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On blocking semiovals with an 8-secant

in projective planes of order 9
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Abstract. Let S be a blocking semioval in an arbitrary projective plane Π of order 9

which meets some line in 8 points. According to Dover in [2], 20 ≤ |S| ≤ 24. In [8] one

of the authors showed that if Π is desarguesian, then 22 ≤ |S| ≤ 24. In this note all

blocking semiovals with this property in all non-desarguesian projective planes of order 9

are completely determined. In any non-desarguesian plane Π it is shown that 21 ≤ |S| ≤
24 and for each i ∈ {21, 22, 23, 24} there exist blocking semiovals of size i which meet

some line in 8 points. Therefore, the Dover’s bound is not sharp.

Key words: blocking semioval, projective plane, ternary function, finite field, collineation

group.

1. Introduction

Let Π = (P, L) be a projective plane. A blocking set in Π is a set B

of points such that for every line l ∈ L, l ∩ B 6= φ but l is not entirely
contained in B. A semioval in Π is a set M of points such that for every
point P ∈ M there exists a unique line l ∈ L such that l ∩M = {P}. The
idea of a semioval was introduced in [1] and [9]. A blocking semioval in Π
is a set S of points which is both a semioval and a blocking set.

Let Π be a projective plane of order q ≥ 3, and let S be a blocking
semioval in Π. Dover [3] showed that if S has a (q− k)-secant, 1 ≤ k < q−
1, then |S| ≥ (

(3k + 4)/(k + 2)
)
q − k. We consider whether this bound is

sharp or not, when k = 1. From the above Dover’s result and Dover [2], it
follows that if S has a (q − 1)-secant, then (7/3)q − 1 ≤ |S| ≤ 3q − 3 and
the upperbound is met if and only if S is a vertexless triangle. Hence we
assume that |S| < 3q − 3 in the followings.

Let Π = (P, L) be a projective plane of order 9, and let S be a blocking
semioval with 8-secant in Π which is not a vertexless triangle. Let xi denote
the number of lines of Π which meet S in exactly i points. Then x0 = 0
and x1 = |S| by the definition of S. By Dover [2], x9 = 0. Set X(S) =
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(x1, x2, . . . , x8). If Π is a non-desarguesian plane, then Π is the Hughes
plane, the nearfield plane or the dual nearfield plane by Lam, Kolesova and
Thiel [6]. We show that if Π is a non-desarguesian plane, 21 ≤ |S| ≤ 23
and for each i ∈ {21, 22, 23} there exist blocking semiovals of size i with
x8 6= 0 using a computer. Since the size of any blocking semioval with
x8 6= 0 which is not a vertexless triangle in PG(2, 9) is 22 or 23, this shows
that the Dover’s lower bound is not sharp. We remark that there are many
X(S)’s in a non-desargueian plane Π as compared with X(S)’s in PG(2, 9).

2. Blocking semiovals with x8 6= 0

Let Π = (P, L) be a projectve plane of order q. We coordinate Π using
Kallaher’s method [5, Chapter 2]. Choose four points U, V, W, I, no three
of which are collinear. Let Q = GF (q) as a set. Then, there exists a one-to-
one correspondence α between Q and the points in WI − (UV ∩WI) such
that 0α = W , and 1α = I. Using the set Q, Π is coordinated as follows:
(1) To a point P ∈ WI−(UV ∩WI) assign the coordinates ((b, b)), where

bα = P .
(2) If P /∈ WI, and P /∈ UV , then assign to P the coordinates ((a, b)),

where PV ∩WI = ((a, a)), and PU ∩WI = ((b, b)).
(3) If P ∈ UV and P 6= V , then assign to P the coordinate ((m)), where

WP ∩ IV = ((1, m)).
(4) To V assign the coordinate ((∞)), where ∞ is a symbol not in Q.
Thus P = {((x, y)) | x, y ∈ Q} ∪ {((a)) | a ∈ Q∪ {∞}}. The line l through
the points ((m)) and ((0, k)) is assigned the coordinates [[m, k]]. The line
g through the points ((∞)) and ((k, 0)) is assigned the coordinates [[∞, k]].
The line h through the points ((∞)) and ((0)) is assigned the coordinate
[[∞]]. Thus L = {[[m, k]] | m ∈ Q ∪ {∞}, k ∈ Q} ∪ {[[∞]]}.

A ternary function F is defined on Q as follows: If a, m, k ∈ Q, then
F (a, m, k) is the second coordinate of the point ((a, 0))V ∩ ((m))((0, k)).
Thus [[∞]] = {((x))|x ∈ Q ∪ {∞}}, [[∞, k]] = {((k, y)) | y ∈ Q} ∪ {((∞))}
and [[m, k]] = {((x, y)) | x ∈ Q, y = F (x, m, k)} ∪ {((m))} for m, k ∈ Q.

Now let Π be a projective plane of order 9 and let S be a blocking
semioval in Π with x8 6= 0 which is not a vertexless triangle. Set |S| = 17 +
n. Then, by the Dover’s bound 20 ≤ |S| ≤ 23 and 3 ≤ n ≤ 6. Since x8 6= 0,
we may assume that UV is the 8-secant of S. Then S ⊇ {((x))|x ∈ Q∗ =
Q− {0}}. Since the remaining lines [[∞, a]] = {((a, y)) | y ∈ Q} ∪ {((∞))}
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through ((∞)) must also intersect S, there exists a mapping f : Q 3 x 7−→
f(x) ∈ Q such that {((x, f(x))) | x ∈ Q} ⊆ S. Thus

S = {((x, f(x))) | x ∈ Q} ∪ {((y)) | y ∈ Q∗}
∪ {((ai, bi)) | 1 ≤ i ≤ n} (∗)

for some ai, bi ∈ Q(1 ≤ i ≤ n), where (ai, bi) 6= (aj , bj), 1 ≤ i 6= j ≤ n and
f(ai) 6= bi, 1 ≤ i ≤ n.

