms Spec A → G compatible with the structure map.

2.2 Suppose k is a field and G is a semi-abelian variety defined over k,
that is, there is an exact sequence of group schemes (viewed as sheaves in
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the flat topology) over k:

0 → T → G → A → 0

where T is a torus and A is an abelian variety.

2.3 In the notation above, let K/k be an algebraic function field and v a
place of K/k. Let L/Kv be a finite unramified Galois extension such that
T ×k F

∼→ Gm
n for the residue field F of L and some n; let w be the unique

extension of v of L. We obtain the following commutative diagram of exact
sequences defining a map rw = (r1

w, . . . , rn
w);

0

²²

0

²²
0 // T (Ow) //

²²

G(Ow) //

²²

A(Ow) //

o
²²

0

0 // T (L) //

ordw

²²

G(L) //

rw=(r1
w,...,rn

w)

²²

A(L) // 0

Zn id //

²²

Zn

²²
0 0

2.4 In the notation above, we are going to construct a map

∂v : G(Kv)⊗K×
v → G(k(v)).

Fix g ∈ G(Kv) and h ∈ K×
v . For each i = 1, . . . , n, we define hi ∈ T (L) to

be the n-th tuple having h in the i-th coordinate and 1 elsewhere. Then set

ε(g, h) =
(
(−1)ordw(h)r1

w(g), . . . , (−1)ordw(h)rn
w(g)

)
∈ T (Ow) ⊂ G(Ow)

and

∂̃v(g, h) = ε(g, h)gordw(h)
n∏

i=1

h
−ri

w(g)
i ∈ G(Ow).
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We define the “extended tame symbol” ∂v(g, h) to be the image of ∂̃v(g, h)
under the canonical map G(Ow) → G(F ); Then ∂v(g, h) is invariant under
the action of Gal(F/k(v)), so that it belongs to G(k(v)). This definition of
∂v is independent of the choice of L and of the isomorphism from the torus
to Gm

⊕n.

2.5 Let r ≥ 0 and s ≥ 0 be integers; let X1, . . . , Xr be smooth quasipro-
jective varieties defined over k and G1, . . . , Gr a finite (possibly empty)
family of semi-abelian varieties defined over k. We define Mixed K-groups
K(k, {CH0(Xi)}r

i=1; {Gj}s
j=1) as follows. If r = 0 and s = 0, we write

K(k, ∅) for our groups and set K(k, ∅) = Z. For r = 1, we define

K
(
k, {CH0(Xi)}r

i=1; {Gj}s
j=1

)
= F/R

where

F =
⊕

E/k:finite

r⊗

i=1

CH0((Xi)E)⊗
s⊗

j=1

Gi(E)

and R ⊂ F is the subgroup generated by the relations R1-R2 below.
To simplify the notations, set Hi(E) = CH0((Xi)E) for i = 1, . . . , r and
Hj(E) = Gj−r(E) for j = r + 1, . . . , r + s.

R1 For any finite extensions k ↪→ E1
ψ
↪→ E2, let hi0 ∈ Hi0(E2) and hi ∈

Hi(E1) for i 6= i0, the relation

(
ψ∗(h1)⊗ · · · ⊗ hi0 ⊗ · · · ⊗ ψ∗(hr)

)
E2

− (
h1 ⊗ · · · ⊗ ψ∗(hi0)⊗ · · · ⊗ hr

)
E1

where ψ∗ or ψ∗ means the pullback or pushforward map for the Chow
group structure on Hi (if 1 5 i 5 r) or the group scheme structure on
Hi (if s 5 i 5 r + s).

R2 For every algebraic function field K/k and all choices fi ∈ CH0((Xi)K)
for i = 1, . . . , r and gj ∈ Gj(K) for j = 1, . . . , s, h ∈ K× such that
for each place v of K/k, there exists i(v) such that gi ∈ Gi(Ov) for all
i 6= i(v), the relation for s > 0:
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∑

v:place of K/k

(
sv(f1)⊗ · · · ⊗ sv(fr)⊗ g1(v)

⊗ · · · ⊗ ∂v(gi(v), h)⊗ · · · ⊗ gr(v)
)
k(v)/k

Here Ov is the valuation ring of v, sv : CH0((Xi)K) → CH0((Xi)k(v)) is
the specialization map for Chow groups (cf. [Ful84, 20.3]) and gi(v) ∈
Gi(k(v)) (i 6= i(v)) denotes the reduction of gi ∈ G(Ov) modulo mv.

