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Global solutions of the wave-Schrödinger system below L2

Takafumi Akahori

(Received February 21, 2005; Revised June 22, 2005)

Abstract. We prove that the 3 dimensional wave-Schrödinger system is globally well-

posed for data in (Hs1 × Ḣs2 × Ḣs2−1)(R3), where both s1 and s2 are some negative

indices.
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1. Introduction and main results

In this paper, we consider the Yukawa coupled wave-Schrödinger system
in 3 dimensions:

{
i∂tu+ ∆u = 2vu,

∂2
t v −∆v = −|u|2, (1.1)

where u and v are complex and real valued on R3 × [0,∞), respectively.
This system is a physical model describing an interaction between electrons
and phonon, e.g., it describes the superconductivity [16].

We are interested in the global well-posedness of the Cauchy problem for
this system, especially, when all initial data are below L2. Here the notion
of global well-posedness includes the global existence, the uniqueness and
the continuous dependence of solutions on initial data. In general, to prove
global well-posedness, conservation laws such as L2-norm and Hamiltonian
play an important role. But in our case, i.e., the case below L2, such
conservation laws do not make sense.

Global well-posedness below the conservation law is recently developed
by J. Bourgain [3, 4] and J. Colliander, M. Keel, G. Staffilani, H. Takaoka,
T. Tao [6, 7, 8] and several authors [14, 15]. For KdV and Schrödinger equa-
tions, sharp results are obtained in the sense that the global well-posedness
is proved up to the regularity below which the uniformly continuous de-
pendence of solutions on initial data breaks down, [7, 8]. These results
reflect that we understand the structures of these interactions. Indeed, in
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the view of [3], it is important to show that the energy at high frequencies
does not move rapidly to low frequencies. Moreover, to obtain better global
well-posedness result, we have to treat two types of frequency interactions,
that is, the resonant interaction and the coherent interaction. Actually, we
make a close investigation of the coherent interaction to prove our main
Theorem 1.1 below (see Section 4.2).

In spite of the importance, there are few global well-posedness result
for systems such as (1.1) and Zakharov system. For (1.1), H. Pecher proved
the global well-posedness for data in (Hs1 × Hs2 × Hs2−1)(R3) when 1 ≥
s1, s2 > 7/10 and s1 + s2 > 3/2 in [15]. Then the result is improved by
several authors [22], [1] and we know that (1.1) is globally well-posed when
s1, s2 > (

√
57 − 5)/4 in [1]. But the results are far from the satisfactory

result. Indeed, the scaling argument (cf. [11]) suggests that we expect the
well-posedness below L2, in particular, when s1 > −1 and s2 > −1/2. But
there has been no result below L2. Thus our aim here is to extend the global
well-posedness results for (1.1) to the case below L2.

The system (1.1) is transformed into an equivalent first order system in
time via the transformations ψ = u, φ = v+ i|∇|−1∂tv (cf. [11, 15]) and so,
in what follows, we consider the following Cauchy problem.

(WS)





i∂tψ + ∆ψ = (φ+ φ)ψ, x ∈ R3, t ≥ 0,
i∂tφ− |∇|φ = |∇|−1(|ψ|2), x ∈ R3, t ≥ 0,

ψ(0) = ψ0, x ∈ R3,

φ(0) = φ0, x ∈ R3,

where both ψ and φ are complex valued, and |∇| denotes the Fourier mul-
tiplier whose symbol coincides with |ξ|.

For (WS), we formally have the L2 and the Hamiltonian conservation
laws:

‖ψ(t)‖L2(R3) = ‖ψ0‖L2(R3), (1.2)

H(ψ(t), φ(t)) = H(ψ0, φ0) (1.3)

where

H(f, g) := ‖f‖2
Ḣ1(Rd)

+ ‖g‖2
Ḣ1(Rd)

+
∫

Rd

(g(x) + g(x))|f(x)|2 dx.

These quantities are important to prove the global well-posedness. So far,
without the Hamiltonian conservation law (1.3), we have not been able to
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control Ḣs-norms of φ. This is the reason why the known results are far
from the case below L2. But we find that we can control the L2-norm of φ
by only L2 conservation law (1.2) (cf. Section 3 below). This enables us to
prove the global well-posedness in L2. Moreover this motivates to prove the
following theorem, which is our main result.

Theorem 1.1 (Global well-posedness below L2) There exists θ∈(0, 1/10)
such that, if s1, s2 ≤ 0 satisfy that |s1| < 1/8, |s2| < θ and

min
{
θ − 2|s2|

4− θ
,
θ − 4|s2|
4− 3θ

,
θ − 4|s1|

5− θ
,
θ − 4|s1| − 2|s2|

5− 3θ

}

> 4max
{

6|s1|+ |s2|
4− θ

,
8|s1|
2− θ

}
> max

{
4|s1|, |s2|

}
,

then (WS ) is globally well-posed for data (ψ0, φ0) ∈ Hs1(R3)× Ḣs2(R3).

Remark 1 When s = s1 = s2, the conditions of s1 and s2 are reduced to
s > −(2θ − θ2)/(172− 102θ) if θ ≤ 2/33 and s > −(2θ − θ2)/(168− 36θ) if
θ ≥ 2/33. For the exponent θ, see Remark 2 in Section 4.1.

To prove the theorem, we use the idea of Bourgain [3]. The main
ingredients for the proof are L2-a priori estimate of φ (Proposition 3.1)
and bilinear estimates for negative indices (Propositions 4.1, 4.2). The
bilinear estimate for the part of Schrödinger equation is very complicated.
This is caused by the complicated resonance structure. On the other hand,
in (WS), we expect that the coherent interaction does not dominate the
bilinear estimate so much. To see this, we decompose the wave part into its
free evolution and perturbation terms. Then the structure of the interaction
turns to be clearer and we can obtain bilinear estimates for negative indices
by the help of the arguments of [5] and [17]. For details, see the Section 4.

This paper is organized as follows. Section 2 is assigned for prelim-
inaries, where we introduce Bourgain’s spaces and the integral equations
associated to (WS), and give notations following [17], and lemmas used in
this paper. In Section 3 we give the proof of Theorem 1.1 for special case
s1 = s2 = 0, i.e. the global well-posedness in L2. In Section 4, we give
and prove the bilinear estimates (Propositions 4.1, 4.2). In Section 5, we
prove the Theorem 1.1. In the Appendix, we give well-known Strichartz
type estimates. Moreover we give the useful time-gain estimate.
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2. Preliminaries

Throughout this paper, we use Fx and F−1
x to denote the Fourier and

inverse Fourier transforms in a variable x, respectively.
We first introduce Bourgain’s spaces. Let h be a real valued function

on Rd. Then Bourgain’s space associated to h is defined by

Xs,b
h :=

{
u ∈ S ′(Rd × R)

∣∣ ‖u‖
Xs,b

h
<∞}

,

where S ′(Rd×R) denotes the class of tempered distributions on Rd×R and

‖u‖
Xs,b

h
:=

∥∥eitHu
∥∥
Hb

tH
s
x(Rd×R)

=
∥∥〈ξ〉s〈τ + h(ξ)〉bFx,t[u]

∥∥
L2

ξ,τ (Rd×R)
, (2.1)

where H denotes the Fourier multiplier whose symbol coincides h. We also
define the homogeneous counterpart of Xs,b

h by

Ẋs,b
h :=

{
u ∈ Z ′(Rd × R)

∣∣ ‖u‖
Ẋs,b

h
<∞}

,

where Z ′(Rd × R) denotes the dual space of

Z(Rd×R) :=
{
f ∈S(Rd×R)

∣∣ (DαFx[f ])(0)= 0, ∀α∈ (N∪{0})d}

(cf. Section 5 in [20]) and ‖u‖
Ẋs,b

h
is defined by replacing 〈ξ〉 with |ξ| in (2.1).

Because Xs,b
h is a time global space, we need the following time localized

one: Let I ⊂ R be a time interval with |I| < 1. Then we define

Xs,b
h (I) :=

{
u : Rd × I → C

∣∣ ∃ũ ∈ Xs,b
h s.t. ũ|I = u

}
(2.2)

which is equipped with the norm

‖u‖
Xs,b

h (I)
:= inf

{‖ũ‖
Xs,b

h

∣∣ ũ ∈ Xs,b
h with ũ|I = u

}
(2.3)

Similarly we define the time local version of Ẋs,b
h and denote it by Ẋs,b

h (I).
Next we introduce the integral equations associated to (WS) on an

interval I = [t0, t1]:
{
ψ(t) = ei(t−t0)∆ψ(t0)− iG

(I)
1 [ψ(φ+ φ)](t), t ∈ I,

φ(t) = e−i(t−t0)|∇|φ(t0) + iG
(I)
2 [|∇|−1|ψ|2](t), t ∈ I,

(2.4)
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where, for all f ∈ S(R3 × I), G(I)
1 and G(I)

2 are represented as follows:

G
(I)
1 [f ](t) =

∫ t

t0

ei(t−s)∆f(s) ds, G
(I)
2 [f ](t) =

∫ t

t0

ei(t−s)|∇|f(s) ds.

(2.5)

Moreover, we can extend G
(I)
1 (Resp. G(I)

2 ) to the bounded linear operator
from Xs,b−1

|ξ|2 (I) to Xs,b
|ξ|2(I) (Resp. Ẋs,b−1

±|ξ| (I) to Ẋs,b
±|ξ|(I)), if b > 1/2 and

|I| < 1 (cf. Lemma 2.1 (ii) in [11]). We note the following commutator
relation: for any s ∈ R,

[
G

(I)
2 , |∇|s] = 0. (2.6)

Finally we introduce the general framework for bilinear estimates fol-
lowing [17]. For any integer k ≥ 2, we define the hyperplane Γk(RD) by

Γk(RD) :=
{
(η1, . . . , ηk) ∈ RkD

∣∣ η1 + · · ·+ ηk = 0
}

and define the integral on this hyperplane by
∫

Γk(RD)
f(η1, . . . , ηk−1, ηk)

:=
∫

R(k−1)D

f(η1, . . . , ηk−1,−η1 − · · · − ηk−1) dη1 · · · dηk−1.

A [k;RD]-multiplier is a function m : Γk(RD) → C. For [k;RD]-multiplier m
we define ‖m‖[k;RD] to be the best constant such that the inequality

∣∣∣∣∣
∫

Γk(RD)
m(η1, . . . , ηk)

k∏

j=1

fj(ηj)

∣∣∣∣∣ ≤ C

k∏

j=1

‖fj‖L2(RD)

holds for all “non-negative” functions f1, . . . , fk ∈ S(RD). ‖m‖[k;RD] is
called a multiplier norm for m.

