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Global solutions of the wave-Schrodinger system below L2

Takafumi AKAHORI
(Received February 21, 2005; Revised June 22, 2005)

Abstract. We prove that the 3 dimensional wave-Schrodinger system is globally well-
posed for data in (H5! x H52 x H5271)(R3), where both s; and sy are some negative
indices.
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1. Introduction and main results

In this paper, we consider the Yukawa coupled wave-Schrodinger system
in 3 dimensions:

{i@tu + Au = 2vu,

O2v — Av = —|ul?,

(1.1)

where v and v are complex and real valued on R? x [0,00), respectively.
This system is a physical model describing an interaction between electrons
and phonon, e.g., it describes the superconductivity [16].

We are interested in the global well-posedness of the Cauchy problem for
this system, especially, when all initial data are below L?. Here the notion
of global well-posedness includes the global existence, the uniqueness and
the continuous dependence of solutions on initial data. In general, to prove
global well-posedness, conservation laws such as L?-norm and Hamiltonian
play an important role. But in our case, i.e., the case below L2, such
conservation laws do not make sense.

Global well-posedness below the conservation law is recently developed
by J. Bourgain [3, 4] and J. Colliander, M. Keel, G. Staffilani, H. Takaoka,
T. Tao [6, 7, 8] and several authors [14, 15]. For KdV and Schrédinger equa-
tions, sharp results are obtained in the sense that the global well-posedness
is proved up to the regularity below which the uniformly continuous de-
pendence of solutions on initial data breaks down, [7, 8]. These results
reflect that we understand the structures of these interactions. Indeed, in
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the view of [3], it is important to show that the energy at high frequencies
does not move rapidly to low frequencies. Moreover, to obtain better global
well-posedness result, we have to treat two types of frequency interactions,
that is, the resonant interaction and the coherent interaction. Actually, we
make a close investigation of the coherent interaction to prove our main
Theorem 1.1 below (see Section 4.2).

In spite of the importance, there are few global well-posedness result
for systems such as (1.1) and Zakharov system. For (1.1), H. Pecher proved
the global well-posedness for data in (H*' x H*2 x H*>71)(R3) when 1 >
s1, 82 > 7/10 and s1 + s2 > 3/2 in [15]. Then the result is improved by
several authors [22], [1] and we know that (1.1) is globally well-posed when
51, 52 > (/57 — 5)/4 in [1]. But the results are far from the satisfactory
result. Indeed, the scaling argument (cf. [11]) suggests that we expect the
well-posedness below L2, in particular, when s; > —1 and sp > —1/2. But
there has been no result below L2. Thus our aim here is to extend the global
well-posedness results for (1.1) to the case below L2.

The system (1.1) is transformed into an equivalent first order system in
time via the transformations ¢ = u, ¢ = v +4|V|~19v (cf. [11, 15]) and so,
in what follows, we consider the following Cauchy problem.

O+ Ap=(p+ @)y, xR >0,
0 — |V]o = V|7 ([¢)), zeR? t>0,
¥(0) = o, T € R3,
#(0) = ¢o, T € R3,

where both 1 and ¢ are complex valued, and |V| denotes the Fourier mul-

(WS)

tiplier whose symbol coincides with |].
For (WS), we formally have the L? and the Hamiltonian conservation
laws:

1D 23y = l1Yoll L2(rs), (1.2)
H(3(t), ¢(t)) = H (%o, do) (1.3)

where
HL.9) = 1 gy + 190y + | (o) + 3@ @) o

These quantities are important to prove the global well-posedness. So far,
without the Hamiltonian conservation law (1.3), we have not been able to
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control H%-norms of ¢. This is the reason why the known results are far
from the case below L%. But we find that we can control the L?-norm of ¢
by only L? conservation law (1.2) (cf. Section 3 below). This enables us to
prove the global well-posedness in L?. Moreover this motivates to prove the
following theorem, which is our main result.

Theorem 1.1 (Global well-posedness below L?) There exists 6 € (0,1/10)
such that, if s1, s2 < 0 satisfy that |s1| < 1/8, |s2| < 6 and

min 6—2|82’ 9—4‘82| 9—4’81‘ 9—4|81’—2’82‘
4—0 " 4-30° 5-0 " 5—36

6 8
>4max{ sl + [s2] Slsil } > max{4|s1], |s2|},

4—60 '2-46
then (WS) is globally well-posed for data (o, ¢o) € H* (R3) x H*2(R3).

Remark 1 When s = s1 = s9, the conditions of s; and s9 are reduced to
s> —(20—0%)/(172 — 1020) if < 2/33 and s > — (20 — 62)/(168 — 360) if
6 > 2/33. For the exponent 6, see Remark 2 in Section 4.1.

To prove the theorem, we use the idea of Bourgain [3]. The main
ingredients for the proof are L2-a priori estimate of ¢ (Proposition 3.1)
and bilinear estimates for negative indices (Propositions 4.1, 4.2). The
bilinear estimate for the part of Schrédinger equation is very complicated.
This is caused by the complicated resonance structure. On the other hand,
in (WS), we expect that the coherent interaction does not dominate the
bilinear estimate so much. To see this, we decompose the wave part into its
free evolution and perturbation terms. Then the structure of the interaction
turns to be clearer and we can obtain bilinear estimates for negative indices
by the help of the arguments of [5] and [17]. For details, see the Section 4.

This paper is organized as follows. Section 2 is assigned for prelim-
inaries, where we introduce Bourgain’s spaces and the integral equations
associated to (WS), and give notations following [17], and lemmas used in
this paper. In Section 3 we give the proof of Theorem 1.1 for special case
s1 = s9 = 0, i.e. the global well-posedness in L?. In Section 4, we give
and prove the bilinear estimates (Propositions 4.1, 4.2). In Section 5, we
prove the Theorem 1.1. In the Appendix, we give well-known Strichartz
type estimates. Moreover we give the useful time-gain estimate.
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2. Preliminaries

Throughout this paper, we use F, and F, ! to denote the Fourier and
inverse Fourier transforms in a variable x, respectively.

We first introduce Bourgain’s spaces. Let h be a real valued function
on R?. Then Bourgain’s space associated to h is defined by

X' :={ue SR xR)| lull x50 < 00},
where S’(R? x R) denotes the class of tempered distributions on R% x R and

||“”Xf;” = HeitH“HHng(Rde)
= 46 (7 + BN Foalil 2oy 2.1)

where H denotes the Fourier multiplier whose symbol coincides h. We also
define the homogeneous counterpart of X fl’b by

X ={ue Z'(R* xR)| lull o0 < oo},
where Z/(R? x R) denotes the dual space of
Z(R? xR):={f e SR x R) | (D*F,[f])(0) =0, Ya e (NU{0})?}

(cf. Section 5 in [20]) and ||u|| 4. is defined by replacing (£) with [¢] in (2.1).
h

Because X Z’b is a time global space, we need the following time localized
one: Let I C R be a time interval with |I| < 1. Then we define

XM1) = {u: REx I — C|3a e X;° st U; = u} (2.2)
which is equipped with the norm

. ~ ~ b~
\]u!]Xi,b(I) = mf{HuHxi,b | e X, with u|; = u} (2.3)

Similarly we define the time local version of X fl’b and denote it by X fl’b(I ).
Next we introduce the integral equations associated to (WS) on an
interval I = [to,1]:

{w@=&WM%ww—WWWW+@W>teL

. I ’ (24)
o(t) = e =0V (t0) + G|V A(t), tel,
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where, for all f € S(R3 x I), Ggl) and Ggl) are represented as follows:

1o = [ -5 () s, GOfI(H) = / i1 () s
(2.5)

Moreover, we can extend G(I) (Resp. G(I)) to the bounded linear operator

8,b— s,b s,b s,b .
from X, Y(I) to X (D) (Resp. X3 (D) to X5g(D), if b > 1/2 and

|I| < 1 (cf. Lemma 2.1 (ii) in [11]). We note the following commutator
relation: for any s € R,

(G |v] = o. (2.6)

Finally we introduce the general framework for bilinear estimates fol-
lowing [17]. For any integer k > 2, we define the hyperplane I'y(R”) by

Ip(RP) := {(771,---77%)GRkD|771+---+?7k=0}

and define the integral on this hyperplane by

/ f(771»-~-a77k—1»77k)
I, (RP)

= /R(k_lw flm, o=t —m — -+ — Nk—1) dm - - - dnge—1.

