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Local energy decay

for some hyperbolic equations

with initial data decaying slowly near infinity

Ryo Ikehata∗ and Genta Sobukawa
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Abstract. A uniform local energy decay property is discussed to a linear hyperbolic

equation with spatial variable coefficients. We shall deal with this equation in an exterior

domain with a star-shaped complement. Our advantage is that we assume algebraic order

weight restrictions as |x| → +∞ on the initial data in order to derive the uniform local

energy decay, and its proof is quite simple.

Key words: hyperbolic equation, exterior mixed problem, weighted initial data, local

energy decay.

1. Introduction

Let Ω ⊂ RN (N ≥ 2) be an exterior domain with a compact smooth
boundary ∂Ω (in the case when N = 1, we take Ω = (0, +∞)). Without
loss of generality, in the case when N ≥ 2 we may assume 0 /∈ Ω̄ and ∂Ω ⊂
Bρ0(0) ≡ {x ∈ RN : |x| < ρ0} for some ρ0 > 0, where | · | denotes the usual
norm in RN and Ω̄ represents the closure of Ω in RN .

In this paper, we are concerned with the following initial-boundary
value problem

utt(t, x)− a(x)2∆u(t, x) = 0, (t, x) ∈ (0, ∞)× Ω, (1.1)

u(0, x) = u0(x), ut(0, x) = u1(x), x ∈ Ω, (1.2)

u|∂Ω = 0, t ∈ (0, ∞), (1.3)

where the given function a ∈ C1(Ω̄) ∩ L∞(Ω) satisfies

a(x) ≥ am > 0, x ∈ Ω (1.4)
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with some constant am > 0, and

utt =
∂2u

∂t2
, ∆ =

N∑

i=1

∂2

∂x2
i

, x = (x1, . . . , xN ).

In the case when N ≥ 2 we shall impose a geometrical condition on the
domain Ω:
(A-1) the obstacle RN \ Ω̄ is star-shaped relative to the origin.

Furthermore, we shall give some restrictions to a(x):
(A-2) x · ∇a(x) ≤ 0 for all x ∈ Ω.
(A-3) There exists a constant a0 > 0 (a0 ≥ am) such that a(x) = a0 for

x ∈ Ω satisfying |x| > r0 with some constant r0 > ρ0.
(A-4) x · ∇a(x) ≤ (γ0/2)a(x) for x ∈ Ω with some constant 0 ≤ γ0 < 1.

Note that either condition (A-2) or (A-4) will be used in each statements
below.

The purpose of this paper is to establish uniform local energy decay es-
timates to problem (1.1)-(1.4) under the assumptions (A-1)-(A-4). In this
case we do not use any compactness assumptions of the support on the
initial data. Instead we assume some weight restrictions of the algebraic
decay order as |x| → +∞ on the initial data. Our advantage is that the
method to derive the local energy decay estimate is quite simple as com-
pared with the well-known cases, which were obtained in the framework of
compactly supported solutions. We shall rely on so called the multiplier
method, and do not use any spectral analysis and so on. A device due to
Ikehata-Matsuyama [10] plays an important role to obtain the L2-bound
of solutions without compact supports, and in order to derive the energy
estimate of solutions with spatial algebraic order weights, which forms an
important part throughout this paper, the (modified) Todorova-Yordanov
method [22] can be adopted. It is not so important how we derive the
weighted energy estimate (see Lemma 3.3 below), but it is essential how we
use it.

