Distributors on a tensor category

D. Tambara

(Received September 30, 2004)

Abstract

Let \mathcal{A} be a tensor category and let \mathcal{V} denote the category of vector spaces. A distributor on \mathcal{A} is a functor $\mathcal{A}^{\mathrm{op}} \times \mathcal{A} \rightarrow \mathcal{V}$. We are concerned with distributors with two-sided \mathcal{A}-action. Those distributors form a tensor category, which we denoted by ${ }_{\mathcal{A}} \mathbf{D}(\mathcal{A}, \mathcal{A})_{\mathcal{A}}$. The functor category $\operatorname{Hom}\left(\mathcal{A}^{\mathrm{op}}, \mathcal{V}\right)$ is also a tensor category and has the center $\mathbf{Z}\left(\operatorname{Hom}\left(\mathcal{A}^{\text {op }}, \mathcal{V}\right)\right)$. We show that if \mathcal{A} is rigid, then ${ }_{\mathcal{A}} \mathbf{D}(\mathcal{A}, \mathcal{A})_{\mathcal{A}}$ and $\mathbf{Z}\left(\operatorname{Hom}\left(\mathcal{A}^{\text {op }}, \mathcal{V}\right)\right)$ are equivalent as tensor categories.

Key words: tensor category, distributor, center.

Introduction

Let \mathcal{A} be a tensor category over a field k and let \mathcal{V} denote the category of vector spaces over k. A distributor on \mathcal{A} is a functor $L: \mathcal{A}^{\mathrm{op}} \times \mathcal{A} \rightarrow \mathcal{V}$ ([1]). We say L admits two-sided \mathcal{A}-action if maps

$$
L(X, Y) \rightarrow L(A \otimes X, A \otimes Y), \quad L(X, Y) \rightarrow L(X \otimes A, Y \otimes A)
$$

are given for all objects $A, X, Y \in \mathcal{A}$ so that they satisfy certain conditions. Distributors with two-sided \mathcal{A}-action form a tensor category, which we denote by ${ }_{\mathcal{A}} \mathbf{D}(\mathcal{A}, \mathcal{A})_{\mathcal{A}}$.

Such distributors arise in studying extensions of a tensor category. Given a tensor functor $\mathcal{A} \rightarrow \mathcal{B}$, set $L(X, Y)=\operatorname{Hom}_{\mathcal{B}}(X, Y)$ for $X, Y \in$ \mathcal{A}. Then L is a monoid object of ${ }_{\mathcal{A}} \mathbf{D}(\mathcal{A}, \mathcal{A})_{\mathcal{A}}$. Conversely a monoid object of ${ }_{\mathcal{A}} \mathbf{D}(\mathcal{A}, \mathcal{A})_{\mathcal{A}}$ produces a tensor category having the same objects as \mathcal{A}.

On the other hand there is a notion of the center of a tensor category ([3], [4], [5]). The center $\mathbf{Z}(\mathcal{A})$ of \mathcal{A} is the category consisting of objects $X \in \mathcal{A}$ equipped with isomorphisms $X \otimes Y \rightarrow Y \otimes X$ for all $Y \in \mathcal{A}$ satisfying certain conditions. The center is a braided tensor category. When \mathcal{A} is the category of representations of a Hopf algebra $H, \mathbf{Z}(\mathcal{A})$ is the category of representations of the double Hopf algebra $D(H)([4])$.

Now the category $\operatorname{Hom}\left(\mathcal{A}^{\mathrm{op}}, \mathcal{V}\right)$ of functors $\mathcal{A}^{\text {op }} \rightarrow \mathcal{V}$ is a tensor category $([2])$. So it has the center $\mathbf{Z}\left(\operatorname{Hom}\left(\mathcal{A}^{\text {op }}, \mathcal{V}\right)\right)$. We assume that \mathcal{A} is

[^0]rigid, that is, every object of \mathcal{A} has left and right dual objects. Our result is as follows.

Theorem We have an equivalence of tensor categories

$$
{ }_{\mathcal{A}} \mathbf{D}(\mathcal{A}, \mathcal{A})_{\mathcal{A}} \simeq \mathbf{Z}\left(\operatorname{Hom}\left(\mathcal{A}^{\mathrm{op}}, \mathcal{V}\right)\right)
$$

The equivalence is sketched as follows. Let $L \in{ }_{\mathcal{A}} \mathbf{D}(\mathcal{A}, \mathcal{A})_{\mathcal{A}}$. For $Y \in \mathcal{A}$ let Y^{c} be a left dual of Y and Y^{d} a right dual of Y. It is proved that the left \mathcal{A}-action on L yields an isomorphism $L(X, Y) \cong L\left(Y^{c} \otimes X, I\right)$ with I unit object, and the right \mathcal{A}-action on L yields $L(X, Y) \cong L\left(X \otimes Y^{d}, I\right)$. Hence $L\left(Y^{c} \otimes X, I\right) \cong L\left(X \otimes Y^{d}, I\right)$. Thus the functor $F: \mathcal{A}^{\mathrm{op}} \rightarrow \mathcal{V}$ given by $F(X)=L(X, I)$ admits isomorphisms $F\left(Y^{c} \otimes X\right) \cong F\left(X \otimes Y^{d}\right)$ for $X, Y \in$ \mathcal{A}. This makes F an object of $\mathbf{Z}\left(\operatorname{Hom}\left(\mathcal{A}^{\text {op }}, \mathcal{V}\right)\right)$. The correspondence $L \mapsto$ F gives the equivalence of the theorem.