A [k; RP]-multiplier is a function m: T'y(R”) — C. For [k; RP]-multiplier m
we define ||m/|;,,zp) to be the best constant such that the inequality

k
7]17"'77716 77 <C f 2(RD)
Lo 50, I 15

7j=1

holds for all “non-negative” functions fi,...,fr € S(RP). [m||rp) is
called a multiplier norm for m.

Now we state the basic properties of multiplier norm without the proofs,
all of them are contained in [17]. First of all, we easily see that for all a €
C, llam||prr) = lal|lmlljprp), and for all [k; RP]-multipliers m; and meo,
lm1 + ma||gpre) < lmallpro) + [Imellgzo)-

Lemma 2.1 (Comparison principle) Let m1 and ma be [k; RP]-multipliers
with

Ima(n1s -l < Ima (- )|
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for almost all (1, ..., n) ETL(RP). Then we have ||my |l iesmry < llmellljemoy

Lemma 2.2 (Linear transformation) Let m be a [k; RP]-multiplier and L
a linear transformation in RP. Then [[moL ||z = \det(L)\kﬂ_leH[k;RD].

Lemma 2.3 Let A and B be subsets of R and let x4 and xp be their
indicator functions, respectively. Let h, h': R — R, L, L' > 0 and set
A =T —l—h(fl), Ay 1= T2+h/(§2). Then

[xa(€)xs(E)x <0 (61 TX i< (€2, 72) | 3z
,§I1rlin{L,L'}1/2 sup {§€A‘§~—§€B,

(&) ERIH

[1(&) + W€ =€) + 7| S max{L, L'} }|

1/2

Similar statements hold if we permute the indices 1, 2, 3.

Lemma 2.4 (Schur’s test) Let {my}rea be a collection of [3; RP]-multi-
pliers with

sup #{\ € A|n € 7;(supp(my))} < Cj,
nerpP

where C; is some constant and m; denotes the projection onto n;-plane RD
(j =1,2). Then we have

> m

AEA

< (C1C2)"? sup || mal|3z0)-
[3;RP] Ach

Similar statements hold if we permute the indices 1, 2, 3.

Now we recall a box covering of R”, which is a partition of R into
sets {R + v}yexn, where R, ¥ and R +v (v € X) are called fundamental
domain, tiling lattice and box, respectively. The fundamental domain R is
a subset of R” containing the origin and symmetric around the origin. ¥ is
a discrete subgroup of R” such that R 4+ R can be covered by O(1) boxes
and the overlap of boxes is bounded by a uniform constant. Throughout
this paper we use A < B to denote the estimate A < CB, where C is
a universal constant.

Lemma 2.5 (Box localization) Let {R+ v}yex be a box covering of RP
and let m be [3; RP]-multiplier with m (supp(m)) C R+wv, for some v1 € X.
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Then

Hm”[3;RD]§ sup HmXRJrvz(UQ)XRJrvs(?B)”[3;RD]-
V2,V3EX

Similar statements hold if we permute the indices 1,,2, 3.

Lemma 2.6 (Transverse interactions) Let E1, Ey be open subsets of R,
and let ) be a unit vector in R Let >0, and lethi: By — R, hy: B3 — R
be smooth functions which satisfy the transversality condition

|Dphi1(&1) = Dyha(&2)| 2 6

for all & € E1, & € FEy, where D, is the directional derivative in the
direction 1. Then for any L1, Lo > 0 we have

2
1T x5 €)xns<t,
Jj=1 [3;RIXR]

< LY2LY?07 2 min{|m (B, ik (Bo) [} 2,

where |7T#(E)| is the d — 1 dimensional measure of the projection of E onto
the orthogonal complement of 1.

3. Global well-posedness in L2

We know that (WS) is locally well-posed in L?, i.e. for data (1, ¢o) €
L?(R3) x L2(R3) (see, e.g. Theorem 1.1 in [1]). Moreover the existence time
depends only on the size of L?-norm of the initial data. Since we have the
conservation law (1.2), to prove the global well-posedness in L2, it suffices
to show a priori bound of ||¢(t)]| 2.

Proposition 3.1  Let (1, $) be the L*-solution of (WS) on [0,T]. Then
we have

9l oo £2 j0,17)

1/2
< \dollzz + C (T3 w22 + T 4||vo |2 doll 1o + T*2||vol| L),

where C' is some universal constant, and

9l 228 (0.7 S Iollz2 + T2 (1ol L2l goll 72 + T2 (1ol 22

Proof of Proposition 3.1. In this proof, we use C' to denote a universal
constant, which may vary from line to line.
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Let (¢, ¢) be the L2-solution of (WS) on [0,7]. Then we know that
Y € O([0,T); L?) N L2([0,T); L%). By the integral equation (2.4) and the
Strichartz estimates (cf. Proposition 3.1 in [10]), we have

le®lz2 < Igollz2 + Cl I s/s 2 g 1y (3.1)
By the interpolation,
7/4 1/4
RHS. of (3.1) < I6olluz + CII s 1y 19N 22g 0.1
7/4 1/4
< lIgoll 2 + CT* SNt 1 0.0 1% Lo g o
(3.2)
We apply the L?-conservation law (1.2), which yields
7/4 1/4
18l 220 < g0l + CT ol 2 1l oo oy (3:3)

Here we need to consider the term [[¢[[z2p6(0z)- By the integral equa-
tion (2.4) and the Strichartz estimate, we have

1ol 2 o,y S Iollze + 19(8 + D) L2575 0
S ol + 1@l zee 2 o 19 L2 23 fo,17) - (3.4)

By the interpolation, Holder’s inequality and (1.2), we have

1/2 1/2
18l 22 s oy < Iollze + T 416) 2 omy loll Y210 o 0.2y

(3.5)
We insert (3.3) into the second term in R.H.S. of (3.5) and obtain

[0z e oy S Wollzz + T4 ldoll 2 ol 1 e 0.1

+ T o2 11 1 0.2

Applying Young’s inequality (ab < aP/p + b%/q for 1/p+ 1/q = 1), we have

191l 228 o) S Iollze + T2 (g0l 32 14boll 2 + T2 (ol 2, (3.6)

which proves the second claim of the proposition.
We insert (3.6) into (3.3) and obtain the result. O
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4. Bilinear estimates

For both local and global well-posednesses, we usually consider the
following estimates (cf. (2.4)):

71006 + 9N e gy S 1o ) Wbl gon (4.1)

€12

|11 ] (42)

< 2
Xi\15/|2+(1) H¢H ‘s§1|2bl(1)
where 1/2+, more generally, for a € R, a+ (Resp. a—) denotes a number
greater (Resp. less) than a and sufficiently close to a. As stated above

(cf. Section 2), G( ) and G(I)
to X“z&( ) and from Xi\bﬂ Y(I) to Xim( ), respectively, for any b > 1/2
and any time interval I with |I| < 1. Thus we can reduce (4.1) and (4.2) to

the following bilinear estimates:

\|¢(¢+¢)H s 1/2+N||¢|| o i lI9ll oz (4.3)

11V~ e l? H PRREAS ||¢||251 i (4.4)
Iﬁ\

are bounded linear operators from X E’F{l(l )

The estimate (4.3) is open for any s1, so < 0 and s > s1, so.
For any given v, from the integral equation (2.4), ¢ is represented as
follows:

¢ = e MVgo + GV 2.