Historically speaking, under the assumption (A-1) Morawetz [15] de-
rived the local energy decay estimate to problem (1.1)-(1.3) with a(x) ≡ 1
in the case when the initial data are compactly supported. After Morawetz
those results were generalized to the more general (non-trapping) exterior
domain cases in Morawetz-Ralston-Strauss [16]. From the viewpoint of the
spectral analysis Vainberg [23] derived the precise local energy decay esti-
mates, and various precise properties of the decay rate of the local energy
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were studied in Vodev [24] through also the spectral analysis. Melrose [14]
and Shibata-Tsutsumi [21] also discussed the more precise decay rates under
the non-trapping assumptions on the obstacle Ω̄c in the sense of Vainberg.
The role of the local energy decay property in the scattering theory can be
discussed in Lax-Phillips [12]. Zachmanoglou [25] directly generalized the
Morawetz result [15] to the general hyperbolic equations including (1.1).
It is important to cite the work by Bloom-Kazarinoff [2] that they allow
time-varying coefficients, and only impose conditions on the asymptotic
behavior as |x| → +∞ of the coefficients in the principal part of thier dif-
ferential operators. In Liu [13] the local energy decay problem for a system
of second-order hyperbolic equations with coefficients that also depend on
both spatial and time variables is studied under more general conditions on
the boundary including the class of star-shaped exterior domains. Bloom
[1] investigated the reduced hyperbolic equations of the second order with
spatial variables, which are asymptotically equal to the identity matrix as
|x| → +∞. On the other hand, it should be mentioned that in the frame-
work of H2-solutions the local energy always decays logarithmically even if
no geometrical assumptions on the obstacle Ω̄c are imposed and for related
results we refer the reader to Burq [4] and Ikawa [6]. To the best of the au-
thors’ knowledge all these investigations seem to be done in the framework
of compactly supported initial data. For these local energy decay results it
is well-known that there is no uniform rate of local energy decay in the case
where the obstacle is trapping (see Ralston [18, 19]). Especially, in [19] the
same type equation as (1.1) is considered in detail.

On the other hand, recently Muravĕı [17] announced (without proof)
the local energy decay estimate like O(t−1) as t → +∞ to the solutions of
the problem (1.1)-(1.3) with a(x) ≡ 1 under the assumption (A-1), and it is
worth while to be mentioned that the result in [17] can be derived without
assuming the compactness of the support on initial data. Quite recently
Ikehata [8] and Ikehata-Nishihara [11] have also removed the compactness
assumption on the supports of the initial data, but they dealt with the case
a(x) ≡ 1. In the case where the hyperbolic equation is represented by

utt −∇ · (K(x)∇u) = 0, (1.5)

Ikehata [9] has established the local energy decay result to problem (1.5),
(1.2) and (1.3) without assuming compactness of the supports on the initial
data. Unfortunately the weight condition assumed on the initial data as
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|x| → +∞ in [9] was exponential one. In the case of present problem with
non-divergence form (1.1) one can weaken the exponential weight condition
assumed in [9] to the algebraic one. As far as general hyperbolic operators
are concerned, to the best of the authors’ knowledge there seem to be no
any other results, that dealt with the algebraic decay order weight condition
on the initial data (as |x| → +∞).

Notation By ‖ · ‖p we mean the usual Lp(Ω)-norm (1 ≤ p ≤ +∞), and
especially we set ‖ · ‖ = ‖ · ‖2. The L2-inner product is defined by (as
usual)

(f, g) =
∫

Ω
f(x)g(x)dx for f , g ∈ L2(Ω).

The total energy E(t) associated with the equation (1.1) is defined by

E(t) =
1
2

{∥∥∥∥
1
a
ut(t, · )

∥∥∥∥
2

+ ‖∇u(t, · )‖2

}
.

On the other hand, let R > 0 be an arbitrary real number. Then the local
energy associated with the equation (1.1) is given by

ER(t) =
1
2

∫

Ω(R)

{
1

a(x)2
|ut(t, x)|2 + |∇u(t, x)|2

}
dx,

where we set Ω(R) ≡ Ω ∩BR(0).
Now let us mention the well-posedness of problem (1.1)-(1.3) (cf. Brezis

[3, Théorem X.14] or Ikawa [7, Theorem 2.25]).

Proposition 1.1 Let N ≥ 1. For each [u0, u1] ∈ H1
0 (Ω) × L2(Ω), there

exists a unique solution u ∈ C([0, ∞);H1
0 (Ω)) ∩C1([0, ∞);L2(Ω)) to prob-

lem (1.1)-(1.4) satisfying

E(t) = E(0), t ≥ 0. (1.6)

Our main result reads as follows.

