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Singular integrals associated to homogeneous mappings
with rough kernels
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Abstract. In this paper, we study the LP mapping properties of singular integral op-

erators related to homogeneous mappings with kernels belonging to certain block spaces.
An example is presented to show that our condition on the kernel is nearly optimal.
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1. Introduction and results

Let R™ n > 2 be the n-dimensional Euclidean space and S™~! be the
unit sphere in R™ equipped with the normalized Lebesgue measure do =
do(+). Let Q(z')|z|~™ be a homogeneous function of degree —n, and satisfy
the cancellation condition

/ Q) do(a') = 0, (1.1)
gn—1

where ' = z/|z| € S*~! for any z # 0.
The Calderén-Zygmund singular integral operator Ty is defined by

Tof(z) =pv. / Q)Y f @ —y) dy (1.2)

R”

and the corresponding maximal truncated singular integral operator 1¢; by

Tof(x) = sup
e>0

/I O ) dy (1.3)

where ¢ = y/|y| and f € S(R™).

In their celebrated paper [CZ], Calderén and Zygmund introduced the
method of rotation and showed that the operators T and T are bounded
on LP for 1 < p < 0o if Q € Llog* L(S™1). Furthermore, in the same paper
[CZ], it was shown that the condition © € Llog™ L(S™1) is essentially the
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weakest possible size condition on £ for the L” boundedness of T and T
to hold. Subsequently, the result of Calderén-Zygmund was improved by
Connett ([Co]) and Coifman-Weiss ([CW]) who proved independently that
the LP boundedness of Ty, and T¢ continue to hold if Q € H*(S™~1). Here,
H'(S™1) denotes the Hardy space on the unit sphere S~ in the sense
of Coifman and Weiss [CW] and it contains Llog™ L(S™!) as a proper
subspace.

For a suitable mapping ¥: R™ — R™, define the singular integral op-
erator Tp, ¢ and its truncated maximal operator T ¢ by

Touf(olpr. [ flo - v) 0 dy (1.4
Tuf@=sp| [ e vl (15)
e> y|>e

for f € SR™).

Clearly, by specializing into the case m = n, ¥ = I = idrrn_grn, oOne
obtains the classical Calderén-Zygmund operators To,;1 = To and T ; =
T5.

For d = (di, ..., dn) € R™, define the family of dilations {d;}:>0 on
R™ by

5¢(z1, .oy Tm) = (tdlxl, el tdmxm).
We say that a mapping ¥: R® — R™ is homogeneous of degree d if
U(tz) = 6:(¥(z))

holds for all z € R™"\{0} and t > 0.

Very recently, Leslie Cheng studied the LP boundedness of singular inte-
grals related to homogeneous mappings with Q € H'(S™™1). The following
is the main result in [Ch].

Theorem A Let To v and 2 be given as in (1.1) and (1.4). Let ¥: R™ —
R™ be a homogeneous mapping of degree d = (du, ..., dm) with d; # 0 for
1 < j < m. Suppose that Q € HY(S™ 1) and ¥ | S*! is real-analytic.
Then for 1 < p < oo there exists a constant Cp, > 0 such that

1T, w(F)llze@my < Coll Qa1 gn-1) | fll 2oy

for any f € LP(R™).
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Theorem A was first proved by Fan-Guo-Pan in [FGP] in the special case
m=n+1, ¥(y) = (y, ¢(y)), #|S*! is real-analytic and d = (1, ...1, h)
with h # 0.

On the other hand, Jiang and Lu introduced a special class of block
spaces By Y (S™!) with respect to the study of the mapping properties
of singular integral operators T (see [LTW]). In fact, they obtained the
following L? boundedness result.

Theorem B ([LTW]) Let Q, Tq and Tg be given as in (1.1)-(1.3). Then
we have

() if Qe BPY(S™ ), Ty is a bounded operator on L2(R™);

(i) if Qe BPHS™ ), Tg is a bounded operator on L*(R™).