This representation of ¢ enables us to prove Theorem 1.1 without (4.3).
Indeed, we have the following estimate for the L.H.S. of (4.3):

Hw((b + a)HXlsé‘;b?) S Hw(e_it|V|¢0) HXS»*bS + Hw(e—lt‘V“bo) HXS’;b3

13

+ [ 1v ..,

|s\2

+ [ 191 1P| o (4.5)

Xiep2
The first and second terms in the R.H.S. of (4.5) seem to be easier than the
estimate (4.3). Indeed, they are estimated by using the result in Section 11
of [5]. On the other hand, the third and fourth terms in the R.H.S. of (4.5),
and the L.H.S. of (4.4) are good thanks to the factor |V|™! and treated
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similarly. The details appear in the following two subsections.

4.1. Estimate I
We consider the first and the second terms in the R.H.S. of (4.5). Then
we have the following proposition:

Proposition 4.1 Let s, s1, s2 < 0 and let by satisfy by > 1/4 + |s1]/2 +
|s2|/2. Then there exists 0 > 0 such that if by > 1/2—0/2+|s1]/24 |s2|/2—
|s|/2, then, taking bs < 1/2 sufficiently close to 1/2, we have the following
estimates:

(i) Hw<e—it'V'¢o>HXf,33 Sl 1 9ol
3 3

() [T T00) w1 s
3 3
where the implicit constants depending only on s, s1, s3, by and bs.
Proof of Proposition 4.1. Most of the proof follows [5]. Since the proof
of (ii) is similar to (i), we only give the proof of (i).
By duality we easily find that (i) is reduced to the following estimate:

(1) 71 |€a] 7°2(E3)°
/1‘3(R3+1) <)\1>b1<)\3>b3 ¢1(§177'1)

X Fot[eTUV V]2 0] (€2, o) w3 (€3, 73)
S leHLELg”|V|S2¢0HL2HW3HL2L§> (4.6)

where A1 := 71 + &% and A3 := 73 — |&3]2.
Since F 1 [eTHVI|V|%2 0] (&2, T2) = 6(ra|&2|) Fe]|V|*2 0] (&2), the L.H.S.
of (4.6) is estimated by

(1)t [&2]772(€3)°
/FS(R3+1) (S(TQZE |§2‘) <)\1>bl<)\3>53 |¢1(€1,T1)‘

X [ F[[ V] ol (€2)|ws (€3, 7)) (4.7)

In (4.7), we divide the region of the integral into two cases: Case 1:
max{| A1, |[A3]} = |€1]?, and Case 2: max{|\i],|A3]} < |&1]2.

Estimate of Case 1: In this case, we can estimate (4.7) only by the
Strichartz estimates (Lemmas 6.1 and 6.2). We will divide the integral
according to the size of the symbols A1, A3 and then estimate the factor of
wave equation in L{°L?2, the factor of Schrodinger equation with the bigger
symbol in L?L3 and the one with smaller symbol in LZLS.
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Since [|&1]* F €] — [€s[*] = [\ + As| < 2max{|A1], [As]} on {72 £ [&]},
if [&1] < |&3], then |£2]? ~ |32 < max{|A1],|A3]}. Thus in Case 1, we have
max{(£1), &2/, (§5)}% S max{(A1), (As)}.

We first consider the case where |[A\1| 2 |A3|. Then the integral (4.7)
over |A1] 2 |As| is estimated by

1
/1“3(R3+1) 5(7—2 + ’§2|) < >b1+51/2+32/2< > Wl(fl, 7’1)’
X [Ful|VI°? do] (§2) | lws (€3, 73)] (4.8)

where we have used the fact that s < 0 and therefore (£3)° < 1. By the
assumption by + s1/2 + s9/2 > 1/4. We set by + s1/2 + s2/2 = 1/4 + ¢ for
some g9 > 0. Then, e.g., taking b3 = 1/2 — £¢/2, we estimate (4.8) by

1
/1“3(R3+1) d(m2 £ 1£2]) DA gy 172+ [1(&1,71)]
X |fx[’v|32¢0](£2)||u)3(§3,7'3)" (49)

By Plancherel’s theorem, (4.9) is equal to

= o e (O
x F M [0(r £ 1€) 1 F [V 1% boll] (2, 1)
Forl(es)*(r — |62~ |ws] (2, ) da dt
= [ F R O]t
R3xR
x Fe e L1V 122 o] (2)
FH(es) i — 1612 2D |ws ] (2, t) d dt. (4.10)
By Holder’s inequality,
R.H.S. of (4.10)
<||Fe L4163~V ]|
x H}—ﬁ_ [egtm | F HV|52¢0”]HL§>OL§
x || Fe tlir =g~ /2 Jwsl] || 2 s (4.11)



790 T. Akahori

Applying the Strichartz type estimate (Lemma 6.1), we have
RALS. of (4.11) S [[9nll L2 2 IIV1* doll 22 lwsl 2 2 (4.12)

hence the claim follows in this case.

Next we consider the case where |A3| > |A1]. In this case, we also take
bz = 1/2 —ep/2. Then the claim follows by a similar way to the above.
Estimate of Case 2: We apply the result given in pp. 541-544 of [5] (see
also Remark 2 below). Thus we find that there exists # > 0 such that, for
any s1, sg < 0 with 6 > [s1| + [s2] — |s| + 2 — 2b; — 2b3, the integral (4.7)
for Case 2 is estimated by ‘|¢1“LZL§”’v‘S2¢0‘|L2Hw3”L£L§- The condition
0 > |s1| + |s2] — |s| +2 — 2by — 2b3 is reduced to by > 1/2 —60/2 4 |s1]/2 +
|s2|/2 — |s]/2, if we take b3 sufficiently close to 1/2.

Completion of the proof: From the estimates of Cases 1 and 2, we have
proved (4.6) and therefore Proposition 4.1. O

Remark 2 We state a remark on the exponent § which appears in the
estimate of Case 2. The key inequality in [5] is the following: let o be an
invariant measure on S2, the unit sphere in R3. For any € > 0, let p. be
a localizing function vanishing on e-neighborhoods of 0 and the sphere with
radius 2. Then there is some p < 2 and C' > 0 such that

| Flp=(f1do = f dU)]HLp(RS) S e Y fullr2s2.d0) | foll £2(522d0)
(4.13)

for all f1, fo € L?(S?;do).
From the above inequality, we can choose

gL (1 1
S 20+1\p 2/

In view of the Fourier restriction estimate, the lower bound of p is 5/3 and
thus the upper bound of 6 is 1/10 (cf. [18]). The estimate (4.13) plays an
important role to analyze the transversality. On the other hand, the parallel
interaction part is estimated by the Tomas-Stein restriction estimate.

4.2. Estimate II

In this section, we consider (4.4) and the third and fourth terms in
the R.H.S. of (4.5). We state a strategy to estimate these terms. First
we apply the Littlewood-Paley decomposition and so we suppose that the
frequency support of 1 is similar to Ni and one of Ga[[¢|?] is similar to No,
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where Ny and Na vary dyadically. Then, thanks to |V|™1 ~ N L the
diagonal (N7 ~ N3) and low-high (N7 < N3) interaction cases are harmless.
Moreover mild high-low (N2 < N; < N2) interaction case is controllable.
On the other hand, in the very high-low (N; > N3) interaction case, we will
find that the transversality of the characteristic surfaces 7 = |1 \2 and T =
+|&| works very well. Besides, these principal interactions, |V|~! causes
the mild singularity case (N7 < 1/N3). But this case is easily treated. This
strategy is accomplished below. Besides the notations a4+ and a—, we also
use co— to denote a sufficiently large finite number.