Theorem 2.1 ([8, Theorem 2.4]) Let S be a point set of Π of size 17 + n

satisfying the condition (∗). Then S is a blocking semioval if and only if
the following hold.
(1) For any a ∈ Q∗, there exists a unique element b ∈ Q such that f(x) 6=

F (x, a, b) for all x ∈ Q and F (ai, a, b) 6= bi for all i ∈ {1, 2, . . . , n}.
(2) b1, b2, . . . , bn are pairwise distinct.
(3) Q 3 x 7−→ f(x) ∈ Q− {b1, b2, . . . , bn} is a surjection.
(4) If f(ai) = f(x), then x = ai.
(5) If a ∈ Q (a 6= a1, a2, . . . , an), then there exists x ∈ Q (x 6= a) such

that f(a) = f(x).
Let l(n) be the number of distinct elements in {a1, a2, . . . , an}.
Lemma 2.2 ([8, Lemma 2.6]) 9 ≤ l(n) + 2n

Lemma 2.3 If l(n) < 9, then 8 ≥ l(n) + n.

Proof. By Theorem 2.1(4), if f(ai) = f(aj), then ai = aj . By Theo-
rem 2.1(3), (4) and (5), Q = f(Q) ∪ {b1, b2, . . . , bn} = {f(x) | x ∈ Q, x 6=
ai (i = 1, 2, . . . , n)} ∪ {f(ai) | i = 1, 2, . . . , n} ∪ {b1, b2, . . . , bn}, where
the right-hand side of the equality is a disjoint union. This yields 9 ≥ 1 +
l(n) + n. Thus we have the lemma. ¤

3. The Hughes plane

In this section, we completely determine blocking semiovals with x8 6= 0
in the Hughes plane of order 9 ([4]). On the field Q = GF (9), define a new
multiplication ◦ as follows:

x ◦ y =





xy if y4 = 1,

x3y if y4 = −1,

0 if y = 0.
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The set Q with field addition +, forms a nearfield which is not a field. Then
the Hughes plane Π = (P, L) of order 9 is defined as follows:

P = {[x, y, z] | x, y, z ∈ Q, (x, y, z) 6= (0, 0, 0)},
where [x, y, z] = {(x ◦ k, y ◦ k, z ◦ k) | k ∈ Q∗}.

L = {LsA
m | s = 1 or s ∈ Q−GF (3), 0 ≤ m ≤ 12},

where A =




0 0 −1
1 0 1
0 1 0


 and LsA

m = {[(x, y, z)T (Am)] | x+s◦y+z = 0}.

Here T (Am) is the transpose matrix of Am.
For B ∈ GL(3, 3) B̃ : P 3 [x, y, z] 7−→ [(x, y, z)T B] ∈ P is a collineation
of Π. Set G1 = {B̃ | B ∈ GL(3, 3)}. Then, G1

∼= PGL(3, 3).
Let t ∈ Q such that t2 = 1+t. Then t is a generator of the multiplicative

group of the field GF(9). Then, τ : Q 3 a+bt 7−→ a−bt ∈ Q (a, b ∈ GF (3))
is an automorphism of the nearfield Q and τ induces a collineation τ̃ of Π,
that is, τ̃ [x, y, z] = [τ(x), τ(y), τ(z)]. ϕ : Q 3 a + bt 7−→ (a + b) + bt ∈
Q (a, b ∈ GF (3)) is also an automorphism of Q. Let ϕ̃ be the collineation of
Π induced by ϕ. Set G2 = 〈τ̃ , ϕ̃〉. Then, G2 is isomorphic to the symmetric
group of degree 3.

Theorem 3.1 ([10]) (1) AutΠ = G1G2 = G1 ×G2.
(2) AutΠ has two orbits P0 = {[x, y, z] | x, y, z ∈ GF (3), (x, y, z) 6=
(0, 0, 0)} and P − P0 on P.
(3) (AutΠ)[0, 0, 1] has four orbits {[0, 0, 1]}, Ω1 := {[a, b, c] | a, b, c ∈
GF (3), (a, b) 6= (0, 0)}, Ω2:=[t5, 1, 0](AutΠ)[0,0,1], Ω3:=[0, 1, t](AutΠ)[0,0,1]

on P.
(4) (AutΠ)[t5, 1, 0] has four orbits {[t5, 1, 0]}, Λ1 := {[t6, 1, 0], [t3, 1, 0]},
Λ2 := {[t, 1, 0], [t7, 1, 0], [t2, 1, 0]}, Λ3 := [0, 1, t](AutΠ)[t5, 1, 0] on P−P0.

Let S be a blocking semioval in Π with x8 6= 0. Let U, V, W, I be four
points of Π, no three of which are collinear, and let S ⊇ UV − {U, V }.
From Theorem 3.1, we may consider the following six coordinatizations by
(( , )), (( )) for the points and [[ , ]], [[ ]] for the lines in Π (see Section 2).
Namely when U = [0, 0, 1], there are three cases of V ∈ Ω1, V ∈ Ω2 or
V ∈ Ω3, and when U = [t5, 1, 0], there are three cases of V ∈ Λ1, V ∈ Λ2

or V ∈ Λ3 as follows.
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Case 1: U = [0, 0, 1] = ((0)), V = [0, 1, 0] = ((∞)), W = [1, 0, 0] =
((0, 0)), I = [1, 1, 1] = ((1, 1)).

Case 2: U = [0, 0, 1] = ((0)), V = [t5, 1, 0] = ((∞)), W = [0, 1, 0] =
((0, 0)), I = [1, 1, 1] = ((1, 1)).

Case 3: U = [0, 0, 1] = ((0)), V = [0, 1, t] = ((∞)), W = [1, 0, 0] =
((0, 0)), I = [1, 1, 1] = ((1, 1)).

Case 4: U = [t5, 1, 0] = ((0)), V = [t6, 1, 0] = ((∞)), W = [0, 0, 1] =
((0, 0)), I = [1, 1, 1] = ((1, 1)).

Case 5: U = [t5, 1, 0] = ((0)), V = [t, 1, 0] = ((∞)), W = [0, 0, 1] =
((0, 0)), I = [1, 1, 1] = ((1, 1)).

Case 6: U = [t5, 1, 0] = ((0)), V = [0, 1, t] = ((∞)), W = [1, 0, 0] =
((0, 0)), I = [1, 1, 1] = ((1, 1)).