It is noteworthy that the LP boundedness of the operators T and T
were known to hold for all p € (1, co) under the condition BY%(87~1) (see
for example, [AqP, AqAs, AlH, AIHF]).

The definition of block space Bg'“(8"~1) will be recalled in Section 2.

The main purpose of this paper is to establish the LP boundedness of
the more general class of operators T, ¢ and T{ill, under the condition Q2 €
Bg’O(S“_l) and under the same conditions on ¥ as stated in Theorem A.
Furthermore, we shall show that the condition imposed on 2 € Bg’O(S"_l)
is nearly optimal. In fact, at the end of this paper we present an example
which shows that the L? boundedness of Ty, may fail despite having Q €
Be?(S™ 1) for any —1 < v < 0.

Our main theorem is the following:

Theorem C  Let T, w, I§ ¢ and  be given as in (1.1) and (1.4)-(1.5).
Let ¥: R™ — R™ be a homogeneousmapping of degree d = (di, ..., dm)
with d; # 0 for 1 < 7 < m. Suppose that Q € BS’O(S”_l) with ¢ > 1
and U|S™ 1 is real-analytic. Then for, 1 < p < oo, there exists a constant
Cp > 0 such that

I To, v (Hllzr@m) < Cpll€l 500 gn-ry | Flle@m); (1.6)

178, (Pl o) < Coll 500 sy | l1ngem) (1.7)
for any f € LP(R™).

As a consequence of Theorem C one can easily obtain the following LP
boundedness result of the oscillatory singular integral operator Sy defined
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k£

S f(z) = pov. / YUK (2 — ) f(y) dy,

where ¥: R™ — R™ is a mapping and A = (A1, ..., Am) € R™. In fact, we
have the following:

Theorem D Let K(z) = Q(z)|z|™" where Q € BY*(S"1). Let T: R™ —
R™ be a homogeneous mapping of degree d = (dy, ..., dm) with d; # 0 for
1 <j <m. Then the operator Sy is bounded from LP(R™) to itself for 1 <
p < 0o. The bound for the operator norm is independent of A1, ..., Am.

Throughout the rest of the paper the letter C will stand for a positive
constant but not necessarily the same one in each occurrence.
2. Some Definitions
We start by giving the following definition.
Definition 2.1 (1) For z) € S» ! and 0 < p < 2, the set
B(z), o) = {z' € S"1: |2 — z}| < 6o}

is called a cap on S™1.

(2) For 1 < g < o0, a measurable function b is called a g-block on ™! if
b is a function supported on some cap I = B(x}, fp) with [|b]|ze < |[I|~Y/7
where [I| =o(I) and 1/¢+1/¢ = 1.

(3) Bp(S™1) = {Q € L}YS"1): @ = 302, cuby, where each ¢, is a
complex number; each b, is a g-block supported on a cap /, on S”=1: and

Mg,v({ck}’ {Ik}> = <;ozl \C/.L‘(l -+ (bn,v(uﬂ‘)) < OO}, where

1
b u(t) = X010 /t w1 log® (u) du. (2.1)

The definition of By*“([a, b]), a, b € R will be the same as that of
By ¥ (S™1) except for minor modifications. One observes that

b o(t) ~t " log¥(t™!) ast—O0for k>0, v ER,
and

$o,u(t) ~log?™ (t7!) ast— 0 forv > —1.
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The following properties of By’ can be found in [KS:
By“* C By ifvg > v > —1 and k > 0;

) (2
) Bg* C By~ if v, v2 > —1 and 0 < k1 < Kg; (2
(iii) Bp® CBgUifl < q < g (2.
) LIS 1) ¢ By¥ (8™ ) for v > —1 and k > 0. (2
i [
that these spaces enjoy the following properties:
Lemma 2.2 (i) If1 <p<q< oo, then for k > 1/p' we have
BpU(S™1) C LP(S™Y)  for any v > —1;
(i)
Bpo(S™ 1)y =LYS™") if and only if k > 1/¢' and v > 0;
(iii) for any v > —1, we have
U ng(sn——l) g U Lq(Sn—l)
q>1 g>1