The estimate (4.4) and the third and fourth terms in the R.H.S. of (4.5)
are uniformly treated. Indeed, we want to bound the third and fourth terms
in (4.5) by

[ g e iamtil| _sh1/24 s (4.14)
I Xl

%l 1,00 (AR ey (4.15)
l€|2 X el

respectively. These estimates are reduced to the boundedness of the
[3; R3 ! -multiplier

H (€1)* ]2 (5)°
(A1)b1(Ag) /2= (Ag)bs

(4.16)

)
[3;R+1]

where A\ := 71 + [£1]%, Ao := 7o & |&| and A3 := 73 — [&3)%
Moreover, by the boundedness of Gg, the second factors in (4.14) and
(4.15) are estimated by

V1B =172 (4.17)
l¢]

which has a similar form to the L.H.S. of (4.4). We want to bound the L.H.S.

of (4.4) and (4.17) by ||w||§( Then we easily see that these estimates

s1,b1*
l€12
are reduced to the boundedness of type of (4.16).

Our main proposition in this subsection is the following:

Proposition 4.2 Let o, v > 0 be such that a +y < 1/4 and let —5/4 <
B < —1/2. Let b1, b3 > max{1/4,3/8 + (a + B + 7)/4} with by + bg >
max{1/2 + (o +7),1 — |5|/2}, and by < 1/2 be sufficiently close to 1/2.
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Then

(A1)01(Ag)b2 (Ag)ls (4.18)

is finite, where A1 := 11 + [&1|%, A2 := T2 £ |&o] and A3 = 3 — |&3]%.

H (€)% &% (&)

[B:R3+1]

Remark 3 We will encounter the case v < 0 in the Section 5.3 below. At
that time, we will use the crude estimate (£)7 < 1.

Proof of Proposition 4.2. By the dyadic decomposition of variables &;
and 7j, (4.18) is written as follows:

> X &’&’ég)m (€1)Xgglvza (€2)Xhs (€3)

b;
£1,02,03€N) k1,k3€Ng H] 1<>‘ >
ko€Z

3
< [ xe, &)
j=1

where No := NU {0}, m(&1,&,83) = (£1)%]6/7(€3)" and xx; = xj¢;<1 if
kj=0,:= Xg,|moks if kj > 1 (j =1, 3). The function xy, is similarly defined
J

: (4.19)
[3;R3+1]

for the modulation A;.

We divide the region into three cases. Case 1: 2F ~ 2k »
max{2%F2 2fmax 1} and 2k2 > 1/2%1 Case 2: 2F1 ~ 2F3 > max{22k2 2fmax 1}
and 2%2 <« 1/2F1) Case 3: Otherwise, i.e. 2¥1 > 2k or 28 « 2k or 2F1 ~
23 < max{2%k2 2fmax 1},

We consider Cases 1 and 2. In these cases, since the range of k3 is
restricted by 251 ~ 2¥3_ we estimate (4.19) with Case 1 or Case 2 by

3
§ § E kal,kQ H X@j ’
l1,02,03€Ng ko €Z HJ 1< > k1€Np j=1
Case 1 or Case 2 [3;R3+1]

(4.20)

where Xk1,k2 = Xki,k2 (517 &2, 53) = X|g1|~2k1 (gl) |§2|~2k2 (62)X|§3\~2’“1 (53)
Since supgegs f{k1 € No |€ € mj(Xki ko)) S 1 (5 =1, 3), by Schur’s test
(Lemma 2.4), (4.20) is estimated by
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3
Yo D g sup 20T T X
01,02,03€Ng ko €Z HJ 1< J>J é%g?%Q j=1 [3;R3+1]
or Case
(4.21)

Breaking up the annulus {|&| ~ 2*2} into O(1) sections of size < 2*2, we
estimate (4.21) by

S Sl s s
HJ 1

bj
t1,£2,63€No k2€Z Case lilng(Ojase 2

. (4.22)
[3;R3+1]

3
Z X|ga—va|<2k2 Xk1,kz H Xt;

vV 7=1

where V' is the set of centers of the section induced by the partition of the
annulus. The cardinal number of V is independent of 2¥2. Moreover, since
tV <1, (4.22) is estimated by

(a+y)k19Bk2
Z Z sup 2 272 sup
H] 1 <2€

k1€Ng %
£1,62,63E€Ny k2 €Z Case 1 or Case 2

X|g2—va|<2k2 Xk1,k2 H X¢; (4.23)
Jj=1 [3;R3+1]
By the Box localization (Lemma 2.5), (4.23) is estimated by
Z Z sup 2(a+7)k1 2ﬁk2
01,02,£3€Ng ko €Z HJ 1< > ’ Case ]ilngg)ase 2
3
X Sup || Xk ks | Xje; -0 c2r2 Xty . (4.24)
agenll i (3R]

where ¥ is a tiling lattice induced by V. The term (4.24) is comparable to

Z Z - sup 9(e+7)k19fks
HJ 1 <

> J k1€Ng
£1,62,63€Ng k2 €Z Case 1 or Case 2

3

H Xjgj—vj|<2R2 Xt;
j=1

X sup (4.25)
v1,v3€EX,v2€V

1|~ |vg|~2F1

[3;R3*1]
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In (4.25), we divide the range of ¢; and /3 into ¢; < {3 and f3 < ¢;.
First we consider the case 1 < f3. Then by the Comparison principle
(Lemma 2.1), (4.25) is estimated by

1
—_— su o(et7)k19fks
Z Z H?:l <2fj>bj p

£1,62,£3€No k2€Z Case ]ilng&ase 2
£1<t3

X sup
v1,v3E€X,v2€V
[t |~[vz|~2F1

2
H X|gj—v;|<2k2 X5 (4.26)

j=1

[3;R3+1]

Now we consider the Case 1. Note that, since |v1| ~ 2% > 22 and 21 > 1,
from [& — v1| < 2¥2 it follows that |1 ~ 251 > 1. Thus we have

| Doy &1 [* = Doy (E[E2)| Z [61] ~ 24

for all & € {|¢| ~ 2%} and & € {|¢| ~ 2¥2}, and therefore by the transverse
interaction (Lemma 2.6), (4.26) with Case 1 is estimated by

1
Z Z 2(b1 +b3—)l1 9bals 2(0+)53

£1,02,03€Ng k2€Z

£1<t3
X sup 2(Oc+7)k12ﬁk22€1/22€2/22—k1/22k2
k1€Np
Case 1
S Z sup 2(1/2—b1—b3+)112(1/2—1)2)@2

k1€Np
Case 1

X 2(O¢+’y—1/2+5)k1 2(54—1—25)]{32

+ 30 Y sup 20/2 bbbt

t1,62€Ng ky<—1 ELEMN0

x (aty=1/248 ) k1 o(B+ 148 k2. (4.27)

l1,62€Ng k2>0

where we have used the conditions 2¥ > 222 and 2¥2 > 1/2%t to derive
the first and second term in the R.H.S. of (4.27), respectively. We choose
§=0+p)/2 and & = |f+ 1|+ if 6 < —1,8 =0if 8> —1. Then, in the
first term above, a +v—1/24+d=a+vy+3/2<0and B+1—20 =0,
and, in the second term above, « +v—1/2+ ¢ < 0and S+ 1+ > 0.
Since 2F1 > 2fmax and 1/2 — by — b3+ < 0 (if “+” denotes a sufficiently
small number), if we take by so close to 1/2 that 1/2 — by < |a+7v—1/2+
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8]/2, o+~ —1/2+¢'|/2, the first and second terms in the R.H.S. of (4.27)
converge.

Next we consider Case 2 with ¢; < ¢3. Then by Lemma 2.3, (4.26) with
Case 2 is estimated by

Z Z sup 9lat7)k19Bks

0)
{1 ,62,63€Ng k2 <0 H] 1<2 K biclo
£1<t3

x sup min 242|{€ € R?|J¢ - un] < 22}
‘U1|N2k1] 1,2

<
~ Z Z (b1+b3— @1252522(0+)

£1,02,03€Ng k2 <0

£1<é5
X sup olatkigBks iy 96i/293/2k:
k1 €No j=12
Case 2
Z Z minj—q029/% /2 p 20@+7=8" k1 (3/2+6-8" ks
9(b1+b3—)l19b202 k EN ’
Kl,ﬁgeNo k2<0 Case %

01<t3
(4.28)

where we have used the condition 2%2 < 1/2%1 to derive the final inequality.
We choose ¢” = 1/4. Then since « +v < 1/4 and 1/4 < 3/2 4+ < 1,
we find that the R.H.S. of (4.28) converges and thus the claim follows for
Cases 1 and 2 with ¢ < /5.

