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An upper bound for the total sum
of the Baum-Bott indexes of a holomorphic foliation
and the Poincaré Problem
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Abstract. An upper bound for the degree of an algebraic solution of a foliation in CP2
in terms of the degree of the foliation and some other local invariant is given. This result
follows from the existence of an upper bound for the total sum of the Baum-Bott indexes
of a holomorphic foliation in a compact algebraic surface.
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1. Introduction

In [17] Poincaré established that, a differential equation of the first or-
der and of the first degree in C? is algebraically integrable as soon an upper
bound for the possible degrees of the algebraic solutions of the equation in
terms of the degree of the differential equation is established. In general it
is not possible to find such upper bound as several simple examples show
(see [9] or [21]). However the problem can be solved if some restriction to
the singularities of the differential equation are given. In [9], for instance, a
positive answer to this problem is given in the case that the singularities of
the algebraic solution are ordinary nodes. Also, in [7], a positive answer is
given in the case that the algebraic solution avoids the dicritical singulari-
ties of the differential equation. More generally, in [6] an answer is given if
certain restrictions to the singularities of the foliation in the algebraic solu-
tion are given. From then several authors have been studied this problem
in a more general setting (8], [1], [19].

The main purpose of this work is to show that an answer to the Poincaré
problem can be given as a consequence of a more general fact: the existence
of an upper bound for the total sum of the Baum-Bott indexes of the sin-
gularities of a foliation.

More precisely, let {a}* be the maximum between 0 and the real num-
ber a and denote the intersection number between two divisors, say D and
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C, by DC and by D? the self-intersection number of D. We shall prove:

Theorem 1.1 Let F be a holomorphic foliation with isolated singularities
in a compact algebraic surface X and let E be an effective divisor such
that S := Supp E is an algebraic solution of F. Assume that E has an
irreducible component, say T, with T? > 0 and such that GSV(F, T) <
ET —T?. Then,

BB(F)
< 8%+ 2GSV(F, §)+ > (4 — 1?(S? + {=5°}) + A(F, S)
i=1
n k23 +
+5 208 - 1){GSV(J—", S)+SP—ESi+ > (4~ 1)S]Si} ,
=1 7=i+1

where E = 0151 + - + £,S, is the decomposition of E in its irreducible
components. T is a map adapted to the pair (F, S) (Definition 3.3) and S;
are the strict transforms of S; by .

Here and throughout this note BB(F) (GSV(F, S), respectively) is the sum
of the Baum-Bott’s indexes (Gomez Mont-Seade-Verjovsky’s indexes, resp.)
of all singularities of 7 in X (in S, resp.). The symbol A, (F, S) stands for
a positive integer that depends on the behavior of F along S (see Definition
3.2).

Any differential equation in C2 induces a foliation in CP? and the prob-
lem raised by Poincaré in this context is to find an upper bound for the
possible degrees of the algebraic solutions of the foliation in terms of the
degree of the foliation (recall that the degree of a foliation in CP? is defined
as the number of tangencies of its leaves with a generic projective line (cf.
[9])). From the above theorem we obtain,

Theorem 1.2 Let F be a holomorphic foliation in CP? of degree n and let
S be an algebraic solution of F of degree k. Then, k < n+2++/Ar(F, S).

In particular we recover the upper bounds obtained in [9] and [7] (Corollaries
2.4 and 2.5).

This work is organized in the following form. In the next section we
will recall the definition of Baum-Bott’s indexes as well as Gomez Mont-
Seade-Verjovsky’s indexes and we will see how to obtain Theorem 1.2 from
Theorem 1.1. In the last section we will prove Theorem 1.1.
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2. The Poincaré’s problem

This section is devoted to prove Theorem 1.2. Let us recall the definition
of the Baum-Bott’s indexes and Gomez Mont-Seade-Verjovsky’s indexes.

Let X be a compact algebraic surface and F a holomorphic foliation
with isolated singularities in X. Denote Sing(F) the set of singular points
of F.

2.1. Baum-Bott’s index For each p € Sing(F) denote by BB,(F) the
Baum-Bott index of F at p which is defined as

(LN [ (T J(z, )
BBy(F) = (2m‘> | P ety

where P and ¢ are holomorphic functions defined in a neighborhood of p
with ged(P, Q) = 1 such that F is defined by the holomorphic 1-form

w = P(z, y)dy — Q(z, y)dz,

and where J(z, y) is the Jacobian matrix of (P, @),
I'={(z,9) | 1P )] =1Q y)| = ¢}

for sufficiently small number ¢ > 0 and T is oriented so that the form
d(arg P) A d(arg Q) is positive.