Definition 2.3 For a suitable mapping ¥: R"\{0} — R™, p € [2, 00),
and a suitable function b(-) on 8"~ we define the measures {X, 05, k€

Z} and the corresponding maximal operator )\b v, , OB R™ by

o b(y)
/RmfdAb"I”k"’ /pkslykpk“ FE@) Yy

Xow, ol <$)=;gg!l%,w,k,pl * ().

3. Some Technical Lemmas

‘We shall begin by recalling the following two lemmas due to Ricci and
Stein.

Lemma 3.1 ([RS2]) Let y(t) = (ait?, ..., ast?) where aj, ¢;j € R for
1 <5 <s. Let M, be the mazimal operator defined on R® by

I

f(z) =sup
My r>0 R
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for z € R®. Then, for 1 <p < oo, there exists a constant Cp > 0 such that
My fllrrs) < Coll fllzems)
for all f in LP(R®). The constant Cy, is independent of a; for all1 < j < s.
Let ®: RT — R be a generalized polynomial defined by
B(t) = 19 + gt + - + pptm (3.1)
where pso, ..., Wy are real parameters and ay, ..., G, are real numbers.

Lemma 3.2 ([RS1]) Lety € C0, 1] and ® be given by (3.1) with ay, . . .,
am are distinct positive (not necessarily integers) exponents. If

I\ = / ’ Py (t)dt,

«

then
8
T < ] sup o]+ [ 190l
a<t<p «
where A € R\{0}, € = min{1/a1, 1/m} and C does not depend on ua, ...,

bm as long as 0 < a < B < 1.

By Lemma 3.2 and the change of variable ¢t — 1/t we immediately get
the following:

Lemma 3.3 Let € C'[1, 2] and ® be given by (3.1) with ay, ..., am are

distinct negative (not necessarily integers) exponents. If

B
() = / Wy (t)dt, 1<a<f<2,
64

then

(3

B
e s i+ [ v@lah Az
. a<st<f
where A € R\{0}, 6 = min{~1/ay, 1/m}, o(t) = t=2¢(1/t) and C does not
depend on W2, ..., LUm-

By an argument which is similar to the proof of Lemma 3 in [RS1] we
get the following:
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Lemma 3.4 Lety € CY([1/2, 1]) and
A(t) — ta1 _|_ ,U/Qta2 + . + ,Uz]gtak + )uk:—l—lt—ak-'_l + R + ,U/mt—am

where Lo, ..., im are real parameters and ai, ..., Gy are distinct positive
exponents. Let

5]
() = / M) dt,

AeR\{0} and1/2 < a < <1. Then

8
I < OfAt—f{aggﬁ v+ [ r¢'<t)(dt},

with € = min{1/a1, 1/m}, where C does not depend on ug, ..., tm and .

By using Malgrange Preparation Theorem ([Ho]), the compactness of
S™~1 and §™~!, and the arguments in the proof of Theorem 3.1 in [FGP],
we get the following:

Lemma 3.5 Letn,m € N and F: S ! x S™1 — R be such that for
eachn € S™1 F(-,n) is a nonconstant real-valued analytic function on
Sn—1. Then there exist positive constants § and A such that for each n €

S™=1 there exist open subsets Uy, ..., Uy of 8”1 which cover S such
that
sup/ |F(z,n) — F(y, )| °do(z) < A (3.2)
yelU JU

for U € {Ul, ceey Ul(n)}'

The following result follows directly from Lemmas 3.3-3.5 in [AgP]
which is an extension of a result of Duoandikoetxea and Rubio de Fran-
cia in [DR] (see also [FP]).