First, we consider Case 6. We want to determine the ternary function
F : Q × Q × Q −→ Q corresponding to the coodinatization of the case.
Since the line through the point [1, 0, 0] and the point [1, 1, 1] is L1A

7 =
{[x, 1, 1] | x ∈ Q} ∪ {[1, 0, 0]} and the line through the point [0, 1, t] and
the point [t5, 1, 0] is Lt5A

9, the coordinates ((x, x)) for x ∈ Q can be
determined for example as follows:

((0, 0)) = [1, 0, 0], ((t3, t3)) = [0, 1, 1]

and ((x, x)) = [x, 1, 1] for x ∈ Q− {0, t3}.
For the coordinates ((x, x)), all coordinates ((x, y)), ((z)), [[x, y]], [[z]] and
the ternary function F can be uniquely determined by a computer research
as follows:

k

↓
m −→ F (1, m, k)

0 1 t t2 t3 −1 t5 t6 t7

0 0 1 t t2 t3 −1 t5 t6 t7

1 1 t7 0 t t5 t6 t3 −1 t2

t t t5 t2 t3 −1 0 1 t7 t6

t2 t2 0 t5 1 t6 t3 t7 t −1

t3 t3 t6 t7 0 t t5 −1 t2 1

−1 −1 t3 t6 t5 t7 t2 t 1 0

t5 t5 t −1 t7 t2 1 t6 0 t3

t6 t6 t2 t3 −1 1 t7 0 t5 t

t7 t7 −1 1 t6 0 t t2 t3 t5
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k

↓
m −→ F (t, m, k)

0 1 t t2 t3 −1 t5 t6 t7

0 0 1 t t2 t3 −1 t5 t6 t7

1 t 0 t3 t6 −1 t2 t7 1 t5

t 1 t2 t6 0 t5 t7 −1 t3 t

t2 t3 t t7 t5 1 t6 t2 −1 0

t3 t2 t3 t5 −1 0 1 t t7 t6

−1 t7 t5 −1 t t6 0 t3 t2 1

t5 t6 t7 t2 1 t t3 0 t5 −1

t6 t5 −1 1 t3 t7 t t6 0 t2

t7 −1 t6 0 t7 t2 t5 1 t t3

k

↓
m −→ F (t2, m, k)

0 1 t t2 t3 −1 t5 t6 t7

0 0 1 t t2 t3 −1 t5 t6 t7

1 t2 t6 1 t3 t7 t −1 t5 0

t t7 0 −1 t5 1 t2 t6 t t3

t2 t5 −1 t6 t7 t2 1 t3 0 t

t3 t6 t7 t2 t −1 t3 0 1 t5

−1 t3 t t5 1 0 t7 t2 −1 t6

t5 t t5 t7 −1 t6 0 1 t3 t2

t6 −1 t3 0 t6 t t5 t7 t2 1

t7 1 t2 t3 0 t5 t6 t t7 −1

k

↓
m −→ F (t3, m, k)

0 1 t t2 t3 −1 t5 t6 t7

0 0 1 t t2 t3 −1 t5 t6 t7

1 t3 t5 −1 1 0 t7 t2 t t6

t −1 t3 t5 t6 t2 t t7 1 0

t2 t7 t6 1 t t5 0 −1 t2 t3

t3 t t2 0 t5 t7 t6 1 t3 −1

−1 t5 −1 t3 t7 t 1 t6 0 t2

t5 t2 0 t6 t3 −1 t5 t t7 1

t6 1 t t7 0 t6 t2 t3 −1 t5

t7 t6 t7 t2 −1 1 t3 0 t5 t
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k

↓
m −→ F (−1, m, k)

0 1 t t2 t3 −1 t5 t6 t7

0 0 1 t t2 t3 −1 t5 t6 t7

1 −1 t t5 0 t2 t3 t6 t7 1

t t6 t7 t3 −1 t 1 0 t2 t5

t2 t t2 −1 t3 0 t7 1 t5 t6

t3 t5 −1 t6 t7 1 t t3 0 t2

−1 t2 0 1 t6 −1 t5 t7 t t3

t5 1 t3 0 t5 t7 t6 t2 −1 t

t6 t7 t6 t2 1 t5 0 t t3 −1

t7 t3 t5 t7 t t6 t2 −1 1 0

k

↓
m −→ F (t5, m, k)

0 1 t t2 t3 −1 t5 t6 t7

0 0 1 t t2 t3 −1 t5 t6 t7

1 t5 −1 t2 t7 t6 1 t 0 t3

t t3 t 0 1 t7 t6 t2 t5 −1

t2 t6 t7 t3 −1 t t5 0 1 t2

t3 t7 0 1 t3 t5 t2 t6 −1 t

−1 1 t6 t7 0 t2 t −1 t3 t5

t5 −1 t2 t5 t6 1 t7 t3 t 0

t6 t2 t5 −1 t 0 t3 1 t7 t6

t7 t t3 t6 t5 −1 0 t7 t2 1

k

↓
m −→ F (t6, m, k)

0 1 t t2 t3 −1 t5 t6 t7

0 0 1 t t2 t3 −1 t5 t6 t7

1 t6 t3 t7 −1 1 t5 0 t2 t

t t5 −1 1 t7 t6 t3 t 0 t2

t2 −1 t5 t2 0 t7 t t6 t3 1

t3 1 t −1 t6 t2 0 t7 t5 t3

−1 t t2 0 t3 t5 t6 1 t7 −1

t5 t7 t6 t3 t 0 t2 −1 1 t5

t6 t3 t7 t6 t5 −1 1 t2 t 0

t7 t2 0 t5 1 t t7 t3 −1 t6
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k

↓
m −→ F (t7, m, k)

0 1 t t2 t3 −1 t5 t6 t7

0 0 1 t t2 t3 −1 t5 t6 t7

1 t7 t2 t6 t5 t 0 1 t3 −1

t t2 t6 t7 t 0 t5 t3 −1 1

t2 1 t3 0 t6 −1 t2 t t7 t5

t3 −1 t5 t3 1 t6 t7 t2 t 0

−1 t6 t7 t2 −1 1 t3 0 t5 t

t5 t3 −1 1 0 t5 t t7 t2 t6

t6 t 0 t5 t7 t2 t6 −1 1 t3

t7 t5 t −1 t3 t7 1 t6 0 t2

Then, S is described by (∗) of Section 2. The elements a1, . . . , an, b1, . . .,
bn and the mapping f from Q to Q must satisfy the conditions (1), . . . , (5) of
Theorem 2.1. Let l(n) be the number of distinct elements in {a1, . . . , an} as
in Lemma 2.2 and Lemma 2.3. Let Q = {a1, . . . , an, an+1, . . . , a9+n−l(n)}
= {b1, . . . , bn, bn+1, . . . , b9}.