Let Nr be the normal bundle of F which is defined in the following
way: let U = {U;}ier be an open covering of X, if F is defined in each
U; by the holomorphic 1-form w;, there must exist g;; € O*(U; NU;) such
that w; = g;;w;. Then N is the line bundle over X defined by the cocicle
{9ij}i; € H'(X, 0%).

On the other hand, Baum-Bott formula asserts (cf. [2]),

> BB(F)=d(TX —TF) € HYX, Z) % Z,
pESing(F)

where c3(TX — Tr) denotes the first Chern number of the virtual bundle
TX — Tz, where TX and Tr denote the tangent bundles of X and F,
respectively. Note that ¢i1(TX — Tr) = c1(Ng), since there is a relation
N% = Kx ® TF, where N is the dual of Nr (cf. [3], [14] and [20, Ch. 5,
Lemma 1.2]). Thus we can write,

(BB) BB(f) = ZpGSing(]:) BBP(‘F) = C%(Nf')
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2.2. Gomez Mont-Seade-Verjovsky’s index Let S be an algebraic
solution of F (that is, S is a reduced divisor in X such that S\ Sing(F) is
a leaf of F). Given a singularity p € Sing(F) NS in [12] it is introduced an
index which is a kind of Poincaré-Hopf index for the restriction to S of the
vector field that defines F in a neighborhood of p. We recall the algebraic
formula for this index given in [11]: Let p € Sing(F) N .S and f be a germ
of holomorphic function that defines S in a neighborhood of p then,

GSVP(]:7 S) = dimC(Oc2,p/<fa P, Q)p) - dimC(OC2,p/<f7 Jf)P)’

where P and Q are as in 2.1 and Jy is the Jacobian ideal Jf = (05 f, 9y f).
This index has the particular importance that relates the restriction

line bundle Nx|g to the self-intersection number of S. In fact it was proved

in [3] (and also in [15]) that

(GSV) GSV(F, §):= ZpesnSing(}‘) GSV,(F, S) = c1(Ng)S — S2.

Remark 2.3 In particular, in the case that F is a holomorphic foliation
in CP? of degree n it is well known that N = O(n + 2). Therefore, if T is
an algebraic solution of degree ¢, by (GSV) we get GSV(F, T) = (n+2—1t)t
and BB(F) = (n + 2)? by (BB).

We are now able to prove Theorem 1.2 using Theorem 1.1.

Proof (of Theorem 1.2). Assume that n+ 2 < k. Then for any irreducible
curve T in CP? we have GSV(F, T) < ET — T? in view of Remark 2.3.
Therefore, if we take F := S in Theorem 1.1 and use Remark 2.3 we conclude
that (k —n — 2)2 < A, (F, S). Hence the theorem follows. a

Theorem 1.2 must be compared with [6, Theorem 1] (see also [8]) where,
from solving a problem of imposing singularities to a plane curve, it is
obtained a bound for the degree of the curve. We observe that the terms
that appear in the definition of Ay (Definition 3.2) are the same that the
coefficients of the divisor R in [8]. Nevertheless we stress that in the above
result we do not need to establish the condition of virtually passage of some
effective divisor A by the cluster of points of the resolution of the curve as
it is needed in [6] or [8] (see [8] or [6] for details). From the above theorem
we recover the upper bounds obtained in [9] and [7].

Corollary 2.4 (Cerveau-Lins Neto, [9]) Let F and S be as in Theorem
1.2. If S has only normal crossing singularities then, k < n + 2.
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Recall that a singularity, q, is said non-dicritical if F has finite many
separatrix through q.

Corollary 2.5 (Carnicer, [7]) Let F and S be as in Theorem 1.2. If F
has only non-dicritical singularities in S then, k < n + 2.

Proof. By [5, Theorem 3] we have the inequality pq + &4 < vg + 1 at any
infinitely near singularity of S, where pg, £, and v, are as in 3.1. Therefore
AR (F,S)=0. O

Clearly Theorem 1.2 as well as the corollaries above hold (and with the
same proof) if we replace CP? with any compact algebraic surface X with
Picard group Z.