The paper is organized as follows. Sections 1 and 2 contain basic definitions about tensor categories, tensor linear functors, and distributors. In Section 3 we show the isomorphisms $L(X, A \otimes Y) \cong L\left(A^{c} \otimes X, Y\right)$, $L(X, Y \otimes A) \cong L\left(X \otimes A^{d}, Y\right)$ for a distributor L with \mathcal{A}-action. In Section 4 we consider the centralizer $\mathbf{Z}_{\mathcal{A}}\left(\operatorname{Hom}\left(\mathcal{A}^{\mathrm{op}}, \mathcal{V}\right)\right)$ of \mathcal{A} in $\operatorname{Hom}\left(\mathcal{A}^{\text {op }}, \mathcal{V}\right)$. This category is isomorphic to the center $\mathbf{Z}\left(\operatorname{Hom}\left(\mathcal{A}^{\text {op }}, \mathcal{V}\right)\right)$. An object of $\mathbf{Z}_{\mathcal{A}}\left(\operatorname{Hom}\left(\mathcal{A}^{\mathrm{op}}, \mathcal{V}\right)\right)$ is described in two ways: as a functor $F: \mathcal{A}^{\mathrm{op}} \rightarrow \mathcal{V}$ equipped with isomorphisms $F\left(A^{c} \otimes X\right) \cong F\left(X \otimes A^{d}\right)$, and as a functor $F: \mathcal{A}^{\mathrm{op}} \rightarrow \mathcal{V}$ equipped with morphisms $F(X) \rightarrow F\left(A \otimes X \otimes A^{d}\right)$. In Section 5 we prove the equivalence ${ }_{\mathcal{A}} \mathbf{D}(\mathcal{A}, \mathcal{A})_{\mathcal{A}} \simeq \mathbf{Z}_{\mathcal{A}}\left(\operatorname{Hom}\left(\mathcal{A}^{\mathrm{op}}, \mathcal{V}\right)\right)$ as plain categories.

In the remaining sections we consider tensor structures. The tensor product (composition product) in ${ }_{\mathcal{A}} \mathbf{D}(\mathcal{A}, \mathcal{A})_{\mathcal{A}}$ is defined in Section 6, and the tensor product (Day's product) in $\operatorname{Hom}\left(\mathcal{A}^{\mathrm{op}}, \mathcal{V}\right)$ is defined in Section 7. The tensor product in $\mathbf{Z}_{\mathcal{A}}\left(\operatorname{Hom}\left(\mathcal{A}^{\mathrm{op}}, \mathcal{V}\right)\right)$ is described in Section 8. Then we prove in Section 9 that the equivalence ${ }_{\mathcal{A}} \mathbf{D}(\mathcal{A}, \mathcal{A})_{\mathcal{A}} \simeq \mathbf{Z}_{\mathcal{A}}\left(\operatorname{Hom}\left(\mathcal{A}^{\mathrm{op}}, \mathcal{V}\right)\right)$ preserves tensor products.

1. Tensor categories and tensor linear functors

Throughout the paper categories and functors are linear over a field k. The category of k-vector spaces is denoted by \mathcal{V}. The category of functors $\mathcal{X} \rightarrow \mathcal{Y}$ is denoted by $\operatorname{Hom}(\mathcal{X}, \mathcal{Y})$.

In this section we review basic definitions for tensor categories, tensor
linear functors, and centralizers.
Let \mathcal{A} be a tensor category. The tensor product of objects X and Y of \mathcal{A} is denoted by $X Y$. The tensor product of morphisms $f: X \rightarrow X^{\prime}$ and $g: Y \rightarrow Y^{\prime}$ of \mathcal{A} is denoted by $f g: X Y \rightarrow X^{\prime} Y^{\prime}$, while the composition of $f: X \rightarrow Y$ and $g: Y \rightarrow Z$ is denoted by $g \circ f: X \rightarrow Z$. The unit object of \mathcal{A} is denoted by I. The identity morphism on an object X is denoted by 1_{X}, and often abbreviated as 1 .

For simplicity we assume that \mathcal{A} is a strict tensor category, that is, the equalities

$$
(X Y) Z=X(Y Z), \quad X I=X=I X
$$

for objects and the equalities

$$
(f g) h=f(g h), \quad f 1_{I}=f=1_{I} f
$$

for morphisms hold.
We review the language of modules over tensor categories ([6]). A left \mathcal{A}-module is a category \mathcal{X} equipped with a bilinear functor $\mathcal{A} \times \mathcal{X} \rightarrow$ \mathcal{X}, called an \mathcal{A}-action, satisfying the axiom of associativity and unitality analogous to the axiom for a module over a ring. We write the \mathcal{A}-action as $(A, X) \mapsto A X$ for objects and $(e, f) \mapsto e f$ for morphisms. Then the axiom says

$$
\begin{aligned}
\left(A A^{\prime}\right) X & =A\left(A^{\prime} X\right), & & I X \\
\left(e e^{\prime}\right) f & =e\left(e^{\prime} f\right), & & 1_{I} f=f
\end{aligned}
$$

for objects A, A^{\prime} of \mathcal{A} and X of \mathcal{X}, and morphisms e, e^{\prime} of \mathcal{A} and f of \mathcal{X}.
A right \mathcal{A}-module is similarly defined.
Let \mathcal{A} and \mathcal{B} be strict tensor categories. An $(\mathcal{A}, \mathcal{B})$-bimodule is a category \mathcal{X} equipped with bilinear functors $\mathcal{A} \times \mathcal{X} \rightarrow \mathcal{X}$ and $\mathcal{X} \times \mathcal{B} \rightarrow \mathcal{X}$, called actions, satisfying the axiom analogous to the axiom for a usual bimodule. With the notation for the actions similar to the above, the axiom consists of the equalities