Theorem 1.1 Let N ≥ 3 and assume (A-1), (A-2) and (A-3). If the
initial data [u0, u1] ∈ H1

0 (Ω)× L2(Ω) further satisfy
∫

Ω
(|x|2|u1(x)|2 + |x||∇u0(x)|2)dx < +∞, (1.7)
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then the unique solution u(t, x) to problem (1.1)-(1.4) has the uniform local
energy decay property: for each R > r0 it holds that

ER(t) ≤ C

t− (R/am)

for any t > R/am, where C > 0 is a constant depending only on some
quantities a0, r0, N , and the initial data.

Remark 1.1 Since we are dealing with the weakest weight condition on
the initial data as far as previously known in the non-constant variable
coefficient case, as the first step it is quite natural that we do not care
about the optimal decay order of the local energy as in [16], [23] and so
on. Conversely speaking, it is open to obtain optimal decay rates of the
local energy. In the present case this problem will be much difficult as
compared with the compactly supported solution cases because even in the
3-dimensional case one can not use so called the Huygens principle as in
[16].

Remark 1.2 It seems difficult to derive the similar result to Theorem 1.1
for the equation (1.5), and it is still open, too. This is because the useful
identity (3.10) below breaks.

Remark 1.3 Uniform local energy decay estimate can be also derived
without assuming the compactness of the support on the initial data if one
assumes further regularity on the initial data, and for this we refer the
reader to (for example) Secchi-Shibata [20]. Therefore, in this paper it is
also essential that we are dealing with weak solutions to problem (1.1)-(1.3).

Next we shall introduce the N = 1, 2 dimensional cases. For this we
shall define a weight function d(x) as follows (see Dan-Shibata [5]).

d(x) = |x| log(B|x|), N = 2, (1.8)

where B > 0 is a constant such that infx∈Ω |x| ≥ 2/B > 0. Then our results
read as follows.

Theorem 1.2 Let N = 2 and assume (A-1), (A-2) and (A-3). If the
initial data [u0, u1] ∈ H1

0 (Ω)× L2(Ω) further satisfy
∫

Ω
(d(x)2|u1(x)|2 + |x||∇u0(x)|2)dx < +∞,
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then one has the same conclusion as in Theorem 1.1.

Theorem 1.3 Let N = 1 and assume (A-2) and (A-3). If the initial data
[u0, u1] ∈ H1

0 (0, ∞)× L2(0, ∞) further satisfy
∫ +∞

0
x(|u1(x)|2 + |∂xu0(x)|2)dx < +∞,

then one has the same conclusion as in Theorem 1.1.

Furthermore, one can reconsider the assumption (A-2) in a more general
framework. We shall state only a result for the case of N ≥ 3 (for N = 1
and 2 cases it is left to the reader’s exercise).

Theorem 1.4 Let N ≥ 3 and assume (A-1), (A-3) and (A-4). Under the
same assumptions of Theorem 1.1 on the initial data, it holds that

ER(t) ≤ C

(t− (R/am))1−γ0
,

for large tÀ 1.

2. Preliminaries

In this section we shall prepare an identity, which is used later in the
proof of Theorems. The following identity is a modification of that intro-
duced in [15] in the case when (at least) a(x) ≡ 1. Note that since we are
dealing with a weak solution to problem (1.1)-(1.4) we may assume that in
the following calculations the corresponding solution is sufficiently smooth
and vanishes as |x| → +∞.

Proposition 2.1 (cf. [25, page 511, (4.2)]) Let N ≥ 1. Under the as-
sumptions of Proposition 1.1 it holds that

tE(t) =
N − 1

2

(
1
a2
u1, u0

)
+

(
1
a2
u1, x · ∇u0

)

−N − 1
2

(
1
a2
ut(t, · ), u(t, · )

)
−

(
1
a2
ut(t, · ), x · ∇u(t, · )

)

+
1
2

∫ t

0

∫

∂Ω

(
∂u(s, σ)
∂n

)2

σ · n(σ)dSσds

+
∫ t

0

∫

Ω

1
a(x)3

(x · ∇a(x))ut(s, x)2dxds,
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where n = n(σ) is the unit outward normal vector relative to Ω at σ ∈ ∂Ω.