Now we state the basic properties of multiplier norm without the proofs,
all of them are contained in [17]. First of all, we easily see that for all a ∈
C, ‖am‖[k;RD] = |a|‖m‖[k;RD], and for all [k;RD]-multipliers m1 and m2,
‖m1 +m2‖[k;RD] ≤ ‖m1‖[k;RD] + ‖m2‖[k;RD].

Lemma 2.1 (Comparison principle) Let m1 and m2 be [k;RD]-multipliers
with

|m1(η1, . . . , ηk)| ≤ |m2(η1, . . . , ηk)|
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for almost all (η1, . . . , ηk)∈Γk(RD). Then we have ‖m1‖[k;RD]≤‖|m2|‖[k;RD].

Lemma 2.2 (Linear transformation) Let m be a [k;RD]-multiplier and L
a linear transformation in RD. Then ‖m◦L‖[k;RD] = |det(L)|k/2−1‖m‖[k;RD].

Lemma 2.3 Let A and B be subsets of Rd and let χA and χB be their
indicator functions, respectively. Let h, h′ : Rd → R, L, L′ > 0 and set
λ1 := τ1 + h(ξ1), λ2 := τ2 + h′(ξ2). Then

∥∥χA(ξ1)χB(ξ2)χ|λ1|.L(ξ1, τ1)χ|λ2|.L′(ξ2, τ2)
∥∥

[3;RD]

. min{L,L′}1/2 sup
(eξ,eτ)∈Rd+1

∣∣∣
{
ξ ∈ A

∣∣∣ ξ̃ − ξ ∈ B,

∣∣h(ξ) + h′(ξ̃ − ξ) + τ̃
∣∣ . max{L,L′}

}∣∣∣
1/2
.

Similar statements hold if we permute the indices 1, 2, 3.

Lemma 2.4 (Schur’s test) Let {mλ}λ∈Λ be a collection of [3;RD]-multi-
pliers with

sup
η∈RD

]
{
λ ∈ Λ

∣∣ η ∈ πj(supp(mλ))
} ≤ Cj ,

where Cj is some constant and πj denotes the projection onto ηj-plane RD
(j = 1, 2). Then we have

∥∥∥∥∥
∑

λ∈Λ

mλ

∥∥∥∥∥
[3;RD]

≤ (C1C2)1/2 sup
λ∈Λ

‖mλ‖[3;RD].

Similar statements hold if we permute the indices 1, 2, 3.

Now we recall a box covering of RD, which is a partition of RD into
sets {R + v}v∈Σ, where R, Σ and R + v (v ∈ Σ) are called fundamental
domain, tiling lattice and box, respectively. The fundamental domain R is
a subset of RD containing the origin and symmetric around the origin. Σ is
a discrete subgroup of RD such that R + R can be covered by O(1) boxes
and the overlap of boxes is bounded by a uniform constant. Throughout
this paper we use A . B to denote the estimate A ≤ CB, where C is
a universal constant.

Lemma 2.5 (Box localization) Let {R + v}v∈Σ be a box covering of RD
and let m be [3;RD]-multiplier with π1(supp(m)) ⊂ R+v1 for some v1 ∈ Σ.
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Then

‖m‖[3;RD] . sup
v2,v3∈Σ

‖mχR+v2(η2)χR+v3(η3)‖[3;RD].

Similar statements hold if we permute the indices 1, , 2, 3.

Lemma 2.6 (Transverse interactions) Let E1, E2 be open subsets of Rd,
and let η be a unit vector in Rd. Let θ > 0, and let h1 : E1 → R, h2 : E2 → R
be smooth functions which satisfy the transversality condition

|Dηh1(ξ1)−Dηh2(ξ2)| & θ

for all ξ1 ∈ E1, ξ2 ∈ E2, where Dη is the directional derivative in the
direction η. Then for any L1, L2 > 0 we have

∥∥∥∥∥
2∏

j=1

χEj (ξj)χ|λ|.Lj

∥∥∥∥∥
[3;Rd×R]

. L
1/2
1 L

1/2
2 θ−1/2 min{|π⊥η (E1)|, |π⊥η (E2)|}1/2,

where |π⊥η (E)| is the d− 1 dimensional measure of the projection of E onto
the orthogonal complement of η.

3. Global well-posedness in L2

We know that (WS) is locally well-posed in L2, i.e. for data (ψ0, φ0) ∈
L2(R3)×L2(R3) (see, e.g. Theorem 1.1 in [1]). Moreover the existence time
depends only on the size of L2-norm of the initial data. Since we have the
conservation law (1.2), to prove the global well-posedness in L2, it suffices
to show a priori bound of ‖φ(t)‖L2 .

Proposition 3.1 Let (ψ,φ) be the L2-solution of (WS ) on [0, T ]. Then
we have

‖φ‖L∞t L2
x([0,T ])

≤ ‖φ0‖L2 +C
(
T 5/8‖ψ0‖2

L2 + T 3/4‖ψ0‖2
L2‖φ0‖1/2

L2 + T 3/2‖ψ0‖4
L2

)
,

where C is some universal constant, and

‖ψ‖L2
tL

6
x([0,T ]) . ‖ψ0‖L2 + T 1/2‖ψ0‖L2‖φ0‖2

L2 + T 7/2‖ψ0‖9
L2 .

Proof of Proposition 3.1. In this proof, we use C to denote a universal
constant, which may vary from line to line.
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Let (ψ, φ) be the L2-solution of (WS) on [0, T ]. Then we know that
ψ ∈ C([0, T ];L2) ∩ L2([0, T ];L6). By the integral equation (2.4) and the
Strichartz estimates (cf. Proposition 3.1 in [10]), we have

‖φ(t)‖L2 ≤ ‖φ0‖L2 + C‖ψ‖2

L
8/3
t L

24/11
x ([0,T ])

. (3.1)

By the interpolation,

R.H.S. of (3.1) ≤ ‖φ0‖L2 + C‖ψ‖7/4

L
14/5
t L2

x([0,T ])
‖ψ‖1/4

L2
tL

6
x([0,T ])

≤ ‖φ0‖L2 + CT 5/8‖ψ‖7/4
L∞t L2

x([0,T ])
‖ψ‖1/4

L2
tL

6
x([0,T ])

.

(3.2)

We apply the L2-conservation law (1.2), which yields

‖φ‖L∞t L2
x([0,T ]) ≤ ‖φ0‖L2 + CT 5/8‖ψ0‖7/4

L2 ‖ψ‖1/4

L2
tL

6
x([0,T ])

. (3.3)

Here we need to consider the term ‖ψ‖L2
tL

6
x([0,T ]). By the integral equa-

tion (2.4) and the Strichartz estimate, we have

‖ψ‖L2
tL

6
x([0,T ]) . ‖ψ0‖L2 + ‖ψ(φ+ φ)‖

L2
tL

6/5
x ([0,T ])

. ‖ψ0‖L2 + ‖φ‖L∞t L2
x([0,T ])‖ψ‖L2

tL
3
x([0,T ]). (3.4)

By the interpolation, Hölder’s inequality and (1.2), we have

‖ψ‖L2
tL

6
x([0,T ]) . ‖ψ0‖L2 + T 1/4‖φ‖L∞t L2

x([0,T ])‖ψ0‖1/2
L2 ‖ψ‖1/2

L2
tL

6
x([0,T ])

.

(3.5)

We insert (3.3) into the second term in R.H.S. of (3.5) and obtain

‖ψ‖L2
tL

6
x([0,T ]) . ‖ψ0‖L2 + T 1/4‖φ0‖L2‖ψ0‖1/2

L2 ‖ψ‖1/2

L2
tL

6
x([0,T ])

+ T 7/8‖ψ0‖9/4
L2 ‖ψ‖3/4

L2
tL

6
x([0,T ])

.

Applying Young’s inequality (ab ≤ ap/p+ bq/q for 1/p+ 1/q = 1), we have

‖ψ‖L2
tL

6
x([0,T ]) . ‖ψ0‖L2 + T 1/2‖φ0‖2

L2‖ψ0‖L2 + T 7/2‖ψ0‖9
L2 , (3.6)

which proves the second claim of the proposition.
We insert (3.6) into (3.3) and obtain the result. ¤
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4. Bilinear estimates

For both local and global well-posednesses, we usually consider the
following estimates (cf. (2.4)):

∥∥∥G(I)
1 [ψ(φ+ φ)]

∥∥∥
X

s,1/2+

|ξ|2 (I)
. ‖ψ‖

X
s1,b1
|ξ|2 (I)

‖φ‖
Ẋ

s2,b2
|ξ| (I)

, (4.1)

∥∥∥G(I)
2 [|∇|−1|ψ|2]

∥∥∥
X

s,1/2+
±|ξ| (I)

. ‖ψ‖2

X
s1,b1
|ξ|2 (I)

, (4.2)

where 1/2+, more generally, for a ∈ R, a+ (Resp. a−) denotes a number
greater (Resp. less) than a and sufficiently close to a. As stated above
(cf. Section 2), G(I)

1 and G
(I)
2 are bounded linear operators from Xs,b−1

|ξ|2 (I)

to Xs,b
|ξ|2(I) and from Ẋs,b−1

±|ξ| (I) to Ẋs,b
±|ξ|(I), respectively, for any b > 1/2

and any time interval I with |I| ≤ 1. Thus we can reduce (4.1) and (4.2) to
the following bilinear estimates:

‖ψ(φ+ φ)‖
X

s,−1/2+

|ξ|2
. ‖ψ‖

X
s1,b1
|ξ|2

‖φ‖
Ẋ

s2,b2
|ξ|

, (4.3)

‖|∇|−1|ψ|2‖
X

s,−1/2+
|ξ|

. ‖ψ‖2

X
s1,b1
|ξ|2

. (4.4)

The estimate (4.3) is open for any s1, s2 < 0 and s ≥ s1, s2.
For any given ψ, from the integral equation (2.4), φ is represented as

follows:

φ = e−it|∇|φ0 +G
(I)
2 [|∇|−1|ψ|2].

This representation of φ enables us to prove Theorem 1.1 without (4.3).
Indeed, we have the following estimate for the L.H.S. of (4.3):

∥∥ψ(φ+ φ)
∥∥
X

s,−b3
|ξ|2

≤
∥∥ψ(e−it|∇|φ0)

∥∥
X

s,−b3
|ξ|2

+
∥∥ψ(e−it|∇|φ0)

∥∥
X

s,−b3
|ξ|2

+
∥∥∥ψG(I)

2 [|∇|−1|ψ|2]
∥∥∥
X

s,−b3
|ξ|2

+
∥∥∥ψG(I)

2 [|∇|−1|ψ|2]
∥∥∥
X

s,−b3
|ξ|2

. (4.5)

The first and second terms in the R.H.S. of (4.5) seem to be easier than the
estimate (4.3). Indeed, they are estimated by using the result in Section 11
of [5]. On the other hand, the third and fourth terms in the R.H.S. of (4.5),
and the L.H.S. of (4.4) are good thanks to the factor |∇|−1 and treated
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similarly. The details appear in the following two subsections.