Lemma 3.6 Let N € N and {a,(cl): keZ 0< 1< N} bea family of
Borel measures on R™ with a,(cN) =0 for everyk € Z. Let {a;: 0 << N—
1}C[2,00), {mi: 0<SI<N—-1}CN, {0:0<I<N-1} CR", and let
Li: R®™ — R™ be linear transformations for 0 <1 < N — 1. Suppose that
forallk € Z,0<I<N-—1, for all ¢ € R"™ and for some C >0, A>1 we

have
© ol < o4
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(@) [60(€)] < CAlaFAL(&)[~/A
(i) [50(€) — 5V (©)] < CAlafAL(€)]/A,
Assume that

lo* @1, < CoAllflln (33)
for1 < p < oo and for every f € LP(R™) where o*O(f) = supkezﬂo}(f)l*f ,
0<I<N-1
Then for every 1 < p < oo there exists a constant Cp, > 0 which s
independent of the linear transformations {L;} such that

SToDwf| < oAl (3.4)
keZ p

sup|>_ ot x f(@)|| < Cpdllfllp (3.5)
keZ| Ty p

for every f € LP(R").

Lemma 3.7 Letm €N, let Z;( -) be a function on S™1 satisfying the fol-
lowing conditions: (i) HEHLq(Sn_l) < ||~V for some g > 1 and for some
cap I on S™71; (ii) HEHLl(Sn—l) <1. Let ¥: R™ — R™ be a homogeneous
mapping of degree d = (dy, ..., dm) with d; > 0 for 1 < j < m. Assume
that \IJ}S”_l s real-analytic and that there are s1, 51 € N such that s1 <
S51<m, {j:1<j<mandd; =di} ={1,..., 8} and {¥q, ..., Ty}
forms a basis for span{¥i, ..., ¥5 }. Then there exist o, C > 0 and a
linear transformation L: R — R such that

2 — —a/lo -1

135,51 (E)] < Cllog |1|71)|H LTz, )|~/ (36)
if p = 2108U117) gnd |I] < e~?, whereas

|Xl;,q,,k,p(g)§ <N L5 6)|™" fp=2and |l 2t (3.7)

for all€ = (€1, ..., €m) € R™ where Il5,€ = (€1, ..., &,)-

Proof. 'We shall only prove (3.6) and the proof of (3.7) will be easier. Let
€= (&, ..., &m) € R™ be arbitrary but fixed. By assumption there exists
a linear transformation L = (L, ..., Ls,): R¥ — R®! such that
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81 81
D &Ty) =Y L5 €)Ts(y).
i=1 j=1

By the definition of )\5’\1,) k,p W€ have

N ~ 1 i dt
7 = —iHe, ()
)‘b,\If,lc,p(g) /Sn~1 b(y) Z/pe ; do(y)

where

He i (t, y) = (i &Y (y)> thpFHDE o 6 Ty () pF
j=1
For L(Hglé) = (Ll(Hglg)a R le (H§1§)) # 0, write
> &T(y) = L5, 8)|Fy, )
=1

where n = L(Ilg &) /|L(05€)| € 85171 and
Fly, n)=n-(T1(y), .., Ts, (1)).
We need to consider two cases:
Case 1:  F(y, n) is a nonzero constant function.
In this case, by Lemma 3.2,
%0k, ()] < ClBlI 1 (gn-1)| L (M5, ) pE 14 = (38)

where & = miﬁ{l/ d1, 1/m}. By combining (3.8) with the trivial estimate
1%, 9k ,(6)] < (log 2) log(|Z]7") we get

~

55,0, (6] < Clog(|1]71) | L(TLs, €)=/ o170,

Case 2:  F(y, n) is a non-constant function.