In the following paragraph we shall give some elementary lemmas with-
out proof, which are used in the proof of Proposition 2.1.

Lemma 2.1 Under the assumptions of Proposition 2.1 it holds that
∫

Ω
∆u(t, x)(x · ∇u(t, x))dx

=
1
2

∫

∂Ω

(
∂u(s, σ)
∂n

)2

σ · n(σ)dSσ +
N − 2

2

∫

Ω
|∇u(t, x)|2dx.

Lemma 2.2 Under the assumptions of Proposition 2.1 it holds that

d

dt

(
1
a2
ut(t, · ), x · ∇u(t, · )

)
+
N

2
‖1
a
ut(t, · )‖2

=
(

1
a2
utt(t, · ), x · ∇u(t, · )

)
+

∫

Ω

1
a(x)3

(x · ∇a)ut(t, x)2dx.

Lemma 2.3 Under the assumptions of Proposition 2.1 it holds that

d

dt
(tE(t))− E(t) = 0.

Lemma 2.4 Under the assumptions of Proposition 2.1 it holds that

N − 1
2

d

dt

(
1
a2
ut(t, · ), u(t, · )

)

− N − 1
2

∥∥∥∥
1
a
ut(t, · )

∥∥∥∥
2

+
N − 1

2
‖∇u‖2 = 0.

Sum up the four identities integrated over [0, t] in lemmas above. Then
the desired identity in Proposition 2.1 can be derived with several cancella-
tions.

3. Proof of theorems

In this section let us prove our results by relying on the identity in
Proposition 2.1. To begin with, the following basic inequality is useful for
the proof (see Dan-Shibata [5, Theorem 2.3]).
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Lemma 3.1 (Hardy-Sobolev) Let N ≥ 3. Then for u ∈ H1
0 (Ω), it holds

that ∥∥∥∥
u

|x|

∥∥∥∥ ≤ C‖∇u‖

with some constant C > 0.

The following lemma is a generalization of a result, which was derived
by a ”device” due to Ikehata-Matsuyama [10] (which is an essential modifi-
cation of the Morawetz [15] method) to problem (1.1)-(1.3) with a(x) ≡ 1.
The advantage is that we do not assume any compactness of the support
on the initial data as in previous results like [15], [21] and [25] (especially,
compare the result below with [25, Theorem 3]).

Lemma 3.2 Let N ≥ 3, and [u0, u1] ∈ H1
0 (Ω) × L2(Ω) satisfy ‖|x|u1‖ <

+∞. Then the unique solution u(t, x) to problem (1.1)-(1.4) as in Propo-
sition 1.1 satisfies

∥∥∥∥
1
a
u(t, · )

∥∥∥∥ ≤ C

( ∥∥∥∥
1
a
u0

∥∥∥∥ +
∥∥∥∥

1
a2
|x|u1

∥∥∥∥
)
.

Remark 3.1 Because of (1.4) under the assumptions on the initial data
as in Lemma 3.2 it holds that∥∥∥∥

1
a
u0

∥∥∥∥ +
∥∥∥∥

1
a2
|x|u1

∥∥∥∥ < +∞.

Proof of Lemma 3.2. As in [10] we first set

w(t, x) =
∫ t

0
u(s, x)ds.

Since the equation (1.1) is linear,

w(t, x) ∈ C1([0, +∞);H1
0 (Ω)) ∩ C2([0, +∞);L2(Ω))

satisfies the transformed mixed problem:

1
a(x)2

wtt −∆w =
1

a(x)2
u1, (t, x) ∈ (0, ∞)× Ω, (3.1)

w(0, x) = 0, wt(0, x) = u0(x), x ∈ Ω, (3.2)

w|∂Ω = 0, t ∈ (0, ∞). (3.3)
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Multiplying the equation (3.1) by wt and integrating it, one has

1
2

∥∥∥∥
1
a
wt(t, · )

∥∥∥∥
2

+
1
2
‖∇w(t, · )‖2

=
1
2

∥∥∥∥
1
a
u0

∥∥∥∥
2

+
∫ t

0

d

ds

(
1
a2
u1, w(s, · )