Note that in Theorem 1.2 we did not really have used Theorem 1.1 in all its
strength; in fact in that result the ¢;’s are always 1. We could have applied
Theorem 1.1 in CP? with general #;’s to obtain other inequalities, however
those inequalities do not seem to be of special interest. Nevertheless, for
other algebraic surfaces, Theorem 1.1 gains interest if we realize that we
can always obtain an upper bound for the GSV-indexes, as it is required
in Theorem 1.1 if, for instance, the algebraic solution T has T2 > 0 (just
taking E := ¢T with ¢ great enough). Also the required upper bound for
the GSV-indexes holds if there exists another irreducible algebraic solution,
say S, such that SNT # 0 (just taking E := T + £S with £ great enough).

2.6. We close this section with a result concerning the Tyurina number of
a germ of plane curve singularity.

Given a germ of plane algebraic curve, say (S; 0), its semi-universal
deformation is a germ of a holomorphic deformation over (C7;0) such that
(up to isomorphism) any deformation of (S; 0), with parameter space (C; 0),
is obtained by pull-back via a holomorphic function from (C; 0) to (C”; 0).
The number 7 is called the Tyurina number of (S; 0) and can be computed
by the formula 7 = dim¢(Ogz2,o/(f, J5)) where f is a germ of holomorphic
function which defines (S; 0) and Jy is the Jacobian ideal of f. Note that
7 appears in the algebraic formula for GSV-index (see 2.2).

As was observed in [4] pag. 533 a lower bound for GSV(F, S) would
readily imply an answer to the Poincaré problem. On the other hand, by
the algebraic formula for GSV-index, to give an upper bound for the total
Tyurina numbers is equivalent to give a lower bound for GSV. By Theorem
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1.1 we can obtain an upper bound for the total Tyurina number of an
algebraic curve in an algebraic surface (for related results in CP? see [16,
Theorem 3.2]).

Corollary 2.7 Let F and X be as in Theorem 1.1. Let S be an algebraic
solution of F and define M := 3 cqinorng dme(Ocz »/(f, P, Q)p) with
P, Q and f as in the algebraic formula for the GSV-indez in 2.2. If any
irreducible component of S has non negative self-intersection number then,

Y om< max{M -1, M + %(52 —BB(F) + Ax(F, S))},

p€Sing(.5)
where Ty, is the Tyurina number of (S, p).

Proof. Let us assume that Zpesmg(s) Tp = M then, by the algebraic
formula for the GSV-index in 2.2, we see that GSV(F,S) < 0. Thus
c1(Nx)S < S% by (GSV). Hence Y ,(GSV(F, S;) + S52) < 5 -, S; where
the sum runs over all irreducible components, S;, of S. Therefore there
must exist an irreducible component of S, say T, such that GSV(F, T) <
ST —T?2. Hence — GSV(F, S) < 1/2(S? —BB(F)+Ax(F, 9)), by Theorem
1.1. Now the corollary follows by the algebraic formula for the GSV-index
in 2.2. O

3. An upper bound for the total sum of the Baum-Bott indexes
of a holomorphic foliation

As it was showed in the former section the result about the Poincaré’s
problem stated at the introduction is consequence of the existence of an
upper bound for the total sum of the Baum-Bott indexes of . The aim of
this section is to prove this upper bound.

Notation We shall use the standard notation in algebraic geometry. In
particular, if D is a divisor in a compact algebraic surface X the symbol
Ox (D) will denote the corresponding invertible sheaf induced by D in X
and Ox(tD), or O(tD) if X is understood, will denote Ox(D)®t. The
intersection number between two divisors, say D and C, will be denoted by
DC in particular D? will denote the self-intersection number of D. Let £
be a holomorphic line bundle in X, if C is an effective divisor in X, then
Oc(L) will denote the restriction £ ® Og. Also hO(L) := dime H(X, £).
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3.1. Infinitely near singularities Let m: X = X, 33 Xpoy — -+ 5

Xg = X be a sequence of blow ups at points such that the first blow up
is made at p and the blow up 741 is made at a point that lies in the
exceptional curve of the first kind, say Dy, introduced in X by m;. Let S
(F, respectively) be an algebraic curve (a foliation, resp.) in X, for each
k and each g € X}, the symbol g i (vg,k, resp.) or pg (vg, resp.) if X is
understood will denotes the algebraic multiplicity in g of the strict transform
of S (F, resp.), say Sk, (Fi, resp.) by m1 0+ o my.

