Bases for the derivation modules of two-dimensional multi-Coxeter arrangements and universal derivations

Atsushi WAKAMIKO

(Received May 17, 2010; Revised June 1, 2010)

Abstract. Let \mathcal{A} be an irreducible Coxeter arrangement and \mathbf{k} be a multiplicity of \mathcal{A} . We study the derivation module $D(\mathcal{A}, \mathbf{k})$. Any two-dimensional irreducible Coxeter arrangement with even number of lines is decomposed into two orbits under the action of the Coxeter group. In this paper, we will explicitly construct a basis for $D(\mathcal{A}, \mathbf{k})$ assuming \mathbf{k} is constant on each orbit. Consequently we will determine the exponents of $(\mathcal{A}, \mathbf{k})$ under this assumption. For this purpose we develop a theory of universal derivations and introduce a map to deal with our exceptional cases.

 $Key\ words:$ Coxeter arrangement, Coxeter group, multi-arrangement, primitive derivation, multi-derivation module, logarithmic differential form

1. Introduction

Let V be an ℓ -dimensional Euclidean space with inner product I. Let S denote the symmetric algebra of the dual space V^* over \mathbb{R} . Denote the Smodule of \mathbb{R} -linear derivations of S by Der_S. Let F be the field of quotients of S and Der_F be the F-vector space of \mathbb{R} -linear derivations of F. Let $W \subseteq$ O(V, I) be a finite irreducible reflection group (a Coxeter group) and \mathcal{A} be the corresponding **Coxeter arrangement**, i.e., \mathcal{A} is the set of all reflecting hyperplanes of W. An arbitrary map $\mathbf{k} \colon \mathcal{A} \to \mathbb{Z}$ is called a **multiplicity** of \mathcal{A} . We say that the pair $(\mathcal{A}, \mathbf{k})$ is a multi-Coxeter arrangement. The S-module $D(\mathcal{A}, \mathbf{k})$, defined in Section 2, of derivations associated with $(\mathcal{A}, \mathbf{k})$ was introduced by Ziegler [13] when im $\mathbf{k} \subseteq \mathbb{Z}_{>0}$ and in [1], [2] for any multiplicity **k**. We say that $(\mathcal{A}, \mathbf{k})$ is **free** if $D(\mathcal{A}, \mathbf{k})$ is a free S-module. The polynomial degrees (= pdeg) [7] of a homogeneous S-basis for $D(\mathcal{A}, \mathbf{k})$ are called the **exponents** of $(\mathcal{A}, \mathbf{k})$. If $\mathbf{k} \equiv 1$, then $D(\mathcal{A}, \mathbf{k})$ coincides with the S-module $D(\mathcal{A})$ of logarithmic derivations and $(\mathcal{A}, \mathbf{k})$ is free (e.g., [8], [7]). More in general, when **k** is a constant function, $(\mathcal{A}, \mathbf{k})$ is free and we can explicitly construct a basis using basic invariants and a primitive derivation as in [2], [11]. In the case that **k** is not constant, however, we do not know how we can construct a basis for $D(\mathcal{A}, \mathbf{k})$ even when $\ell = 2$. The main result

²⁰⁰⁰ Mathematics Subject Classification : 32S22.

of this paper gives an explicit construction of a basis for the module $D(\mathcal{A}, \mathbf{k})$ when $\ell = 2$ and the multiplicity \mathbf{k} is W-equivariant: $\mathbf{k}(H) = \mathbf{k}(wH)$ for any $w \in W$ and $H \in \mathcal{A}$.

The structure of this paper is as follows: In Section 2, we define and discuss the **universal derivations** which will be used in the subsequent sections. Theorem 2.8 is the key result there. In Sections 3 and 4, we assume that $\ell = 2$. Then $W = I_2(h)$ is isomorphic to the dihedral group of order 2h. When h is odd, \mathcal{A} itself is the unique W-orbit. Thus **k** is constant and we can construct a basis (e.g., see [11], [5], [1], [2]). So we may assume that h is even with $h \geq 4$. In this case, we have the W-orbit decomposition: $\mathcal{A} = \mathcal{A}_1 \cup \mathcal{A}_2$. Then both \mathcal{A}_1 and \mathcal{A}_2 are again irreducible arrangements if $h \geq 6$ (or equivalently if $W \neq B_2$). The corresponding irreducible Coxeter groups W_1 and W_2 are both isomorphic to $I_2(\frac{h}{2})$. For $a_1, a_2 \in \mathbb{Z}$, let (a_1, a_2) denote the multiplicity $\mathbf{k} : \mathcal{A} \to \mathbb{Z}$ with $\mathbf{k}(H) = a_1$ ($H \in \mathcal{A}_1$) and $\mathbf{k}(H) = a_2$ ($H \in \mathcal{A}_2$). We classify the set $\{(a_1, a_2) \mid a_1, a_2 \in \mathbb{Z}\}$ into sixteen cases. The first fourteen cases are listed in Table 1. We call the fourteen cases **ordinary**. The remaining two cases, which are when either $(a_1, a_2) = (4p, 4q + 2)$ or (4p + 2, 4q), are called to be **exceptional**

(a_1, a_2)	ζ	$ heta_1, heta_2$	basis for $D(\mathcal{A}, (a_1, a_2))$
(4p+1, 4q+1)	$E^{(2p,2q)}$	$E, I^*(dP_2)$	
(4p-1, 4q-1)	$E^{(2p,2q)}$	$D, I^*(dQ/Q)$	
(4p-1, 4q+1)	$E^{(2p,2q)}$	$I^*(dQ_1/Q_1), E$	
(4p+1, 4q-1)	$E^{(2p,2q)}$	$I^*(dQ_2/Q_2), E$	
(4p+1,4q)	$E^{(2p,2q)}$	$E, I^*(dQ_2)$	
(4p+3, 4q+2)	$E^{(2p+1,2q+1)}$	$E, I (aQ_2)$	
(4p-1,4q)	$E^{(2p,2q)}$	$D_1, I^*(dQ_1/Q_1)$	$ abla_{ heta_1}\zeta, abla_{ heta_2}\zeta$
(4p+1, 4q+2)	$E^{(2p+1,2q+1)}$	$D_1, I (uQ_1/Q_1)$	$\mathbf{v}_{\theta_1}\boldsymbol{\varsigma}, \mathbf{v}_{\theta_2}\boldsymbol{\varsigma}$
(4p, 4q+1)	$E^{(2p,2q)}$	$E, I^*(dQ_1)$	
(4p+2, 4q+3)	$E^{(2p+1,2q+1)}$	$L, I (a \otimes 1)$	
(4p, 4q-1)	$E^{(2p,2q)}$	$D_2, I^*(dQ_2/Q_2)$	
(4p+2, 4q+1)	$E^{(2p+1,2q+1)}$	$D_2, I (uQ_2/Q_2)$	
(4p, 4q)	$E^{(2p,2q)}$	$\partial_{x_1}, \partial_{x_2}$	
(4p+2, 4q+2)	$E^{(2p+1,2q+1)}$	O_{x_1}, O_{x_2}	

Table 1. Bases for $D(\mathcal{A}, (a_1, a_2))$ (ordinary cases) $(p \ge 0 \text{ or } q \ge 0)$