)
ds

=
1
2

∥∥∥∥
1
a
u0

∥∥∥∥
2

+
(

1
a2
u1, w(t, · )

)
. (3.4)

Here, we see from the Schwarz inequality and Lemma 3.1 that
(

1
a2
u1, w(t, · )

)
≤

∥∥∥∥
1
a2
|x|u1

∥∥∥∥
∥∥∥∥
w(t, · )
|x|

∥∥∥∥

≤C
∥∥∥∥

1
a2
|x|u1

∥∥∥∥ ‖∇w(t, · )‖. (3.5)

Hence it follows from (3.4) and (3.5) that

1
2

{∥∥∥∥
1
a
wt(t, · )

∥∥∥∥
2

+ ‖∇w(t, · )‖2

}

≤ 1
2

∥∥∥∥
1
a
u0

∥∥∥∥
2

+ C

∥∥∥∥
1
a2
|x|u1

∥∥∥∥ ‖∇w(t, · )‖

≤ 1
2

∥∥∥∥
1
a
u0

∥∥∥∥
2

+
C

2ε

∥∥∥∥
1
a2
|x|u1

∥∥∥∥
2

+
Cε

2
‖∇w(t, · )‖2

for any ε > 0, which implies

1
2

∥∥∥∥
1
a
wt(t, · )

∥∥∥∥
2

+
1− Cε

2
‖∇w(t, · )‖2 ≤ 1

2

∥∥∥∥
1
a
u0

∥∥∥∥
2

+
C

2ε

∥∥∥∥
1
a2
|x|u1

∥∥∥∥
2

.

Therefore, taking ε ∈ (0, 1/C) so small and noting wt = u, one has the
desired estimate. ¤

The next weighted energy estimate is important in deriving the local
energy decay. That idea originally comes from the new weighted energy
method due to Todorova-Yordanov [22]. Their method was originally ap-
plied to the damped wave equations. It is essential how we use the estimates
below, and is not so important how we derive it. For this purpose one defines
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the weight function ψ(t, x) ((t, x) ∈ [0, +∞)×RN ) as follows.

ψ(t, x) =

{
(1 + |x| − a0t), |x| ≥ a0t,

(1 + a0t− |x|)−1, |x| < a0t.

It is easily checked that the function ψ ∈ C1([0, +∞)× Ω̄) satisfies

∂ψ

∂t
(t, x) < 0, (t, x) ∈ [0, +∞)× Ω̄, (3.6)

a2
0|∇ψ(t, x)|2 − ψt(t, x)2 = 0, (t, x) ∈ [0, +∞)× Ω̄, (3.7)

ψ(t, x) > 0. (3.8)

(3.7) is so called the Eikonal equation. Then one has the following important
lemma.

Lemma 3.3 Let N ≥ 2, and assume (A-3). If the initial data [u0, u1] ∈
H1

0 (Ω) × L2(Ω) further satisfy (1.7), then the unique solution u(t, x) to
problem (1.1)-(1.4) as in Proposition 1.1 satisfies

∫

|x|≥R
ψ(t, x)

(
1

a(x)2
|ut(t, x)|2 + |∇u(t, x)|2

)
dx

≤ Cr0

∫

Ω
(1 + |x|)

(
1

a(x)2
|u1(x)|2 + |∇u0(x)|2

)
dx = Cr0I0

for each R > r0, where Cr0 > 0 is a constant depending on r0 > 0.

In order to prove Lemma 3.3 above one must prepare the auxiliary
weight function φ ∈ C1([0, +∞)) as follows. This part is essential in our
idea.

φ(t) =

{
(1 + r0 − a0t), r0 ≥ a0t,

(1 + a0t− r0)−1, r0 < a0t.

Here it is also true that

φt(t) < 0. (3.9)

It follows from the similar derivation to Todorova-Yordanov [22] that the
following two identities can be obtained. Note that the two identities below
are slightly modified as compared with that of [22] in order to obtain ap-
propriate informations deriving the algebraic weight condition on the initial
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data (for the derivation of these identities see the Appendix).