The case £1 > {3 follows by changing the role of indices 1, 3 in the above
estimate.

Finally we consider Case 3. First suppose that 21 > 2%3 Then the
range of ks is restricted to 282 ~ 251, Moreover we suppose that k; > 1.
The case k1 < 1 is treated by a similar way to k1 > 1, in spite of the
singularity |&2|? (8 > —5/4). In this case (i.e. Case 3 with 2¥1 > 2% and
k1 > 1), we have |12 < max |A\;|. Let [A\1| = max |\;|. Then, since by —

1<;<3 1<j<3

(v +7) > 0, by the Comparison principle (Lemma 2.1), we estimate (4.19)
with this case by

Z Z 31
)\1 0+ )\2 b2 <)\3>b3+b1 (aty)—

£1,€2,3€Np k1 7kd€NO
ko€Z



796 T. Akahori

3
X Xk?l (g)X|€2‘~2k2 52 Xk:g 53 H gjaTj ) (429)

= [3;R3+1]
where we have only used the fact that |£1], [€3] < |Ai] in order that
the estimate in this case is also valid for the case 2F1 ~ 2k < 2fmax —

max{22k2 2fmax 1} below. To estimate (4.29) above, we return to the inte-
gral form. Thus our aim is to show that

3

1§ 3
€ 77— f 2
/Fg(RS'H) <)\1>0+<)\2>52 <)\3>b5+b1 (a+y)— H 70 1] jli[l H J HLEL§

(4.30)

for any non-negative functions fi, f2, f3 € S(R3*!). By Plancherel’s theo-
rem and Holder’s inequality, the L.H.S. of (4.30) is estimated by

FoHIEP e 1) 0| s
t x

% H]:—Tl [(7- _ |§|2>—(b3+b1—(a+w)—)f3]’

|72t +1e )]

2
1312

(4.31)

Since b3 + b1 — (o +7) > 1/2 and 12/5 < 3/(—3) < 6, by the Strichartz
type estimate (Lemma 6.1), Sobolev’s embedding and the energy estimate
(Lemma 6.2), we obtain the desired result.

The case where [A3] = maxi<j<3|A;| follows by replacing the role of
indices 1, 3. Thus the case where |\2| = maxi<j<3|\;j| remains. This case
is also similar. In particular, we estimate the corresponding integral by

|7t (e +1em ]|

x | Fel et  fely e g

8/3 12/(7—8171)7

L?Lg/(3+2ﬁ)

x H}u,rl[ﬁ - |f|2>_b3f3]‘ (4.32)

L8/3 12/ (1 +4I8I=D+

Note that by — (v +y) > 1/4 if we take by < 1/2 sufficiently close to 1/2. To
employ the Strichartz type estimate (Lemma 6.1), we require the condition
bs > 1 — by — |B|/2. Thus, by Sobolev’s embedding, the Strichartz type
estimate (Lemma 6.1) and the energy estimate (Lemma 6.2), we easily see
that the claim follows in this case.

The case where 281 « 23 is similar to the above. Thus we may assume
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that 281 ~ 2k < max{22k2 2fmax 1}, When max{22k2 2fmex 1} = 1 or 2fmax,
we can obtain the desired result by a similar way to the above estimate.
Thus we assume that 251 ~ 2k < 2282 The case where 22 « 1 is similar
to the above and easier, and therefore we omit this case. We assume that
2F2 > 1. Then we need to consider the following multiplier norm:

[

Z Z )\1 b1 )\2 b2 <)\3>

l1,02,03€Nq k1,k3ENp
k2 (YA

3
X Xk (61X g 2 (62)Xks (€8) T [ X, (&5 75) . (4.33)
Jj=1 [3;R3+1]

Now we set 3 := a + 3+ 7. Note that —5/4 < 3 < —1/4. Then the
corresponding integral form is estimated by

|Fet ey a1

L2+L12/(3 2487)
- —b
< || P e ]| o oream
t x

x| Felir - 1e "),

L%L;]f/(?’*ﬂ?/) '

Note that 24/11 < 12/(3 — 2’) < 24/7. To employ the Strichartz type
estimate (Lemma 6.1), we require the condition by, bg > 3/8+ (a++7)/4.
Then, by Sobolev’s embedding, the Strichartz type estimate (Lemma 6.1)
and the energy estimate (Lemma 6.2), we obtain the desired result. O

5. Proof of Theorem 1.1

We employ the idea of Bourgain (cf. [3, 15]). Let 6 be as in Proposi-
tion 4.1. We may assume that § < 1/10 (cf. Remark 2).

Let (10, ¢0) be initial data of (WS). We reserve the letters s; and so
for the regularity of the initial data, so (1o, ) € H®' x H*?,

5.1. Decomposition of the equation
Decompose the initial data of (WS) as follows: ¥ = 9§ + ¢ and

po = ¢ + ¢f', where Fo[U§] = xjg<nFzlto] and Fu[of] = X(ej<nFeldo]-
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Then we easily see that

151l < 2N)Hgbo e (5.1)
6112 < NI ol 7, - (5.2)

Now we consider the following systems:

(iOpptr + Al = (¢F1 + gLl)ypFr, 2 € RS, >0,
(Ly) 4 M = VIok = [V (W), w e B 10,
! PL1(0) = E, z € R3,
L T (0) = ¢, z € R3,
and
(o AT =t L I R 2R3, 120,
(1) 4 09T = V6T = [V Tlgh 4 [V Tyt weR% t20,
! I (0) =, zER3,
¢H1(O):¢(I){a HJ‘GRS.

where f{Tt = (¢t + @M )y, fi1 = (¢ 4 gH)plt f1 .= (¢l +
GEYI and gt i= [y ]2, gl := 2R[HpTa] = T 4 PPl This
problem is equivalent to the original system (WS). Indeed, when (31, ¢F1)
and (1, 1) are solutions of (L1) and (H;), respectively, then (¢, ¢) :=
(Pl pHr plt  ¢H1) is a solution of (WS).

Note that since wéi and ¢6{ do not contain the low frequency part
|¢] < N, we have for s1 > s} and sy > s,

16d 0 < N~ o g, (5.3)

1

16671 ;05 < N7 10| e (5.4)

and thus ¢ € H*! and ol € H*2,
5.2. Regular part (Lq)
We consider the system (Lp). Since the initial data of (L;) belong to

L*(R3), the global well-posedness of (L) in L? follows (cf. Section 3).
We give the refinement of Proposition 4.1.

Lemma 5.1 Let —1/2 <s<s; <0 and by > 1/4. Then, taking by < 1/2
sufficiently close to 1/2, we have the following estimates:

(1) [[ole ™ VIgo)|| o ta S WHX‘SlléblHéoHLzy
13

€12
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(ii) }|¢<e*itlwo>lixg‘;b3 < Wl lldollze
where the implicit constants depending only on s, s; and by, bs.

Proof of Lemma 5.1. 'We do not use the result of [5] (cf. Case 2 in the

proof of Proposition 4.1). Since the proof of (ii) is similar to (i), we only

give the proof of (i). The result for smaller b; implies bigger one and there-

fore we may assume that b; = 1/44. By the same way as the proof of

Proposition 4.1 until the formula (4.7), it suffices to show that

(€1) " (€3)"
/I‘S(R3+1)(5(7'2 + |§2|) <)\1>b1 <)\3>b3

S Illpzrzlleoll zllwsllz2 22, (5:5)
13 13

[91(&1, 71) | | F[do] (€2)||ws (€3, 73)

where A\ := 711 + ‘51’2 and A3 := 13 — ‘53‘2.