$$
\begin{aligned}
& \left(A A^{\prime}\right) X=A\left(A^{\prime} X\right), \quad I X=X \\
& (A X) B=A(X B) \\
& X\left(B B^{\prime}\right)=(X B) B^{\prime}, \quad X I=X
\end{aligned}
$$

for objects A, A^{\prime} of \mathcal{A}, X of \mathcal{X}, and B, B^{\prime} of \mathcal{B}, and the corresponding equal-
ities for morphisms. The tensor category \mathcal{A} itself is an $(\mathcal{A}, \mathcal{A})$-bimodule in which $A X, X A$ are tensor products in \mathcal{A}.

Let \mathcal{X}, \mathcal{Y} be left \mathcal{A}-modules. An \mathcal{A}-linear functor $\mathcal{X} \rightarrow \mathcal{Y}$ is a functor $F: \mathcal{X} \rightarrow \mathcal{Y}$ equipped with a family of isomorphisms $\lambda_{A, X}: F(A X) \rightarrow$ $A F(X)$ for all $A \in \mathcal{A}$ and $X \in \mathcal{X}$ satisfying the following conditions.
(1.1.i) $\quad \lambda_{A, X}$ is natural in A and X.
(1.1.ii) The diagram

commutes for all $A, A^{\prime} \in \mathcal{A}$ and $X \in \mathcal{X}$.
(1.1.iii) $\lambda_{I, X}=1$ for all $X \in \mathcal{X}$.

We call the family of $\lambda_{A, X}$ the left \mathcal{A}-linear structure of F.
If \mathcal{X}, \mathcal{Y} are right \mathcal{B}-modules, a \mathcal{B}-linear functor $\mathcal{X} \rightarrow \mathcal{Y}$ is a functor $F: \mathcal{X} \rightarrow \mathcal{Y}$ equipped with a family of isomorphisms $\rho_{X, B}: F(X B) \rightarrow$ $F(X) B$, called the right \mathcal{B}-linear structure, satisfying similar conditions.

If \mathcal{X}, \mathcal{Y} are $(\mathcal{A}, \mathcal{B})$-bimodules, an $(\mathcal{A}, \mathcal{B})$-linear functor $\mathcal{X} \rightarrow \mathcal{Y}$ is a functor $F: \mathcal{X} \rightarrow \mathcal{Y}$ equipped with a family of isomorphisms $\lambda_{A, X}: F(A X) \rightarrow$ $A F(X)$ and $\rho_{X, B}: F(X B) \rightarrow F(X) B$ satisfying (1.1.i)-(1.1.iii) for λ, the corresponding conditions for ρ, and the following:
(1.2) The diagram

commutes for all $A \in \mathcal{A}, B \in \mathcal{B}, X \in \mathcal{X}$.
If \mathcal{X}, \mathcal{Y} are left \mathcal{A}-modules and F, G are \mathcal{A}-linear functors $\mathcal{X} \rightarrow \mathcal{Y}$, an \mathcal{A}-linear natural transformation $F \rightarrow G$ is a natural transformation $F \rightarrow$ G commuting with the left \mathcal{A}-linear structure of F and G. We then have the category $\operatorname{Hom}_{\mathcal{A}}(\mathcal{X}, \mathcal{Y})$ whose objects are \mathcal{A}-linear functors $\mathcal{X} \rightarrow \mathcal{Y}$ and whose morphisms are \mathcal{A}-linear natural transformations.

Similarly, for $(\mathcal{A}, \mathcal{B})$-bimodules \mathcal{X} and \mathcal{Y} we have the category of $(\mathcal{A}, \mathcal{B})$ linear functors $\mathcal{X} \rightarrow \mathcal{Y}$, which we denote by $\left.\operatorname{Hom}_{\mathcal{A}, \mathcal{B}} \mathcal{X}, \mathcal{Y}\right)$.

The following is an analogue of the isomorphism $\operatorname{Hom}_{R}(R, M) \cong M$ for an R-module M, and can be proved easily.

Proposition 1.3 Let \mathcal{X} be a right \mathcal{A}-module. We have an equivalence of categories
$\operatorname{Hom}_{\mathcal{A}}(\mathcal{A}, \mathcal{X}) \simeq \mathcal{X}$
which takes an object $X \in \mathcal{X}$ to an object $G \in \operatorname{Hom}_{\mathcal{A}}(\mathcal{A}, \mathcal{X})$ as follows. We have
$G(A)=X A$
for $A \in \mathcal{A}$, and the right \mathcal{A}-linear structure
$\rho_{A, B}: G(A B) \rightarrow G(A) B$
for $A, B \in \mathcal{A}$ is the identity
$X A B \rightarrow X A B$.
For an $(\mathcal{A}, \mathcal{A})$-bimodule \mathcal{X}, the centralizer $\mathbf{Z}_{\mathcal{A}}(\mathcal{X})$ is the category defined as follows. An object of $\mathbf{Z}_{\mathcal{A}}(\mathcal{X})$ is an object $X \in \mathcal{X}$ equipped with a family of isomorphisms

$$
\omega_{A}: A X \rightarrow X A \quad \text { for all } \quad A \in \mathcal{A}
$$

satisfying the following conditions.
(1.4.i) ω_{A} is natural in A.
(1.4.ii) The diagram

commutes for all $A, B \in \mathcal{A}$ and $X \in \mathcal{X}$.
(1.4.iii) ω_{I} is the identity.