377

because our basis construction method in the ordinary cases does not work for the exceptional ones. The exceptional cases are listed in Table 2. The derivations $\zeta = E^{(s,t)}$ are universal. We will explain how to read the two Tables in Sections 3 and 4. Section 3 is devoted to the ordinary cases where the main tool is the **Levi-Civita connection**

$$\nabla : \operatorname{Der}_F \times \operatorname{Der}_F \to \operatorname{Der}_F$$

with respect to I together with **primitive derivations** D and D_i corresponding to W and W_i (i = 1, 2) respectively. The recipe here is Abe-Yoshinaga's theory developed in [5] and [1]. The main ingredient in Section 4 is the maps

$$\Phi_{\zeta}^{(1)} : \operatorname{Der}_{S} \to D(\mathcal{A}, (4p+2, 4q)),$$

$$\Phi_{\zeta}^{(2)} : \operatorname{Der}_{S} \to D(\mathcal{A}, (4p, 4q+2)),$$

defined by

$$\Phi_{\zeta}^{(1)}(\theta) := Q_1(\nabla_{\theta} \zeta) - (4p+1)\theta(Q_1)\zeta,$$
$$\Phi_{\zeta}^{(2)}(\theta) := Q_2(\nabla_{\theta} \zeta) - (4q+1)\theta(Q_2)\zeta,$$

where Q_i is a defining polynomial for \mathcal{A}_i (i = 1, 2) and ζ is (2p, 2q)-universal. Actually in Sections 3 and 4, we will construct bases only when either $p \ge 0$ or $q \ge 0$ in Tables 1 and 2. Lastly we cover the remaining cases using the duality: the existence of a non-degenerate S-bilinear pairing

$$\Omega(\mathcal{A}, \mathbf{k}) \times D(\mathcal{A}, \mathbf{k}) \longrightarrow S,$$

where $\Omega(\mathcal{A}, \mathbf{k})$ is the S-module of logarithmic differential 1-forms associated with the multi-Coxeter arrangement $(\mathcal{A}, \mathbf{k})$ defined in [13], [1] and [3]. We

(a_1, a_2)	ζ	$ heta_1, heta_2$	basis for $D(\mathcal{A}, (a_1, a_2))$
(4p+2,4q)	$E^{(2p,2q)}$	$\partial_{x_1}, \partial_{x_2}$	$\Phi^{(1)}_\zeta(heta_1), \Phi^{(1)}_\zeta(heta_2)$
(4p, 4q+2)	$E^{(2p,2q)}$	$\partial_{x_1}, \partial_{x_2}$	$\Phi^{(2)}_{\zeta}(heta_1), \Phi^{(2)}_{\zeta}(heta_2)$

Table 2. Bases for $D(\mathcal{A}, (a_1, a_2))$ (exceptional cases) $(p \ge 0 \text{ or } q \ge 0)$

conclude this paper with Section 5 in which we present Table 4 showing the exponents of $(\mathcal{A}, \mathbf{k})$.

Remark In addition to $I_2(h)$ with $h \ge 4$ even, there exist two kinds of irreducible Coxeter arrangements which have two *W*-orbits: B_{ℓ} ($\ell \ge 2$) and F_4 . For each of these two cases, when **k** is an equivariant multiplicity, a basis for $D(\mathcal{A}, \mathbf{k})$ is constructed with a method similar to the one applied to the ordinary cases here. Details are found in [4].

2. Universal derivations

Let \mathcal{A} be an irreducible Coxeter arrangement. For each hyperplane $H \in \mathcal{A}$, choose a linear form $\alpha_H \in V^*$ such that $\ker(\alpha_H) = H$. The product $Q := \prod_{H \in \mathcal{A}} \alpha_H$ lies in S. Let Ω_S be the S-module of regular 1-forms and Ω_F be the F-vector space of rational 1-forms on V. Let I^* denote the inner product on V^* induced from the inner product I on V. Then I^* naturally induces an S-bilinear map $I^* : \Omega_F \times \Omega_F \to F$. Thus we have an F-linear isomorphism

$$I^*: \Omega_F \to \mathrm{Der}_F$$

by $[I^*(\omega)](f) = I^*(\omega, df)$ where $\omega \in \Omega_F$, $f \in F$. Recall the S-module

$$\Omega(\mathcal{A}, \infty) := \left\{ \omega \in \Omega_F \mid Q^N \omega \text{ and } (Q/\alpha_H)^N \omega \wedge d\alpha_H \\ \text{are both regular for any } H \in \mathcal{A} \text{ and } N \gg 0 \right\}$$

of logarithmic 1-forms [2]. We also have the S-module

$$D(\mathcal{A}, -\infty) := I^*(\Omega(\mathcal{A}, \infty))$$

= { $\theta \in \operatorname{Der}_F \mid Q^N \theta \in \operatorname{Der}_S$ and $(Q/\alpha_H)^N \theta(\beta)$ is regular for
 $\beta \in V^*$ whenever $I^*(\beta, \alpha_H) = 0$ for any $H \in \mathcal{A}$ and $N \gg 0$ }

of logarithmic derivations [2]. Let

$$\nabla \colon \mathrm{Der}_F \times \mathrm{Der}_F \longrightarrow \mathrm{Der}_F$$
$$(\theta, \delta) \longmapsto \nabla_\theta \delta$$

be the Levi-Civita connection with respect to *I*. The derivation $\nabla_{\theta} \delta \in \text{Der}_F$ is characterized by the equality $(\nabla_{\theta} \delta)(\alpha) = \theta(\delta(\alpha))$ for any $\alpha \in V^*$.

For $\alpha \in V^*$ let $S_{(\alpha)}$ denote the localization of S at the prime ideal (α) of S. For an arbitrary multiplicity $\mathbf{k} : \mathcal{A} \to \mathbb{Z}$, define an S-submodule $D(\mathcal{A}, \mathbf{k})$ of $D(\mathcal{A}, -\infty)$ by

$$D(\mathcal{A}, \mathbf{k}) := \left\{ \theta \in D(\mathcal{A}, -\infty) \mid \theta(\alpha_H) \in \alpha_H^{\mathbf{k}(H)} S_{(\alpha_H)} \text{ for any } H \in \mathcal{A} \right\}$$

from [3]. The module $D(\mathcal{A}, \mathbf{k})$ was introduced by Ziegler [13] when im $\mathbf{k} \subseteq \mathbb{Z}_{\geq 0}$. Note $D(\mathcal{A}, \mathbf{0}) = \text{Der}_S$ where $\mathbf{0}$ is the zero multiplicity. For each $\mathbf{k} \colon \mathcal{A} \to \mathbb{Z}$, define $Q^{\mathbf{k}} := \prod_{H \in \mathcal{A}} \alpha_H^{\mathbf{k}(H)} \in F$. Recall the following generalization of Saito's criterion [9]:

Theorem 2.1 (Abe [1, Theorem 1.4]) Let $\mathbf{k}: \mathcal{A} \to \mathbb{Z}$ and $\theta_1, \ldots, \theta_\ell \in D(\mathcal{A}, \mathbf{k})$. Then $\theta_1, \ldots, \theta_\ell$ form an S-basis for $D(\mathcal{A}, \mathbf{k})$ if and only if $\det[\theta_j(x_i)] \doteq Q^{\mathbf{k}}$. Here \doteq implies the equality up to a non-zero constant multiple.