If s = 0, the element

∑

v:place of K/k

ordv(h)
(
sv(f1)⊗ · · · ⊗ sv(fr)

)
k(v)/k

.

The class in F/R of an element a1 ⊗ · · · ⊗ ar ∈ G1(E) ⊗ . . . Gr(E) will be
denoted {a1, . . . , ar}E/k. If r = 0, we simply write F/R by K(k, {Gi}s

i=1)
above.

Remark 2.6

(1) By the relation R1, if ψ is a k-isomorphism E1
∼→ E2, then we have the

equality

{g1, . . . , gr}E1/k = {ψ∗(g1), . . . , ψ∗(gr)}E2/k

This shows that symbols form a set.
(2) If σ : Y → Spec k is a projective variety, we will define

A0(Y ) := ker
(
σ∗ : CH0(Y ) → CH0(Spec k) ∼→ Z

)

and note that if Y contains a k-rational point, then σ∗ induces the direct
summand decomposition

CH0(Y ) ∼→ Z⊕A0(Y )

(3) Suppose that X1, . . . , Xq are smooth quasiprojective varieties and
Y1, . . . , Yr smooth projective varieties over k. By replacing CH0 with A0

in the appropriate instances, we can define groups K(k, {CH0(Xi)}q
i=1,

{A0(Yj)}r
j=1, {Gk}s

k=1) as was done previously.
(4) The Chow groups CH(M) of a Chow motive M = (X, p, m) are defined

as p∗ CH∗+m(X). One can also define specialization map for Chow
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groups of motives. (cf. [RS00, 2.3]). Hence for Chow motives M1, . . . ,

Mr, we can define the K(k, {CH0(Mi)}r
i=1) in exactly the same way as

above.

2.7 Now we recall fundamental isomorphisms from [RS00] and [ZerCy].

(1) (cf. [RS00, 2.2]). For projective smooth varieties X1, . . . , Xn over a field
k, we have isomorphisms

CH0(X1 × · · · ×Xn) ∼→ K
(
k, {CH0(Xi)}n

i=1

)

∼→ K
(
k, {CH0(h(Xi))}n

i=1

)

where h(Xi) means the Chow motive associated to Xi.
(2) (cf. [ZerCy, 2.6]). For projective smooth varieties X1, . . . , Xr, . . . , Xr+s,

if Xr = Spec k, then we have the canonical isomorphism

K
(
k, {CH0(Xi)}r

i=1; {A0(Xj)}r+s
j=r+1

)

∼→ K
(
k, {CH0(Xi)}r−1

i=1 ; {A0(Xj)}r+s
j=r+1

)
.

(3) (cf. [RS00, 2.4] and [ZerCy, 2.10], see also [Som90, 2.4]). For smooth
projective geometrically connected curves C1, . . . , Cd over k with Jaco-
bian J1, . . . , Jd such that Ci(k) 6= ∅ for each i, we have the isomorphisms

K
(
k, {CH0(h(C+

i ))}d
i=1

) ∼→ K
(
k, {A0(Ci)}d

i=1

) ∼→ K
(
k, {Ji}d

i=1

)

where h(C+
i ) is the Chow motive (Ci, [∆Ci ] − [{ε} × Ci] − [Ci × {ε}])

with ε ∈ Ci(k).
(4) (cf. [ZerCy, 2.8].) For projective smooth geometrically connected curves

C1, . . . , Cr, . . . , Cr+s over a field k with Ci(k) 6= ∅, the canonical pro-
jection map

C1×· · ·×Cr−1×Cr×Cr+1×· · ·×Cr+s → C1×Cr−1×Cr+1×· · ·×Cr+s

induces the split exact sequences

0 → KA → KCH → KZ → 0

where
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KA := K
(
k, {CH0(Ci)}r−1

i=1 ; {A0(Cj)}r+s
j=r

)
,

KCH := K
(
k, {CH0(Ci)}r

i=1; {A0(Cj)}r+s
j=r+1

)
and

KZ := K
(
k, {CH0(Ci)}r−1

i=1 ; {A0(Cj)}r+s
j=r+1

)
.