We call the family of ω_{A} the central structure.
A morphism of $\mathbf{Z}_{\mathcal{A}}(\mathcal{X})$ is a morphism of \mathcal{X} commuting with central structures.

The following is also an analogue of the well-known isomorphism for a usual bimodule.

Proposition 1.5 We have an equivalence of categories

$$
\operatorname{Hom}_{\mathcal{A}, \mathcal{A}}(\mathcal{A}, \mathcal{X}) \simeq \mathbf{Z}_{\mathcal{A}}(\mathcal{X})
$$

which takes an object $X \in \mathbf{Z}_{\mathcal{A}}(\mathcal{X})$ to an object $G \in \operatorname{Hom}_{\mathcal{A}, \mathcal{A}}(\mathcal{A}, \mathcal{X})$ as follows. We have

$$
G(A)=X A
$$

for $A \in \mathcal{A}$. The right \mathcal{A}-linear structure $\rho_{A, B}: G(A B) \rightarrow G(A) B$ for $A, B \in \mathcal{A}$ is the identity

$$
X A B \rightarrow X A B
$$

The left \mathcal{A}-linear structure $\lambda_{B, A}: G(B A) \rightarrow B G(A)$ is

$$
\omega_{B}^{-1} 1: X B A \rightarrow B X A
$$

where ω_{B} is the central structure of X.
For the $(\mathcal{A}, \mathcal{A})$-bimodule \mathcal{A}, the centralizer $\mathbf{Z}_{\mathcal{A}}(\mathcal{A})$ is called the center of \mathcal{A}, and denoted by $\mathbf{Z}(\mathcal{A})$. This is a tensor category: the tensor product of $X, Y \in \mathbf{Z}(A)$ is the object $X Y$ of \mathcal{A} with central structure given by the composite

$$
A X Y \xrightarrow{\omega_{A} 1} X A Y \xrightarrow{1 \omega_{A}} X Y A
$$

For details see [4, p. 330].

2. Distributors with tensor action

Let \mathcal{X} and \mathcal{Y} be categories. Let \mathcal{V} denote the category of k-vector spaces. A distributor from \mathcal{X} to \mathcal{Y} is a bilinear functors $\mathcal{X}^{\text {op }} \times \mathcal{Y} \rightarrow \mathcal{V}([1$, Chapter 7]). Namely a distributor L from \mathcal{X} to \mathcal{Y} consists of vector spaces $L(X, Y)$ for all objects X of \mathcal{X} and Y of \mathcal{Y}, and linear maps $L(f, g): L(X, Y) \rightarrow$ $L\left(X^{\prime}, Y^{\prime}\right)$ for all morphisms $f: X^{\prime} \rightarrow X$ of \mathcal{X} and $g: Y \rightarrow Y^{\prime}$ of \mathcal{Y} satisfying the following conditions.
(2.1.i) For morphisms $f: X^{\prime} \rightarrow X, f^{\prime}: X^{\prime \prime} \rightarrow X^{\prime}$ of \mathcal{X} and $g: Y \rightarrow Y^{\prime}$ and $g^{\prime}: Y^{\prime} \rightarrow Y^{\prime \prime}$ of \mathcal{Y}, we have

$$
L\left(f \circ f^{\prime}, g^{\prime} \circ g\right)=L\left(f^{\prime}, g^{\prime}\right) \circ L(f, g)
$$

$$
\begin{equation*}
L(1,1)=1 \tag{2.1.ii}
\end{equation*}
$$

(2.1.iii) $L(f, g)$ is bilinear in f and g.

An easy consequence of (2.1.i) is

$$
L(f, g)=L(f, 1) \circ L(1, g)=L(1, g) \circ L(f, 1)
$$

We also denote $L(f, 1)=f^{*}, L(1, g)=g_{*}$.
We denote by $\mathbf{D}(\mathcal{X}, \mathcal{Y})$ the category of distributors from \mathcal{X} to \mathcal{Y}.
Let \mathcal{A} be a tensor category and let \mathcal{X}, \mathcal{Y} be left \mathcal{A}-modules. A distributor from \mathcal{X} to \mathcal{Y} with left \mathcal{A}-action is a distributor L from \mathcal{X} to \mathcal{Y} equipped with linear maps

$$
A!: L(X, Y) \rightarrow L(A X, A Y)
$$

for all objects A of \mathcal{A}, X of \mathcal{X}, and Y of \mathcal{Y}, satisfying the following conditions.
(2.2.i) For morphisms $f: X^{\prime} \rightarrow X$ of \mathcal{X} and $g: Y \rightarrow Y^{\prime}$ of \mathcal{Y}, we have a commutative diagram

(2.2.ii) For a morphism $e: A \rightarrow A^{\prime}$ of \mathcal{A}, we have a commutative diagram

(2.2.iii) For objects A, A^{\prime} of \mathcal{A}, we have a commutative diagram

(2.2.iv) For the unit object $I, I!: L(X, Y) \rightarrow L(X, Y)$ is the identity.

We denote by ${ }_{\mathcal{A}} \mathbf{D}(\mathcal{X}, \mathcal{Y})$ the category of distributors from \mathcal{X} to \mathcal{Y} with left \mathcal{A}-action.