Definition 2.2 Let $\mathbf{k} : \mathcal{A} \to \mathbb{Z}$ and $\zeta \in D(\mathcal{A}, -\infty)^W$, where the superscript W stands for the W-invariant part. We say that ζ is **k-universal** when ζ is homogeneous and the S-linear map

$$\begin{split} \Psi_{\zeta} : \mathrm{Der}_{S} &\longrightarrow D(\mathcal{A}, 2\mathbf{k}) \\ \theta &\longmapsto \nabla_{\theta} \zeta \end{split}$$

is bijective.

Example 2.3 The Euler derivation E, which is the derivation characterized by $E(\alpha) = \alpha$ for any $\alpha \in V^*$, is **0**-universal because $\Psi_E(\delta) = \nabla_{\delta} E = \delta$.

For an irreducible Coxeter group W, there exist algebraically independent homogeneous polynomials P_1, P_2, \ldots, P_ℓ with deg $P_1 < \deg P_2 \leq \cdots \leq \deg P_{\ell-1} < \deg P_\ell$ by Chevalley's Theorem [6], which are called **basic invariants**. When $D \in \text{Der}_F$ satisfies

$$D(P_j) = \begin{cases} 0 & \text{if } 1 \le j < \ell, \\ 1 & \text{if } j = \ell, \end{cases}$$

we say that D is a **primitive derivation**. It is unique up to a nonzero constant multiple. Let $R := S^W$ be the W-invariant subring of S and

$$T := \{ f \in R \mid D(f) = 0 \}.$$

Theorem 2.4 ([2, Theorem 3.9 (1)], [3, Theorem 4.4])

(1) We have a T-linear automorphism

$$\nabla_D : D(\mathcal{A}, -\infty)^W \longrightarrow D(\mathcal{A}, -\infty)^W,$$
$$\theta \longmapsto \nabla_D \theta$$

(2)
$$\nabla_D(D(\mathcal{A}, 2\mathbf{k} + \mathbf{1})^W) = D(\mathcal{A}, 2\mathbf{k} - \mathbf{1})^W$$
 for any multiplicity $\mathbf{k} : \mathcal{A} \to \mathbb{Z}$.

Note that ∇_D^{-1} and ∇_D^k $(k \in \mathbb{Z})$ are also *T*-linear automorphisms.

Let x_1, \ldots, x_ℓ be a basis for V^* . Put $A := [I^*(x_i, x_j)]_{ij}$ which is a nonsingular real symmetric matrix. For simplicity let ∂_{x_j} and ∂_{P_j} denote $\partial/\partial x_j$ and $\partial/\partial P_j$ respectively. Note that $D = \partial_{P_\ell}$.

Proposition 2.5 Let $k \in \mathbb{Z}$. Here **k** is a constant multiplicity: $\mathbf{k} \equiv k$. Then the derivation $\nabla_D^k E$ is $(-\mathbf{k})$ -universal.

Proof. When $k \leq 0$, the result was first proved by Yoshinaga in [12]. Assume k > 0. Recall a basis $\eta_1^{(-2k)}, \ldots, \eta_\ell^{(-2k)}$ for $D(\mathcal{A}, -2k)$ introduced in [2, Definition 3.1]. Then we have

$$\left[\nabla_{\partial_{x_1}} \nabla_D^k E, \dots, \nabla_{\partial_{x_\ell}} \nabla_D^k E\right] = \left[\eta_1^{(-2k)}, \dots, \eta_\ell^{(-2k)}\right] A^{-1},$$

which is the second equality of [2, Proposition 4.3] (in the differential-form version). $\hfill \Box$

Proposition 2.6 Let $\zeta \in D(\mathcal{A}, -\infty)^W$ be k-universal. Then

(1) the S-linear map

$$\begin{split} \Psi_{\zeta} \colon D(\mathcal{A}, -\mathbf{1}) &\longrightarrow D(\mathcal{A}, 2\mathbf{k} - \mathbf{1}) \\ \theta &\longmapsto \nabla_{\theta} \zeta \end{split}$$

is bijective, (2) $\zeta \in D(\mathcal{A}, 2\mathbf{k} + \mathbf{1})^W$, and

(3)
$$\alpha_H^{-2\mathbf{k}(H)-1}\zeta(\alpha_H)$$
 is a unit in $S_{(\alpha_H)}$ for any $H \in \mathcal{A}$.

Proof. (1) Note that $\partial_{P_1}, \ldots, \partial_{P_\ell}$ form an S-basis for $D(\mathcal{A}, -1)$ [2, p. 823]. Let $1 \leq j \leq \ell$. Then

$$Q\nabla_{\partial_{P_i}}\zeta = \nabla_{Q\partial_{P_i}}\zeta \in D(\mathcal{A}, 2\mathbf{k})$$

because $Q\partial_{P_i} \in \text{Der}_S$. Thus

$$(\nabla_{\partial_{P_j}}\zeta)(\alpha_H) \in \alpha_H^{2\mathbf{k}(H)-1}S_{(\alpha_H)} \quad (H \in \mathcal{A}).$$

Pick $H \in \mathcal{A}$ arbitrarily and choose an orthonormal basis x_1, \ldots, x_ℓ for V^* so that $H = \ker(x_1)$. For $i = 2, \ldots, \ell$ define $g_i := (Q/x_1)^N Q(\nabla_{\partial_{P_j}}\zeta)(x_i) \in S$ for a sufficiently large positive integer N. Let $s = s_H$ denote the orthogonal reflection through H. Then $s(g_i) = -g_i$. Thus $g_i \in x_1S$ and

$$\left(\nabla_{\partial_{P_j}}\zeta\right)(x_i) = (Q/x_1)^{-N}g_i/Q \in S_{(x_1)}.$$

This implies $\nabla_{\partial_{P_i}} \zeta \in D(\mathcal{A}, -\infty)$ and thus $\nabla_{\partial_{P_i}} \zeta \in D(\mathcal{A}, 2\mathbf{k} - 1)$. One has

$$\det \left[\left(\nabla_{\partial_{P_j}} \zeta \right)(x_i) \right]$$

= $\det \left(\left[\left(\nabla_{\partial_{x_j}} \zeta \right)(x_i) \right] \left[\frac{\partial P_i}{\partial x_j} \right]^{-1} \right) \doteq Q^{-1} \det \left[\left(\nabla_{\partial_{x_j}} \zeta \right)(x_i) \right]$
 $\doteq Q^{2\mathbf{k}-1}$

by the chain rule $\partial_{x_j} = \sum_{s=1}^{\ell} (\partial P_s / \partial x_j) \partial_{P_s}$ and the equality det $[\partial P_i / \partial x_j] \doteq Q$. Applying Theorem 2.1 we conclude that $\nabla_{\partial_{P_1}} \zeta, \ldots, \nabla_{\partial_{P_\ell}} \zeta$ form an *S*-basis for $D(\mathcal{A}, 2\mathbf{k} - \mathbf{1})$.