For each ¢ € Xj set g4 as the number of irreducible components of the
exceptional divisor of my o - - - o 7, which contains ¢ and which are solutions
of fk

Definition 3.2 With the notations of 3.1. We call the irregularity of F
along S to the positive integer Ar(F, S) := > (uq + €4 — vg — 1)%, where
the sum runs over all infinitely near singularities of S, say ¢, with g +e4 >
Vg + 2.

Definition 3.3 Let m: X — X be a sequence of blow ups with center at
infinitely near singularities of S such that the strict transform of S by =,
say S, has the following properties:

1_ it is a disjoint union of smooth Riemann surfaces,

2_  all those irreducible components of the exceptional divisor of = which
are algebraic solutions of the strict transform of F by 7 meets S trans-
versely.

A map 7 as above will be called a map adapted to the pair (F, S).

Definition 3.4 Let {C;}i=1,.. n be an ordered set of n irreducible curves
in X. For each n—tuple £ := ({1, ..., £,) of ordered non negative integers
we define

0[N ? et 8,C i
volg(F, C’1+...+Cn):zhmsuph ([N:®O( 10;2—4— + NS
t—+o00

Observe that in the definition of volz(F, %) we must take into account the
order in which the irreducible curves, C;, appears.

Proposition 3.5 Let S be an algebraic solution of F and 7: X — X a
map adapted to the pair (F, S). If Si, ..., S, are the irreducible compo-
nents of S then, for any n-tuple £ of positive integers,
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1 2
volz(}",Sl—i—----i—Sn)S "2‘2:2—1 {-52y+

+ zn:(ei — 1){— GSV(F, S;) — S? + ES; — i (4, — 1)sjsi}+,

i=1 J=i+1

where S; are the strict transform of S; by m and E := 0151+ - + £,5,.

We postpone the proof of this result by a moment and we prove Theorem
1.1 using the above proposition.

Proof (of Theorem 1.1). We have E = ¢151 + -+ - + £,.S,, with ¢; positive
integers and S; irreducible. Since GSV(F, T') < ET —T? we obtain ¢1 (Nr®
O(—E))T < 0 in view of formula (GSV) in 2.2. On the other hand, since
T2 > 0 the dimension h*(Kx ® (Nx ® O(—E))®*) cannot grows like ¢2, for
otherwise we could write m(Nr ® O(—FE)) = H + L for some ample line
bundle H, some effective divisor L and some m € N (Kodaira’s lemma, see
[18, pg. 143]) hence ¢;(Nr ® O(—E))T > 0, contradiction. Therefore, by
Riemann-Roch formula and Serre duality ([13])

E(Ny® O(E)) < 2voly(F, S1+ -+ + Sp)
where £:= (f1,...,4,). (1)

On the other hand a simple algebraic manipulation using Baum-Bott’s for-
mula (BB) and formula (GSV) shows that

c%(N}@(’)(E)):BB(F)nLiQ(&—1)c1(N;®O(E))SZ-
i=1

+2) (lit,—8:4,)SiS, - 25%2@3\/@ S+ —-1)%82. (2)

1<) i=1

Now, by proposition 3.5, inequality (1), equality (2) and the fact that

> GSV(F, Si) = GSV(F, §)+2) _ S8,

i=1 i<y
where S is the curve whose irreducible components are the curves 51, ..., S,
(see (5.7) pag. 164 in [20]), the theorem follows. O

3.6. The rest of this section will be devoted to prove Proposition 3.5. The
proof will follow as consequence of some technical results and Bogomolov-
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Sommese’s vanishing theorem ([10, Corollary 6.9 pag. 58]). The idea is to
compare vol; with volj, where I is the tuple with all entries equal to one,
and to study its behaviour by blow ups. This is done in a series of lemmas.

We have the basic inequality:

Lemma 3.7 Let C be a compact Riemann surface and L a line bundle
over C. Then,

RUL) <1+ {deg(£)}T,
where {a}T is the mazimum between 0 and the number a.

