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Measures orthogonal to tensor products
of function algebras
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Abstract. Some fundamental properties of measures orthogonal to tensor products
of function algebras are considered. It is shown that if M, Mz are reducing bands of
measures for algebras A1, Az, then their projection-preserving product is a reducing band
for A1 ® A2. As an application, a decomposition of measures orthogonal to the tensor
product of some classes of function algebras is obtained. These classes contain among
others, multidimensional ball algebras.
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1. Introduction and preliminaries

Let X be a compact Hausdorff space. By C(X) we will denote the
Banach algebra of all complex continuous functions on X equipped with
the supnorm, and by M (X) the set of all complex Borel regular measures
on X. Considered with the total variation norm || - ||, M(X) is a Banach
space. For a measure u € M(X) denote by |u| its variation measure. If E
is a subset of M(X) then F° will denote the set of all measures in M (X)
singular to each measure in F. A subset M of M(X) is a band (see [9],
sec. 2) if (M?®)® = M. For E C M(X), the set (E*)° is the smallest band
containing £. We call it the band generated by E.

One of the important questions concerning tensor products of function
algebras is how the structure of the collection of measures orthogonal to
these products depends on the structures of analogous collections for the
original algebras. It is well known, (see [13]), that the Cartesian product
of Gleason parts of two function algebras is a Gleason part for their tensor
product. This fact implies that the projection-preserving product of bands
generated by the mentioned Gleason parts is a reducing band (the necessary
definitions will be established later).

In Section 2 we show that a similar property holds for all reducing
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bands. In Section 3 we give some applications of these general properties.
We get there decompositions of measures orthogonal to tensor products of
some classes of function algebras.

Apart from deepening our knowledge on tensor products of function
algebras, this decomposition technique plays an important role in the theory
of operator representations of function algebras and its applications to the
invariant subspace problems for multioperators (see for example [8], [9], [10],
[11], [12]). Similar decompositions were known up till now only for some
function algebras on Cartesian products of compact subsets of the complex
plane. Since the results obtained in the present paper are general, one may
expect their future application for operator representations of some wider
class of function algebras. This remark applies, in particular, to the possible
extension of the results of Eschmeier [5] and Pott [14].

It is easy to see that any band is a norm closed subspace of M (X), which
is "closed” also with respect to the absolute continuity relation denoted by
& . This property and the consequent decomposition are formulated in the
following proposition:

Proposition 1.1 A subset M C M(X) is a band if and only if it is a
closed subspace of M(X) satisfying the implication

pEMX), pLly, vEM = peM.
Any measure n € M (X) has a Lebesgue decomposition of the form
=4 (1.1)
where ™ € M and (™ € Mo,

(For details and terminology concerning bands we refer the reader to
[2], sec. 20., [4], V. 17). As a consequence we get

Proposition 1.2 IfM C M(X) is a band then
(fw = for f € C(X),
where fu denotes the measure defined by [ gd(fu) = [ gf du for g € C(X).

In the case when only one band is considered we will write u® instead
of ™ for the singular part of u.

In what follows, assume that A is an arbitrary function algebra on
X, i.e. a uniformly closed subalgebra of C(X) containing constants and
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separating the points of X. We say that a measure y is orthogonal to A (or
annshilates A) and write uLA if [udyu = 0 for v € A. The set of all such
measures is denoted by A+. A band M € M(X) is said to be reducing with

respect to A if we have the implication
plA = p™MLA (1.2)

When A is fixed we simply say that M is reducing.

2. Main results

Let X1, X9 be two compact Hausdorff spaces, and A1, As function
algebras on X, X respectively. Denote by A; ® Ag the closure in C(X; x
X3) of the algebraic tensor product of A; and As. Then A; ® A (with the
supnorm) is a function algebra on X3 x X» (for further details see [13]).
For a measure p € M (X1 x X2) we define its natural projections 7, mou
(marginal measures) on the sets X, Xy as follows:

(mp)(Br) £ p(Br x Xa),
(mop)(E2) £ (X1 x Ba),

where F1, Ey are Borel subsets of X1, X9 respectively.