Let \mathcal{A} and \mathcal{B} be tensor categories and let \mathcal{X}, \mathcal{Y} be $(\mathcal{A}, \mathcal{B})$-bimodules. A distributor from \mathcal{X} to \mathcal{Y} with $(\mathcal{A}, \mathcal{B})$-action is a distributor L equipped with linear maps

$$
\begin{aligned}
& A!: L(X, Y) \rightarrow L(A X, A Y) \\
& !B: L(X, Y) \rightarrow L(X B, Y B)
\end{aligned}
$$

for all objects A of \mathcal{A}, B of \mathcal{B}, X of \mathcal{X}, and Y of \mathcal{Y}, satisfying (2.2.i)-(2.2.iv) for $A!$, the analogous conditions for $!B$, and the following:
(2.3) For objects A of \mathcal{A}, B of \mathcal{B}, X of \mathcal{X}, and Y of \mathcal{Y}, we have a commutative diagram

We denote by ${ }_{\mathcal{A}} \mathbf{D}(\mathcal{X}, \mathcal{Y})_{\mathcal{B}}$ the category of distributors from \mathcal{X} to \mathcal{Y} with $(\mathcal{A}, \mathcal{B})$-action.

3. Duality isomorphism

In this section we show that if \mathcal{A} is rigid, distributors with \mathcal{A}-action can be identified with \mathcal{A}-linear functors.

Let \mathcal{A} be a tensor category. We call a quadruple $\left(A, A^{\prime}, \epsilon, \eta\right)$ a duality if A, A^{\prime} are objects of \mathcal{A} and $\epsilon: A A^{\prime} \rightarrow I, \eta: I \rightarrow A^{\prime} A$ are morphisms of \mathcal{A} such that the composites

$$
A \xrightarrow{1 \eta} A A^{\prime} A \xrightarrow{\epsilon 1} A, \quad A^{\prime} \xrightarrow{\eta 1} A^{\prime} A A^{\prime} \xrightarrow{1 \epsilon} A^{\prime}
$$

are the identity morphisms.
It is well-known that a duality $\left(A, A^{\prime}, \epsilon, \eta\right)$ gives rise to the adjoint isomorphism

$$
\operatorname{Hom}(A X, Y) \cong \operatorname{Hom}\left(X, A^{\prime} Y\right)
$$

for $X, Y \in \mathcal{A}$. We will show that Hom of the both sides may be replaced by any object L of ${ }_{\mathcal{A}} \mathbf{D}(\mathcal{X}, \mathcal{Y})$.

Proposition 3.1 Let \mathcal{X} and \mathcal{Y} be left \mathcal{A}-modules and let $L \in{ }_{\mathcal{A}} \mathbf{D}(\mathcal{X}, \mathcal{Y})$. Suppose that $\left(A, A^{\prime}, \epsilon, \eta\right)$ is a duality in \mathcal{A}. Then we have an isomorphism

$$
L(A X, Y) \cong L\left(X, A^{\prime} Y\right)
$$

for any $X \in \mathcal{X}, Y \in \mathcal{Y}$. This is given by the maps

$$
\begin{aligned}
& \sigma: L(A X, Y) \xrightarrow{A^{\prime}!} L\left(A^{\prime} A X, A^{\prime} Y\right) \xrightarrow{L(\eta 1,1)} L\left(X, A^{\prime} Y\right), \\
& \tau: L\left(X, A^{\prime} Y\right) \xrightarrow{A!} L\left(A X, A A^{\prime} Y\right) \xrightarrow{L(1, \epsilon 1)} L(A X, Y),
\end{aligned}
$$

which are inverse to each other.
Proof. We will show that σ, τ are inverse to each other. (a) By (2.2.i) we have a commutative diagram

Hence by (2.2.iii) and (2.1.i)

is commutative. On the other hand, by (2.2.ii) applied for the morphism $\epsilon: A A^{\prime} \rightarrow I$ and (2.2.iv),

$$
L(A X, Y) \xrightarrow[L(\epsilon 11,1)]{\xrightarrow{\left(A A^{\prime}\right)!}} L\left(A A^{\prime} A X, A A^{\prime} Y\right)
$$

is commutative. Then we have

$$
\tau \circ \sigma=L(1 \eta 1,1) \circ L(\epsilon 11,1)=1
$$

(b) We have a commutative diagram

Hence

is commutative. But

$$
L\left(X, A^{\prime} Y\right) \xrightarrow{\stackrel{\left(A^{\prime} A\right)!}{\longrightarrow}} L\left(A^{\prime} A X, A^{\prime} A A^{\prime} Y\right)
$$

is commutative. Hence

$$
\sigma \circ \tau=L(1,1 \epsilon 1) \circ L(1, \eta 11)=1 .
$$

This proves the proposition.
Proposition 3.2 Under the assumption of the previous proposition, the diagrams

are commutative.

Proof. The first one follows from the commutative diagram

and the equality $\epsilon 1 \circ 1 \eta=1$.
The second follows from the commutative diagram

and the equality $1 \epsilon \circ \eta 1=1$.
For the convenience in later use we record the right-sided version of Proposition 3.1.