4.1. Estimate I
We consider the first and the second terms in the R.H.S. of (4.5). Then

we have the following proposition:

Proposition 4.1 Let s, s1, s2 ≤ 0 and let b1 satisfy b1 > 1/4 + |s1|/2 +
|s2|/2. Then there exists θ > 0 such that if b1 > 1/2−θ/2+ |s1|/2+ |s2|/2−
|s|/2, then, taking b3 < 1/2 sufficiently close to 1/2, we have the following
estimates:
( i )

∥∥ψ(e−it|∇|φ0)
∥∥
X

s,−b3
|ξ|2

. ‖ψ‖
X

s1,b1
|ξ|2

‖φ0‖Ḣs2 ,

(ii)
∥∥ψ(e−it|∇|φ0)

∥∥
X

s,−b3
|ξ|2

. ‖ψ‖
X

s1,b1
|ξ|2

‖φ0‖Ḣs2 ,

where the implicit constants depending only on s, s1, s2, b1 and b3.

Proof of Proposition 4.1. Most of the proof follows [5]. Since the proof
of (ii) is similar to (i), we only give the proof of (i).

By duality we easily find that (i) is reduced to the following estimate:
∣∣∣∣
∫

Γ3(R3+1)

〈ξ1〉−s1 |ξ2|−s2〈ξ3〉s
〈λ1〉b1〈λ3〉b3 ψ1(ξ1, τ1)

×Fx,t
[
e∓it|∇||∇|s2φ0

]
(ξ2, τ2)ω3(ξ3, τ3)

∣∣∣∣
. ‖ψ1‖L2

τL
2
ξ
‖|∇|s2φ0‖L2‖ω3‖L2

τL
2
ξ
, (4.6)

where λ1 := τ1 + |ξ1|2 and λ3 := τ3 − |ξ3|2.
Since Fx,t[e∓it|∇||∇|s2φ0](ξ2, τ2) = δ(τ2±|ξ2|)Fx[|∇|s2φ0](ξ2), the L.H.S.

of (4.6) is estimated by
∫

Γ3(R3+1)
δ(τ2 ± |ξ2|)〈ξ1〉

−s1 |ξ2|−s2〈ξ3〉s
〈λ1〉b1〈λ3〉b3 |ψ1(ξ1, τ1)|

× |Fx[|∇|s2φ0](ξ2)||ω3(ξ3, τ3)| (4.7)

In (4.7), we divide the region of the integral into two cases: Case 1:
max{|λ1|, |λ3|} & |ξ1|2, and Case 2: max{|λ1|, |λ3|} ¿ |ξ1|2.
Estimate of Case 1: In this case, we can estimate (4.7) only by the
Strichartz estimates (Lemmas 6.1 and 6.2). We will divide the integral
according to the size of the symbols λ1, λ3 and then estimate the factor of
wave equation in L∞t L2

x, the factor of Schrödinger equation with the bigger
symbol in L2

tL
3
x and the one with smaller symbol in L2

tL
6
x.
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Since
∣∣|ξ1|2 ∓ |ξ2| − |ξ3|2

∣∣ = |λ1 + λ3| ≤ 2max{|λ1|, |λ3|} on {τ2 ± |ξ2|},
if |ξ1| ¿ |ξ3|, then |ξ2|2 ∼ |ξ3|2 . max{|λ1|, |λ3|}. Thus in Case 1, we have
max{〈ξ1〉, |ξ2|, 〈ξ3〉}2 . max{〈λ1〉, 〈λ3〉}.

We first consider the case where |λ1| & |λ3|. Then the integral (4.7)
over |λ1| & |λ3| is estimated by

∫

Γ3(R3+1)
δ(τ2 ± |ξ2|) 1

〈λ1〉b1+s1/2+s2/2〈λ3〉b3
|ψ1(ξ1, τ1)|

× |Fx[|∇|s2φ0](ξ2)||ω3(ξ3, τ3)|, (4.8)

where we have used the fact that s ≤ 0 and therefore 〈ξ3〉s ≤ 1. By the
assumption b1 + s1/2 + s2/2 > 1/4. We set b1 + s1/2 + s2/2 = 1/4 + ε0 for
some ε0 > 0. Then, e.g., taking b3 = 1/2− ε0/2, we estimate (4.8) by

∫

Γ3(R3+1)
δ(τ2 ± |ξ2|) 1

〈λ1〉1/4+〈λ3〉1/2+
|ψ1(ξ1, τ1)|

× |Fx[|∇|s2φ0](ξ2)||ω3(ξ3, τ3)|. (4.9)

By Plancherel’s theorem, (4.9) is equal to
∫

R3×R
F−1
ξ,τ

[〈τ + |ξ|2〉−(1/4+)|ψ1|
]
(x, t)

×F−1
ξ,τ

[
δ(τ ± |ξ|)|Fx[|∇|s2φ0]|

]
(x, t)

×F−1
ξ,τ

[〈ξ3〉s〈τ − |ξ|2〉−(1/2+)|ω3|
]
(x, t) dx dt

=
∫

R3×R
F−1
ξ,τ

[〈τ + |ξ|2〉−(1/4+)|ψ1|
]
(x, t)

×F−1
ξ

[
e∓it|ξ| |Fx[|∇|s2φ0]|

]
(x)

×F−1
ξ,τ

[〈ξ3〉s〈τ − |ξ|2〉−(1/2+)|ω3|
]
(x, t) dx dt. (4.10)

By Hölder’s inequality,

R.H.S. of (4.10)

≤
∥∥F−1

ξ,τ

[〈τ + |ξ|2〉−(1/4+)|ψ1|
]∥∥
L2

tL
3
x

×
∥∥F−1

ξ

[
e∓it|ξ| |Fx[|∇|s2φ0]|

]∥∥
L∞t L2

x

×
∥∥F−1

ξ,τ

[〈τ −|ξ|2〉−(1/2+)|ω3|
]∥∥
L2

tL
6
x
. (4.11)
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Applying the Strichartz type estimate (Lemma 6.1), we have

R.H.S. of (4.11) . ‖ψ1‖L2
τL

2
ξ
‖|∇|s2φ0‖L2‖ω3‖L2

τL
2
ξ
, (4.12)

hence the claim follows in this case.
Next we consider the case where |λ3| ≥ |λ1|. In this case, we also take

b3 = 1/2− ε0/2. Then the claim follows by a similar way to the above.
Estimate of Case 2: We apply the result given in pp. 541–544 of [5] (see
also Remark 2 below). Thus we find that there exists θ > 0 such that, for
any s1, s2 ≤ 0 with θ > |s1| + |s2| − |s| + 2 − 2b1 − 2b3, the integral (4.7)
for Case 2 is estimated by ‖ψ1‖L2

τL
2
ξ
‖|∇|s2φ0‖L2‖ω3‖L2

τL
2
ξ
. The condition

θ > |s1|+ |s2| − |s|+ 2− 2b1 − 2b3 is reduced to b1 > 1/2− θ/2 + |s1|/2 +
|s2|/2− |s|/2, if we take b3 sufficiently close to 1/2.
Completion of the proof : From the estimates of Cases 1 and 2, we have
proved (4.6) and therefore Proposition 4.1. ¤

Remark 2 We state a remark on the exponent θ which appears in the
estimate of Case 2. The key inequality in [5] is the following: let σ be an
invariant measure on S2, the unit sphere in R3. For any ε > 0, let ρε be
a localizing function vanishing on ε-neighborhoods of 0 and the sphere with
radius 2. Then there is some p < 2 and C > 0 such that

∥∥F [ρε(f1 dσ ∗ f2 dσ)]
∥∥
Lp(R3)

. ε−C‖f1‖L2(S2;dσ)‖f2‖L2(S2;dσ)

(4.13)

for all f1, f2 ∈ L2(S2; dσ).
From the above inequality, we can choose

θ =
1

2C + 1

(
1
p
− 1

2

)
.

In view of the Fourier restriction estimate, the lower bound of p is 5/3 and
thus the upper bound of θ is 1/10 (cf. [18]). The estimate (4.13) plays an
important role to analyze the transversality. On the other hand, the parallel
interaction part is estimated by the Tomas-Stein restriction estimate.

4.2. Estimate II
In this section, we consider (4.4) and the third and fourth terms in

the R.H.S. of (4.5). We state a strategy to estimate these terms. First
we apply the Littlewood-Paley decomposition and so we suppose that the
frequency support of ψ is similar to N1 and one of G2[|ψ|2] is similar to N2,
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where N1 and N2 vary dyadically. Then, thanks to |∇|−1 ∼ N−1
2 , the

diagonal (N1 ∼ N2) and low-high (N1 ¿ N2) interaction cases are harmless.
Moreover mild high-low (N2 ¿ N1 . N2

2 ) interaction case is controllable.
On the other hand, in the very high-low (N1 À N2

2 ) interaction case, we will
find that the transversality of the characteristic surfaces τ1 = |ξ1|2 and τ2 =
±|ξ2| works very well. Besides, these principal interactions, |∇|−1 causes
the mild singularity case (N1 ¿ 1/N2). But this case is easily treated. This
strategy is accomplished below. Besides the notations a+ and a−, we also
use ∞− to denote a sufficiently large finite number.

The estimate (4.4) and the third and fourth terms in the R.H.S. of (4.5)
are uniformly treated. Indeed, we want to bound the third and fourth terms
in (4.5) by

‖ψ‖
X

s1,b1
|ξ|2

∥∥G2[|∇|−1|ψ|2]
∥∥
Ẋ

s′2,1/2+

|ξ|
, (4.14)

‖ψ‖
X

s1,b1
|ξ|2

∥∥G2[|∇|−1|ψ|2]
∥∥
Ẋ

s′2,1/2+

−|ξ|
, (4.15)

respectively. These estimates are reduced to the boundedness of the
[3;R3+1]-multiplier

∥∥∥∥
〈ξ1〉s1 |ξ2|s′2〈ξ3〉s

〈λ1〉b1〈λ2〉1/2−〈λ3〉b3
∥∥∥∥

[3;R3+1]

, (4.16)

where λ1 := τ1 + |ξ1|2, λ2 := τ2 ± |ξ2| and λ3 := τ3 − |ξ3|2.
Moreover, by the boundedness of G2, the second factors in (4.14) and

(4.15) are estimated by

‖|∇|−1|ψ|2‖
Ẋ

s′2,−1/2+

|ξ|
, (4.17)

which has a similar form to the L.H.S. of (4.4). We want to bound the L.H.S.
of (4.4) and (4.17) by ‖ψ‖2

X
s1,b1
|ξ|2

. Then we easily see that these estimates

are reduced to the boundedness of type of (4.16).
Our main proposition in this subsection is the following:

Proposition 4.2 Let α, γ ≥ 0 be such that α + γ < 1/4 and let −5/4 <
β ≤ −1/2. Let b1, b3 > max{1/4, 3/8 + (α + β + γ)/4} with b1 + b3 >

max{1/2 + (α + γ), 1 − |β|/2}, and b2 < 1/2 be sufficiently close to 1/2.
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Then
∥∥∥∥
〈ξ1〉α|ξ2|β〈ξ3〉γ
〈λ1〉b1〈λ2〉b2〈λ3〉b3

∥∥∥∥
[3;R3+1]

(4.18)

is finite, where λ1 := τ1 + |ξ1|2, λ2 := τ2 ± |ξ2| and λ3 := τ3 − |ξ3|2.
Remark 3 We will encounter the case γ < 0 in the Section 5.3 below. At
that time, we will use the crude estimate 〈ξ〉γ ≤ 1.