(2) By (1), $\nabla_D \zeta \in D(\mathcal{A}, 2\mathbf{k} - \mathbf{1})^W$. Thanks to Theorem 2.4, we have $\zeta \in D(\mathcal{A}, 2\mathbf{k} + \mathbf{1})^W$.

(3) By (2), $\zeta(\alpha_H) \in \alpha_H^{2\mathbf{k}(H)+1}S_{(\alpha_H)}$ for any $H \in \mathcal{A}$. Assume that $\alpha_H^{-2\mathbf{k}(H)-1}\zeta(\alpha_H)$ is not a unit in $S_{(\alpha_H)}$ for some $H \in \mathcal{A}$. Choose an orthonormal basis x_1, x_2, \ldots, x_ℓ for V^* so that $H = \ker(x_1)$. Then $\zeta(x_1) \in x_1^{2\mathbf{k}(H)+2}S_{(x_1)}$. Thus $(\nabla_{\partial_{x_j}}\zeta)(x_1) \in x_1^{2\mathbf{k}(H)+1}S_{(x_1)}$ for each j with $1 \leq j \leq \ell$ and $Q^{2\mathbf{k}} \doteq \det[(\nabla_{\partial_{x_j}}\zeta)(x_i)] \in x_1^{2\mathbf{k}(H)+1}S_{(x_1)}$, which is a contradiction. \Box **Proposition 2.7** (cf. [5, Theorem 10], [1, Theorem 2.1]) If $\zeta \in D(\mathcal{A}, \mathcal{A})$

 $-\infty)^W$ is k-universal and $\mathbf{m}:\mathcal{A}\to\{-1,0,1\}$ is a multiplicity, then the S-linear map

$$\begin{split} \Psi_{\zeta} \colon D(\mathcal{A},\mathbf{m}) &\longrightarrow D(\mathcal{A},2\mathbf{k}+\mathbf{m}) \\ \theta &\longmapsto \nabla_{\theta} \, \zeta \end{split}$$

is bijective.

Proof. Note that $D(\mathcal{A}, \mathbf{m}) \subseteq D(\mathcal{A}, -1)$ and $D(\mathcal{A}, 2\mathbf{k} + \mathbf{m}) \subseteq D(\mathcal{A}, 2\mathbf{k} - 1)$. By Proposition 2.6 (1), the restriction of

$$\Psi_{\zeta} \colon D(\mathcal{A}, -\mathbf{1}) \longrightarrow D(\mathcal{A}, 2\mathbf{k} - \mathbf{1})$$

to $D(\mathcal{A}, \mathbf{m})$ is injective. Thus it is enough to prove $\Psi_{\zeta}(D(\mathcal{A}, \mathbf{m})) = D(\mathcal{A}, 2\mathbf{k} + \mathbf{m})$. Let $\theta \in D(\mathcal{A}, -\mathbf{1})$. Pick $H \in \mathcal{A}$ arbitrarily and fix it. Choose an orthonormal basis x_1, x_2, \ldots, x_ℓ with $H = \ker(x_1)$. Let $k := \mathbf{k}(H)$ and $m := \mathbf{m}(H)$. Then, by Proposition 2.6 (3), $g := x_1^{-2k-1}\zeta(x_1)$ is a unit in $S_{(x_1)}$. Compute

$$\begin{split} (\Psi_{\zeta}(\theta))(x_{1}) &= (\nabla_{\theta} \zeta)(x_{1}) = \theta(\zeta(x_{1})) = \theta(x_{1}^{2k+1}g) \\ &= x_{1}^{2k+1}\theta(g) + (2k+1)x_{1}^{2k}\theta(x_{1})g \\ &= x_{1}^{2k+1}\sum_{j=1}^{\ell}\theta(x_{j})(\partial g/\partial x_{j}) + (2k+1)x_{1}^{2k}\theta(x_{1})g \\ &= x_{1}^{2k}\theta(x_{1})\{x_{1}(\partial g/\partial x_{1}) + (2k+1)g\} + x_{1}^{2k+1}\sum_{j=2}^{\ell}\theta(x_{j})(\partial g/\partial x_{j}) \\ &= x_{1}^{2k}\theta(x_{1})U + x_{1}^{2k+1}C, \end{split}$$

where $U := x_1(\partial g/\partial x_1) + (2k+1)g$ is a unit in $S_{(x_1)}$ and $C := \sum_{j=2}^{\ell} \theta(x_j)(\partial g/\partial x_j)$. Dividing the both sides by x_1^{2k+m} , we get

$$x_1^{-2k-m}(\Psi_{\zeta}(\theta))(x_1) = x_1^{-m}\theta(x_1)U + x_1^{1-m}C.$$

Note that $\partial g/\partial x_j \in S_{(x_1)}$ and $\theta(x_j) \in S_{(x_1)}$ $(j \ge 2)$ because $\theta \in D(\mathcal{A}, -\infty)$. So one has $C \in S_{(x_1)}$ and $x_1^{1-m}C \in S_{(x_1)}$ for $m \in \{\pm 1, 0\}$. Thus we conclude that

$$x_1^{-2k-m}(\Psi_{\zeta}(\theta))(x_1) \in S_{(x_1)} \Longleftrightarrow x_1^{-m}\theta(x_1) \in S_{(x_1)}.$$

This implies that

$$\Psi_{\zeta}(\theta) \in D(\mathcal{A}, 2\mathbf{k} + \mathbf{m}) \iff \theta \in D(\mathcal{A}, \mathbf{m})$$

because $H \in \mathcal{A}$ was arbitrarily chosen. This completes the proof.

The following is the main result in this section.

Theorem 2.8 Let $\mathbf{k} \colon \mathcal{A} \to \mathbb{Z}$ be a multiplicity of \mathcal{A} . Let $\zeta \in D(\mathcal{A}, -\infty)^W$ be \mathbf{k} -universal. Then $\nabla_D^{-1} \zeta$ is $(\mathbf{k} + \mathbf{1})$ -universal.

Proof. It is classically known [8] that $\xi_j := I^*(dP_j) \in D(\mathcal{A}, \mathbf{1})^W$ $(j = 1, \ldots, \ell)$ form an S-basis for $D(\mathcal{A}, \mathbf{1})$. By Proposition 2.7, $\nabla_{\xi_j} \zeta \in D(\mathcal{A}, 2\mathbf{k} + \mathbf{1})^W$ $(j = 1, \ldots, \ell)$ form an S-basis for $D(\mathcal{A}, 2\mathbf{k} + \mathbf{1})$. Since $\nabla_D \nabla_{\xi_j} \zeta \in D(\mathcal{A}, 2\mathbf{k} - \mathbf{1})^W$ $(j = 1, \ldots, \ell)$ by Theorem 2.4, we can write

$$\nabla_D \nabla_{\xi_j} \zeta = \sum_{i=1}^{\ell} f_{ij} \nabla_{\partial_{P_i}} \zeta$$

with W-invariant polynomials $f_{ij} \in R$ because of Proposition 2.6 (1). Then f_{ij} is a homogeneous element with degree $m_i + m_j - h < h$, where h is the Coxeter number, and f_{ij} belongs to $T = \{f \in R \mid Df = 0\}$. Since $m_i + m_{\ell+1-i} - h = 0$, $\det[f_{ij}] \in \mathbb{R}$. Apply ∇_D^{-1} to the both sides to get

$$\nabla_{\xi_j} \zeta = \nabla_D^{-1} \sum_{i=1}^{\ell} f_{ij} \nabla_{\partial_{P_i}} \zeta = \sum_{i=1}^{\ell} f_{ij} \nabla_{\partial_{P_i}} \nabla_D^{-1} \zeta.$$