Suppose that |S| = 20. Then, n = 3 and l(3) = 3 by Lemma 2.2. There-
fore, by (2), . . . , (5) of Theorem 2.1, Q = {a1, . . . , a9} = {b1, . . . , b9},
and we may assume that f(a1) = b4, f(a2) = b5, f(a3) = b6, f(a4) =
f(a5) = b7, f(a6) = f(a7) = b8, f(a8) = f(a9) = b9. But there is no
(a1, . . . , a9, b1, . . . , b9) satisfying the condition (1) of Theorem 2.1 using a
computer.

Suppose that |S| = 21. Then, n = 4 and l(4) = 1, 2, 3 or 4. Assume
that l(4) = 3. Then, Q = {a1 = a2, a3, a4, . . . , a10}, and we may assume
that f(a1) = b5, f(a3) = b6, f(a4) = b7. There are the following two cases.
The first case is f(a5) = f(a6) = f(a7) = f(a8) = b8, f(a9) = f(a10) = b9.
Then, we get (2) or (4) in Appendix as X(S) and S, where each S is an
example. The second case is f(a5) = f(a6) = f(a7) = b8, f(a8) = f(a9) =
f(a10) = b9. Then, we get (1) in Appendix as X(S) and S, or (2), (4) in
Appendix as X(S). By a similar argument, when l(4) = 4, we get (5) in
Appendix. For the other cases, we can not get new X(S)’s.

Suppose that |S| = 22. Then, n = 5 and l(5) = 1, 2 or 3 by Lemma 2.3.
When l(5) = 1, (7), (8), (10) or (12) in Appendix holds. When l(5) = 2,
(9), (11) or (13) in Appendix holds except X(S) obtained already. When
l(5) = 3, new X(S)’s do not hold.

Suppose that |S| = 23. Then, n = 6 and l(6) = 1 or 2 by Lemma 2.3.
When l(6) = 1, (15), (16) or (17) in Appendix holds. When l(6) = 2, new
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X(S)’s do not hold.
Case 1 yields (8), (11), (15), (16) or (17) in Appendix as X(S).
Case 2 yields (2), (3), (6), (8), (10), (11), (12), (13), (15), (16) or (17)

in Appendix as X(S), where for example S of (3) or (6) in Appendix holds
for X(S) of (3) or (6) in Appendix, respectively.

Case 3 yields (7), (8), (10), (11), (12), (13), (15), (16) or (17) in Ap-
pendix as X(S).

Case 4 yields (2), (8), (11), (15), (16) or (17) in Appendix as X(S).
Case 5 yields (8), (10), (11), (13), (14), (15), (16) or (17) in Appendix

as S(X), where for example S in (14) in Appendix holds for X(S) of (14)
in Appendix. Thus we have the following theorem.

Theorem 3.2 Let S be a blocking semioval in the Hughes plane of order
9 with x8 6= 0 and |S| 6= 24. The following hold:
(1) |S| = 21, 22 or 23.
(2) If |S| = 21, then

X(S) = (21, 43, 16, 6, 1, 3, 0, 1), (21, 44, 14, 6, 3, 2, 0, 1),

(21, 44, 16, 0, 9, 0, 0, 1), (21, 45, 11, 9, 2, 2, 0, 1),

(21, 45, 12, 6, 5, 1, 0, 1) or (21, 46, 8, 12, 1, 2, 0, 1).

(3) If |S| = 22, then

X(S) = (22, 33, 23, 6, 5, 1, 0, 1), (22, 34, 20, 9, 4, 1, 0, 1),

(22, 34, 21, 6, 7, 0, 0, 1), (22, 35, 17, 12, 3, 1, 0, 1),

(22, 35, 18, 9, 6, 0, 0, 1), (22, 36, 14, 15, 2, 1, 0, 1),

(22, 36, 15, 12, 5, 0, 0, 1) or (22, 37, 12, 15, 4, 0, 0, 1).

(4) If |S| = 23, then

X(S) = (23, 21, 32, 12, 0, 1, 1, 1), (23, 23, 27, 15, 1, 0, 1, 1)

or (23, 24, 24, 18, 0, 0, 1, 1).

4. The nearfield plane

In this section, we completely determine blocking semiovals with x8 6= 0
in the nearfield plane of order 9. Let Q = GF (9) with the new multiplication
◦ and the field addition + be the nearfield of order 9 defined in Section 3.
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Then, the nearfield plane Π = (P, L) of order 9 is defined as follows:

P = {(x, y) | x, y ∈ Q} ∪ {(a) | a ∈ Q ∪ {∞}},
L = {[m, k] | m ∈ Q ∪ {∞}, k ∈ Q} ∪ {[∞]},

where [m, k] = {(x, x ◦m + k) | x ∈ Q} ∪ {(m)} for m ∈ Q.

Theorem 4.1 ([8], Section 8) Let H be the full collineation group of Π.
(1) H acts transitively on [∞].
(2) H(∞) = H(0) and H(∞) acts tansitively on [∞]− {(0), (∞)}.
(3) H acts 2-transitively on {(x, y) | x, y ∈ Q}.
(4) The translation group of Π acts transitively on {(x, y) | x, y ∈ Q}.

Let S be a blocking semioval with x8 6= 0. Let U, V, W, I be four
points of Π, no three of which are collinear, and let S ⊇ UV − {U, V }.
From Theorem 4.1, we may consider the following four coordinatizations by
(( , )), (( )) for the points and [[ , ]], [[ ]] for the lines in Π (see Section 2).
Namely we will take [∞] as the 8-secant in the last two cases of the following.

Case 1: U = (0, 0) = ((0)), V = (0, 1) = ((∞)), W = (1, 0) = ((0, 0)),
I = (1, 1) = ((1, 1)).