Proof of Proposition 4.2. By the dyadic decomposition of variables ξj
and τj , (4.18) is written as follows:

∥∥∥∥∥
∑

`1,`2,`3∈N0

∑

k1,k3∈N0
k2∈Z

m(ξ1, ξ2, ξ3)∏3
j=1〈λj〉bj

χk1(ξ1)χ|ξ2|∼2k2 (ξ2)χk3(ξ3)

×
3∏

j=1

χ`j (ξj , τj)

∥∥∥∥∥
[3;R3+1]

, (4.19)

where N0 := N ∪ {0}, m(ξ1, ξ2, ξ3) := 〈ξ1〉α|ξ2|β〈ξ3〉γ and χkj
:= χ|ξj |.1 if

kj = 0, := χ|ξj |∼2kj if kj ≥ 1 (j = 1, 3). The function χ`j is similarly defined
for the modulation λj .

We divide the region into three cases. Case 1: 2k1 ∼ 2k3 À
max{22k2 ,2`max ,1} and 2k2 & 1/2k1 , Case 2: 2k1 ∼ 2k3 Àmax{22k2 ,2`max ,1}
and 2k2 ¿ 1/2k1 , Case 3: Otherwise, i.e. 2k1 À 2k3 or 2k1 ¿ 2k3 or 2k1 ∼
2k3 . max{22k2 , 2`max , 1}.

We consider Cases 1 and 2. In these cases, since the range of k3 is
restricted by 2k1 ∼ 2k3 , we estimate (4.19) with Case 1 or Case 2 by

∑

`1,`2,`3∈N0

∑

k2∈Z

1∏3
j=1〈2`j 〉bj

∥∥∥∥∥∥∥

∑

k1∈N0
Case 1 or Case 2

mχk1,k2

3∏

j=1

χ`j

∥∥∥∥∥∥∥
[3;R3+1]

,

(4.20)

where χk1,k2 = χk1,k2(ξ1, ξ2, ξ3) := χ|ξ1|∼2k1 (ξ1)χ|ξ2|∼2k2 (ξ2)χ|ξ3|∼2k1 (ξ3).
Since supξ∈R3 ]{k1 ∈ N0 | ξ ∈ πj(χk1,k2)} . 1 (j = 1, 3), by Schur’s test

(Lemma 2.4), (4.20) is estimated by
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∑

`1,`2,`3∈N0

∑

k2∈Z

1∏3
j=1〈2`j 〉bj

sup
k1∈N0
Case 1

or Case 2

2(α+γ)k12βk2
∥∥∥∥∥χk1,k2

3∏

j=1

χ`j

∥∥∥∥∥
[3;R3+1]

.

(4.21)

Breaking up the annulus {|ξ2| ∼ 2k2} into O(1) sections of size ¿ 2k2 , we
estimate (4.21) by

∑

`1,`2,`3∈N0

∑

k2∈Z

1∏3
j=1〈2`j 〉bj

sup
k1∈N0

Case 1 or Case 2

2(α+γ)k12βk2

×
∥∥∥∥∥

∑

v2∈V
χ|ξ2−v2|¿2k2χk1,k2

3∏

j=1

χ`j

∥∥∥∥∥
[3;R3+1]

, (4.22)

where V is the set of centers of the section induced by the partition of the
annulus. The cardinal number of V is independent of 2k2 . Moreover, since
]V . 1, (4.22) is estimated by

∑

`1,`2,`3∈N0

∑

k2∈Z

1∏3
j=1〈2`j 〉bj

sup
k1∈N0

Case 1 or Case 2

2(α+γ)k12βk2 sup
v2∈V

×
∥∥∥∥∥χ|ξ2−v2|¿2k2χk1,k2

3∏

j=1

χ`j

∥∥∥∥∥
[3;R3+1]

. (4.23)

By the Box localization (Lemma 2.5), (4.23) is estimated by

∑

`1,`2,`3∈N0

∑

k2∈Z

1∏3
j=1〈2`j 〉bj

sup
k1∈N0

Case 1 or Case 2

2(α+γ)k12βk2

× sup
v2∈V
v1,v3∈Σ

∥∥∥∥∥χk1,k2
3∏

j=1

χ|ξj−vj |¿2k2χ`j

∥∥∥∥∥
[3;R3+1]

, (4.24)

where Σ is a tiling lattice induced by V . The term (4.24) is comparable to

∑

`1,`2,`3∈N0

∑

k2∈Z

1∏3
j=1〈2`j 〉bj

sup
k1∈N0

Case 1 or Case 2

2(α+γ)k12βk2

× sup
v1,v3∈Σ,v2∈V
|v1|∼|v3|∼2k1

∥∥∥∥∥
3∏

j=1

χ|ξj−vj |¿2k2χ`j

∥∥∥∥∥
[3;R3+1]

. (4.25)
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In (4.25), we divide the range of `1 and `3 into `1 ≤ `3 and `3 ≤ `1.
First we consider the case `1 ≤ `3. Then by the Comparison principle

(Lemma 2.1), (4.25) is estimated by

∑

`1,`2,`3∈N0
`1≤`3

∑

k2∈Z

1∏3
j=1〈2`j 〉bj

sup
k1∈N0

Case 1 or Case 2

2(α+γ)k12βk2

× sup
v1,v3∈Σ,v2∈V
|v1|∼|v3|∼2k1

∥∥∥∥∥
2∏

j=1

χ|ξj−vj |¿2k2χ`j

∥∥∥∥∥
[3;R3+1]

. (4.26)

Now we consider the Case 1. Note that, since |v1| ∼ 2k1 & 2k2 and 2k1 À 1,
from |ξ1 − v1| ¿ 2k2 it follows that |ξ1| ∼ 2k1 À 1. Thus we have

∣∣Dv1 |ξ1|2 −Dv1(±|ξ2|)
∣∣ & |ξ1| ∼ 2k1

for all ξ1 ∈ {|ξ| ∼ 2k1} and ξ2 ∈ {|ξ| ∼ 2k2}, and therefore by the transverse
interaction (Lemma 2.6), (4.26) with Case 1 is estimated by

∑

`1,`2,`3∈N0
`1≤`3

∑

k2∈Z

1
2(b1+b3−)`12b2`22(0+)`3

× sup
k1∈N0
Case 1

2(α+γ)k12βk22`1/22`2/22−k1/22k2

.
∑

`1,`2∈N0

∑

k2≥0

sup
k1∈N0
Case 1

2(1/2−b1−b3+)`12(1/2−b2)`2

× 2(α+γ−1/2+δ)k12(β+1−2δ)k2

+
∑

`1,`2∈N0

∑

k2≤−1

sup
k1∈N0
Case 1

2(1/2−b1−b3+)`12(1/2−b2)`2

× 2(α+γ−1/2+δ′)k12(β+1+δ′)k2 , (4.27)

where we have used the conditions 2k1 À 22k2 and 2k2 & 1/2k1 to derive
the first and second term in the R.H.S. of (4.27), respectively. We choose
δ = (1 + β)/2, and δ′ = |β + 1|+ if β ≤ −1, δ′ = 0 if β > −1. Then, in the
first term above, α + γ − 1/2 + δ = α + γ + β/2 < 0 and β + 1 − 2δ = 0,
and, in the second term above, α + γ − 1/2 + δ′ < 0 and β + 1 + δ′ > 0.
Since 2k1 À 2`max and 1/2 − b1 − b3+ < 0 (if “+” denotes a sufficiently
small number), if we take b2 so close to 1/2 that 1/2− b2 < |α+ γ − 1/2 +
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δ|/2, |α+ γ− 1/2 + δ′|/2, the first and second terms in the R.H.S. of (4.27)
converge.

Next we consider Case 2 with `1 ≤ `3. Then by Lemma 2.3, (4.26) with
Case 2 is estimated by

∑

`1,`2,`3∈N0
`1≤`3

∑

k2<0

1∏3
j=1〈2`j 〉bj

sup
k1∈N0
Case 2

2(α+γ)k12βk2

× sup
|v1|∼2k1

min
j=1,2

2`j/2
∣∣{ξ ∈ R3

∣∣ |ξ − v1| ¿ 2k2
}∣∣1/2

.
∑

`1,`2,`3∈N0
`1≤`3

∑

k2<0

1
2(b1+b3−)`12b2`22(0+)`3

× sup
k1∈N0
Case 2

2(α+γ)k12βk2 min
j=1,2

2`j/223/2k2

.
∑

`1,`2∈N0
`1≤`3

∑

k2<0

minj=1,2 2`j/2

2(b1+b3−)`12b2`2
sup
k1∈N0
Case 2

2(α+γ−δ′′)k12(3/2+β−δ′′)k2 ,

(4.28)

where we have used the condition 2k2 ¿ 1/2k1 to derive the final inequality.
We choose δ′′ = 1/4. Then since α + γ < 1/4 and 1/4 < 3/2 + β ≤ 1,
we find that the R.H.S. of (4.28) converges and thus the claim follows for
Cases 1 and 2 with `1 ≤ `3.

The case `1 ≥ `3 follows by changing the role of indices 1, 3 in the above
estimate.