Let u be a finite positive regular measure on X3 x X5, and let Fy be a
Borel subset of X;. Then for any € > 0 there is a compact set K C E1 X Xa
such that pu(F; x Xo) — u(K) < e. Let K7 be the projection of K onto Xj.
Since the projection mapping in the Cartesian product is continuous, K is
also compact. Then

(mip)(B1) — (mup) (K1)=p(Er x Xa) — p(K1 X Xo)
<u(Er x Xo) — u(K) <e.

It means that 7p is inner regular. For the outer regularity observe that if
K1 is compact and Ky C (Xl \El) then X \Kl D Fq and X, \Kl is open.

 Recall that a complex measure is regular if and only if its variation
measure is regular, and if and only if its real and imaginary part are regular.
A real measure is regular if and only if its positive and negative part in
Jordan decomposition are regular. It is also true that if x4 and v are finite
nonnegative measures, u is regular and p > v then v is also regular. Hence,
if 14 is real regular then also m;u (i = 1, 2) is regular since (mjp)+ < mifs.
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For a complex regular measure p the regularity of m;u follows from the
regularity of its real and imaginary part. So we have

Proposition 2.1 If € M(X; x Xo) then myp € M(X;) fori=1, 2.

By N4 we will denote the set of all real nonnegative measures contained
in a given set of complex measures N. We have the following lemmas

Lemma 2.2 IfM C M(X;), (i =1, 2) is a band then
M(X1 x Xp)y =77 (M4 + 7 (M), (2.1)
and the summands on the right hand side are mutually singular.

Proof. Since the proof is analogous for 4 = 1 and ¢ = 2, it is sufficient to
consider only the case i = 1.

For a Borel set F' and a measure y, denote by up the restriction of
to the set F. It follows directly from the definition of m; that for any Borel
E C X; and any nonnegative measure p € M (X1 x X2) we have

(mu)E =m(LExX,), (2.2)

and, by Proposition 2.1, miu € M(X1).
When M C M(X;) and p > 0 is fixed, taking the decomposition (1.1)
for 714 we can find a Borel set £ C X7 depending on u such that

P = (mp)p, (2.3)

where F' := X1\ E. Hence i = upxx,+UFxX,, and by (2.2), (2.3), pexx, €
T M)+, prsx, € 77 (M®)4. Since > 0 has been arbitrarily chosen, we
get (2.1) for ¢ = 1.

On the other hand, if positive measures u, v € M(X; x X3) are such
that p € 771 (M), v € 771 (M?), then 71 (1) € M, 71(v) € M®. So there are
two disjoint Borel subsets F, F' C X; such that 7;(u) is supported on E
and 7 (v) is supported on F. Hence, by the positivity, 4 is supported on
E x X5 and v is supported on F' x X5 which implies that they are mutually
singular. |

(mu)™ = (mp)p, (T

Lemma 2.3 If p € 7, (M)4 — 7,2 (M) has its Jordan decomposition
p=pt =, then pt, p= € w7 (M)

Proof. Let u= A\ — X2, where \; € 7,71 (M); (4 = 1, 2). By the minimality
of Jordan decomposition we get A7 > u™ and Ay > p~. Hence mA; >
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mip™, mAg > mu~. So, by Propositions 1.1 and 2.1, mu™, mu~ € M, and

consequently pt, = € 77 1(M) which, by their positivity gives ut, u= €
i y H

(M) O

For the sake of completeness we state and prove below some known
property of real measures. The author was unable to find its explicite form
in the literature.

Lemma 2.4 If u, v are real measures having Jordan decompositions
p=pt—pT, v=vF—u”

into the combinations of nonnegative measures then
e =il = llw* = v+ flu™ = vl

Proof. It follows from Hahn decomposition theorem that there are Borel
subsets Et, E~, F*, F'~ such that E~ is the complement of E+, F~ is the
complement of F'*, and

+

PE=pygyy W=, V=, v = (2:4)

Then
e — v
=lp=v|[(BETNEFNHUETNE)UE NFHUE NF))
=|p—v[(B"NFT) +|u—v|(EXNF7)
+lp—v(B-NF) +|u—v|(E-NF)
= |t —vH(BY N FY) + (ut o) (BTN FT)
+ @+ E T NEFY) +|u — v |[(ETNFT)
= [p" =V ETNEFT) + p(FT) + v (ET)
+u (F) + v (BT + | v (BT NFT),

because, by (2.4), u¥ is supported on E*, and v* is supported on F*,
But, also by (2.4),

pE(EFT) = |u* = vF(FF), vH(ET) = |u* - vF|(BF),

and hence
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i = VE (B N FE) + g (FF) + v5(B7)
= i — I(BE O FE) 4wt — vE[(BF) + |t — v (FF)
> |u* — vE (B 0 FE) 4 ot - vE|(BFUFT) = [ - o)