In the case where |&1| < |€3], we have (£1)7%1(¢3)° < 1 and thus, by
a similar way to Case 1 in the proof of Proposition 4.1 with s1 = so = 0, we
obtain the result. So it remains the case where |1| > |£3]. In this case, we
have |&|2 < max{|\1],|\3|}. We first consider the case |A\;| < |A3]. Then
the L.H.S. of (5.5) over the region |£1] > |£3] and |A1| < |A3] is estimated
by

=l
/ o(r2 £ [€2l) ) 7 |¥1(&, 1)
I'3(R3+1) (Aq)bst(Ag)br=ls1l/2

X |Faldo] (€2)| w3 (&3, 73)], (5.6)

where we have used the fact that
1 < 1
(A1) (A3)bs=lsal/2 = (X1 )bs+(\3)br—ls1l/2—

on {|A1] < |As|}. By Plancherel’s theorem and Holder’s inequality (cf. (4.10)
and (4.11)), the R.H.S. of (5.6) is estimated by

|7t T + 12 =D

FoH [P F o)l H

L2186 L§eL2

o] (e R ™|

L2L3/HD (5.7)
where we have used Sobolev’s embedding L3/ s« F=Isl3 Taking by
sufficiently close to 1/2, we have b3+ > 1/2 and by —|s1|/2— > 1/44]s1]/2—
|s|/2. Thus applying Lemmas 6.1 and 6.2 to (5.7), we obtain the result for
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the case where |A1| < |As].
In a way similar to the above, we obtain the result for the case where
|A\1] > |A3|. Hence we have proved the lemma. O

Moreover, we give the following bilinear estimates:

Lemma 5.2 Let —1/2 < s<s; <0 and by > 1/4. Then, taking bs < 1/2
sufficiently close to 1/2, we have

(1) [lellys s S ||1/1||XE1|,;1 H¢‘|X1’|¥f+’

€l

ii | ysbs S o1, 20,1/24 -
(ii) ||1/)¢||X‘€|2b3 S ||¢||X‘€1|2b1 6l o2+
Moreover, let I be a time interval with |I| < 1. If 0 < b < 1/2, then we

have

(I) {1 | —
(@) (G5 IV P xoper ) S W mysiniar

Remark 4 From Lemma 5.2, we find that the solution (y™1,¢l1) €

0,1/2+ -0,1—
Xige ™ (D) x Xgjg (1)

Proof of Lemma 5.2. The proofs of (i) and (ii) are the same as Lemma 5.1
except for the difference ¢ and e¥1VIgy. So we omit the proofs.

Next we consider (iii). By Lemma 2.1 (ii) in [11], the L.H.S. of (iii) is
estimated by

—1,,2
1717216 2l g0 s
Then, to obtain the desired result, it suffices to show that

&2
/Fg(R3+1) (AL )L/8Hb/2(Xg)1/2=b( \3)1/8+0/2
X |1 (&1, 1)l lwa (82, 72) | [93(€3, 73)

< ||1/11||L3L§HWQHLELEHT/’?’HLZL? (5.8)

where \; := 1 + ‘51‘2, A =79t ‘fg‘ and A3 := 13 — ‘53‘2.
By Plancherel’s theorem and Holder’s inequality (cf. (4.10) and (4.11)),
we have

|7etttr + ke remp )|

[2/Q=bt 12/5

x|t [ 1) =20 el

L/ 12
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x| i = 1e) =B

(5.9)

[2/Qbt 1250

where we have used Sobolev’s embedding L? < H~16 in the second factor.

Applying Lemmas 6.1 and 6.2 to (5.9), we obtain the result. O
Now let (%1, ¢%1) be the solution of (L1).
We set
61, = min{[C1 (|65 2 + 104 112) 2, 1} (5.10)
where (] is some large universal constant. Then we show that
||¢L1 Hxiﬂ/“l([o’(;Ll]) 5 ||¢(€||L2 + ||¢g||L2 (511)

We prove (5.11). Applying Lemma 5.2 (i) and (iii) to the integral equa-
tion (2.4), we have

[ 0 (061, M X924 (0.52,))
< + + ||t f
N Hwo 2 H% 2 + [lv |’X‘0§’|12/4+([0,5L1])H¢ HX:Ot’llg/‘2+([0,5L1])

+ W H2 0, 1/4+ (5.12)

\&\ ([076141})
By Lemma 6.3, the R.H.S. of (5.12) is estimated by

1 2 + 1166 11 2

2
1/2 L L
0L (7 oo + 105 tsiegos, ) 5-19)

Considering a quadratic inequality z < a 4+ 6'/2~z2, we obtain the claim
(5.11).
Moreover, taking C7 larger, we have

5 o2 5,1y S 106122 (5.14)
Indeed, by Lemma 5.1 (i),
L
H¢ ! ”XO’1/2+([O 8r,)

< 1/2— Ly Ly
611z + 0,16 N gorae o, 1" xos2t 5,
(5.15)
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By (5.11) and (5.10), taking larger C} if necessary, we find that the second
term in the R.H.S. of (5.15) is < ||¢!1 | o172+ . Hence we obtain the
le1?

([076111])
claim (5.14).

5.3. Rough part (H;) and local well-posedness below L2

We consider (Hj). As stated above, if (p*1, ¢71) and ()51, $71) are so-
lutions of (L) and (H1), respectively, then (1, ¢) := (1 41 @l1 4 pH1)
is the solution of (WS). In the previous subsection, we have already proved
the local well-posedness of (L) and therefore the local well-posedness of (H;)
implies one of (WS).

Let (11, ¢F1) be the solution of (L1) (cf. Section 5.2). We use I to

denote a time interval with || < 1.
81,1/2+ (I)

We first consider the part of wave equation. Take any 1 € X €[

We set ¢y, as follows:
o = eIl iGN [V ) + 2G50 [V R g,

which corresponds to the integral equation for the part of wave equation
in (Hy) (cf. (2.4) and (2.5)). If s; > —1/8 and s2 > —1/4, then by Propo-
sition 4.2 we have

) < |lpH | - 2
1860 o725 1y S 166 e + WU e

Ly ‘ 1
0 gosges 19 ey (5.16)

Thus we find that ¢, € X“Z’I/H(I) for any ¢ € XE1|§1/2+(I). Moreover, we

show that the interaction term of the integral equation associated to the
wave part of (Hj) belongs to X|0§’|1/2+(I) and thus C;L2(I). If s} > —1/8,
then by the boundedness of G, Proposition 4.2 with a« = = |s}], = —1,

by = by =1/4+ |s||+, and Lemma 6.3 we have

(1) 11211 . < 171h-2s) |- 9
G207 gy & I e 617

Similarly we have, for s§ > —1/8,

)

< TV 211 g , . (5.18
S | (K% Hxloé‘lz/%%([)Hw”x‘?‘;/2+(1) (5.18)

HGé’)HvrlwﬁnHX&,‘;/H
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Next we consider the part of Schrodinger equation. We work in a gen-
eral setting. For given v, we set fi 1= (¢dy + ¢yp)V¥, fo 1= (¢y —i—%)wh,
f3 (qSLl + gbLl)w Then by Propositions 4.1, 4.2 and Lemma 6.3, for s/,

" and s with 0 > ¢, s > —1/8 and 0 + |s]| > |s]| + |s5], we have
LAl s S |f|9/2+‘51|/2 VR g (1081 e
+ |72 A B
X|£\21/2+(I)
VIR e 165 o
Xigp2 le12
(5.19)
Hf?H (-1 < ’1‘9/2+\s'1|/2—|s'2|/2—HwhH o2t ) H¢é{HHs’2
\£|2 Xg?
IR o 165 oo
+ |13 y 2 5.20
1 |\¢HXWW(D||@0 Peosgregy 520
and, if sy > s, from ¢l = e Vgl +iG I)HV] Laplay),
Hf3|| _1/2+( 5 ’I|9/2+\81|/2*|81|/27H¢H 3/1/,1/2+( ||¢5”L2
\£|2 le1?
711/2-1s7 /4 , L12
+11 ¥l 1 P
(5.21)
and if s§ < s, by Lemma 5.2 and Lemma 6.3,
Il g arme ) S V2100 e 16 gaonye (522)
le1? Xgp2

where we can take the implicit constants independent of s}, s, s} in (5.19),
(5.20), (5.21) and (5.22). Hence, from (5.19), (5.20) and (5.21) with s} =
s{ = s1 and s = sy, by (5.16) and the standard contraction argument,
local well-posedness of (H;) follows and therefore one of (WS) holds for
s1, s2 < 0 with |s1] < 1/8 and |sa| < 6.