Finally we consider Case 3. First suppose that 2k1 À 2k3 . Then the
range of k2 is restricted to 2k2 ∼ 2k1 . Moreover we suppose that k1 À 1.
The case k1 . 1 is treated by a similar way to k1 À 1, in spite of the
singularity |ξ2|β (β > −5/4). In this case (i.e. Case 3 with 2k1 À 2k3 and
k1 À 1), we have |ξ1|2 . max

1≤j≤3
|λj |. Let |λ1| = max

1≤j≤3
|λj |. Then, since b1 −

(α+ γ) > 0, by the Comparison principle (Lemma 2.1), we estimate (4.19)
with this case by

∥∥∥∥∥∥∥∥

∑

`1,`2,`3∈N0

∑

k1,k3∈N0
k2∈Z

|ξ2|β
〈λ1〉0+〈λ2〉b2〈λ3〉b3+b1−(α+γ)−
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× χk1(ξ)χ|ξ2|∼2k2 (ξ2)χk3(ξ3)
3∏

j=1

χ`j (ξj , τj)

∥∥∥∥∥∥
[3;R3+1]

, (4.29)

where we have only used the fact that |ξ1|, |ξ3| . |λ1| in order that
the estimate in this case is also valid for the case 2k1 ∼ 2k3 . 2`max =
max{22k2 , 2`max , 1} below. To estimate (4.29) above, we return to the inte-
gral form. Thus our aim is to show that

∫

Γ3(R3+1)

|ξ2|β
〈λ1〉0+〈λ2〉b2〈λ3〉b3+b1−(α+γ)−

3∏

j=1

fj(ξj , τj) .
3∏

j=1

‖fj‖L2
τL

2
ξ

(4.30)

for any non-negative functions f1, f2, f3 ∈ S(R3+1). By Plancherel’s theo-
rem and Hölder’s inequality, the L.H.S. of (4.30) is estimated by

∥∥∥F−1
ξ,τ

[〈τ + |ξ|2〉0−f1

]∥∥∥
L2+

t L2
x

∥∥∥F−1
ξ,τ

[|ξ|β〈τ ± |ξ|〉−b2f2

]∥∥∥
L∞−t L

6/(3+2β)
x

×
∥∥∥F−1

ξ,τ

[〈τ − |ξ|2〉−(b3+b1−(α+γ)−)f3

]∥∥∥
L2

tL
3/(−β)
x

. (4.31)

Since b3 + b1 − (α + γ) > 1/2 and 12/5 < 3/(−β) ≤ 6, by the Strichartz
type estimate (Lemma 6.1), Sobolev’s embedding and the energy estimate
(Lemma 6.2), we obtain the desired result.

The case where |λ3| = max1≤j≤3 |λj | follows by replacing the role of
indices 1, 3. Thus the case where |λ2| = max1≤j≤3 |λj | remains. This case
is also similar. In particular, we estimate the corresponding integral by

∥∥∥F−1
ξ,τ

[〈τ + |ξ|2〉−b1f1

]∥∥∥
L

8/3
t L

12/(7−8b1)−
x

×
∥∥∥F−1

ξ,τ

[|ξ|β〈τ ± |ξ|〉−(b2−(α+γ))f2

]∥∥∥
L4

tL
6/(3+2β)
x

×
∥∥∥F−1

ξ,τ

[〈τ − |ξ|2〉−b3f3

]∥∥∥
L

8/3
t L

12/(8b1+4|β|−1)+
x

. (4.32)

Note that b2− (α+γ) > 1/4 if we take b2 < 1/2 sufficiently close to 1/2. To
employ the Strichartz type estimate (Lemma 6.1), we require the condition
b3 > 1 − b1 − |β|/2. Thus, by Sobolev’s embedding, the Strichartz type
estimate (Lemma 6.1) and the energy estimate (Lemma 6.2), we easily see
that the claim follows in this case.

The case where 2k1 ¿ 2k3 is similar to the above. Thus we may assume
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that 2k1 ∼ 2k3 . max{22k2 , 2`max , 1}. When max{22k2 , 2`max , 1} = 1 or 2`max ,
we can obtain the desired result by a similar way to the above estimate.
Thus we assume that 2k1 ∼ 2k3 . 22k2 . The case where 2k2 ¿ 1 is similar
to the above and easier, and therefore we omit this case. We assume that
2k2 & 1. Then we need to consider the following multiplier norm:

∥∥∥∥∥∥∥∥

∑

`1,`2,`3∈N0

∑

k1,k3∈N0
k2∈Z

|ξ2|α+γ+β

〈λ1〉b1〈λ2〉b2〈λ3〉b3

× χk1(ξ1)χ|ξ2|∼2k2 (ξ2)χk3(ξ3)
3∏

j=1

χ`j (ξj , τj)

∥∥∥∥∥∥
[3;R3+1]

. (4.33)

Now we set β′ := α + β + γ. Note that −5/4 < β′ < −1/4. Then the
corresponding integral form is estimated by

∥∥∥F−1
ξ,τ

[〈τ+|ξ|2〉−b1f1

]∥∥∥
L2+

t L
12/(3−2β′)
x

×
∥∥∥F−1

ξ,τ

[|ξ|β′〈τ±|ξ|〉−b2f2

]∥∥∥
L∞−t L

6/(3+2β′)
x

×
∥∥∥F−1

ξ,τ

[〈τ −|ξ|2〉−b3f3

]∥∥∥
L2

tL
12/(3−2β′)
x

.

Note that 24/11 < 12/(3 − 2β′) < 24/7. To employ the Strichartz type
estimate (Lemma 6.1), we require the condition b1, b3 > 3/8+(α+β+γ)/4.
Then, by Sobolev’s embedding, the Strichartz type estimate (Lemma 6.1)
and the energy estimate (Lemma 6.2), we obtain the desired result. ¤

5. Proof of Theorem 1.1

We employ the idea of Bourgain (cf. [3, 15]). Let θ be as in Proposi-
tion 4.1. We may assume that θ ≤ 1/10 (cf. Remark 2).

Let (ψ0, φ0) be initial data of (WS). We reserve the letters s1 and s2
for the regularity of the initial data, so (ψ0, φ0) ∈ Hs1 × Ḣs2 .

5.1. Decomposition of the equation
Decompose the initial data of (WS) as follows: ψ0 = ψL0 + ψH0 and

φ0 = φL0 + φH0 , where Fx[ψL0 ] = χ|ξ|≤NFx[ψ0] and Fx[φL0 ] = χ|ξ|≤NFx[φ0].
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Then we easily see that

‖ψL0 ‖L2 ≤ (2N)|s1|‖ψ0‖Hs1 , (5.1)

‖φL0 ‖L2 ≤ N |s2|‖φ0‖Ḣs2 . (5.2)

Now we consider the following systems:

(L1)





i∂tψ
L1 + ∆ψL1 = (φL1 + φL1)ψL1 , x ∈ R3, t ≥ 0,

i∂tφ
L1 − |∇|φL1 = |∇|−1(|ψL1 |2), x ∈ R3, t ≥ 0,

ψL1(0) = ψL0 , x ∈ R3,

φL1(0) = φL0 , x ∈ R3,

and

(H1)





i∂tψ
H1 +∆ψH1 =fH1

1 +fH1
2 +fH1

3 , x∈R3, t≥0,
i∂tφ

H1−|∇|φH1 = |∇|−1gH1
1 + |∇|−1gH1

2 , x∈R3, t≥0,
ψH1(0)=ψH0 , x∈R3,

φH1(0)=φH0 , x∈R3.

where fH1
1 := (φH1 + φH1)ψH1 , fH1

2 := (φH1 + φH1)ψL1 , fH1
3 := (φL1 +

φL1)ψH1 and gH1
1 := |ψH1 |2, gH1

2 := 2<[ψH1ψL1 ] = ψH1ψL1 +ψH1ψL1 . This
problem is equivalent to the original system (WS). Indeed, when (ψL1 , φL1)
and (ψH1 , φH1) are solutions of (L1) and (H1), respectively, then (ψ, φ) :=
(ψL1 + ψH1 , φL1 + φH1) is a solution of (WS).

Note that since ψH0 and φH0 do not contain the low frequency part
|ξ| ≤ N , we have for s1 > s′1 and s2 > s′2,

‖ψH0 ‖Hs′1 ≤ N−(s1−s′1)‖ψ0‖Hs1 , (5.3)

‖φH0 ‖Ḣs′2 ≤ N−(s2−s′2)‖φ0‖Ḣs2 , (5.4)

and thus ψH0 ∈ Hs′1 and φH0 ∈ Ḣs′2 .

5.2. Regular part (L1)
We consider the system (L1). Since the initial data of (L1) belong to

L2(R3), the global well-posedness of (L1) in L2 follows (cf. Section 3).
We give the refinement of Proposition 4.1.

Lemma 5.1 Let −1/2 < s ≤ s1 ≤ 0 and b1 > 1/4. Then, taking b3 < 1/2
sufficiently close to 1/2, we have the following estimates:
( i )

∥∥ψ(e−it|∇|φ0)
∥∥
X

s,−b3
|ξ|2

. ‖ψ‖
X

s1,b1
|ξ|2

‖φ0‖L2,
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(ii)
∥∥ψ(e−it|∇|φ0)

∥∥
X

s,−b3
|ξ|2

. ‖ψ‖
X

s1,b1
|ξ|2

‖φ0‖L2,

where the implicit constants depending only on s, s1 and b1, b3.

Proof of Lemma 5.1. We do not use the result of [5] (cf. Case 2 in the
proof of Proposition 4.1). Since the proof of (ii) is similar to (i), we only
give the proof of (i). The result for smaller b1 implies bigger one and there-
fore we may assume that b1 = 1/4+. By the same way as the proof of
Proposition 4.1 until the formula (4.7), it suffices to show that

∫

Γ3(R3+1)
δ(τ2 ± |ξ2|) 〈ξ1〉

−s1〈ξ3〉s
〈λ1〉b1〈λ3〉b3 |ψ1(ξ1, τ1)||Fx[φ0](ξ2)||ω3(ξ3, τ3)|

. ‖ψ1‖L2
τL

2
ξ
‖φ0‖L2‖ω3‖L2

τL
2
ξ
, (5.5)

where λ1 := τ1 + |ξ1|2 and λ3 := τ3 − |ξ3|2.
In the case where |ξ1| . |ξ3|, we have 〈ξ1〉−s1〈ξ3〉s . 1 and thus, by

a similar way to Case 1 in the proof of Proposition 4.1 with s1 = s2 = 0, we
obtain the result. So it remains the case where |ξ1| À |ξ3|. In this case, we
have |ξ1|2 . max{|λ1|, |λ3|}. We first consider the case |λ1| ≤ |λ3|. Then
the L.H.S. of (5.5) over the region |ξ1| À |ξ3| and |λ1| ≤ |λ3| is estimated
by

∫

Γ3(R3+1)
δ(τ2 ± |ξ2|) 〈ξ3〉−|s|

〈λ1〉b3+〈λ3〉b1−|s1|/2−
|ψ1(ξ1, τ1)|

× |Fx[φ0](ξ2)||ω3(ξ3, τ3)|, (5.6)

where we have used the fact that
1

〈λ1〉b1〈λ3〉b3−|s1|/2
≤ 1
〈λ1〉b3+〈λ3〉b1−|s1|/2−

on {|λ1| ≤ |λ3|}. By Plancherel’s theorem and Hölder’s inequality (cf. (4.10)
and (4.11)), the R.H.S. of (5.6) is estimated by