0 = (ψut)
(

1
a(x)2

utt −∆u
)

=
d

dt
(ψE(t, x))− div(ψut∇u)

− 1
2ψt

|ψt∇u− ut∇ψ|2 +
u2

t

2a(x)2ψt
(a(x)2|∇ψ|2 − ψ2

t ), (3.10)

and

0 = (φut)
(

1
a(x)2

utt −∆u
)

=
d

dt
(φE(t, x))− φ(t) div(ut∇u)

− φt(t)
2a(x)2

(a(x)2|∇u|2 + u2
t ), (3.11)

where we set

E(t, x) =
1
2

(
1

a(x)2
|ut(t, x)|2 + |∇u(t, x)|2

)
.

Proof of Lemma 3.3. Since we are dealing with a weak solution, by den-
sity argument we may assume that the initial data and the corresponding
solution are sufficiently smooth and vanish as |x| → +∞.

To begin with, it follows from (3.6) and (3.10) that

0 ≥ d

dt
(ψE(t, x))− div(ψut∇u) +

u2
t

2a(x)2ψt
(a(x)2|∇ψ|2 − ψ2

t ).

Integrate the above inequality over [0, t]× {|x| ≥ r0}. Because of (A-3) we
see that

∫

|x|≥r0

ψ(0, x)E(0, x)dx+
∫ t

0

∫

|x|≥r0

div(ψut∇u)dxds

≥
∫

|x|≥r0

ψ(t, x)E(t, x)dx+
∫ t

0

∫

|x|≥r0

u2
t

2a2
0ψt

(a2
0|∇ψ|2 − ψ2

t )dxds.

By applying (3.7) one obtains
∫

|x|≥r0

ψ(0, x)E(0, x)dx+
∫ t

0

∫

|x|≥r0

div(ψut∇u)dxds

≥
∫

|x|≥r0

ψ(t, x)E(t, x)dx. (3.12)

On the other hand, because of (3.9) by integrating both sides of (3.11)
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over [0, t]× Ω(r0) one has
∫

Ω(r0)
φ(0)E(0, x)dx+

∫ t

0

∫

Ω(r0)
φ(s) div(ut∇u)dxds

≥
∫

Ω(r0)
φ(t)E(t, x)dx. (3.13)

Since φ(t) = ψ(t, x) on |x| = r0, it follows from the divergence formula
that

∫ t

0

∫

Ω(r0)
φ(s) div(ut∇u)dxds+

∫ t

0

∫

|x|≥r0

div(ψut∇u)dxds = 0.

In order to erase the second term of the left hand side of (3.12), let us
sum up both inequalities (3.12) and (3.13). Then because of the positivity
of φ(t) one has arrived at

∫

|x|≥r0

ψ(t, x)E(t, x)dx

≤ Cr0

∫

Ω(r0)
E(0, x)dx+

∫

|x|≥r0

(1 + |x|)E(0, x)dx.

Since R > r0, the desired estimate follows from (3.8). ¤

Lemma 3.4 Let R > r0 and a0t > R. Under the assumptions of Theo-
rem 1.1 it holds that

∣∣∣∣
(
x · ∇u(t, · ), 1

a( · )2ut(t, · )
)∣∣∣∣

≤ R

am
ER(t) +

CI0
2a0

+ t

∫

|x|≥R
E(t, x)dx.

Proof. Let R > r0 and t > R/a0. We have
∣∣∣∣
(
x · ∇u(t, · ), 1

a( · )2ut(t, · )
)∣∣∣∣

≤
(∫

Ω(R)
+

∫

|x|≥R

)
1

a(x)2
|x||∇u||ut|dx

≤ R

am

∫

Ω(R)
E(t, x)dx+

∫

|x|≥R

1
a(x)2

|x||∇u||ut|dx
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≤ R

am
ER(t) +

∫

{|x|≥a0t}

1
a(x)2

|x||∇u||ut|dx

+
∫

{a0t≥|x|≥R}

1
a(x)2

|x||∇u||ut|dx

≤ R

am
ER(t) +

∫

{|x|≥a0t}

1
a(x)2

(|x| − a0t)|∇u||ut|dx

+ a0t

∫

{|x|≥a0t}

1
a(x)2

|∇u||ut|dx

+ a0t

∫

{a0t≥|x|≥R}

1
a(x)2

|∇u||ut|dx

≤ R

am
ER(t) +

1
a0

∫

{|x|≥a0t}
(1 + |x| − a0t)E(t, x)dx

+ t

∫

|x|≥R
E(t, x)dx

(because of (3.8) and (A-3))

≤ R

am
ER(t) +

1
a0

∫

|x|≥R
ψ(t, x)E(t, x)dx+ t

∫

|x|≥R
E(t, x)dx.