5.4. The iteration process and global well-posedness below L2
From the preceding subsections, we find that, if s, so < 0 satisfy that
s1 > —1/8 and 6 > |sa|, then there exist solutions of (L1) and (H;) on some
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time interval [0, dp).

We set I; := [(j — 1)6,76] and 6; := j6, j € N, for some 0 < 0 < 1,
which is determined below. Note that |I;| = ¢ for all j € N. Then, for j > 2
(j € N), we consider the following systems:

( 0Ly + AgpLs = (¢Ls + gLaypls zeR3, telj,
1Oyt — |Vt = V|1 (jphi2), zeR?, telj,
Yli(8;_1)=yri-1(8;_1)

(L) +GUT AT BT £ (60),
r€R3,
. . I H;_ H;_
$L3 (5, 1) = L1 (5;-1) + G5 [g15 " + g2 (5,-0),
\ rE€R3,
and
i0p s 4 At = 1 4 Iy reRY tel;,
() | 00" = V16T =Vl VT, weRY, e,
¢H1 (5J’71):€i63‘*1A1f)6{, :UER?’,
S (8;_1) = e~ i-1IVIgH zER3,

where f1' = (6™ + oM )gfs, [, i= (M 1 M)pls, £ = (9P +
oL )t and g = |2, gy = R[] = gL + s and
Gglj_l), Gglj_l) are the integral operators defined in (2.5).

For the solutions (21, 659), (11, 61), (1, 8) i= (6145, 65 M)
is a solution of (WS) on ;.

Note that, in (H;), H%-norm, j = 1, 2, of the initial data remain
unchanged at each step, in particular we have

W Gl = WAy N85 (G50l = 68y (5.23)
for all s; > s and sg > ).
Suppose that the solutions of (L;) and (H;) exist on I; for all j € N.
Then from (5.19), (5.20), (5.22), where replace Ly with L;, and from (5.23),
we have, for 0 > s}, s5, s5 with s} > —1/8, 0 > |s5|, |s5],

H.
1690 e,

< 1 H 0/2+s41/2—1sb/2— ||, H
S o'l +6 ! 2 J||X‘(2|12/2+(1j)”¢0 75,
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0/2-1sy1/2= | WH ||, 4 51/2— [lLs ]2
(0l g+ 8N g

12— 4L H;
+ 808 gy I e

g2 ()
+ 82T b | oas [0
Xigd T iz
n 51/2_|5'1‘/4_||ij”3 y , (5.24)
X1

where we can take the implicit constant independent of s, sb, s5.

In what follows, we may assume that s; and so are not zero. Indeed, by
the regularity result, we will obtain the global well-posedness for the case
where s1 or s is zero.

We use notations D := 9| gs1 + || b0l gs, and Dy := max{D,1}. Now
take any T' > 1. Since the initial data for rough parts remain unchanged,
to continue the solution of (WS) until T, it suffices to show that, under the
suitable choice of N and J, we have

[958 1)ll 2 < € DN,
165 (851 e < GDF (NI 4 51/ 421 (5.25)

for all T/6 > 7 > 2 and some constant € > 1 which is determined below.

To show the uniform bound (5.25), we first consider the increment
of L?-norms of initial data at each step under the assumption such that
(5.25) holds for all j > 2 (cf. [1]). After the consideration, we determined
the parameters N, 6 and ¢ such that (5.25) holds for 7'/§ > j > 2.

Now we assume that (5.25) holds for all j > 2. Then we obtain
the global solutions of (L;) and therefore (5.24) still holds. Now we set
A = E3D}(Nl2l 4 §=VAN2l). Note that ||¢%i(6;-1)|;2 < A and
L3 (8;-1) |2 + 1|97 (6;-1) || 2 < A. Then, by the same way as the deriva-
tion of (5.10), (5.11) and (5.14), we have

L; < [s1] L <
W ! HX‘(!‘12/2+(IJ_) ~ ¢D1N ) H¢ ’ |’Xi’\3‘<‘/|4(1j) ~ A (526>
for all j > 1, if [I;| = § is so small that

§ < (CrA)™2, (5.27)
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where (Y is some large universal constant. For (5.27), it is sufficient to take
0 < d1(s1,892,¢) := cmin{N_S‘S”_,N_Q's?‘_} (5.28)
for any ¢ < (2C2%€3D?)72~. Now we take
ey < (20563 D3) 72/ (0= Is2l)= (5.29)

and |I;| = § < dp(s1,52,¢2). From (5.24) replacing s§ with s; and s5, sf
with s9, and from the assumption and (5.26), it follows that, for 0 > s1, s9
with [s1]| < 1/8 and |s2| < 6,

195 xer1/24
< D 4 502 /2212 p2 s

n (69/2_|52|/2_D 4 51/2_‘52D%N2‘81| n 51/2_/1)

Hj
X ||w “Xrgl‘él/2+(lj)

4 sY/2-lsil/a=gp ) Nls |1 o2
N o

+51/2_|Sl|/4_||¢Hj|\§(51,1/2+ (5.30)

‘5‘2 (]j),

of 4, the first factor of the third term < 1 and thus we have

where we have used the fact that |[{!||gs1, |6 || 75, < D. By the choice

(Rl YR
<D + %D%59/2+|51‘/2_|52‘/2_N‘51|

4 @Dy 6Y/2 s11/a= sl Hi 2
1 195 e,

§Y/ 2= lsl/ A= | 3 . 5.31
+ K% HX,;’;/“(IJ-) (5.31)

By Young’s inequality and (5.28), the third term is bounded by

sV/4=lsil/A= p, Nlsil +(51/2_|81|/4_“ijH;SI,I/Q-F I%S
g2 ()

Since § < 1/10, we have §'/4=Is11/4 < §0/2+Is11/2=s21/2 < =3 D2 (cf. (5.29))
and thus the R.H.S. of (5.31) is estimated by

Nlstl o 51/2=Is1l/4= 1, Hi 3 . 5.32
+ K% ||X‘£1|,21/2+(Ij) ( )
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Considering a cubic inequality = < a4+ 6Y/271511/4= 23 we find that, if || =
0 < dr(s1,82,¢2), then for 0 > s; > —1/8 and 0 > s9 > —6 we have

H; |s1]
Hd} ! HX‘?‘;/?-F(I],) SJ NP, (5.33)

Now we show that, for 0 > s1, s > —60/2 and |[;| = § < §1(s1, 52, C2),

H;
||17ZJ HX‘ZFQ/Q"'J/?'F(I],)

< DN-MF @ DI§0/2 Nt
+ %Dii(gn*N*QmHSHJr + %3D?5n+97N72n2+3|s1|+
+ D3sn— N—3m+ + %3D?6n+39/27N73n2+3|51\+

+ (€ D)3~ NIl (5.34)
where n:=1/2—0/8, n1 :=0/2 — |s1]| and 19 := 0/2 — |s2|.
Indeed, setting X; := X‘gﬁ/ﬂ’l/%(lj), by (5.24) replacing s}, s§ with