Since $\nabla_{\xi_j} \zeta \in D(\mathcal{A}, 2\mathbf{k}+\mathbf{1})^W$ $(j = 1, ..., \ell)$ form an S-basis for $D(\mathcal{A}, 2\mathbf{k}+\mathbf{1})$, we have det $[f_{ij}] \in \mathbb{R}^{\times}$. This implies that $\nabla_{\partial_{P_j}} \nabla_D^{-1} \zeta$ $(j = 1, ..., \ell)$ form an S-basis for $D(\mathcal{A}, 2\mathbf{k}+\mathbf{1})$. Since $\nabla_D^{-1} \zeta \in D(\mathcal{A}, 2\mathbf{k}+\mathbf{3})$ by Proposition 2.6 (2) and Theorem 2.4, we conclude that

$$\nabla_{\partial_{x_j}} \nabla_D^{-1} \zeta = \sum_{i=1}^{\ell} (\partial_{x_j} P_i) \nabla_{\partial_{P_i}} \nabla_D^{-1} \zeta \quad (j = 1, \dots, \ell)$$

form an S-basis for $D(\mathcal{A}, 2\mathbf{k} + \mathbf{2})$ by Theorem 2.1.

383

3. The ordinary cases

In the rest of this paper we assume dim $V = \ell = 2$ and $W = I_2(h)$ such that $h \ge 4$ is an even number. The orbit decomposition $\mathcal{A} = \mathcal{A}_1 \cup \mathcal{A}_2$ satisfies $|\mathcal{A}_1| = |\mathcal{A}_2| = h/2$. Recall the equivariant multiplicities $\mathbf{k} = (a_1, a_2), a_1, a_2 \in \mathbb{Z}$, defined by

$$\mathbf{k}(H) = \begin{cases} a_1 & \text{if } H \in \mathcal{A}_1, \\ a_2 & \text{if } H \in \mathcal{A}_2. \end{cases}$$

Let x_1, x_2 be an orthonormal basis for V^* . Suppose that $P_1 := (x_1^2 + x_2^2)/2$ and P_2 are basic invariants of W. Then deg $P_2 = h$ and $R = S^W = \mathbb{R}[P_1, P_2]$. Let W_i be the (normal) subgroup of W generated by all reflections through $H \in \mathcal{A}_i$ (i = 1, 2). Let $Q_i = \prod_{H \in \mathcal{A}_i} \alpha_H$ and $R_i := S^{W_i}$ (i = 1, 2). Let D be a primitive derivation corresponding to the whole group W. Then it is known [10, (5.1)] that

$$D \doteq \frac{1}{Q}(-x_2\partial_{x_1} + x_1\partial_{x_2}).$$

Lemma 3.1 Define

$$D_1 := Q_2 D \doteq \frac{1}{Q_1} (-x_2 \partial_{x_1} + x_1 \partial_{x_2}), \quad D_2 := Q_1 D \doteq \frac{1}{Q_2} (-x_2 \partial_{x_1} + x_1 \partial_{x_2}).$$

Then

- (1) $R_1 = \mathbb{R}[P_1, Q_2], R_2 = \mathbb{R}[P_1, Q_1] \text{ and } R = \mathbb{R}[P_1, Q_1^2] = \mathbb{R}[P_1, Q_2^2],$
- (2) $-x_2(\partial Q_2/\partial x_1) + x_1(\partial Q_2/\partial x_2) \doteq Q_1 \quad and \quad -x_2(\partial Q_1/\partial x_1) + x_1(\partial Q_1/\partial x_2) \doteq Q_2,$ (3) $D_1(P_1) = D_2(P_1) = 0, \ D_1(Q_2) \in \mathbb{R}^{\times} \ and \ D_2(Q_1) \in \mathbb{R}^{\times}.$
- *Proof.* Thanks to the symmetry we only have to prove a half of the statement. Since Q and Q_1 are both W_1 -antiinvariant, $Q_2 = Q/Q_1$ is W_1 -

ment. Since
$$Q$$
 and Q_1 are both W_1 -antiinvariant, $Q_2 = Q/Q_1$ is W_1 -
invariant and Q_2^2 is W -invariant. Note that Q_2 is a product of real linear
forms. So Q_2 and P_1 are algebraically independent. Since

$$|\mathcal{A}_1| = h/2 = (\deg Q_2 - 1) + (\deg P_1 - 1),$$

we have $R_1 = \mathbb{R}[P_1, Q_2]$. Similarly we obtain $R = \mathbb{R}[P_1, Q_2^2]$. This proves

(1). The Jacobian

$$-x_2(\partial Q_2/\partial x_1) + x_1(\partial Q_2/\partial x_2) = \det \begin{pmatrix} \partial P_1/\partial x_1 \, \partial Q_2/\partial x_1 \\ \partial P_1/\partial x_2 \, \partial Q_2/\partial x_2 \end{pmatrix} \neq 0$$

is equal to Q_1 up to a nonzero constant multiple, which is (2). Compute

$$D_1(P_1) = Q_2 D(P_1) = 0, \quad 2D_1(Q_2) = 2Q_2 D(Q_2) = D(Q_2^2) \in \mathbb{R}^{\times}.$$

This proves (3).

The Euler derivation $E = I^*(dP_1) = I^*(x_1dx_1 + x_2dx_2) = x_1\partial_{x_1} + x_2\partial_{x_2}$ satisfies $E(\alpha) = \alpha$ for all $\alpha \in V^*$ and belongs to $D(\mathcal{A}, (1, 1))$.

Proposition 3.2 A basis for $D(\mathcal{A}, (a_1, a_2))$ is given in Table 3 for $-1 \le a_1 \le 1, -1 \le a_2 \le 1$.

(a_1, a_2)	basis for $D(\mathcal{A}, (a_1, a_2))$	exponents of $(\mathcal{A}, (a_1, a_2))$	their difference
(1,1)	$E, I^*(dP_2)$	1, h-1	h-2
(1,0)	$E, I^*(dQ_2)$	1, (h/2) - 1	(h/2) - 2
(0,1)	$E, I^*(dQ_1)$	1, (h/2) - 1	(h/2) - 2
(1, -1)	$I^*(dQ_2/Q_2), E$	-1, 1	2
(0,0)	$\partial_{x_1}, \partial_{x_2}$	0,0	0
(-1,1)	$I^*(dQ_1/Q_1), E$	-1, 1	2
(0, -1)	$D_2, I^*(dQ_2/Q_2)$	1 - (h/2), -1	(h/2) - 2
(-1,0)	$D_1, I^*(dQ_1/Q_1)$	1 - (h/2), -1	(h/2) - 2
(-1, -1)	$D, I^*(dQ/Q)$	1 - h, -1	h-2

Table 3. The exponents of $(A, (a_1, a_2))$ $(-1 \le a_1 \le 1, -1 \le a_2 \le 1)$

Proof. Let $\omega_0 = -x_2 dx_1 + x_1 dx_2$. Note that $\omega_0 \wedge d\alpha = -\alpha (dx_1 \wedge dx_2)$ for any $\alpha \in V^*$. It is easy to see that each of $dP_1, dP_2, dQ_1, dQ_2, dQ_1/Q_1, dQ_2/Q_2, \omega_0/Q, \omega_0/Q_1$ and ω_0/Q_2 belongs to $\Omega(\mathcal{A}, \infty)$ defined in Section 2. Note that $D = I^*(\omega_0)/Q$ and $D_i = I^*(\omega_0)/Q_i$ (i = 1, 2). Thus all of the derivations in the table lie in $D(\mathcal{A}, -\infty) = I^*(\Omega(\mathcal{A}, \infty))$.