Let A, 4, Uy, ..., Uy, be as in Lemma 3.5. Construct in the usual way
a smooth partition of unity

Z hy(y)=1 forye 8™t
UE{Ul,...,Ul(,?)}
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with supp(hy) € U. Then

Mur,= D Iu® (3.9)

UG{Ul, ey Ul(r/)}

where
= ' 5 —iGR(€,t,y,7) dt
Iy(§) = b(y)e ho(y) do(y) =
1/pJ8n—1 ¢
and
Gr(€, t, y, n) = |L(Is,&)|F(y, n)th plktDd
4+ 4 fmlIlm(y)tdmp(kJrl)dm_
Now
Iy (€)[? < Clog(JI]7Y)
' ) - =—dt
X / / e—z}'k,s(w,y,t)hU(y)hU(m)b(y)b(x)7 do(y)do(z),
§n=ixsn=1 J1/p
where
Fre(@, y, 1)
= (F(y, 1) — F(z, 7))|L(I5 €)[t4 plk+ D
4+ tdmp(k+1)dm§m(\1’m(y) _ \I/m(aj))
Let

1
1/p

By Lemma 3.2 we have

ITre(z, y)| < CIL(T56)p* V4 (F(y, n) — F(z, n))|~°

. . [1 1
with 5=m1n{—, ——}.
) di’m
Let 6* = min{e, §}. Since [Tk, £(z, y)| < (log2)log(|I|~!) we immediately
get that

ITh¢(@, y)| <Clog(|T) ™)L (M5, &) p* D4 (F(y, ) — F(w, )| ~%/7 .
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Thus
| Iy (£)|<C| L(TT, £) pk 1 =07/24 | ],

(hu(y)hy () 1/2¢’
{/S"—lxsn—l IF(y,Un) _;(m, e da(y)da(ﬂ«”)} - (3.10)

Hence by (3.9)-(3.10), Lemma 3.5 and the assumption (i) on b we have
135, 0,1, p(€)] < CUIH|L(I5, £)pth D% ~07/20 (3.11)

By interpolation between this estimate and the trivial estimate

%5 4.k, ()] < Clog(I1]™1)
we
% 0 k6] < Cllog [I]71)] o4 L(T15,6)| ~5 /20 081N} (3.12)
bW, k,p

This completes the proof of our lemma. O

4. Proof of Theorem C

By assumption {2 can be written as Q = 37° ; c,by, where ¢, € C, b,
is a g-block with support on a cap I, on S*~! and

[e.e]
My ({eu}) = D leul (1 + (log |Z,] ™)) < 0. (4.1)
u=1
Also, by assumption ¥ = (¥, ..., ¥,): R® — R™ is a homogeneous

mapping of degree d = (di, ..., dp,) with d; # 0 for 1 < j < m and ¥|S™!
is real-analytic. In view of Lemmas 3.2-3.4, we shall only prove our theorem
for the case dy, ..., dm > 0. The argument for the case that some or all of
the d;’s are negative is similar and requires only minor modifications. Also,
by a simple reordering of the mappings ¥y, ..., ¥,, we may assume that
there are s1, §1 € N such that s; <51 <m, {j: 1 <j<mandd; =d;} =
{1, ..., 51} and {¥y, ..., U, } forms a basis for span{¥y, ..., U5 }.

To each block function by, (), let b,(-) be a function defined by

bule) = bu(@) = [ bula) dotw) (42)



562 H. Al-Qassem, A. Al-Salman and Y. Pan

Then one can easily verify that l;# enjoys the following properties:

/sn—l E)M(u) do(u) =0, (4.3)
1Bullze < 217,77, (4.4)
1Bl zr < 2. (4.5)

Let A={peN:|[,|>el}and B={ue N:|[,] <e !} ForpeN,
we set

(2 ,ifue A
Py log(ilul™)  if 4 € B.