∥∥∥F−1
ξ,τ

[〈τ + |ξ|2〉−(b3+)|ψ1|
]∥∥∥
L2

tL
6
x

∥∥∥F−1
ξ

[
e∓it|ξ||Fx[φ0]|

]∥∥∥
L∞t L2

x

×
∥∥∥F−1

ξ,τ

[〈τ − |ξ|2〉−(b1−|s1|/2−)|ω3|
]∥∥∥
L2

tL
3/(1+|s|)
x

, (5.7)

where we have used Sobolev’s embedding L3/(1+|s|) ↪→ Ḣ−|s|,3. Taking b3
sufficiently close to 1/2, we have b3+ > 1/2 and b1−|s1|/2− > 1/4+|s1|/2−
|s|/2. Thus applying Lemmas 6.1 and 6.2 to (5.7), we obtain the result for
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the case where |λ1| ≤ |λ3|.
In a way similar to the above, we obtain the result for the case where

|λ1| ≥ |λ3|. Hence we have proved the lemma. ¤

Moreover, we give the following bilinear estimates:

Lemma 5.2 Let −1/2 < s ≤ s1 ≤ 0 and b1 > 1/4. Then, taking b3 < 1/2
sufficiently close to 1/2, we have
( i ) ‖ψφ‖

X
s,−b3
|ξ|2

. ‖ψ‖
X

s1,b1
|ξ|2

‖φ‖
Ẋ

0,1/2+
±|ξ|

,

( ii ) ‖ψφ‖
X

s,−b3
|ξ|2

. ‖ψ‖
X

s1,b1
|ξ|2

‖φ‖
Ẋ

0,1/2+
±|ξ|

.

Moreover, let I be a time interval with |I| < 1. If 0 < b < 1/2, then we
have
(iii)

∥∥G(I)
2 [|∇|−1|ψ|2]

∥∥
Ẋ

0,1/2+b
±|ξ| (I)

. ‖ψ‖2

X
0,1/8+b/2+

|ξ|2 (I)
.

Remark 4 From Lemma 5.2, we find that the solution (ψL1 , φL1) ∈
X

0,1/2+
|ξ|2 (I)× Ẋ0,1−

±|ξ| (I).

Proof of Lemma 5.2. The proofs of (i) and (ii) are the same as Lemma 5.1
except for the difference φ and e∓t|∇|φ0. So we omit the proofs.

Next we consider (iii). By Lemma 2.1 (ii) in [11], the L.H.S. of (iii) is
estimated by

‖|∇|−1|ψ|2‖
Ẋ

0,−1/2+b
±|ξ| (I)

.

Then, to obtain the desired result, it suffices to show that
∫

Γ3(R3+1)

|ξ2|−1

〈λ1〉1/8+b/2〈λ2〉1/2−b〈λ3〉1/8+b/2
× |ψ1(ξ1, τ1)||ω2(ξ2, τ2)||ψ3(ξ3, τ3)|

. ‖ψ1‖L2
τL

2
ξ
‖ω2‖L2

τL
2
ξ
‖ψ3‖L2

τL
2
ξ
, (5.8)

where λ1 := τ1 + |ξ1|2, λ1 := τ2 ± |ξ2| and λ3 := τ3 − |ξ3|2.
By Plancherel’s theorem and Hölder’s inequality (cf. (4.10) and (4.11)),

we have
∥∥∥F−1

ξ,τ

[〈τ + |ξ|2〉−(1/8+b/2)|ψ1|
]∥∥∥
L

2/(1−b)+
t L

12/5
x

×
∥∥∥F−1

ξ

[〈τ ± |ξ|〉−(1/2−b)|Fx[ω2]|
]∥∥∥
L

1/b−
t L2

x
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×
∥∥∥F−1

ξ,τ

[〈τ − |ξ|2〉−(1/8+b/2−)|ψ3|
]∥∥∥
L

2/(1−b)+
t L

12/5
x

, (5.9)

where we have used Sobolev’s embedding L2 ↪→ Ḣ−1,6 in the second factor.
Applying Lemmas 6.1 and 6.2 to (5.9), we obtain the result. ¤

Now let (ψL1 , φL1) be the solution of (L1).
We set

δL1 := min
{
[C1(‖φL0 ‖L2 + ‖ψL0 ‖L2)]−2−, 1

}
(5.10)

where C1 is some large universal constant. Then we show that

‖φL1‖
X

0,3/4
±|ξ| ([0,δL1

])
. ‖ψL0 ‖L2 + ‖φL0 ‖L2 . (5.11)

We prove (5.11). Applying Lemma 5.2 (i) and (iii) to the integral equa-
tion (2.4), we have

‖ψL1‖
X

0,1/2+

|ξ|2 ([0,δL1
])

+ ‖φL1‖
X

0,3/4
±|ξ| ([0,δL1

])

. ‖ψL0 ‖L2 + ‖φL0 ‖L2 + ‖ψL1‖
X

0,1/4+

|ξ|2 ([0,δL1
])
‖φL1‖

X
0,1/2+
±|ξ| ([0,δL1

])

+ ‖ψL1‖2

X
0,1/4+

|ξ|2 ([0,δL1
])
. (5.12)

By Lemma 6.3, the R.H.S. of (5.12) is estimated by

‖ψL0 ‖L2 + ‖φL0 ‖L2

+ δ
1/2−
L1

(
‖ψL1‖

X
0,1/2+

|ξ|2 ([0,δL1
])

+ ‖φL1‖
X

0,3/4+
±|ξ| ([0,δL1

])

)2

(5.13)

Considering a quadratic inequality x . a + δ1/2−x2, we obtain the claim
(5.11).

Moreover, taking C1 larger, we have

‖ψL1‖
X

0,1/2+

|ξ|2 ([0,δL1
])

. ‖ψL0 ‖L2 . (5.14)

Indeed, by Lemma 5.1 (i),

‖ψL1‖
X

0,1/2+

|ξ|2 ([0,δL1
])

. ‖ψL0 ‖L2 + δ
1/2−
L1

‖φL1‖
X

0,3/4+
±|ξ| ([0,δL1

])
‖ψL1‖

X
0,1/2+

|ξ|2 ([0,δL1
])
.

(5.15)
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By (5.11) and (5.10), taking larger C1 if necessary, we find that the second
term in the R.H.S. of (5.15) is ¿ ‖ψL1‖

X
0,1/2+

|ξ|2 ([0,δL1
])
. Hence we obtain the

claim (5.14).

5.3. Rough part (H1) and local well-posedness below L2

We consider (H1). As stated above, if (ψL1 , φL1) and (ψH1 , φH1) are so-
lutions of (L1) and (H1), respectively, then (ψ, φ) := (ψL1 +ψH1 , φL1 +φH1)
is the solution of (WS). In the previous subsection, we have already proved
the local well-posedness of (L1) and therefore the local well-posedness of (H1)
implies one of (WS).

Let (ψL1 , φL1) be the solution of (L1) (cf. Section 5.2). We use I to
denote a time interval with |I| < 1.

We first consider the part of wave equation. Take any ψ ∈ Xs1,1/2+
|ξ|2 (I).

We set φψ as follows:

φψ = e−it|∇|φH0 + iG
(I)
2 [|∇|−1|ψ|2] + 2iG(I)

2 [|∇|−1<[ψψL1 ]],

which corresponds to the integral equation for the part of wave equation
in (H1) (cf. (2.4) and (2.5)). If s1 > −1/8 and s2 > −1/4, then by Propo-
sition 4.2 we have

‖φψ‖Ẋs2,1/2+

|ξ| (I)
. ‖φH0 ‖Ḣs2 + ‖ψ‖2

X
s1,3/8+

|ξ|2 (I)

+ ‖ψL1‖
X

0,3/8+

|ξ|2 (I)
‖ψ‖

X
s1,3/8+

|ξ|2 (I)
. (5.16)

Thus we find that φψ ∈ Ẋs2,1/2+
|ξ| (I) for any ψ ∈ Xs1,1/2+

|ξ|2 (I). Moreover, we
show that the interaction term of the integral equation associated to the
wave part of (H1) belongs to Ẋ0,1/2+

|ξ| (I) and thus CtL2
x(I). If s′1 > −1/8,

then by the boundedness of G2, Proposition 4.2 with α = γ = |s′1|, β = −1,
b1 = b3 = 1/4 + |s′1|+, and Lemma 6.3 we have

∥∥G(I)
2 [|∇|−1|ψ|2]∥∥

Ẋ
0,1/2+
|ξ| (I)

. |I| 12−2|s′1|−‖ψ‖2

X
s′1,1/2+

|ξ|2 (I)
. (5.17)

Similarly we have, for s′1 > −1/8,

∥∥G(I)
2 [|∇|−1<[ψψL1 ]]

∥∥
Ẋ

0,1/2+

|ξ|2 (I)

. |I|1/2−|s′1|−‖ψL1‖
X

0,1/2+

|ξ|2 (I)
‖ψ‖

X
s′1,1/2+

|ξ|2 (I)
. (5.18)
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Next we consider the part of Schrödinger equation. We work in a gen-
eral setting. For given ψ, we set f1 := (φψ + φψ)ψ, f2 := (φψ + φψ)ψL1 ,
f3 := (φL1 + φL1)ψ. Then, by Propositions 4.1, 4.2 and Lemma 6.3, for s′1,
s′′1 and s′2 with 0 ≥ s′1, s

′′
1 > −1/8 and θ + |s′1| > |s′′1|+ |s′2|, we have

‖f1‖
X

s′1,− 1
2+

|ξ|2 (I)
. |I|θ/2+|s′1|/2−|s′′1 |/2−|s′2|/2−‖ψ‖

X
s′′1 ,1/2+

|ξ|2 (I)
‖φH0 ‖Ḣs′2

+ |I|1/2−|s′′1 |/4−‖ψ‖3

X
s′′1 ,1/2+

|ξ|2 (I)

+ |I|1/2−|s′′1 |/4−‖ψ‖2

X
s′′1 ,1/2+

|ξ|2 (I)
‖ψL1‖

X
0,1/2+

|ξ|2 (I)
,

(5.19)

‖f2‖
X

s′1,−1/2+

|ξ|2 (I)
. |I|θ/2+|s′1|/2−|s′2|/2−‖ψL1‖

X
0,1/2+

|ξ|2 (I)
‖φH0 ‖Ḣs′2

+ |I|1/2−‖ψ‖2

X
s′′1 ,1/2+

|ξ|2 (I)
‖ψL1‖

X
0,1/2+

|ξ|2 (I)

+ |I|1/2−‖ψ‖
X

s′′1 ,1/2+

|ξ|2 (I)
‖ψL1‖2

X
0,1/2+

|ξ|2 (I)
, (5.20)

and, if s′1 ≥ s′′1, from φL1 = e−it|∇|φL0 + iG
(I)
2 [|∇|−1|ψL1 |],

‖f3‖
X

s′1,−1/2+

|ξ|2 (I)
. |I|θ/2+|s′1|/2−|s′′1 |/2−‖ψ‖

X
s′′1 ,1/2+

|ξ|2 (I)
‖φL0 ‖L2

+ |I|1/2−|s′′1 |/4−‖ψ‖
X

s′′1 ,1/2+

|ξ|2 (I)
‖ψL1‖2

X
0,1/2+

|ξ|2 (I)

(5.21)

and if s′1 ≤ s′′1, by Lemma 5.2 and Lemma 6.3,

‖f3‖
X

s′1,−1/2+

|ξ|2 (I)
. |I|1/2−‖ψ‖

X
s′′1 ,1/2+

|ξ|2 (I)
‖φL1‖

Ẋ
0,3/4
± (I)

, (5.22)

where we can take the implicit constants independent of s′1, s
′′
1, s

′
2 in (5.19),

(5.20), (5.21) and (5.22). Hence, from (5.19), (5.20) and (5.21) with s′1 =
s′′1 = s1 and s′2 = s2, by (5.16) and the standard contraction argument,
local well-posedness of (H1) follows and therefore one of (WS) holds for
s1, s2 ≤ 0 with |s1| < 1/8 and |s2| < θ.