Case 2: U = (0, 0) = ((0)), V = (∞) = ((∞)), W = (0) = ((0, 0)),
I = (1, 1) = ((1, 1)).

Case 3: U = (1) = ((0)), V = (∞) = ((∞)), W = (0, 0) = ((0, 0)),
I = (1, 0) = ((1, 1)).

Case 4: U = (0) = ((0)), V = (∞) = ((∞)), W = (0, 0) = ((0, 0)),
I = (1, 1) = ((1, 1)).

Then, S is described by (∗) of Section 2. The elements a1, . . . , an, b1, . . .,
bn and the mapping f must satisfy the conditions (1), . . . , (5) in Theo-
rem 2.1. By a similar argument as in Section 3, we have the following.

Case 1 yields (2), (8), (12), (10), (7), (13), (11), (15), (16) or (17) in
Appendix as X(S) and S is for example

{(t7, 1), (t, 1), (1, t), (t6, t6), (t2, 1), (t6, t2),

(−1, t3), (−1, 0), (t6, 0), (t2), (1, 0), (t3, t5),

(t5, t7), (∞)} ∪ {(0, x) | x ∈ Q − {0, 1}},
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{(1, 1), (t5, 1), (t7, 1), (−1, 1), (t, 1), (t3, 1),

(−1, t6), (1, t2), (t3, t5), (t7, t), (t6), (t6, −1),

(t3, 0), (1, 0), (∞)} ∪ {(0, x) | x ∈ Q− {0, 1}},

{(t5, t5), (t3, −1), (t6, t2), (t2, t3), (t, t7), (t7, 0),

(t3, 1), (−1, t3), (t7, −1), (1, t7), (t, −1), (t2, t7),

(t2, −1), (t, t3), (∞)} ∪ {(0, x) | x ∈ Q− {0, 1}},

{(1, t), (−1, t6), (t3, −1), (t6, t2), (t2, t3), (t7),

(t7, t5), (−1, t2), (t5, t3), (1, t6), (1, 1), (t3, t3),

(t6, 0), (1, 0), (∞)} ∪ {(0, x) | x ∈ Q− {0, 1}},

{(t5, t5), (t3, −1), (t6, t2), (t2, t3), (t, t7), (t7, 0),

(t5, 1), (t), (−1, t5), (t3, t5), (t7, t), (t5, t7),

(t5, t6), (t2, t5), (∞)} ∪ {(0, x) | x ∈ Q− {0, 1}},

{(1, 1), (t6, 1), (t7, 1), (t3, 1), (t6, t2), (0),

(t2, t3), (t7, t5), (−1, t2), (t5, t3), (t3, t), (t3, t2),

(t6, t3), (−1, t5), (∞)} ∪ {(0, x) | x ∈ Q− {0, 1}},

{(1, t), (−1, t6), (t3, −1), (t2, t3), (−1, 1), (t, t7),

(0), (−1, t3), (t6, t), (t, t2), (t7, −1), (t, t),

(t3, t3), (−1, −1), (∞)} ∪ {(0, x) | x ∈ Q− {0, 1}},

{(1, 1), (t5, 1), (t6, 1), (t7, 1), (−1, 1), (t, 1),

(t2, 1), (t7), (−1, t3), (t6, t), (t, t2), (t5, t6),

(t7, −1), (t2), (1, 0), (∞)} ∪ {(0, x) | x ∈ Q− {0, 1}},

{(1, 1), (t5, 1), (t6, 1), (t7, 1), (−1, 1), (t2, 1),

(t3, 1), (t2, t3), (t5, −1), (t5), (t3, t6), (1, t5),

(t3, 0), (t2), (1, 0), (∞)} ∪ {(0, x) | x ∈ Q− {0, 1}} or

{(1, 1), (t5, 1), (t6, 1), (t7, 1), (−1, 1), (t, 1),

(t3, 1), (t, t7), (t7, t5), (−1, t2), (t5, t3), (t6, 0),

(t3, 0), (t2), (1, 0), (∞)}∪{(0, x) | x ∈ Q−{0, 1}}, respectively
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Case 2 yields (6), (3), (2), (8), (10), (7), (11), (9), (15), (16) or (17) in
Appendix as X(S), where S is for example

{(1, 1), (t, t7), (t6, t), (t5), (1, −1), (t, t3),

(t6, t5), (t), (t2, 0), (t3, 0), (−1, 0), (t5, 0),

(t7, 0)} ∪ {(0, x)|x ∈ Q∗},

{(t5), (t6), (t7), (−1), (0), (1, 1), (−1, −1),

(t, t3), (t5, t7), (t2, t), (t6, t5), (t3, t2),

(t7, t6)} ∪ {(0, x)|x ∈ Q∗} or

{(1, 1), (1, t5), (1, t6), (t, t2), (t, t6), (1, −1),

(t, 0), (t3, t5), (−1, t6), (t7, t), (t2), (t2, t7),

(t5, 1), (t6, t3)} ∪ {(0, x)|x ∈ Q∗}
for X(S) of (6), (3) or (9) in Appendix, respectively.

Case 3 yields (8), (15) or (17) in Appendix as X(S).
Case 4 also yields (8), (15) or (17) in Appendix as X(S). Thus we have

the following theorem.

Theorem 4.2 Let S be a blocking semioval in the nearfield plane of order
9 with x8 6= 0 and |S| 6= 24. The following hold:
(1) |S| = 21, 22 or 23.
(2) If |S| = 21, then

X(S) = (21, 44, 16, 0, 9, 0, 0, 1) or (21, 46, 8, 12, 1, 2, 0, 1).

(3) If |S| = 22, then

X(S) = (22, 33, 23, 6, 5, 1, 0, 1), (22, 34, 20, 9, 4, 1, 0, 1),

(22, 34, 21, 6, 7, 0, 0, 1), (22, 35, 17, 12, 3, 1, 0, 1),

(22, 35, 18, 9, 6, 0, 0, 1), (22, 36, 14, 15, 2, 1, 0, 1)

or (22, 36, 15, 12, 5, 0, 0, 1).