Using the assumption that {2 has the mean zero property (1.1), and the
definition of b, we deduce that {2 can be written as

o
= Z cﬂgu
p=1

which in turn gives

TQ’\I; Zc“ bu,\I/ (4.6)
T o(f <Z eIy, (47)
Let Fo = \I/ Fl = (0 ey 0, \I/§1+1, ey \I/m), Lo(g) = L(Hglf) for
£€R™ and Ag )k = N1k, p, fr 1 =0, 1. By invoking (4.4)-(4.5) and
s Pu !
Lemma 3.7 we get
|)\b . (6)|<C6, fori=0, 1 (4.8)
—0/8
AL, (€)|<Caulak Lofe)| o/ (4.9
where
1 yifpue A
r log(|1,]7Y) , if ue B.
Also,

O @ =30 (@) < CpulofFtIh Lo(6)].
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By using the inequality /A\éO?C (&)— G (§)| < C6,, if necessary we obtain
’ pu b, k: P/.L

A0 ©=3 (O] < C8lol Lo(8) 1%, (4.10)

bk, pu

Similarly, by using (4.3)-(4.5) we can find additional mappings I's, ..., T'y
from R™\{0} to R™, {a;: 1 <1 < N — 1} C (0, o0), appropriate lin-
ear transformations {L;: 1 <[ < N — 1} and a finite family of measures ]
{/\(l) : 2 <1 < N} with the following properties:

bk, pu
Ty=(0,.., 0, N, =Xk, fr2sisN  (411)
)\l()f\;)p -0, |/\bkp“ )| <08 for2<I<N-1 (4.12)
‘j\g,)k,pu(é)[ < COulpkhLy(€)[7™/%, for2<I<N-1  (4.13)
Aok 5O = X o ()] < COUlOA L&),

for 2<I<N—-1.  (4.14)
By (4.5) and Lemma 3.1 we immediately get
1257, (Fllo < Cobullfllpfor p € (1, 00) (4.15)

where

Es)* _ Ss) < B
)\bwp“(f) 21£H/\b’k,p“| * f’ and 0<s< N —1.

By (4.8)-(4.15) and Lemma 3.6 we have

L — (0)
I%,05l,= [SA2,,, <3| <l (4.16)
keZ P
and
sup ZA,W oI = Cotulfll (4.17)

for p € (1, c0). Since

+ 29 gz,

*
|Tl~)“ z)|] < sup oo

()
Z )\ Japﬂ * (I)
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by (4.17) we obtain

175, gllo < Cpdull £l (4.18)
for every p € (1, 00). Hence (1.6)-(1.7) follow by (4.1), (4.6)-(4.7), (4.16)
and (4.18). This concludes the proof of Theorem C. O
5. A Counterexample

In this section, we shall give an example to show that the L? bound-
edness of T may fail if the condition Q € Bg’O(S”‘l) is replaced by the
weaker condition Q € By Y(S™1) for any v, —1 < v < 0.

Notice that fg\f(g) = m(€)f(€) where

mie)= [ [ 0@ dote

It is well-known that

m(©) = [ 000)| Foealt- ) +1og(0-¢17) aote) (51

dr
—.

and the convolution operator T is a bounded operator from L?(R™) to
itself if and only if the multiplier m € L®(R").

Before presenting our example, we shall need some notations and also
we need to prove some simple results on block spaces.

Let N ¥(€Q) = inf{Mg""({ce}, {Ik}): © = 3°%°, cxby and each by, is a
g-block function supported on a interval I;}.

Then we have the following lemma:

Lemma 5.1 Foranyv>—-1,a,b€R,
(i) NV is a norm on Be*([a, b)) and (B®?([a, b]), NO') is a Banach
space;
(i) If f € Be([a, b)) and g is a measurable on [a, b] with |g| < |f|, then
g € BY"([a, b]) with

N (g) < NP (f);

(i) Let Iy and I3 be two disjoint intervals in [a, b] with |I1], |I2| < 1 and
a1, oo € RT. Then

Ng(aaxr, + coxn,) > NoP(eaxn) + NV (aaxr,);
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(iv) Let I be an interval in [a, b] with |I| < 1. Then
N (xr) 2 (1 +log"**(|7]7).