By using Lemma 3.3 one has the desired statement. ¤

Now we are in a position to prove Theorem 1.1.

Proof of Theorem 1.1. First it follows from Proposition 2.1, and the as-
sumptions (A-1) and (A-2) that

tE(t) ≤
(
x · ∇u0,

1
a2
u1

)
+
N − 1

2

(
u0,

1
a2
u1

)

−
(
x · ∇u(t, · ), 1

a2
ut(t, · )

)
− N − 1

2

(
u(t, · ), 1

a2
ut(t, · )

)
, (3.14)

where we have used the assumption (A-1), that is,
∫ t

0

∫

∂Ω
{σ · n(σ)}

∣∣∣∣
∂u(s, σ)
∂n

∣∣∣∣
2

dSσds ≤ 0.

Thus we have only to estimate the last two terms in the right hand side of
(3.14). Indeed, since one obtains

tE(t) = tER(t) + t

∫

|x|≥R
E(t, x)dx, (3.15)
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from (3.14), (3.15) and Lemma 3.4 it follows that
(
t− R

am

)
ER(t)≤

(
x · ∇u0,

1
a2
u1

)
+
N − 1

2

(
u0,

1
a2
u1

)

+
CI0
2a0

+
N − 1

2

∣∣∣∣
(
u(t, · ), 1

a2
ut(t, · )

)∣∣∣∣. (3.16)

Now, let us apply Lemma 3.2 in order to control the last term in the right
hand side of (3.16). This part is also crucial in deriving the local energy
decay. In fact, because of (1.6) and Lemma 3.2 one can evaluate as

∣∣∣∣
(
u(t, · ), 1

a2
ut(t, · )

)∣∣∣∣ ≤
1
2

∥∥∥∥
1
a
ut(t, · )

∥∥∥∥
2

+
1
2

∥∥∥∥
1
a
u(t, · )

∥∥∥∥
2

≤ E(0) + C

{∥∥∥∥
1
a
u0

∥∥∥∥
2

+
∥∥∥∥

1
a2
|x|u1

∥∥∥∥
2}

≡ I1. (3.17)

Thus, one obtains
(
t− R

am

)
ER(t)≤

(
x · ∇u0,

1
a2
u1

)
+
N − 1

2

(
u0,

1
a2
u1

)

+
CI0
2a0

+
N − 1

2
I1

≡C,
which completes the proof of Theorem 1.1. ¤

Remark 3.2 Note that the quantity |(x · ∇u0, (1/a2)u1)| above has a
finite value. In fact, by assumptions (1.4) and (1.7) it follows that

∣∣∣∣
(
x · ∇u0,

1
a2
u1

)∣∣∣∣ ≤
1

2a2
m

∫

Ω
|x|(|u1|2 + |∇u0|2)dx < +∞.

Let us prove Theorem 1.2. Instead of Lemma 3.1 the following Hardy-
Sobolev type inequality is needed (see Dan-Shibata [5]).

Lemma 3.5 (Hardy-Sobolev) Let N = 2. Then for each u ∈ H1
0 (Ω), it

holds that∥∥∥∥
u

d( · )

∥∥∥∥ ≤ C‖∇u‖

with some constant C > 0, where d(x) is a function defined in (1.8).
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In the case when N = 2, by using Lemma 3.5 in place of Lemma 3.1 one
can give the proof of Theorem 1.2 quite similarly to that of Theorem 1.1,
and for a result corresponding to Lemma 3.2 we can state as follows.