—0/2+ and s with sg, and by (5.3), (5.4), (5.26) and the assumption,
H¢HJ HX < N7(9/27|81D+D + 59/27N7(9/27|82|)+%D%N\81|
7 ~Y
+ ((59/2_|82‘/2_D+51/2_%2D%N2|51| +51/2—A)H1/}H] HXJ
T E D520 NI g 3 4 120/ 3
(5.35)
Set n :==1/2—0/8, m = 0/2 — |s1]| and 72 := 6/2 — |s2|. By the choice
of § (see (5.28) and (5.29)), we find that the first factor of third term in the
R.H.S. of (5.35) < 1. Thus we have
Hd}H] HXj 5 DN-Mm+ + %D%59/27N7n2+|s1|+
+ € D167 N[ %+ 57 [l ™% (5.36)

Inserting the R.H.S. of (5.36) into [[¢o"]|x, in the R.H.S. of (5.36) and

using [[v™i]x, < W’HJ'HXSI,%([,) < Nlsil (ef. (5.33)) and 67 < N~—2ls1
l€|2 J

(cf. (5.28)), we obtain the claim (5.34).
Now we consider the increment of L?-norm under the assumption. We
take § ~ 0p(s1, S2,C2).
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By the L?-conservation law, we have

[P 41(6)] 2 — 1979 (8j-1) || 2 < HGglj)[ R +f?{{1](5j_1>’ L2
(5.37)

Applying (5.19) with s§ = 0, s{ = —0/2+, s, = s2, (5.20) with s} = 0,
sf = —=0/2+, sh = —0/2+, (5.21) with s} =0, s = —0/2+, (5.26) and the
assumption to R.H.S. of (5.37), if 0 > s1, s9 > —0/2, for all j > 1, we have

[ 541 (8)) |2 = 16" (65-1)ll 22 < CH(E'D1)*(Po + Pr+ Po + P3),
(5.38)

where, C7 is some universal constant and, letting B be the R.H.S. of (5.34),
n:=1/2—0/8— and ny := 6/2 — |sq],

Py := §%/4 N—mtlsilt (5.39)
P = (59/4—|82\/2— + 61 N2sil 59/4—14)3, (5.40)
P, := §" Nls1lg2. (5.41)
Py := 6" B3, (5.42)

On the other hand, we have
. . 1 H; H;
l65 3z < 195 @)llez + | G657 [0 +93"1 )| - (5.43)

By (5.17) with 8| = —60/2+, (5.18) with | = —0/2+, and (5.26), R.H.S.
of (5.43) is bounded by

||¢Lj (5]') ||L2 + 051/2_9_ H@Z)HJ ||§(‘;f2/2+,1/2+(1j)

+ C%D151/2_€/2_N|81‘ HiﬁHj ”X79/2+,1/2+ (5.44)
€12

1)’

where C' is some universal constant. Moreover, applying the Strichartz
estimate (Proposition 3.1 in [10]) to the integral equation, by Sobolev’s
embedding L/ < H~2 we bound the first term of (5.44) by

165 35-Dllz2 + CII2, s,

<1165 8-l g2 + CF N2, s, (5.45)

By the embedding X|0£"12/2+(Ij) — I3LP(I;), RHS. of (545) is
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bounded by

1653 (85-1)l12 + CE ([ 0,1/24

. 5.46

Consequently, by (5.46) and (5.26), the first term of (5.44) is bounded as
follows:

1679 (87l 22 < 11679 (8j-1)ll 2 + CE2DT6/ A N?11, (5.47)
where C' is some universal constant. Combining (5.44) with (5.47), we have

6541 (6,) || 12 — 16™ (6,-1) || 12 < C3(ED1)2(Qo + Q1 + Q2),

(5.48)
where (5 is some universal constant and
Qo = ¥/4N?Il, (5.49)
Qq := 62702~ Nlsil B, (5.50)
Qg := 61270~ B2, (5.51)

Now we consider the conditions for the uniform bound (5.25). We set k :=
T/6§. Taking 6 suitably, we may assume that x € N. Then

95 Gl = 105Gl = 95 Gl
-
S e CIO] PRI [ P
+ 116 2. (5.52)
Hence, by (5.38), we have

955 (65-1) || 12 < DINI 4 T§LCH@D1)? (Py + Py + P + P3).
(5.53)

Similarly, we have

655 (85-1) |2 < DIN*2l + T671C5(€'D1)*(Qo + Q1 + Q2).
(5.54)

Set C* := max{C{,C5}. From (5.53) and (5.54), in order to get
uniform control of the initial data (5.25), we have to ensure that
T~ 'C*(€D1)>(Py + Py + Py + P3) < DN!*tl and T6~'C*(¢D1)*(Qo +
Q1+ Qo) < €*D35~ /4N, For this, since 6'/*N—2511Q, < N~I1lP and
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51/4N_2|31‘Q2 < N_|51|P2, it suffices to consider that T5_1C'*(€2D1(P0 +
Py + Py, + P3) < NIl and T671C*Qy < €6 VAN, We take € =
max{T'C*,100}. Then it clearly holds that T6 1C*Qy < €5 /*N?Is1l,
Thus it remains to consider the condition for (5*1(P0 + P+ P+ P3) <
(TC*%QDl)*lNBl‘. Since § < 01,(s1,82,¢2) < (‘53D%)*10N*8‘81|*, we have

B<(¢€D1)°B, (5.55)

where B/ 1= N~ 4 §0/2= N=mHlsil+ 4 53— NTls1l - Since §9/2 N—metlsil+ <
B < (€D1)> N, we easily see that

(5_1(P0 —+ P1 =+ P2 —+ Pg) S 5_1(%D1)3P1
S 5—1+9/4—(%D1)6AB/
< 571+9/47 (%Dl)g(]\ﬂsz\ + 571/4N2|81|)B/‘

Thus in order that 6~ (Py + P, + Py + P3) < (TC*¢*D;) "' N1l it suffices
to show that

§140/4= N=lsil Izl 5U/AN2Is B < (et N (6 Dy ),
where ¢ = max{T'C*,100}. For this we take N so large that

(TC*)(¢D;)* <« N°© (5.56)
for sufficiently small € > 0, and then take § such that

§1H0/A= N—lsl(Nls2l 5= VA N2 B < NE, (5.57)

In (5.57), taking s1, so < 0 sufficiently close to 0, we can take positive e.
For (5.57), it suffices to take § such that

5> max{N*?((972lsz\*26)/(470))+N—2((974|52|726)/(4739))+7
N—2A(O—4ls1]-20)/(5-0))+ N—Q((9—4|51|—2|82\—2€)/(5—39))+},
and
§< min{NfS((6|s1|+|82\+€)/(479))77 N*S((8|31|+6)/(279))7}
< min{ N8l 22l

The condition of Theorem 1.1 ensures the existence of § satisfying the above
conditions for sufficiently small ¢ > 0.
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From the above argument, we find that, taking N and J as in (5.56)
and (5.57) respectively, we actually obtain the uniform bound (5.25) without
the assumption. Thus we have completed the proof. O

6. Appendix
In this section, we collect lemmas used in this paper.

Lemma 6.1 (Strichartz type estimate for Schrodinger equation) Let d >
3 be spatial dimension. Assume that by > 1/2, 0 <b <by, 0 <6 <1 and
(p,7) is such that d(1/2—1/p) = (1—6)(b/by) and 2/r =1—0(b/by). Then
we have

lullzyrg < Cllullyo,

where C is a constant depending only on d, by, b, r. We may replace

0b . 0,b
X‘ﬂz with X_K'Q.

Lemma 6.2 (Energy estimate for wave equation) Letd > 1, s € R, by >
1/2, 0 < b < by and let r be such that 2/r =1 — b/by. Then we have

[IV[*vllzrrz < C||’UHXi|b§‘

where C' is a constant depending only on d, by, b.

Lemma 6.3 Let b, b/ with 1/2>b+b >V > —1/2, s € R and let I be
an interval in R with |I| < 1. Then we have

el ot gy < CUP ]

Xs,b/ Xs,b’«H) I P}
\le( l¢I2 )

where C is a constant independent of I. The same result holds for the
space Xi‘bﬂ(l).
See [19], Lemma 2.11.
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