Proof. We can assume that h%(£) > 2. Thinking £ as a divisor in C, say
E, we get that the complete linear system | E/| has dimension greater or equal
to 1. Thus we can take an effective divisor, say D, linearly equivalent to E.
Now, since D is effective, we have h(£) ~ 1 = dim |D| < deg(D) = deg(L)
(see exerc. 1.5 pag. 298 in [13]) and the lemma follows. O

The proof of Proposition 3.5 relies on the next technical lemma. For
this we remind that the volume (also called degree) of a line bundle £ over
X is define by
RO(L®Y)

+2

vol(£L) := limsup

t—-400

Lemma 3.8 Let vol(£) be as above, C an irreducible and reduced divisor
in X and r an integer. If v: X — X is a sequence of blow ups such that
the strict transform of C by v, say C', is smooth then,

vol(L @ O(rC)) — vol(L ® O(C))

r tk
< Zlimsup% Z {t(a(L)C + rC%) + (5 — tT)C’2}+
k=2 T Y e—1)41

< {r = D@0+ 0N} + 5~ DH-CH*.

Proof. We can assume that 7 > 2 since otherwise the inequalities are
obvious. From the long exact sequences of cohomology induced by the short
exact sequences of sheafs 0 - LR Ox(—(k+1)C) - LROx(—kC) — L®
Oc(—=kC) — 0, k € N and induction we get

W ((£L®O(rC))®) — K (L ® O(C)®)
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SZ z RO(L®* ® Oc(yC)) for every t€N. (3)

In order to compute the sum that appears in the right hand side of the
above inequality we write L& Q@ Oc(3C) = (L& Oc(rC))®* @ Oc((7—tr)C)
and for each 3 = t(k — 1) + 1, ..., tk, we consider the line bundle with
support in C defined by £, := Oz(1*(L ® O(rC)))® @ Og((y — tr)C) and
the line bundle over X defined by L, := (£ ® O(rC))® @ O((y — tr)C).
Then,

B (0 (L) @O (E))) = R(Ly), (4)

where F is an effective divisor in X which is contracted to points by v. In
fact E := (ir — 7)D where D is the exceptional divisor of . On the other
hand, since C is a Riemann surface and L, has support in C, by the former
lemma

h(L;) < 1+{deg(£)}* (5)
Meanwhile, we claim
h¥(Oc(Ly)) < hW(Op(v*(Ly))). (6)

In fact, tensoring the exact sequence 0 — Og — vu(Op) — Iz — 0 (see
exerc. 1.8 pag. 298 in [13]) by L, and considering the induced long exact
sequence of cohomology we have h%(Oc(L;)) < R(1.(Op) ® L,). Since
V(O @ v*(L;)) = v«(Op) ® L, by projection formula (see exerc. 5.1 pag.
124 in [13]) the claim follows.

Therefore, since deg(L,) = ¢1(£,)C = t(c1(L)C +7rC?) + () —tr)C?, the
first inequality stated in the lemma follows by (3), (4), (5) and (6).

The second inequality follows from the first one by observing that
{deg(L )} < Ha (DO + G2 + (tr — 9){-C*}. R

In the next lemma vol; is related to vol; where 1 is the tuple with all
entries equal to one.

Lemma 3.9 Let F, S and F be as in Proposition 3.5. Then,
Volz(f, Sl +- 4 Sn)

1¢ 27_ a2+
<voly(F, S+ Sp) +5 > (6 — 157}

i=1
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+ Zn:(ei - 1){— GSV(F, S;) — S2+ ES; — Zn: - 1)Sjsi}+,

i=1 J=i+1

where S; are any non singular models for S;.

Proof. In order to prove this lemma we must get rid of the coordinates
greater than 1 in the n-tuple £. To this end let us set I = {j | ¢; > 2}.
Without any loss of generality, by renumbering the indexes if necessary, we
can (and shall) assume that I = {1, 2, ..., m}. Now, foreachi=1, ..., m
define the line bundles over X by £; := N3O (£1S1+- - +4;—1S;—1+Sit1+
-+ +8y,). Note that £;_ 1 ® O(£;-15;-1) = L; O(S;) for i =2, ..., m and
that volz(F, S1+ -+ + Sp) = vol(Lym ® Ol Sm)) and voly(F, S1+ -+ +
Sr) = vol(£1 ® O(S1)). On the other hand

n
c1(L:)S; + 4:52 = —GSV(F, 8;) — S?+ ES; — > (4, — 1)S,S;
7=1+1
by formula (GSV) in 2.2. Therefore by Lemma 3.8 applied to each £; with
r:={;, C:=5;, C:=8; and an inductive process the lemma follows. O

In the next result we study how voly changes by blow ups. To this end
we recall how the co-normal bundle of a foliation changes by blow ups.