Lemma 3.6 Let N = 2. If the initial data [u0, u1] ∈ H1
0 (Ω) × L2(Ω)

further satisfy

‖d( · )u1‖ < +∞,

then the unique solution u(t, x) to problem (1.1)-(1.4) as in Proposition 1.1
satisfies

‖u(t, · )‖ ≤ C(‖u0‖+ ‖d( · )u1‖).
Outline of proof of Lemma 3.6. It is sufficient to check the following part
because the other part of proof is done quite similarly to that in Lemma 3.2.
Indeed, we see from Lemma 3.5 and the Schwarz inequality that

∣∣∣∣
(

1
a2
u1, w(t, · )

)∣∣∣∣≤
∥∥∥∥
d( · )
a2

u1

∥∥∥∥
∥∥∥∥
w(t, · )
d( · )

∥∥∥∥

≤C
∥∥∥∥
d( · )
a2

u1

∥∥∥∥ ‖∇w(t, · )‖

≤C 1
a2

m

‖d( · )u1‖ ‖∇w(t, · )‖.

This completes the proof of Lemma 3.6. ¤

In the case when N = 1, we can proceed the proof of Theorem 1.3 in
a quite similar fashion to Theorem 1.1 with a slight modification. We shall
omit the detail. Note that in this case we use Proposition 2.1 replaced by
the following identity:

tE(t)=
(

1
a2
u1, x · ∇u0

)
−

(
1
a2
ut, x · ∇u

)

+
∫ t

0

∫ ∞

0

1
a(x)3

(x · ∇a(x))ut(s, x)2dxds.

So, the weght condition on the initial data in Theorem 1.3 only comes from
(modified) Lemma 3.3.
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Proof of Theorem 1.4. First it follows from (A-1), (A-3), (A-4), Lemma 3.4,
Proposition 2.1 and (3.17) that

tER(t) + t

∫

|x|≥R
E(t, x)dx ≤ A0 +

N − 1
2

I1 +
R

am
ER(t)

+
CI0
2a0

+ t

∫

|x|≥R
E(t, x)dx+ γ0

∫ t

0

∫

Ω(r0)

(
ut(s, x)2

2a(x)2

)
dxds,

where

A0 =
N − 1

2

(
u0,

u1

a2

)
+

(
x · ∇u0,

u1

a2

)
,

so that one obtains(
t− R

am

)
ER(t) ≤ K0 + γ0

∫ t

0
ER(s)ds, (3.18)

for an arbitrarily fixed R > r0 and large tÀ 1, where

K0 = A0 +
N − 1

2
I1 +

CI0
2a0

.

Set

ξ(t) =
(
t− R

am

)−γ0
∫ t

0
ER(s)ds.

Then by (3.18) one can calculate as follows:

ξ′(t) =
(
t− R

am

)−1−γ0
{(

t− R

am

)
ER(t)− γ0

∫ t

0
ER(s)ds

}

≤K0

(
t− R

am

)−1−γ0

for large tÀ 1. By integrating the inequality just above one has

ξ(t)≤ ξ(t0) +K0

∫ t

t0

(
s− R

am

)−1−γ0

ds

≤ ξ(t0) +K0
1
γ0

(
t0 − R

am

)−γ0

≡ L0.

By combining this inequality together with (3.18) one obtains
(
t− R

am

)
ER(t) ≤ K0 + γ0

∫ t

0
ER(s)ds ≤ K0 + γ0L0

(
t− R

am

)γ0
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for large tÀ 1, which implies the desired estimate. ¤

4. Appendix

In this appendix let us make sure the identity (3.10) ((3.11) is a special
case of (3.10)). In fact,

−ψ(t, x)ut∆u

= −div(ψut∇u)− 1
2ψt

|ψt∇u− ut∇ψ|2

+
u2

t

2ψt
|∇ψ|2 +

ψ

2
∂

∂t
|∇u|2 +

ψ2
t

2ψt
|∇u|2.

On the other hand, one has

ψut
1
a2
utt =

∂

∂t

{
ψ(t, x)E(t, x)

}

− ψt

2
1
a2
|ut|2 − ψ

2
∂

∂t
|∇u|2 − ψt

2
|∇u|2.

Sum up the above two equalities. By several cancellations one has the
desired identity. ¤
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