Proof. The proof of (i) is straightforward while the proof of (iii) follows
from the same arguments as in the proof of (2.11) in [LTW]. Next, we turn
to the proof of (iii). First, notice that if

o>
arxr, +ooxXn = ckbr (5.2)
k=1

where each by is a g-block function supported on a interval I in [a, b] and
Mg’v({ck}) {Ik}) < 00, then

0o
aiXn + X = ch(Xthz b)-
k=1

This immediately implies

N (o1xr, + 0oxy)
o0
= inf {MS’U({ck}, {I}): o1xn + aexn, = chbk
k=1
and each by is a ¢g-block function supported
on a interval I, C [; U Ig}.

Let € > 0. Then

Ng*(oax, +oaxr,) > My ({ex}, {Ix}) — ¢

for some sequences {ck}, {Ix} with
[0.0]
aixr, + ooXn = Y ckbr
k=1

where each by, is a g-block function supported on a interval I C Iy U I
and Mg"°({cx}, {Ix}) < oo. Since I and I, are two disjoint intervals and
I, is an interval subset of Iy U Is we have either Iy C I or I C Is. Let
A={keN: Iy C I} and B={k e N: I C Ir}. By (5.2) and since I;
and [p are disjoint we get
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e} 00
x1X1, = chbk and QaXI, = Z Ckbk. (5.3)
keA keB

Since AU B = N, we have

Ng'*(oaxz,) + Ny (0axn) <My ({ex}, {I})
SNS,U(OQXH + aZXIz) +e

which in turn ends the proof of (iii).

Finally, we prove (iv). By the same argument as in the proof of (iii)
we have NV (x7) = inf{M>"({cx}, {Ie}): x1 = > pey ckbr and each by is
a g-block function supported on a interval I C I}. Let £ > 0. Then

NP¥(xr) = M9 ({ex}, {Ix}) —¢

for some sequences {cz}, {Ix} with x; = > 7o ckbr where each by is a ¢-
block function supported on a interval I C I and Mg"({cx}, {Ix}) < 0.
Since ||bg|lzr < 1, we have |I] < 322 |cx|. The last inequality along with
the relation I C I implies the desired inequality in (iv). This concludes
the proof of the lemma. O

Let us now give our example. For simplicity, we shall present our ex-
ample only in the case n = 2 where S'is identified with [—1, 1]. Let ¢ > 1
be fixed and for u € [-1, 1],

QUu) = Crbi(u) (5.4)
=1
where
a=3" L ba () = —X(_1,0(8)
k7 (k9 +1)(log k)%’ L0
_k:|Ik|1/q/ /g
~Tlog k)2 b(u) = Ikl x1,, (w)
nd I = L i for k>2
a. k — kql +1> kq/ i - .

Then Q has the desired properties. In fact, ) satisfies the following:

/l Q(u)du = 0; (5.5)

-1
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Qe BYY([-1, 1]); (5.6)
1

| 190w 0g(ul ) du = oo (57)
0

[ 196 10g(ul ) du < oo 53)

Q¢ BYO([-1, 1)) (5.9)

The proof of (5.5)-(5.8) is straightforward. However, the proof of (5.9)
will rely heavily on Lemma 5.1. We first notice that each by is a g-block
supported in an interval Iy. So we only need to show that Ny Q) = o0
To this end, by Lemma 5.1 we have for each m,

N O(Q+ Crix—1,0)= ) [Cll T 77 N&O(x1,)
k=2

>3 Gl [k /(1 + Log (1Tl ~1).
k=2

Letting m — oo, we get Ng’O(Q—I—C’lX[_l’O]) = 00. Since, Ng’O(C&X[_l,O]) <
0,0,y _
oo we get Ny~ () = oo.
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