Proposition 3.3 Let \mathcal{X} and \mathcal{Y} be right \mathcal{A}-modules and let $L \in \mathbf{D}(\mathcal{X}, \mathcal{Y})_{\mathcal{A}}$. Suppose that $\left(A, A^{\prime}, \epsilon, \eta\right)$ is a duality in \mathcal{A}. Then we have an isomorphism

$$
L\left(X A^{\prime}, Y\right) \cong L(X, Y A)
$$

for any $X \in \mathcal{X}, Y \in \mathcal{Y}$. This is given by the maps

$$
\begin{aligned}
& \sigma: L\left(X A^{\prime}, Y\right) \xrightarrow{!A} L\left(X A^{\prime} A, Y A\right) \xrightarrow{L(1 \eta, 1)} L(X, Y A), \\
& \tau: L(X, Y A) \xrightarrow{!A^{\prime}} L\left(X A^{\prime}, Y A A^{\prime}\right) \xrightarrow{L(1,1 \epsilon)} L\left(X A^{\prime}, Y\right),
\end{aligned}
$$

which are inverse to each other.
We assume that \mathcal{A} is left rigid, that is, for every object $A \in \mathcal{A}$ there exists a duality ($A^{\prime}, A, \epsilon, \eta$). We choose such a duality for each $A \in \mathcal{A}$ and denote it by

$$
\left(A^{c}, A, \epsilon_{A}: A^{c} A \rightarrow I, \eta_{A}: I \rightarrow A A^{c}\right)
$$

Then the assignment $A \mapsto A^{c}$ becomes a contravariant functor $\mathcal{A} \rightarrow \mathcal{A}$. For a morphism $f: A \rightarrow B$ one has a morphism $f^{c}: B^{c} \rightarrow A^{c}$ so that the
following diagrams are commutative.

We have also natural isomorphisms $(A B)^{c} \cong B^{c} A^{c}, I^{c} \cong I$. For simplicity we assume that $(A B)^{c}=B^{c} A^{c}, I^{c}=I$ and the natural isomorphisms are the identities. This means that the diagrams

commute for $A, B \in \mathcal{A}$.
Proposition 3.4 Let $L \in \mathbf{D}(\mathcal{X}, \mathcal{Y})$. There is a one-to-one correspondence between the following two objects:

- a family of maps

$$
A!: L(X, Y) \rightarrow L(A X, A Y)
$$

for all $A \in \mathcal{A}, X \in \mathcal{X}, Y \in \mathcal{Y}$ satisfying (2.2.i)-(2.2.iv).

- a family of isomorphisms

$$
\tau_{A}: L(X, A Y) \rightarrow L\left(A^{c} X, Y\right)
$$

for all $A \in \mathcal{A}, X \in \mathcal{X}, Y \in \mathcal{Y}$ satisfying the following conditions:
(i) The maps τ_{A} are natural in X, Y.
(ii) The maps τ_{A} are natural in A in the sense that for any morphism $f: A \rightarrow B$ of \mathcal{A} we have a commutative diagram

$$
\begin{gathered}
L(X, A Y) \xrightarrow{\tau_{A}} L\left(A^{c} X, Y\right) \\
L(1, f 1) \downarrow \\
L(X, B Y) \xrightarrow[\tau_{B}]{ } L\left(B^{c} X, Y\right) .
\end{gathered}
$$

(iii) The diagram

is commutative.
(iv) $\tau_{I}=1$.

Proof. (a) Construction of $A!\mapsto \tau_{A}$. Suppose that the maps A ! are given. We define τ_{A} to be the isomorphism τ of Proposition 3.1 for the duality $\left(A^{c}, A, \epsilon_{A}, \eta_{A}\right)$:

$$
\tau_{A}: L(X, A Y) \xrightarrow{A^{c}!} L\left(A^{c} X, A^{c} A Y\right) \xrightarrow{L\left(1, \epsilon_{A} 1\right)} L\left(A^{c} X, Y\right) .
$$

Its inverse is given by

$$
\sigma_{A}: L\left(A^{c} X, Y\right) \xrightarrow{A!} L\left(A A^{c} X, A Y\right) \xrightarrow{L\left(\eta_{A} 1,1\right)} L(X, A Y) .
$$

Let us verify (i)-(iv). (i) and (iv) are obvious.
Proof of (ii): Let $f: A \rightarrow B$ be a morphism. We have a commutative diagram

The commutativity of the bottom quadrangle follows from that of the diagram

Hence, looking at the surrounding arrows, we obtain the commutative dia-
gram

$$
\begin{array}{cc}
L(X, A Y) \xrightarrow{\tau_{A}} & L\left(A^{c} X, Y\right) \\
L(1, f 1) \downarrow & \\
L(X, B Y) \xrightarrow[\tau_{B}]{\longrightarrow} & L\left(B^{c} X, Y\right) .
\end{array}
$$

Proof of (iii): Let $A, B \in \mathcal{A}$. We have a commutative diagram

The upper horizontal arrows yield $\left(B^{c} A^{c}\right)$! and the right vertical arrows yield $L\left(1, \epsilon_{A B} 1\right)$, and the composition of these is $\tau_{A B}$. Hence $\tau_{A B}=\tau_{B} \circ$ τ_{A}.
(b) Construction of $\tau_{A} \mapsto A!$. Suppose that the maps τ_{A} are given. Let $\sigma_{A}=\tau_{A}^{-1}$. Define A ! to be the composite

$$
L(X, Y) \xrightarrow{L\left(\epsilon_{A} 1,1\right)} L\left(A^{c} A X, Y\right) \xrightarrow{\sigma_{A}} L(A X, A Y) .
$$

Let us verify (2.2.i)-(2.2.iv). (2.2.i) and (2.2.iv) are obvious.
Proof of (2.2.ii): Let $f: A \rightarrow B$ be a morphism. We have a commutative diagram

Hence

is commutative.
Proof of (2.2.iii): Let $A, B \in \mathcal{A}$. We have a commutative diagram

The upper horizontal arrows yield $L\left(\epsilon_{B A} 1,1\right)$, and the right vertical arrows yield $\sigma_{B A}$, and the composition of these is $(B A)!$. Hence $(B A)!=B!\circ A!$.
(c) Let us verify that the constructions of (a) and (b) are inverse to each other.