5.4. The iteration process and global well-posedness below L2

From the preceding subsections, we find that, if s1, s2 < 0 satisfy that
s1 > −1/8 and θ > |s2|, then there exist solutions of (L1) and (H1) on some
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time interval [0, δ0].
We set Ij := [(j − 1)δ, jδ] and δj := jδ, j ∈ N, for some 0 < δ < 1,

which is determined below. Note that |Ij | = δ for all j ∈ N. Then, for j ≥ 2
(j ∈ N), we consider the following systems:

(Lj)





i∂tψ
Lj +∆ψLj =(φLj +φLj )ψLj , x∈R3, t∈Ij ,

i∂tφ
Lj −|∇|φLj = |∇|−1(|ψLj |2), x∈R3, t∈Ij ,

ψLj (δj−1)=ψLj−1(δj−1)
+G

(Ij−1)
1

[
f
Hj−1

1 +f
Hj−1

2 +f
Hj−1

3

]
(δj−1),

x∈R3,

φLj (δj−1)=φLj−1(δj−1)+G
(Ij−1)
2

[
g
Hj−1

1 +g
Hj−1

2

]
(δj−1),
x∈R3,

and

(Hj)





i∂tψ
Hj +∆ψHj =fHj

1 +f
Hj

2 +f
Hj

3 , x∈Rd, t∈Ij ,
i∂tφ

Hj −|∇|φHj = |∇|−1g
Hj

1 + |∇|−1g
Hj

2 , x∈Rd, t∈Ij ,
ψH1(δj−1)=eiδj−1∆ψH0 , x∈R3,

φH1(δj−1)=e−iδj−1|∇|φH0 , x∈R3.

where f
Hj

1 := (φHj + φHj )ψHj , fHj

2 := (φHj + φHj )ψLj , fHj

3 := (φLj +
φLj )ψHj and g

Hj

1 := |ψHj |2, gHj

2 := 2<[ψHjψLj ] = ψHjψLj + ψHjψLj and
G

(Ij−1)
1 , G(Ij−1)

2 are the integral operators defined in (2.5).
For the solutions (ψLj , φLj ), (ψHj , φHj ), (ψ, φ) := (ψLj +ψHj , φLj +φHj )

is a solution of (WS ) on Ij .
Note that, in (Hj), Hsj -norm, j = 1, 2, of the initial data remain

unchanged at each step, in particular we have

‖ψHj (δj−1)‖Hs′1 = ‖ψH0 ‖Hs′1 , ‖φHj (δj−1)‖Ḣs′2 = ‖φH0 ‖Ḣs′2 (5.23)

for all s1 ≥ s′1 and s2 ≥ s′2.
Suppose that the solutions of (Lj) and (Hj) exist on Ij for all j ∈ N.

Then from (5.19), (5.20), (5.22), where replace L1 with Lj , and from (5.23),
we have, for 0 ≥ s′1, s

′
2, s

′′
2 with s′1 > −1/8, θ > |s′2|, |s′′2|,

‖ψHj‖
X

s′1,1/2+

|ξ|2 (Ij)

. ‖ψH0 ‖Hs′1 + δθ/2+|s′1|/2−|s′2|/2−‖ψLj‖
X

0,1/2+

|ξ|2 (Ij)
‖φH0 ‖Ḣs′2
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+
(
δθ/2−|s

′′
2 |/2−‖φH0 ‖Ḣs′′2 + δ1/2−‖ψLj‖2

X
0,1/2+

|ξ|2 (Ij)

+ δ1/2−‖φLj‖
Ẋ

0,3/4
±|ξ| (Ij)

)
‖ψHj‖

X
s′1,1/2+

|ξ|2 (Ij)

+ δ1/2−|s
′
1|/4−‖ψLj‖

X
0,1/2+

|ξ|2 (Ij)
‖ψHj‖2

X
s′1,1/2+

|ξ|2 (Ij)

+ δ1/2−|s
′
1|/4−‖ψHj‖3

X
s′1,1/2+

|ξ|2 (Ij)
, (5.24)

where we can take the implicit constant independent of s′1, s
′
2, s

′′
2.

In what follows, we may assume that s1 and s2 are not zero. Indeed, by
the regularity result, we will obtain the global well-posedness for the case
where s1 or s2 is zero.

We use notations D := ‖ψ0‖Hs1 + ‖φ0‖Ḣs2 and D1 := max{D, 1}. Now
take any T > 1. Since the initial data for rough parts remain unchanged,
to continue the solution of (WS) until T , it suffices to show that, under the
suitable choice of N and δ, we have

‖ψLj (δj−1)‖L2 ≤ CD1N
|s1|,

‖φLj (δj−1)‖L2 ≤ C 3D2
1

(
N |s2| + δ−1/4N2|s1|) (5.25)

for all T/δ ≥ j ≥ 2 and some constant C > 1 which is determined below.
To show the uniform bound (5.25), we first consider the increment

of L2-norms of initial data at each step under the assumption such that
(5.25) holds for all j ≥ 2 (cf. [1]). After the consideration, we determined
the parameters N , δ and C such that (5.25) holds for T/δ ≥ j ≥ 2.

Now we assume that (5.25) holds for all j ≥ 2. Then we obtain
the global solutions of (Lj) and therefore (5.24) still holds. Now we set
A := C 3D2

1(N
|s2| + δ−1/4N2|s1|). Note that ‖φLj (δj−1)‖L2 ≤ A and

‖ψLj (δj−1)‖L2 + ‖φLj (δj−1)‖L2 . A. Then, by the same way as the deriva-
tion of (5.10), (5.11) and (5.14), we have

‖ψLj‖
X

0,1/2+

|ξ|2 (Ij)
. CD1N

|s1|, ‖φLj‖
Ẋ

0,3/4
±|ξ| (Ij)

. A (5.26)

for all j ≥ 1, if |Ij | = δ is so small that

δ ≤ (C2A)−2−, (5.27)
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where C2 is some large universal constant. For (5.27), it is sufficient to take

δ ≤ δL(s1, s2, c) := cmin
{
N−8|s1|−, N−2|s2|−}

(5.28)

for any c ≤ (2C2C 3D2
1)
−2−. Now we take

c2 ¿ (2C2C
3D2

1)
−2/(θ−|s2|)− (5.29)

and |Ij | = δ ≤ δL(s1, s2, c2). From (5.24) replacing s′1 with s1 and s′2, s
′′
2

with s2, and from the assumption and (5.26), it follows that, for 0 ≥ s1, s2
with |s1| < 1/8 and |s2| < θ,

‖ψHj‖Xs1,1/2+(Ij)

. D + δθ/2+|s1|/2−|s2|/2−CD2
1N

|s1|

+
(
δθ/2−|s2|/2−D + δ1/2−C 2D2

1N
2|s1| + δ1/2−A

)

× ‖ψHj‖
X

s1,1/2+

|ξ|2 (Ij)

+ δ1/2−|s1|/4−CD1N
|s1|‖ψHj‖2

X
s1,1/2+

|ξ|2 (Ij)

+ δ1/2−|s1|/4−‖ψHj‖3

X
s1,1/2+

|ξ|2 (Ij)
, (5.30)

where we have used the fact that ‖ψH0 ‖Hs1 , ‖φH0 ‖Ḣs2 ≤ D. By the choice
of δ, the first factor of the third term ¿ 1 and thus we have

‖ψHj‖Xs1,1/2+(Ij)

. D + CD2
1δ
θ/2+|s1|/2−|s2|/2−N |s1|

+ CD1δ
1/2−|s1|/4−N |s1|‖ψHj‖2

X
s1,1/2+

|ξ|2 (Ij)

+ δ1/2−|s1|/4−‖ψHj‖3

X
s1,1/2+

|ξ|2 (Ij)
. (5.31)

By Young’s inequality and (5.28), the third term is bounded by

δ1/4−|s1|/4−CD1N
|s1| + δ1/2−|s1|/4−‖ψHj‖3

X
s1,1/2+

|ξ|2 (Ij)
.

Since θ < 1/10, we have δ1/4−|s1|/4 ≤ δθ/2+|s1|/2−|s2|/2 ≤ C−3D−2
1 (cf. (5.29))

and thus the R.H.S. of (5.31) is estimated by

N |s1| + δ1/2−|s1|/4−‖ψHj‖3

X
s1,1/2+

|ξ|2 (Ij)
. (5.32)
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Considering a cubic inequality x . a+ δ1/2−|s1|/4−x3, we find that, if |Ij | =
δ ≤ δL(s1, s2, c2), then for 0 ≥ s1 > −1/8 and 0 ≥ s2 > −θ we have

‖ψHj‖
X

s1,1/2+

|ξ|2 (Ij)
. N |s1|. (5.33)

Now we show that, for 0 ≥ s1, s2 > −θ/2 and |Ij | = δ ≤ δL(s1, s2, c2),

‖ψHj‖
X
−θ/2+,1/2+

|ξ|2 (Ij)

. DN−η1+ + CD2
1δ
θ/2−N−η2+|s1|+

+ CD3
1δ
η−N−2η1+|s1|+ + C 3D5

1δ
η+θ−N−2η2+3|s1|+

+D3δη−N−3η1+ + C 3D6
1δ
η+3θ/2−N−3η2+3|s1|+

+ (CD1)3δ3η−N7|s1|, (5.34)

where η := 1/2− θ/8, η1 := θ/2− |s1| and η2 := θ/2− |s2|.
Indeed, setting Xj := X

−θ/2+,1/2+
|ξ|2 (Ij), by (5.24) replacing s′1, s

′
2 with

−θ/2+ and s′′2 with s2, and by (5.3), (5.4), (5.26) and the assumption,

‖ψHj‖Xj .N−(θ/2−|s1|)+D+ δθ/2−N−(θ/2−|s2|)+CD2
1N

|s1|

+
(
δθ/2−|s2|/2−D+ δ1/2−C 2D2

1N
2|s1|+ δ1/2−A

)‖ψHj‖Xj

+CD1δ
1/2−θ/8−N |s1|‖ψHj‖2

Xj
+ δ1/2−θ/8−‖ψHj‖3

Xj
.