If P is W-invariant, then $I^*(dP) \in D(\mathcal{A}, (1, 1))$. Therefore $I^*(dQ_1) \in D(\mathcal{A}, (0, 1))$ and $I^*(dQ_2) \in D(\mathcal{A}, (1, 0))$ because of Lemma 3.1 (1). We thus have $I^*(dQ_1/Q_1) \in D(\mathcal{A}, (-1, 1))$ and $I^*(dQ_2/Q_2) \in D(\mathcal{A}, (1, -1))$. Since $QD = Q_1D_1 = Q_2D_2$ lies in Der_S, we get $D \in D(\mathcal{A}, (-1, -1))$,

 $D_1 \in D(\mathcal{A}, (-1, 0))$ and $D_2 \in D(\mathcal{A}, (0, -1))$. Now apply Theorem 2.1 noting Lemma 3.1 (2).

Lemma 3.3 When $h \ge 6$ is even, D_i is a primitive derivation of the irreducible Coxeter arrangement \mathcal{A}_i (i = 1, 2).

Proof. By Lemma 3.1 (3).

For $s, t \in \mathbb{Z}$ with $t - s \in 2\mathbb{Z}$, define

$$E_1^{(s,t)} := \nabla_D^{-t} \nabla_{D_1}^{t-s} E, \quad E_2^{(s,t)} := \nabla_D^{-s} \nabla_{D_2}^{s-t} E.$$

Proposition 3.4

(1) If $t \in \mathbb{Z}_{\geq 0}$ and $t - s \in 2\mathbb{Z}$, then $E_1^{(s,t)}$ is (s,t)-universal, (2) If $s \in \mathbb{Z}_{\geq 0}$ and $s - t \in 2\mathbb{Z}$, then $E_2^{(s,t)}$ is (s,t)-universal.

Proof. It is enough to show (1) because of the symmetry of the statement.

Case 1. When $h \ge 6$ is even, \mathcal{A}_1 is an irreducible Coxeter arrangement of h/2 lines. By Lemma 3.3, D_1 is a primitive derivation of \mathcal{A}_1 . Thus

$$\nabla_{\partial_{x_1}} \nabla_{D_1}^{t-s} E, \dots, \nabla_{\partial_{x_\ell}} \nabla_{D_1}^{t-s} E$$

form an S-basis for $D(\mathcal{A}, (2(s-t), 0))$. Note that $D_1 = Q_2 D$ satisfies

$$w_1 D_1 = D_1, \quad w_2 D_1 = \det(w_2) D_1$$

for any $w_1 \in W_1$, $w_2 \in W_2$. Since W_1 is a normal subgroup of W, $D(\mathcal{A}_1, -\infty)^{W_1}$ is naturally a W-module and the map $\nabla_{D_1}^n : D(\mathcal{A}_1, -\infty)^{W_1} \to D(\mathcal{A}_1, -\infty)^{W_1}$ is a W-equivariant bijection when n is even. Thus $\nabla_{D_1}^{t-s} E \in D(\mathcal{A}, -\infty)^W$. This implies that $\nabla_{D_1}^{t-s} E$ is (s-t, 0)-universal when $t - s \in 2\mathbb{Z}$. Apply Theorem 2.8.

Case 2. Let h = 4. Then W is of type B_2 . We may choose an orthonormal basis for V^* with $Q_1 = x_1 x_2$ and $Q_2 = (x_1 + x_2)(x_1 - x_2)$. Then

$$D_1 = -\frac{1}{x_1}\partial_{x_1} + \frac{1}{x_2}\partial_{x_2}$$

and

386

$$\nabla_{D_1}^{2n} E = -(4n-3)!! \left(x_1^{1-4n} \partial_{x_1} + x_2^{1-4n} \partial_{x_2} \right) \in D(\mathcal{A}, -\infty)^W \quad (n>0),$$

$$\nabla_{D_1}^{-2n} E = \frac{1}{(4n+1)!!} \left(x_1^{4n+1} \partial_{x_1} + x_2^{4n+1} \partial_{x_2} \right) \in D(\mathcal{A}, -\infty)^W \qquad (n \ge 0),$$

where $(2m-1)!! = \prod_{i=1}^{m} (2i-1)$. Thus

$$\nabla_{\partial_{x_1}} \nabla_{D_1}^{2n} E \doteq x_1^{-4n} \partial_{x_1}, \quad \nabla_{\partial_{x_2}} \nabla_{D_1}^{2n} E \doteq x_2^{-4n} \partial_{x_2} \quad (n \in \mathbb{Z}).$$

This implies that $\nabla_{D_1}^{t-s} E$ is (s-t, 0)-universal when $s-t \in 2\mathbb{Z}$. Apply Theorem 2.8.

We say that a pair (a_1, a_2) is **exceptional** if

$$a_1 \in 2\mathbb{Z}$$
 and $a_1 - a_2 \equiv 2 \pmod{4}$.

If (a_1, a_2) is not exceptional, then we call (a_1, a_2) ordinary. We may apply Propositions 3.2 and 2.7 to get the following proposition:

Proposition 3.5 Suppose that (a_1, a_2) is ordinary and that either $p \ge 0$ or $q \ge 0$ in Table 1. Then $\nabla_{\theta_1}\zeta$, $\nabla_{\theta_2}\zeta$ form an S-basis for $D(\mathcal{A}, (a_1, a_2))$ as in Table 1, where $E^{(s,t)}$ stands for $E_1^{(s,t)}$ if $t \ge 0$ or it stands for $E_2^{(s,t)}$ if $s \ge 0$.

4. The exceptional cases

Suppose that $(a_1, a_2) \in \mathbb{Z}^2$ is exceptional. Write

$$(a_1, a_2) = (4p + 2, 4q)$$
 or $(a_1, a_2) = (4p, 4q + 2)$ $(p, q \in \mathbb{Z}).$

Proposition 4.1 Suppose that ζ is (2p, 2q)-universal. Then the map

$$\Phi_{\zeta}^{(1)} : \operatorname{Der}_{S} \longrightarrow D(\mathcal{A}, (4p+2, 4q))$$
$$\theta \longmapsto Q_{1}(\nabla_{\theta}\zeta) - (4p+1)\theta(Q_{1})\zeta$$

is an S-linear bijection. Similarly the map

$$\Phi_{\zeta}^{(2)} : \operatorname{Der}_{S} \longrightarrow D(\mathcal{A}, (4p, 4q+2))$$
$$\theta \longmapsto Q_{2}(\nabla_{\theta}\zeta) - (4q+1)\theta(Q_{2})\zeta$$

is an S-linear bijection.