Firstly let $A!\mapsto \tau_{A}$ by construction (a). Proposition 3.2 tells us that $\tau_{A} \mapsto A!$.

Secondly let $\tau_{A} \mapsto A$! by construction (b). We have a commutative diagram

Since the lower horizontal composite is the identity, we have

$$
\sigma_{A}=\tau_{A}^{-1}=L(\eta 1,1) \circ A!.
$$

This means that $A!\mapsto \tau_{A}$. This concludes the proof.
For any categories \mathcal{X} and \mathcal{Y} we have an isomorphism of categories

$$
\mathbf{D}(\mathcal{X}, \mathcal{Y}) \cong \operatorname{Hom}\left(\mathcal{Y}, \operatorname{Hom}\left(\mathcal{X}^{\mathrm{op}}, \mathcal{V}\right)\right)
$$

Here \mathcal{V} denotes the category of k-vector spaces, and $\operatorname{Hom}(-,-)$ means
the functor category. This isomorphism connects $L \in \mathbf{D}(\mathcal{X}, \mathcal{Y})$ and $K \in$ $\operatorname{Hom}\left(\mathcal{Y}, \operatorname{Hom}\left(\mathcal{X}^{\mathrm{op}}, \mathcal{V}\right)\right)$ so that

$$
L(X, Y)=K(Y)(X)
$$

Let \mathcal{X} be a left \mathcal{A}-module. Then the category $\operatorname{Hom}\left(\mathcal{X}^{\text {op }}, \mathcal{V}\right)$ becomes a left \mathcal{A}-module with action

$$
\mathcal{A} \times \operatorname{Hom}\left(\mathcal{X}^{\mathrm{op}}, \mathcal{V}\right) \rightarrow \operatorname{Hom}\left(\mathcal{X}^{\mathrm{op}}, \mathcal{V}\right):(A, F) \mapsto A F
$$

defined by

$$
(A F)(X)=F\left(A^{c} X\right)
$$

Let \mathcal{X}, \mathcal{Y} be left \mathcal{A}-modules. Let

$$
L \in \mathbf{D}(\mathcal{X}, \mathcal{Y}) \quad \text { and } \quad K \in \operatorname{Hom}\left(\mathcal{Y}, \operatorname{Hom}\left(\mathcal{X}^{\mathrm{op}}, \mathcal{V}\right)\right)
$$

correspond under the above isomorphism. Then a map

$$
L(X, A Y) \rightarrow L\left(A^{c} X, Y\right)
$$

is rewritten as

$$
K(A Y)(X) \rightarrow(A(K(Y)))(X)
$$

A family of isomorphisms

$$
\tau_{A}: L(X, A Y) \rightarrow L\left(A^{c} X, Y\right)
$$

for all A, X, Y satisfying (i)-(iv) of Proposition 3.4 is the same thing as a family of isomorphisms

$$
\lambda_{A, Y}: K(A Y) \rightarrow A(K(Y))
$$

for all A, Y satisfying (1.1.i)-(1.1.iii) for K. So Proposition 3.3 says that there is a one-to-one correspondence between a family of maps A ! giving L a left \mathcal{A}-action and a family of isomorphisms $\lambda_{A, Y}$ giving K a left \mathcal{A}-linear structure. Thus we obtain

Proposition 3.5 We have an isomorphism of categories

$$
{ }_{\mathcal{A}} \mathbf{D}(\mathcal{X}, \mathcal{Y}) \cong \operatorname{Hom}_{\mathcal{A}}\left(\mathcal{Y}, \operatorname{Hom}\left(\mathcal{X}^{\mathrm{op}}, \mathcal{V}\right)\right)
$$

Under this isomorphism objects $L \in{ }_{\mathcal{A}} \mathbf{D}(\mathcal{X}, \mathcal{Y})$ and
$K \in \operatorname{Hom}_{\mathcal{A}}\left(\mathcal{Y}, \operatorname{Hom}\left(\mathcal{X}^{\mathrm{op}}, \mathcal{V}\right)\right)$ correspond in the following way: We have

$$
L(X, Y)=K(Y)(X)
$$

and the map

$$
A!: L(X, Y) \rightarrow L(A X, A Y)
$$

equals

$$
\begin{aligned}
K(Y)(X) \xrightarrow{K(Y)\left(\epsilon_{A} 1\right)} K(Y) & \left(A^{c} A X\right) \\
& =(A(K(Y)))(A X) \xrightarrow{\lambda_{A, Y}^{-1}} K(A Y)(A X),
\end{aligned}
$$

where λ is the left \mathcal{A}-linear structure of K.
Let \mathcal{B} be a tensor category. Assume that \mathcal{B} is right rigid, namely for every object $B \in \mathcal{B}$ there is a duality ($B, B^{\prime}, \epsilon, \eta$). We choose such a duality for each B and denote it by

$$
\left(B, B^{d}, \epsilon_{B}: B B^{d} \rightarrow I, \eta_{B}: I \rightarrow B^{d} B\right) .
$$

Then the assignment $B \mapsto B^{d}$ becomes a functor $\mathcal{B}^{\text {op }} \rightarrow \mathcal{B}$. We assume that the natural isomorphisms $(A B)^{d} \cong B^{d} A^{d}$ and $I^{d} \cong I$ are identities.