(4) If |S| = 23, then

X(S) = (23, 21, 32, 12, 0, 1, 1, 1), (23, 23, 27, 15, 1, 0, 1, 1)

or (23, 24, 24, 18, 0, 0, 1, 1).
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5. The dual nearfield plane

In this section, we completely determine blocking semiovals with x8 6=
0 in the dual nearfield plane of order 9. Let Q = GF (9) with the new
multiplication ◦ and the field addition + be the nearfield plane of order 9
defined in Section 3. Let Π = (P, L) be the nearfield plane defined using
Q in Section 4. Let t ∈ GF (9) such that t2 = 1 + t. Then GF (9)∗ = 〈t〉.
Set G = (Aut Π)(0, 0), and let T be the translation group of Π. Then, T =
{t(a, b)|a, b ∈ Q}, where t(a, b) : (x, y) 7−→ (x+a, x+ b), Aut Π = GT and
T is a normal subgroup of Aut Π.

Theorem 5.1 ([8], Section 8)
(1) AutΠ has two orbits {[∞]}, L − {[∞]} on L.
(2) (AutΠ)[∞, 0] is transitive on {l ∈ L | l 3 (∞), l 6= [∞, 0], [∞]}.
(3) (AutΠ)[∞, 0] has two orbits Γ1 := {[m, k] | m ∈ Q∗, k ∈ Q} and Γ2 :=

{[0, k] | k ∈ Q} on {l ∈ L | l 63 (∞)}.
Proof. Since G is transitive on [∞], (1) holds.

Since G((0), [∞, 0]) = {ϕ ∈ G | ϕ is a perspectivity with the center (0)
and the axis [∞, 0]} = {(x, y) 7−→ (x ◦ a, y) | a ∈ Q∗}, (2) holds.

(AutΠ)[∞, 0] fixes (∞) and (0). Since Π is a translation plane, {[0, k] |
k ∈ Q} is an orbit of (AutΠ)[∞, 0]. Since G((∞), [0, 0]) = {(x, y) 7−→
(x, y ◦ a) | a ∈ Q∗} and Π is a translation plane, {[m, k] | m ∈ Q∗, k ∈ Q}
is an orbit of (AutΠ)[∞, 0]. Thus, (3) holds. ¤

Let S be a blocking semioval in the dual plane Πd of the plane Π with
x8 6= 0 and |S| 6= 24. Let U, V, W, I be four points of Πd, no three of
which are collinear, and let S ⊇ UV −{U, V }. From Theorem 5.1, we may
consider the following four coodinatizations by (( , )), (( )) for the points
and [[ , ]], [[ ]] for the lines in Πd (see Section 2), namely four cases of V =
[∞], V = [∞, 1], V ∈ Γ1 or V ∈ Γ2.

Case 1: U = [∞, 0] = ((0)), V = [∞] = ((∞)), W = [0, 0] = ((0, 0)),
I = [1, 1] = ((1, 1)).

Case 2: U = [∞, 0] = ((0)), V = [∞, 1] = ((∞)), W = [0, 0] = ((0, 0)),
I = [1, 1] = ((1, 1)).

Case 3: U = [∞, 0] = ((0)), V = [0, 0] = ((∞)), W = [∞] = ((0, 0)),
I = [1, 1] = ((1, 1)).
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Case 4: U = [∞, 0] = ((0)), V = [1, 0] = ((∞)), W = [∞] = ((0, 0)),
I = [−1, 1] = ((1, 1)).

Then, S is described by (∗) of Section 2. The elements a1, . . . , an, b1, . . .,
bn and the mapping f must satisfy the conditions (1), . . . , (5) in Theo-
rem 2.1. By a similar argument as in Section 3, we have the following.

Case 1 yields (3), (8), (15) or (17) in Appendix as X(S) and S is for
example

{[1, 1], [t, t2], [t2, t3], [t3, t], [1, −1], [t, t6],

[t2, t7], [t3, t5], [−1, 0], [t5, 0], [t6, 0], [t7, 0],

[0, 0]} ∪ {[∞, x] | x ∈ Q∗},

{[0, 1], [0, t], [0, t2], [0, −1], [0, t6], [0, 0],

[1, t3], [t, t3], [t2, t3], [−1, t3], [t3, t7], [t5, t7],

[t6, t5], [t7, t5]} ∪ {[∞, x] | x ∈ Q∗},

{[0, 1], [0, t], [0, t2], [0, t3], [0, −1], [0, t5],

[0, 0], [1, t6], [t, t6], [t2, t6], [−1, t6], [t5, t6],

[t6, t6], [t3, t7], [t7, t7]} ∪ {[∞, x] | x ∈ Q∗} or

{[0, 1], [0, t], [0, t2], [0, t3], [0, −1], [0, t5],

[0, 0], [1, t6], [t, t6], [−1, t6], [t5, t6], [t2, t7],

[t3, t7], [t6, t7], [t7, t7]} ∪ {[∞, x] | x ∈ Q∗}, respectively.

Case 2 yields (8), (15), (16) or (17) in Appendix as X(S), where S is
for example

{[−1, 1], [t5, t], [t7, t3], [1, −1], [t2, t6], [t3, t7],

[0, 0], [t6, t2], [t7, t2], [t2, t2], [t5, t2], [−1, t2],

[t6, t5], [t3, t5], [1, t5], [∞]} ∪ {[∞, x] | x ∈ Q− {0, 1}}
for X(S) of (16) in Appendix.

Case 3 yields (6), (8), (10), (11), (15), (16) or (17) in Appendix as
X(S), where S is for example

{[0, t], [0, t2], [0, t3], [0, −1], [0, t6], [1, 1], [−1, 1],

[t6, t7], [t2, t7], [t7, t5], [t3, t5], [∞, t7],
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[∞, t3]} ∪ {[x, 0] | x ∈ Q∗},

{[1, 1], [t, t], [t2, t2], [t3, t3], [t5, t5], [∞, −1],

[t6, t7], [t, t7], [t2, t7], [t5, t6], [1, t6], [0, t6],

[1, −1], [t, −1]} ∪ {[x, 0] | x ∈ Q∗} or

{[1, 1], [t, t], [t6, t6], [t2, t3], [−1, t5], [∞, −1],

[t6, t7], [1, t2], [t, t2], [t6, t2], [t3, t2], [t6, −1],

[t, −1], [0, −1]} ∪ {[x, 0] | x ∈ Q∗}
for X(S) of (6), (10) or (11) in Appendix, respectively.