Proof. It is enough to show the first half because of the symmetry. Let $\theta \in \text{Der}_S$. We first prove that $\Phi_{\zeta}^{(1)}(\theta) \in D(\mathcal{A}, (4p+2, 4q))$. Let $H_i \in \mathcal{A}_i$ and $\alpha_i := \alpha_{H_i}$ (i = 1, 2). Since $\zeta \in D(\mathcal{A}, (4p+1, 4q+1))$ by Proposition 2.6 (2), write

$$\zeta(\alpha_1) = \alpha_1^{4p+1} f_1, \quad \zeta(\alpha_2) = \alpha_2^{4q+1} f_2 \quad (f_1 \in S_{(\alpha_1)}, \ f_2 \in S_{(\alpha_2)}).$$

Compute

$$\begin{split} \left[\Phi_{\zeta}^{(1)}(\theta) \right](\alpha_{1}) \\ &= Q_{1}(\nabla_{\theta}\zeta)(\alpha_{1}) - (4p+1)\theta(Q_{1})\zeta(\alpha_{1}) \\ &= Q_{1}\left(\theta(\alpha_{1}^{4p+1}f_{1})\right) - (4p+1)\theta(Q_{1})\alpha_{1}^{4p+1}f_{1} \\ &= Q_{1}\alpha_{1}^{4p+1}\theta(f_{1}) + (4p+1)f_{1}\alpha_{1}^{4p}Q_{1}\theta(\alpha_{1}) - (4p+1)f_{1}\alpha_{1}^{4p+1}\theta(Q_{1}) \\ &= Q_{1}\alpha_{1}^{4p+1}\theta(f_{1}) - (4p+1)f_{1}\alpha_{1}^{4p+2}\left\{(1/\alpha_{1})\theta(Q_{1}) - (Q_{1}/\alpha_{1}^{2})\theta(\alpha_{1})\right\} \\ &= Q_{1}\alpha_{1}^{4p+1}\theta(f_{1}) - (4p+1)f_{1}\alpha_{1}^{4p+2}\theta(Q_{1}/\alpha_{1}) \in \alpha_{1}^{4p+2}S_{(\alpha_{1})}. \end{split}$$

Also

$$\begin{split} \left[\Phi_{\zeta}^{(1)}(\theta) \right](\alpha_{2}) \\ &= Q_{1}(\nabla_{\theta}\zeta)(\alpha_{2}) - (4p+1)\theta(Q_{1})\zeta(\alpha_{2}) \\ &= Q_{1}\left(\theta(\alpha_{2}^{4q+1}f_{2})\right) - (4p+1)\theta(Q_{1})\alpha_{2}^{4q+1}f_{2} \\ &= Q_{1}\alpha_{2}^{4q+1}\theta(f_{2}) + (4q+1)f_{2}\alpha_{2}^{4q}Q_{1}\theta(\alpha_{2}) - (4p+1)f_{2}\alpha_{2}^{4q+1}\theta(Q_{1}) \\ &\in \alpha_{2}^{4q}S_{(\alpha_{2})}. \end{split}$$

This shows $\Phi_{\zeta}^{(1)}(\theta) \in D(\mathcal{A}, (4p+2, 4q))$. Next we will prove that $\Phi_{\zeta}^{(1)}(\partial_{x_1})$ and $\Phi_{\zeta}^{(1)}(\partial_{x_2})$ form an S-basis for $D(\mathcal{A}, (4p+2, 4q))$. Define $M(\theta_1, \theta_2) := [\theta_i(x_j)]_{1 \leq i,j \leq 2}$. Then

$$\det M\left(\Phi_{\zeta}^{(1)}(\partial_{x_{1}}), \Phi_{\zeta}^{(1)}(\partial_{x_{2}})\right) = \det M\left(Q_{1}\nabla_{\partial_{x_{1}}}\zeta, Q_{1}\nabla_{\partial_{x_{2}}}\zeta\right)$$
$$- (4p+1) \det M\left(Q_{1}\nabla_{\partial_{x_{1}}}\zeta, (\partial_{x_{2}}Q_{1})\zeta\right)$$
$$- (4p+1) \det M\left((\partial_{x_{1}}Q_{1})\zeta, Q_{1}\nabla_{\partial_{x_{2}}}\zeta\right)$$

Note

$$x_1(\nabla_{\partial_{x_1}}\zeta) + x_2(\nabla_{\partial_{x_2}}\zeta) = \nabla_E\zeta = \{1 + h(p+q)\}\zeta$$

because $\nabla_{\partial_{x_1}}\zeta$, $\nabla_{\partial_{x_2}}\zeta$ are a basis for $D(\mathcal{A}, (4p, 4q))$ and $\operatorname{pdeg} \zeta = 1 + h(p+q)$. Thus

$$\begin{aligned} \det M\big(\Phi_{\zeta}^{(1)}(\partial_{x_{1}}), \Phi_{\zeta}^{(1)}(\partial_{x_{2}})\big) \\ &= Q_{1}^{2} \det M\big(\nabla_{\partial_{x_{1}}}\zeta, \nabla_{\partial_{x_{2}}}\zeta\big) - \frac{(4p+1)Q_{1}x_{2}(\partial_{x_{2}}Q_{1})}{1+h(p+q)} \det M\big(\nabla_{\partial_{x_{1}}}\zeta, \nabla_{\partial_{x_{2}}}\zeta\big) \\ &- \frac{(4p+1)Q_{1}x_{1}(\partial_{x_{1}}Q_{1})}{1+h(p+q)} \det M\big(\nabla_{\partial_{x_{1}}}\zeta, \nabla_{\partial_{x_{2}}}\zeta\big) \\ &= \left\{Q_{1}^{2} - \frac{(4p+1)Q_{1}(x_{1}(\partial_{x_{1}}Q_{1}) + x_{2}(\partial_{x_{2}}Q_{1})))}{1+h(p+q)}\right\} \det M\big(\nabla_{\partial_{x_{1}}}\zeta, \nabla_{\partial_{x_{2}}}\zeta\big) \\ &\doteq \left\{1 - \frac{(4p+1)h}{2(1+h(p+q))}\right\}Q_{1}^{2}Q_{1}^{4p}Q_{2}^{4q} = \frac{2-h(2p-2q+1)}{2(1+h(p+q))}Q_{1}^{4p+2}Q_{2}^{4q}. \end{aligned}$$

Note that $2 - h(2p - 2q + 1) \neq 0$ and $1 + h(p + q) \neq 0$ because $h \geq 4$. Therefore $\Phi_{\zeta}^{(1)}(\partial_{x_1})$ and $\Phi_{\zeta}^{(1)}(\partial_{x_2})$ form an S-basis for $D(\mathcal{A}, (4p + 2, 4q))$ thanks to Theorem 2.1. Thus $\Phi_{\zeta}^{(1)}$ is an S-linear bijection.