Consequently, [[u — v|| > ||u*t — v*|| + [~ — v~ ||. The opposite inequality
follows immediately from the triangle inequality. O

For M C M(X;) define its band preimage as follows:
1

(M) £ Lin(r; 1 (M)4),

7

where Lin(N) denotes the set of all finite linear combinations of elements in
N. By the definition, and the fact that ; }(M). is a cone we have

(V) = (M4 — (M) 4+ i (M) 4 — i (M) (2.5)

7 (2

Theorem 2.5 IfM C M(X;), (i =1, 2) is a band then w; *(M) is also a
band. Moreover

—

T M)® = 71 (n), (2.6)

1
If M is reducing for A; then Wi_l(M) 18 reducing for A1 ® As.

Proof. Since M is a band, 7; (M) is closed in M(X; x X3) by the conti-
nuity of ;. On the other hand, the set M (X1 x X2)4+ is evidently closed.
Hence 7, 1(M)4 = 7 1(M) N M (X1 x X3), is also closed.

For a complex measure p we can apply Jordan decomposition of its real
and imaginary part, i.e.

p=vt—v 4inT —in~, (2.7)
where v, v~, 0T, n~ are nonnegative. Moreover, if u € T 1(M), then by
Lemma 2.3 and (2.5), v™,v™, %, n~ € W;l(M)+. If {un} is a sequence
in 77'(M) and u, — u then, by Lemma 2.4, all the parts of u, in the
decomposition (2.7) tends to the appropriate parts of u. Consequently,
since m; (M) is closed, 7; }(M) is also closed. By Lemma 2.2, (2.5) and
(2.7), we get

M (X1 x X3) = m; " (M) 4+ ;7 (M2),

(2.8)
pemt (M), ver (M) = puly,
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which shows (2.6). Applying (2.6) we have

— —— /\_,1

,ﬁ_—l(M)ss — Wi_l(Ms)s —

K3

(=) = w2 0),
which means that 7; 1(M) is a band.

It remains to show that if the band M is reducing, then for ¢ =1, 2 the
bands 1(M) are also reducing. The property (2.8) implies the equality

(mip)™ = Wi(uwfl(M)) for p € M(X; x Xo). (2.9)

From now on we put 7 = 1 for the simplicity of notation and assume that
M ¢ M(X;) is reducing for A;. Let u be a complex measure orthogonal to
A1 ® Az. Take now the Lebesgue decomposition of 1 with respect to the

band 77 (M) and denote by u® the absolutely continuous part of u. We
should show that u® is orthogonal to A; ® As. For such a purpose it is
enough to show

/fgd/,c“:O for f € A1, g € As. (2.10)

Since w is orthogonal to A; ® Ay, we have

0= [ fodu= [ satow = [ 7 atmiom)

The last equality follows from the fact that the function f depends only on
the first variable. So we have shown that the measure 71 (gu) is orthogonal
to A;. Since M is reducing for A1, we have [ fd(mi(gu))™ = 0. But, by
(2.9), we have

/fd m1((gp)® /fd m1(gu))" = 0. (2.11)

On the other hand

/fgdu“=/fd(gu /fd gu)* /fd m((gw)®)), (2.12)

where the last equality follows from the fact that f depends only on the
first variable. By (2.11), (2.12) we get [ fgdu® = 0, which shows (2.10)
and completes the proof. O

We introduce the notion of projection-preserving product of bands M; C
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M(X;), (i =1, 2) as follows:

df " 1

My Opr My = T 1(M1) Ny 1(M2).
It follows almost directly from the definition that the intersection of reducing
bands is a reducing band. So, by Theorem 2.5, we have the following

Theorem 2.6 Let for i = 1, 2 the set M; C M(X;) be a reducing band
for A;. Then My ®pr My is a reducing band for A1 @ As.