Case 4 yields (8), (7), (13), (11), (15), (16) or (17) in Appendix as
X(S), where S is for example

{[−1, 1], [t7, t2], [t6, t3], [0, −1], [t3, t5], [∞, −1],

[t3, t7], [t7, t7], [0, t7], [t2, t6], [t3, t6], [1, t6],

[t3, t], [t6, t]} ∪ {[x, 0] | x ∈ Q − {1}} or

{[t2, t], [t7, t2], [0, −1], [t3, t5], [t7, 1], [t5, t6],

[t3, t7], [∞, t6], [∞, t7], [∞, t], [∞, t3], [∞],

[t, t3], [t7, t3]} ∪ {[x, 0] | x ∈ Q − {1}}
for X(S) of (7) or (13) in Appendix, respectively. Thus we have the following
theorem.

Theorem 5.2 Let S be a blocking semioval in the dual nearfield plane of
order 9 with x8 6= 8 and |S| 6= 24. The following hold:
(1) |S| = 21, 22 or 23.
(2) If |S| = 21, then

X(S) = (21, 44, 16, 0, 9, 0, 0, 1) or (21, 46, 8, 12, 1, 2, 0, 1).

(3) If |S| = 22, then

X(S) = (22, 33, 23, 6, 5, 1, 0, 1), (22, 34, 20, 9, 4, 1, 0, 1),

(22, 35, 17, 12, 3, 1, 0, 1), (22, 35, 18, 9, 6, 0, 0, 1)

or (22, 36, 15, 12, 5, 0, 0, 1).
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(4) If |S| = 23, then

X(S) = (23, 21, 32, 12, 0, 1, 1, 1), (23, 23, 27, 15, 1, 0, 1, 1)

or (23, 24, 24, 18, 0, 0, 1, 1).

Appendix

(1) X(S) = (21, 43, 16, 6, 1, 3, 0, 1)

S = {[t2, 1, 1], [t5, 1, t3], [1, 0, t6], [t2, 1, t2], [t3, 1, −1],

[t6, 1, t6], [−1, 1, 0], [1, 0, t3], [0, 1, t6], [−1, 1, 1], [t, 1, 1],

[1, 1, t7], [t7, 1, t], [t3, 1, 1], [t7, 1, t6], [t2, 1, t3], [t6, 1, −1],

[1, 0, 1], [1, 1, t2], [−1, 1, t7], [t, 1, t5]}
(2) X(S) = (21, 44, 14, 6, 3, 2, 0, 1)

S = {[t6, 1, t2], [t3, 1, −1], [t6, 1, t6], [1, 1, t5], [1, 1, 0],

[t3, 1, t2], [t2, 1, t2], [0, 1, t7], [t, 1, t2], [1, 1, t7], [t3, 1, t],

[t5, 1, t2], [t5, 1, t7], [t3, 1, 1], [t7, 1, t6], [t2, 1, t3],

[t6, 1, −1], [1, 0, 1], [1, 1, t2], [−1, 1, t7], [t, 1, t5]}
(3) X(S) = (21, 44, 16, 0, 9, 0, 0, 1)

S = {[t, 1, t2], [t2, 1, t6], [−1, 1, t5], [1, 0, t6], [t7, 1, −1],

[t6, 1, 1], [t6, 1, t2], [1, 1, −1], [1, 1, 0], [0, 1, t2], [0, 1, t],

[t3, 1, t7], [t3, 1, t2], [t5, 1, 1], [t5, 1, t], [t5, 1, t2], [t5, 1, t3],

[t5, 1, −1], [t5, 1, t5], [t5, 1, t6], [t5, 1, t7]}
(4) X(S) = (21, 45, 11, 9, 2, 2, 0, 1)

S = {[0, 1, t7], [0, 1, t3], [t7, 1, t3], [t, 1, 1], [0, 1, 0],

[t5, 1, t2], [t6, 1, t5], [t3, 1, −1], [1, 1, t6], [−1, 1, t3],

[1, 0, −1], [t3, 1, t7], [t2, 1, t], [t3, 1, 1], [t7, 1, t6], [t2, 1, t3],

[t6, 1, −1], [1, 0, 1], [1, 1, t2], [−1, 1, t7], [t, 1, t5]}
(5) X(S) = (21, 45, 12, 6, 5, 1, 0, 1)

S = {[1, 1, 1], [t, 1, 1], [t5, 1, t3], [0, 1, 1], [t7, 1, t3],

[t6, 1, t5], [t3, 1, −1], [0, 1, t3], [t2, 1, 0], [t7, 1, 0],
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[−1, 1, 0], [t, 1, 0], [1, 0, 0], [t3, 1, 1], [t7, 1, t6], [t2, 1, t3],

[t6, 1, −1], [1, 0, 1], [1, 1, t2], [−1, 1, t7], [t, 1, t5]}
(6) X(S) = (21, 46, 8, 12, 1, 2, 0, 1)

S = {[1, 1, 0], [t3, 1, 0], [−1, 1, 0], [1, 0, 0], [t6, 1, 0],

[t, 1, 0], [t, 1, t6], [t7, 1, t2], [t7, 1, t6], [0, 1, −1], [0, 1, 1],

[t2, 1, 1], [t2, 1, −1], [t5, 1, 1], [t5, 1, t], [t5, 1, t2], [t5, 1, t3],

[t5, 1, −1], [t5, 1, t5], [t5, 1, t6], [t5, 1, t7]}
(7) X(S) = (22, 33, 23, 6, 5, 1, 0, 1)

S = {[0, 1, t7], [0, 1, t2], [0, 1, t6], [0, 0, 1], [0, 1, t5],

[0, 1, t3], [t6, 1, 0], [t7, 1, 0], [1, 0, t], [1, 1, t7], [t7, 1, t],

[1, 1, t3], [t7, 1, t5], [1, 1, 0], [t3, 1, 1], [t7, 1, t6], [t2, 1, t3],

[t6, 1, −1], [1, 0, 1], [1, 1, t2], [−1, 1, t7], [t, 1, t5]}
(8) X(S) = (22, 34, 20, 9, 4, 1, 0, 1)