(5.35)

Set η := 1/2 − θ/8, η1 := θ/2 − |s1| and η2 := θ/2 − |s2|. By the choice
of δ (see (5.28) and (5.29)), we find that the first factor of third term in the
R.H.S. of (5.35) ¿ 1. Thus we have

‖ψHj‖Xj . DN−η1+ + CD2
1δ
θ/2−N−η2+|s1|+

+ CD1δ
η−N |s1|‖ψHj‖2

Xj
+ δη−‖ψHj‖3

Xj
. (5.36)

Inserting the R.H.S. of (5.36) into ‖ψHj‖Xj in the R.H.S. of (5.36) and
using ‖ψHj‖Xj ≤ ‖ψHj‖

X
s1, 12+

|ξ|2 (Ij)
. N |s1| (cf. (5.33)) and δη ≤ N−2|s1|

(cf. (5.28)), we obtain the claim (5.34).
Now we consider the increment of L2-norm under the assumption. We

take δ ∼ δL(s1, s2, c2).
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By the L2-conservation law, we have

‖ψLj+1(δj)‖L2−‖ψLj(δj−1)‖L2≤
∥∥∥G(Ij)

1

[
fH1
1 +fH1

2 +fH1
3

]
(δj−1)

∥∥∥
L2
.

(5.37)

Applying (5.19) with s′1 = 0, s′′1 = −θ/2+, s′2 = s2, (5.20) with s′1 = 0,
s′′1 = −θ/2+, s′2 = −θ/2+, (5.21) with s′1 = 0, s′′1 = −θ/2+, (5.26) and the
assumption to R.H.S. of (5.37), if 0 ≥ s1, s2 > −θ/2, for all j ≥ 1, we have

‖ψLj+1(δj)‖L2 − ‖ψLj (δj−1)‖L2 ≤ C∗1 (CD1)2(P0 + P1 + P2 + P3),
(5.38)

where, C∗1 is some universal constant and, letting B be the R.H.S. of (5.34),
η := 1/2− θ/8− and η2 := θ/2− |s2|,

P0 := δθ/4−N−η2+|s1|+, (5.39)

P1 :=
(
δθ/4−|s2|/2− + δη−N2|s1| + δθ/4−A

)
B, (5.40)

P2 := δη−N |s1|B2, (5.41)

P3 := δη−B3. (5.42)

On the other hand, we have

‖φLj+1(δj)‖L2 ≤ ‖φLj (δj)‖L2 +
∥∥∥G(Ij)

2

[
g
Hj

1 + g
Hj

2

]
(δj)

∥∥∥
L2
. (5.43)

By (5.17) with s′1 = −θ/2+, (5.18) with s′1 = −θ/2+, and (5.26), R.H.S.
of (5.43) is bounded by

‖φLj (δj)‖L2 + Cδ1/2−θ−‖ψHj‖2

X
−θ/2+,1/2+

|ξ|2 (Ij)

+ CCD1δ
1/2−θ/2−N |s1|‖ψHj‖

X
−θ/2+,1/2+

|ξ|2 (Ij)
, (5.44)

where C is some universal constant. Moreover, applying the Strichartz
estimate (Proposition 3.1 in [10]) to the integral equation, by Sobolev’s
embedding L6/5 ↪→ Ḣ−1,2 we bound the first term of (5.44) by

‖φLj (δj−1)‖L2 + C‖ψ‖2

L2
tL

12/5
x (Ij)

≤ ‖φLj (δj−1)‖L2 + Cδ3/4‖ψ‖2

L8
tL

12/5
x (Ij)

. (5.45)

By the embedding X
0,1/2+
|ξ|2 (Ij) ↪→ L8

tL
12/5
x (Ij), R.H.S. of (5.45) is



Global solutions of the wave-Schrödinger system below L2 809

bounded by

‖φLj (δj−1)‖L2 + Cδ3/4‖ψ‖2

X
0,1/2+

|ξ|2 (Ij)
. (5.46)

Consequently, by (5.46) and (5.26), the first term of (5.44) is bounded as
follows:

‖φLj (δj)‖L2 ≤ ‖φLj (δj−1)‖L2 + CC 2D2
1δ

3/4N2|s1|, (5.47)

where C is some universal constant. Combining (5.44) with (5.47), we have

‖φLj+1(δj)‖L2 − ‖φLj (δj−1)‖L2 ≤ C∗2 (CD1)2(Q0 +Q1 +Q2),
(5.48)

where C∗2 is some universal constant and

Q0 := δ3/4N2|s1|, (5.49)

Q1 := δ1/2−θ/2−N |s1|B, (5.50)

Q2 := δ1/2−θ−B2. (5.51)

Now we consider the conditions for the uniform bound (5.25). We set κ :=
T/δ. Taking δ suitably, we may assume that κ ∈ N. Then

‖ψLκ(δκ−1)‖L2 = ‖ψLκ(δκ−1)‖L2 − ‖ψLκ−1(δκ−2)‖L2

+ · · ·
+ ‖ψL2(δ1)‖L2 − ‖ψL0 ‖L2

+ ‖ψL0 ‖L2 . (5.52)

Hence, by (5.38), we have

‖ψLκ(δκ−1)‖L2 ≤ D1N
|s1| + Tδ−1C∗1 (CD1)2(P0 + P1 + P2 + P3).

(5.53)

Similarly, we have

‖φLκ(δκ−1)‖L2 ≤ D1N
|s2| + Tδ−1C∗2 (CD1)2(Q0 +Q1 +Q2).

(5.54)

Set C∗ := max{C∗1 , C∗2}. From (5.53) and (5.54), in order to get
uniform control of the initial data (5.25), we have to ensure that
Tδ−1C∗(CD1)2(P0 + P1 + P2 + P3) ≤ D1N

|s1| and Tδ−1C∗(CD1)2(Q0 +
Q1 +Q2) ≤ C 3D2

1δ
−1/4N2|s1|. For this, since δ1/4N−2|s1|Q1 ≤ N−|s1|P1 and
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δ1/4N−2|s1|Q2 ≤ N−|s1|P2, it suffices to consider that Tδ−1C∗C 2D1(P0 +
P1 + P2 + P3) ≤ N |s1| and Tδ−1C∗Q0 ≤ C δ−1/4N2|s1|. We take C =
max{TC∗, 100}. Then it clearly holds that Tδ−1C∗Q0 ≤ C δ−1/4N2|s1|.
Thus it remains to consider the condition for δ−1(P0 + P1 + P2 + P3) ≤
(TC∗C 2D1)−1N |s1|. Since δ ≤ δL(s1, s2, c2) ≤ (C 3D2

1)
−10N−8|s1|−, we have

B . (CD1)3B′, (5.55)

where B′ := N−η1+ +δθ/2−N−η2+|s1|+ +δ3η−N7|s1|. Since δθ/2N−η2+|s1|+ ≤
B . (CD1)3N |s1|, we easily see that

δ−1(P0 + P1 + P2 + P3) . δ−1(CD1)3P1

. δ−1+θ/4−(CD1)6AB′

≤ δ−1+θ/4−(CD1)9(N |s2| + δ−1/4N2|s1|)B′.

Thus in order that δ−1(P0 +P1 +P2 +P3) ≤ (TC∗C 2D1)−1N |s1|, it suffices
to show that

δ−1+θ/4−N−|s1|(N |s2| + δ−1/4N2|s1|)B′ ≤ (TC∗)−1(CD1)−20,

where C = max{TC∗, 100}. For this we take N so large that

(TC∗)(CD1)20 ¿ N ε (5.56)

for sufficiently small ε > 0, and then take δ such that

δ−1+θ/4−N−|s1|(N |s2| + δ−1/4N2|s1|)B′ . N−ε. (5.57)

In (5.57), taking s1, s2 < 0 sufficiently close to 0, we can take positive ε.
For (5.57), it suffices to take δ such that

δ ≥ max
{
N−2((θ−2|s2|−2ε)/(4−θ))+N−2((θ−4|s2|−2ε)/(4−3θ))+,

N−2((θ−4|s1|−2ε)/(5−θ))+, N−2((θ−4|s1|−2|s2|−2ε)/(5−3θ))+
}
,

and

δ ≤ min
{
N−8((6|s1|+|s2|+ε)/(4−θ))−, N−8((8|s1|+ε)/(2−θ))−

}

≤ min
{
N−8|s1|−, N−2|s2|−}

.

The condition of Theorem 1.1 ensures the existence of δ satisfying the above
conditions for sufficiently small ε > 0.
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From the above argument, we find that, taking N and δ as in (5.56)
and (5.57) respectively, we actually obtain the uniform bound (5.25) without
the assumption. Thus we have completed the proof. ¤

6. Appendix

In this section, we collect lemmas used in this paper.

Lemma 6.1 (Strichartz type estimate for Schrödinger equation) Let d ≥
3 be spatial dimension. Assume that b0 > 1/2, 0 ≤ b ≤ b0, 0 ≤ θ ≤ 1 and
(p, r) is such that d

(
1/2−1/p

)
= (1−θ)(b/b0) and 2/r = 1−θ(b/b0). Then

we have

‖u‖Lr
tL

p
x
≤ C‖u‖

X0,b

|ξ|2

where C is a constant depending only on d, b0, b, r. We may replace
X0,b
|ξ|2 with X0,b

−|ξ|2.

Lemma 6.2 (Energy estimate for wave equation) Let d ≥ 1, s ∈ R, b0 >
1/2, 0 ≤ b ≤ b0 and let r be such that 2/r = 1− b/b0. Then we have

‖|∇|sv‖Lr
tL

2
x
≤ C‖v‖

Ẋs,b
±|ξ|

where C is a constant depending only on d, b0, b.

Lemma 6.3 Let b, b′ with 1/2 > b + b′ ≥ b′ > −1/2, s ∈ R and let I be
an interval in R with |I| ≤ 1. Then we have

‖u‖
Xs,b′
|ξ|2 (I)

≤ C|I|b‖u‖
Xs,b′+b

|ξ|2 (I)
,

where C is a constant independent of I. The same result holds for the
space Ẋs,b

±|ξ|(I).

See [19], Lemma 2.11.
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