Moreover, we have the following decomposition into mutually singular
reducing bands of measures:

M(Xl X X2)=Ml Opr Mz + My Qpr Mg

3. Some applications

Denote by @; the set of all non-peak points of A;, and assume that M;
is generated by all measures representing for points in ;. It follows from
Lemma I1.7.4 [6] that for each p € M3 there is a Borel set E C X; such
that u is supported on F, and F is a nullset for M, i.e. each measure in
My vanishes on E. The similar property is valid for M3.

Hence, by (2.2), each measure in 77 1((M1)®)+ is supported on a set of
the form E X X, where E is a nullset for M;. Consequently, each measure
inm 1 ((M1)?) is supported on a set of such a form. Similarly, each measure

in 5 1((M2)®) is supported on a set of the form X x E, where E is a nullset
for My, and each measure in M{ ®p M3 is supported on a set of the form
FEy X Ba, where E;, (1 =1, 2) is a nullset for M.

If we assume moreover that there are no measures in A} which are
singular to M;, then by [6], p. 59, and the regularity property of M (X;), we
can deduce that any measure in M (X;) which is singular to all measures in
M; is supported on a set which is a countable union of peak interpolation
sets (see [6]). And also the opposite is true: each measure supported on such
a set is singular to M;. If E;, (i = 1, 2), is a peak interpolation set for A;
then E1 X Fs is a peak interpolation set for A1 ® Ag, and so, it is a nullset for
measures orthogonal to A1 ® As. Hence all measures orthogonal to A; ® Ag
are singular to (471)° ®pr (A7)°. So, using Theorem 2.6, we obtain a result
which generalizes partially Bekken’s decomposition of measures orthogonal
to the algebra R(K; x Kj3) where K; is a compact subset of the complex
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plane (see [1], Thm. 1). Our result does not give so detailed description of
the first part of the decomposition, but instead, it is valid for much larger
class of function algebras and has much shorter and elementary proof.

Theorem 3.1 Let Q); be the sets of all non-peak points for function al-
gebras A; C C(X;), 1 = 1,2, and M; the bands of measures generated by
all measures representing points in Q;. Assume moreover that there are no
measures orthogonal to A; which are singular to M;. Then for each measure
u orthogonal to Ay ® As we have the following decomposition into mutually
singular measures which are orthogonal to A1 ® As:

B= o + p1 + p2,

where

(1) o belongs to the band My Qpr Ma,

(2) wa s supported on a set of the form E x Xo, where E is a nullset for
Af, mo(p1) belongs to band M,

(3) w2 is supported on a set of the form X1 x E, where E is a nullset for
AQL, m1(ua) belongs to band M.

For an integer k denote by A(By) the algebra of all functions analytic in
the open unit ball By C C* and continuous on By. The set of all non-peak
points for such an algebra is the entire unit ball B;. Denote by My the
band of measures generated by all measures representing for points in By.
By Henkin theorem (see [7] or Thm. 9.3.1, [15]) together with Cole-Range
theorem (see [3] or Thm. 9.6.1, [15]) we get

Proposition 3.2 There are no measures orthogonal to A(Bg) and singular
to all measures representing for points in By i.e. we have the following
decomposition into mutually singular bands

M(Bk) =Mp + (A(]Bk)i‘)s.

By [6] VI.1.2, the band My is generated by all measures representing
the evaluation at the origin for the algebra A(By). Hence, in a standard
way, like in [8], we can deduce that for any measure p € My one finds a
measure v representing the evaluation at the origin such that u is absolutely
continuous with respect to v. For integers k, [ denote by A(Bg x B;) the
algebra of all functions analytic in By x B; and continuous on B x B;, by
7 denote the projection from the measure space M (B x B;) onto M (By)
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and by m; onto M (B;) (like in the beginning of section 2). So, as a corollary
from Theorem 3.1 we have the following

Theorem 3.3 For each measure u orthogonal to A(By x B;) we have the
decomposition into three mutually singular measures which are orthogonal

to A(Bk X Bl):

M= o + p1 + p2,

where

(1)

(2)

(o) (resp. m(po)) is absolutely continuous with respect to some mea-
sure representing the evaluation at the origin for the algebra A(By)
(resp. A(BY)),

w1 (resp. u2) is supported on a set of the form E x Xo (resp. X1 X E),
where E is a nullset for A(By)* (resp. A(B))L), the measure m;(u1)
(resp. mr(p2)) is absolutely continuous with respect to some measure
representing the evaluation at the origin for the algebra A(B;) (resp.

A(By))-
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