Here we utilize the isomorphism KZ
∼→ K(k, {CH0(Ci)}r−1

i=1 ,

CH0(Spec k); {A0(Cj)}r+s
j=r+1) in (2). This result is considered as a gen-

eralization of well-known split sequence

0 → A0(Cr) → CH0(Cr) → Z→ 0.

Notations 2.8 We consider the category of (effective) Chow motives
Choweff(k) over field k. (See [Man68] or [Sch91]). For projective geo-
metrically connected smooth curves C1, . . . , Cr, . . . , Cr+s over a field k, we
put the effective Chow motive

h(Ci)r
i=1 ⊗ h

(
C+

j

)r+s

j=r+1
:= h(C1)⊗ · · · ⊗ h(Cr)⊗ h

(
C+

r+1

)⊗ · · · ⊗ h
(
C+

r+s

)
.

We put the trivial Chow motive Z(0) := (Spec k,∆Spec k). As in 2.7 (4), the
canonical decomposition

h(Cr)
∼→ Z(0)⊕ h

(
C+

r

)

induces the split sequence

0 → HA → HCH → HZ → 0

where

HA := HomChoweff (k)

(
Z(0), h(Ci)r−1

i=1 ⊗ h(C+
j )r+s

j=r

)
,

HCH := HomChoweff (k)

(
Z(0), h(Ci)r

i=1 ⊗ h(C+
j )r+s

j=r+1

)
and

HZ := HomChoweff (k)

(
Z(0), h(Ci)r−1

i=1 ;h(C+
j )r+s

j=r+1

)
.

Corollary 2.9 In the Notation 2.8, we have the isomorphism

HomChoweff (k)

(
Z(0), h(Ci)r

i=1 ⊗ h(C+
j )r+s

j=r+1

)

∼→ K
(
k, {CH0(Ci)}r

i=1; {A0(Cj)}r+s
j=r+1

)
.
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Proof. We prove the assertion by induction on s. For s = 0, we have the
isomorphism

HomChoweff (k)

(
Z(0), h(Ci)r

i=1

) ∼→ CH0(C1 × · · · × Cr).

Therefore the assertion follows from 2.7 (1). For the inductive step, let us
notice the split exact sequences

0 → HA → HCH → HZ → 0,

0 → KA → KCH → KZ → 0

in 2.7 (4) and 2.8. If we have the isomorphisms HZ
∼→ KZ and HCH

∼→
KCH compatible with the short exact sequences above, then we also get the
isomorphism HA

∼→ KA. Hence we get the result. ¤

From now on, let k be a perfect field and (Ci, ai) (i = 1, · · · , n) smooth
projective geometrically connected curves.

2.10 By [Voe00, 2.1.4, 3.2.6], we have the fully faithful embeddings

Choweff(k) ↪→ DMeff
gm(k) ↪→ DMeff

− (k)

which sends h(X) to C∗(Ztr(X)) for any smooth projective variety X over
k. Since

h(Ci)r
i=1 ⊗ h(C+

j )r+s
j=r+1 = Coker

(
r+s⊕

k=r+1

h

(
r+s∏

i=1
i 6=k

Ci

)
→ h

( r+s∏

i=1

Ci

))

is a direct summand of h(
∏r+s

i=1 Ci), it turns out that h(C)r
1⊗h(C+)r+s

r+1 goes
to

r⊗

i=1

C∗(Ztr(Ci))⊗ Z
(

r+s∧
i=r+1

(Ci, ai)
)
[−s]

= Coker

(
r+s⊕

k=r+1

C∗
(
Ztr

(
r+s∏

i=1
i 6=k

Ci

))
→ C∗

(
Ztr

( r+s∏

i=1

Ci

)))
.

The following is an immediate consequence of 2.9 and 2.10.
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Corollary 2.11 In the notation above, we have the isomorphism

HomDMeff
− (k)

(
Mgm(Spec k),

r⊗

i=1

C∗(Ztr(Ci))⊗ Z
(

r+s∧
i=r+1

(Ci, ai)
)
[−s]

)

∼→ K
(
k, {CH0(Ci)}r

i=1; {Jj}r+s
j=r+1

)

where Ji is the Jacobian of Ci.

The main theorem is just the case for r = 0 in the Corollary 2.11 above.
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