We may apply Proposition 4.1 to get the following proposition:

Proposition 4.2 Suppose that (a_1, a_2) is exceptional and that either $p \ge 0$ or $q \ge 0$ in Table 2. Then, for $i = 1, 2, \Phi_{\zeta}^{(i)}(\theta_1)$ and $\Phi_{\zeta}^{(i)}(\theta_2)$ form an S-basis for $D(\mathcal{A}, (a_1, a_2))$ as in Table 2.

Proposition 3.4 asserts that $E_1^{(s,t)}$ is (s,t)-universal when $s - t \in 2\mathbb{Z}$, $t \geq 0$ and that $E_2^{(s,t)}$ is (s,t)-universal when $t - s \in 2\mathbb{Z}$, $s \geq 0$. So Tables 1 and 2 show how to construct a basis for $D(\mathcal{A}, (a_1, a_2))$ when $a_1 \geq 0$ or $a_2 \geq 0$. We will construct a basis for $D(\mathcal{A}, (a_1, a_2))$ in the remaining case

that $a_1 < 0$ and $a_2 < 0$. Let

$$\Omega(\mathcal{A}, \mathbf{k}) := (I^*)^{-1} (D(\mathcal{A}, -\mathbf{k}))$$
$$= \left\{ \omega \in \Omega(\mathcal{A}, \infty) \mid I^*(\omega, d\alpha_H) \in \alpha_H^{-\mathbf{k}(H)} S_{(\alpha_H)} \text{ for all } H \in \mathcal{A} \right\}$$

Theorem 4.3 (Ziegler [13], Abe [1, Theorem 1.7]) The natural S-bilinear coupling

$$D(\mathcal{A}, \mathbf{k}) \times \Omega(\mathcal{A}, \mathbf{k}) \longrightarrow S$$

is non-degenerate and provides S-linear isomorphisms:

$$\alpha: D(\mathcal{A}, \mathbf{k}) \to \Omega(\mathcal{A}, \mathbf{k})^*, \quad \beta: \Omega(\mathcal{A}, \mathbf{k}) \to D(\mathcal{A}, \mathbf{k})^*.$$

Thus we have the following proposition:

Proposition 4.4 Let $(a_1, a_2) \in (\mathbb{Z}_{<0})^2$ and x_1, x_2 be an orthonormal basis. Let θ_1, θ_2 be an S-basis for $D(\mathcal{A}, (-a_1, -a_2))$. Then

$$\eta_1 := g_{11}\partial_{x_1} + g_{21}\partial_{x_2}, \quad \eta_2 := g_{12}\partial_{x_1} + g_{22}\partial_{x_2},$$

form an S-basis for $D(\mathcal{A}, (a_1, a_2))$. Here

$$\begin{pmatrix} g_{11} g_{12} \\ g_{21} g_{22} \end{pmatrix} = \begin{pmatrix} \theta_1(x_1) \theta_1(x_2) \\ \theta_2(x_1) \theta_2(x_2) \end{pmatrix}^{-1} = Q_1^{a_1} Q_2^{a_2} \begin{pmatrix} \theta_2(x_2) & -\theta_1(x_2) \\ -\theta_2(x_1) & \theta_1(x_1) \end{pmatrix}.$$

5. Conclusion

Let \mathcal{A} be a two-dimensional irreducible Coxeter arrangement such that $|\mathcal{A}|$ is even with $|\mathcal{A}| \geq 4$. We have constructed an explicit basis for $D(\mathcal{A}, (a_1, a_2))$ for an arbitrary equivariant multiplicity $\mathbf{k} = (a_1, a_2)$ with $a_1, a_2 \in \mathbb{Z}$. Our recipes are presented in the Tables 1, 2, Propositions 3.5, 4.2 and 4.4. Lastly we show Table 4 for the exponents.

Acknowledgement The author expresses his gratitude to Professor Hiroaki Terao for his patient guidance and many helpful discussions. He also thanks the referee for proposing many improvements of an earlier version.

a_1	a_2	$a_1 - a_2$	exponents of $(\mathcal{A}, (a_1, a_2))$	their difference
odd	odd	$\equiv 0 \pmod{4}$	$\frac{(a_1+a_2-2)h}{4} + 1, \ \frac{(a_1+a_2+2)h}{4} - 1$	h-2
odd	odd	$\equiv 2 \pmod{4}$	$\frac{(a_1+a_2)h}{4} + 1, \ \frac{(a_1+a_2)h}{4} - 1$	2
odd	even		$\frac{(a_1+a_2-1)h}{4} + 1, \ \frac{(a_1+a_2+1)h}{4} - 1$	(h/2) - 2
even	odd		$\frac{(a_1+a_2-1)h}{4} + 1, \ \frac{(a_1+a_2+1)h}{4} - 1$	(h/2) - 2
even	even		$\frac{(a_1+a_2)h}{4}, \ \frac{(a_1+a_2)h}{4}$	0

Table 4. The exponents of $(\mathcal{A}, (a_1, a_2))$ $(a_1, a_2 \in \mathbb{Z})$

References

- [1] Abe T., A generalized logarithmic module and duality of Coxeter multiarrangements. arXiv:0807.2552v1.
- [2] Abe T. and Terao H., A primitive derivation and logarithmic differential forms of Coxeter arrangements. Math. Z., 264 (2010), 813–828.
- [3] Abe T. and Terao H., Primitive filtrations of the modules of invariant logarithmic forms of Coxeter arrangements. J. Algebra, **330** (2011), 251–262.
- [4] Abe T., Terao H. and Wakamiko A., Equivariant multiplicities of Coxeter arrangements and invariant bases. arXiv:1011.0329v3.
- [5] Abe T. and Yoshinaga M., Coxeter multiarrangements with quasi-constant multiplicities. J. Algebra, **322(8)** (2009), 2839–2847.
- [6] Chevalley C., Invariants of finite groups generated by reflections. Amer. J. Of Math., 77 (1955), 778–782.
- [7] Orlik P. and Terao H., Arrangements of Hyperplanes. Grundlehren der Math. Wiss., 300, Springer-Verlag, 1992.
- [8] Saito K., On the uniformization of complements of discriminantial loci. In: Conference Notes, Amer. Math. Soc. Summer. Institute, Williamstown, 1975.
- [9] Saito K., Theory of logarithmic differential forms and logarithmic vector fields. J. Fac. Sci. Univ. Tokyo Sect. IA Math., 27(2) (1980), 265–291.
- [10] Solomon L. and Terao H., The double Coxeter arrangement. Comment. Math. Helv., 73 (1998), 237–258.
- Terao H., Multiderivations of Coxeter arrangements. Invent. Math., 148(3) (2002), 659–674.
- [12] Yoshinaga M., The primitive derivation and freeness of multi-Coxeter arrangements. Proc. Japan Acad. Ser. A Math. Sci., 78(7) (2002), 116–119.
- [13] Ziegler G. M., Multiarrangements of hyperplanes and their freeness. In:

Singularities, Contemporary Math. 90, Amer. Math. Soc., 1989, 345–359.

2-8-11 Aihara, Midori-ku Sagamihara-shi, Kanagawa, 252-0141 Japan E-mail: atsushi.wakamiko@gmail.com