Let 7: X — X be a single blow up of X with center at p and let D be
the exceptional curve of the first kind introduced by . If F stands for the
strict transform of F by « then,

Nz =7"(Nz) ® O ((vp + ) D), (7)

where vp is as in 3.1 and dp is defined as 0 if D is an algebraic solution of
F and 1 otherwise (see [3, pag. 576]).

Lemma 3.10 ILet 7, S, {S;}; and £ be as in Proposition 3.5 and let « :
X — X be a sequence of blow ups. Let S; (f, resp.) be the strict transform
of S; (of F, resp.) by w. If D is the reduced divisor in X whose irreducible
components are those irreducible components of the exceptional divisor of w
which are algebraic solutions of F, then

. - ~ 1
voli (F, Sy ++++8n) Svoly(F, Sy 4+ + 5n + D) + 5 Ar(F, S).

Proof. We will prove this inequality by induction in the number of blow
ups made to obtain 7. In order to simplify the notation, without any lost
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of generality, we will assume that F has only one singularity in S, say p.
Now, we begin the induction process by assuming that « is a single blow
up with center p € S. Let D be the exceptional divisor of # then, using the
identity (7) and the projection formula (see [13])

volz (F, Sl+...+5’n):volﬁ0(]}, §1+"'+§n+D): (8)

where Ty is the tuple with all entries equal to one except the last one which
is equal to pp — vp — 0p, being pyp (vp, resp.) the algebraic multiplicity of S
(of F, resp.) in p.

Now we will change the coefficient p, —vp—6p in the (n+1)-tuple Up by
the number 1 — d,. To this end we use Lemma 3.8 with £ := N;-:_ ® (9(§1 +

-+ 8,)®0(=5,D), C:=D, C:=D and r := u, — v, to conclude
volgy (F, 81 + -+ + S + D) < volg, (F, 81 + - - + S + D)

Hp—Up 1 tk
+ Z lim sup 2 Z {tc1(L)D — 5}, (9)
k=2 TN ke—1)41

where Ty is the tuple with all entries equal to one except the last one which
is equal to 1 — &y,

On the other hand, by the identity (7), c1(£L)D = pp — vp. Since tk >
7 > t(k—1)+1 we have the inequality tci(L£)D —7 > 0 for every k < pp—vp.
Therefore the sum that appears in the right hand side of the inequality (9)
is equal to 1/2(up —vp — 1) if pp > v, + 2 and 0 otherwise. Thus, from (8)
and (9) we get the proof of the lemma in the case that = is a single blow
up.

To complete the induction process let us assume that 7 is a sequence
of s blow ups. Let us decompose 7 as X = Y % X, where o is a sequence
of s — 1 blow ups and 7 is a single blow up at a point, say ¢ € Y. Let
D be the exceptional curve of the first kind introduced in X by #. Let us
denote Sy (Fy, resp.) the strict transform of S (F, resp.) by o and Dy the
algebraic curve in ¥ whose irreducible components are all those irreducible
components of the exceptional divisor of o which are algebraic solution of
Fy. Now, by inductive hypothesis,

1
voly(F, 81+ + 8p) < voli(Fy, Sy + Dy) + 584(F, 8),

where, for simplicity of notation, we have used the symbols Dy and Sy in
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voly(Fy, Sy+Dy) instead of writing their decomposition in their irreducible
components.

From the above inequality, by inductive hypothesis applied to 7, the
divisor Sy + Dy and the foliation Fy, we conclude

voly(Fy, Sy + Dy)<volg, (F, $1 4+ --- + S, + D+ D)

1

where %; is the tuple with all entries equal to one except the last one which
is equal to 1 — 4 and where D is the strict transform of Dy by 7. Thus the
induction process is completed and the lemma follows. g

Now, Proposition 3.5 is a consequence of the above results and
Bogomolov-Sommese’s vanishing Theorem.

Proof (of Proposition 3.5). By Lemma 3.9 is suffices to show that

Volg(F, i+ -+ Sh) < %A,,(]—“, s).

By Lemma 3.10, this inequality holds as soon we have
Voli(ﬁ, §1+'-~+‘§n+D) = (.

But 5’1 + -+ S’n + D is an algebraic solution of F which implies that
N;:_ ® C’)(S’l 4+ 48, + D) is a subsheaf of Ql(ln(gl +o St D)). On
the other hand, being 7 a map adapted to (F, S), S;+ -+ S, + D is a
reduced normal crossing divisor whence [10, Corollary 6.9] applies to get
volg(F, Sy + -+ S, + D) =0. O
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