S = {[−1, 1, t6], [t, 1, −1], [t5, 1, t2], [t2, 1, t7], [t3, 1, t5],

[t6, 1, 0], [−1, 1, −1], [t2, 1, 1], [0, 1, t2], [t3, 1, t6], [t, 1, t2],

[t7, 1, −1], [t3, 1, t2], [1, 1, t], [t3, 1, 1], [t7, 1, t6], [t2, 1, t3],

[t6, 1, −1], [1, 0, 1], [1, 1, t2], [−1, 1, t7], [t, 1, t5]}
(9) X(S) = (22, 34, 21, 6, 7, 0, 0, 1)

S = {[t6, 1, t2], [t2, 1, 1], [t5, 1, t3], [t, 1, t6], [t3, 1, t7],

[1, 1, 0], [t, 1, t3], [t7, 1, t2], [0, 1, t5], [−1, 1, t3], [t, 1, t],

[1, 1, 1], [t, 1, t2], [t6, 1, t3], [t3, 1, 1], [t7, 1, t6], [t2, 1, t3],

[t6, 1, −1], [1, 0, 1], [1, 1, t2], [−1, 1, t7], [t, 1, t5]}
(10) X(S) = (22, 35, 17, 12, 3, 1, 0, 1)

S = {[−1, 1, t6], [1, 0, t3], [t5, 1, t2], [t2, 1, t7], [t3, 1, t5],

[t6, 1, 0], [−1, 1, −1], [t2, 1, 1], [0, 1, t2], [t3, 1, t6],

[t7, 1, t5], [t3, 1, t7], [1, 0, t6], [t3, 1, t], [t3, 1, 1], [t7, 1, t6],

[t2, 1, t3], [t6, 1, −1], [1, 0, 1], [1, 1, t2], [−1, 1, t7], [t, 1, t5]}
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(11) X(S) = (22, 35, 18, 9, 6, 0, 0, 1)

S = {[−1, 1, t6], [t, 1, −1], [1, 0, t3], [t5, 1, t2], [−1, 1, t5],

[t6, 1, 0], [t2, 1, 1], [0, 1, t3], [t6, 1, t7], [1, 1, −1], [t2, 1, t2],

[−1, 1, t], [t7, 1, t2], [1, 0, −1], [t3, 1, 1], [t7, 1, t6],

[t2, 1, t3], [t6, 1, −1], [1, 0, 1], [1, 1, t2], [−1, 1, t7], [t, 1, t5]}
(12) X(S) = (22, 36, 14, 15, 2, 1, 0, 1)

S = {[1, 0, t5], [t7, 1, t7], [t5, 1, t3], [t3, 1, −1], [t, 1, t6],

[1, 1, 0], [1, 1, 1], [0, 1, t7], [t, 1, t2], [t7, 1, −1], [−1, 1, −1],

[t6, 1, t], [t2, 1, t5], [1, 1, t7], [t3, 1, 1], [t7, 1, t6], [t2, 1, t3],

[t6, 1, −1], [1, 0, 1], [1, 1, t2], [−1, 1, t7], [t, 1, t5]}
(13) X(S) = (22, 36, 15, 12, 5, 0, 0, 1)

S = {[1, 1, 1], [−1, 1, t6], [1, 0, t3], [t5, 1, t2], [1, 0, t5],

[t3, 1, t5], [1, 1, 0], [t7, 1, t2], [−1, 1, t3], [t6, 1, 1], [1, 0, −1],

[t, 1, t], [0, 1, t2], [1, 0, t7], [t3, 1, 1], [t7, 1, t6], [t2, 1, t3],

[t6, 1, −1], [1, 0, 1], [1, 1, t2], [−1, 1, t7], [t, 1, t5]}
(14) X(S) = (22, 37, 12, 15, 4, 0, 0, 1)

S = {[1, 1, 1], [t6, 1, −1], [−1, 1, t], [t7, 1, t5], [−1, 1, −1],

[t7, 1, t2], [t5, 1, t6], [t7, 1, t7], [t3, 1, t2], [−1, 1, 1],

[t2, 1, −1], [t3, 1, t3], [0, 1, −1], [t, 1, 1], [0, 1, 0], [1, 1, 0],

[t2, 1, 0], [t3, 1, 0], [−1, 1, 0], [t6, 1, 0], [t7, 1, 0], [1, 0, 0]}
(15) X(S) = (23, 21, 32, 12, 0, 1, 1, 1)

S = {[1, 1, 1], [t7, 1, t3], [t, 1, −1], [t5, 1, t2], [t2, 1, t7],

[t3, 1, t5], [t6, 1, 0], [t, 1, 1], [t6, 1, t2], [0, 1, −1], [t3, 1, t3],

[t2, 1, t5], [1, 0, t], [t2, 1, −1], [1, 1, t], [t3, 1, 1], [t7, 1, t6],

[t2, 1, t3], [t6, 1, −1], [1, 0, 1], [1, 1, t2], [−1, 1, t7], [t, 1, t5]}
(16) X(S) = (23, 23, 27, 15, 1, 0, 1, 1)

S = {[1, 1, 1], [t, 1, −1], [1, 0, t3], [t5, 1, t2], [t2, 1, t7],

[t3, 1, t5], [t6, 1, 0], [t, 1, 1], [t6, 1, t2], [0, 1, −1], [t3, 1, t3],
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[t2, 1, t5], [1, 1, t5], [t3, 1, t6], [t6, 1, t], [t3, 1, 1], [t7, 1, t6],

[t2, 1, t3], [t6, 1, −1], [1, 0, 1], [1, 1, t2], [−1, 1, t7], [t, 1, t5]}
(17) X(S) = (23, 24, 24, 18, 0, 0, 1, 1)

S = {[−1, 1, t6], [t, 1, −1], [1, 0, t3], [t5, 1, t2], [t2, 1, t7],

[t3, 1, t5], [t6, 1, 0], [t2, 1, t6], [−1, 1, t5], [0, 1, t7], [t, 1, t2],

[t, 1, t7], [1, 1, t5], [t3, 1, t6], [t6, 1, t], [t3, 1, 1], [t7, 1, t6],

[t2, 1, t3], [t6, 1, −1], [1, 0, 1], [1, 1, t2], [−1, 1, t7], [t, 1, t5]}
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