Let \mathcal{X}, \mathcal{Y} be right \mathcal{B}-modules. The category $\operatorname{Hom}\left(\mathcal{X}^{\mathrm{op}}, \mathcal{V}\right)$ becomes a right \mathcal{B}-module with action $(F, B) \mapsto F B$ defined by

$$
(F B)(X)=F\left(X B^{d}\right) .
$$

For the sake of later use we state versions of the previous proposition for right modules and bimodules.

Proposition 3.6 We have an isomorphism of categories

$$
\mathbf{D}(\mathcal{X}, \mathcal{Y})_{\mathcal{B}} \cong \operatorname{Hom}_{\mathcal{B}}\left(\mathcal{Y}, \operatorname{Hom}\left(\mathcal{X}^{\mathrm{op}}, \mathcal{V}\right)\right) .
$$

Under this isomorphism objects $L \in \mathbf{D}(\mathcal{X}, \mathcal{Y})_{\mathcal{B}}$ and $K \in \operatorname{Hom}_{\mathcal{B}}\left(\mathcal{Y}, \operatorname{Hom}\left(\mathcal{X}^{\mathrm{op}}, \mathcal{V}\right)\right)$ correspond in the following way: We have

$$
L(X, Y)=K(Y)(X)
$$

and the map

$$
!B: L(X, Y) \rightarrow L(X B, Y B)
$$

equals

$$
\begin{aligned}
K(Y)(X) & \xrightarrow{K(Y)\left(1 \epsilon_{B}\right)} K(Y)\left(X B B^{d}\right)= \\
& (K(Y) B)(X B) \xrightarrow{\rho_{Y, B}^{-1}} K(Y B)(X B),
\end{aligned}
$$

where ρ is the right \mathcal{A}-linear structure of K.
Let \mathcal{X}, \mathcal{Y} be $(\mathcal{A}, \mathcal{B})$-bimodules. The category $\operatorname{Hom}\left(\mathcal{X}^{\text {op }}, \mathcal{V}\right)$ becomes an $(\mathcal{A}, \mathcal{B})$-bimodule.

Proposition 3.7 We have an isomorphism of categories

$$
{ }_{\mathcal{A}} \mathbf{D}(\mathcal{X}, \mathcal{Y})_{\mathcal{B}} \cong \operatorname{Hom}_{\mathcal{A}, \mathcal{B}}\left(\mathcal{Y}, \operatorname{Hom}\left(\mathcal{X}^{\mathrm{op}}, \mathcal{V}\right)\right) .
$$

Later we will use this in the case $\mathcal{A}=\mathcal{B}=\mathcal{X}=\mathcal{Y}$.

4. \quad Centralizer $\mathrm{Z}_{\mathcal{A}}\left(\operatorname{Hom}\left(\mathcal{A}^{\mathrm{op}}, \mathcal{V}\right)\right)$

Let \mathcal{A} be a tensor category. The functor category $\operatorname{Hom}\left(\mathcal{A}^{\text {op }}, \mathcal{V}\right)$ becomes a tensor category (Section 7) and has the center $\mathbf{Z}\left(\operatorname{Hom}\left(\mathcal{A}^{\mathrm{op}}, \mathcal{V}\right)\right)$. When \mathcal{A} is rigid, the center is isomorphic to the centralizer $\mathbf{Z}_{\mathcal{A}}\left(\operatorname{Hom}\left(\mathcal{A}^{\mathrm{op}}, \mathcal{V}\right)\right)$ (Section 8). Our purpose is to show the equivalence

$$
{ }_{\mathcal{A}} \mathbf{D}(\mathcal{A}, \mathcal{A})_{\mathcal{A}} \simeq \mathbf{Z}_{\mathcal{A}}\left(\operatorname{Hom}\left(\mathcal{A}^{\mathrm{op}}, \mathcal{V}\right)\right)
$$

In what follows we assume that \mathcal{A} is left and right rigid, and we choose for each $A \in \mathcal{A}$ dualities

$$
\left(A^{c}, A, \epsilon_{A}: A^{c} A \rightarrow I, \eta_{A}: I \rightarrow A A^{c}\right)
$$

and

$$
\left(A, A^{d}, \epsilon_{A}: A A^{d} \rightarrow I, \eta_{A}: I \rightarrow A^{d} A\right) .
$$

Though we use the same letters ϵ_{A}, η_{A} for different morphisms, it will not cause confusion. We further assume that the natural isomorphisms

$$
(A B)^{c} \cong B^{c} A^{c}, \quad I^{c} \cong I, \quad(A B)^{d} \cong B^{d} A^{d}, \quad I^{d} \cong I
$$

are all identities.
As \mathcal{A} is an $(\mathcal{A}, \mathcal{A})$-bimodule, the category $\operatorname{Hom}\left(\mathcal{A}^{\mathrm{op}}, \mathcal{V}\right)$ becomes an $(\mathcal{A}, \mathcal{A})$-bimodule by the recipe of Section 3 . So we have the centralizer
$\mathbf{Z}_{\mathcal{A}}\left(\operatorname{Hom}\left(\mathcal{A}^{\mathrm{op}}, \mathcal{V}\right)\right)$. In this section we describe an object of $\mathbf{Z}_{\mathcal{A}}\left(\operatorname{Hom}\left(\mathcal{A}^{\mathrm{op}}, \mathcal{V}\right)\right)$ in two ways.

For $F \in \operatorname{Hom}\left(\mathcal{A}^{\mathrm{op}}, \mathcal{V}\right)$ and a morphism f of \mathcal{A}, we write $f^{*}=F(f)$. Recall from Section 3 that for $A \in \mathcal{A}$ and $F \in \operatorname{Hom}\left(\mathcal{A}^{\text {op }}, \mathcal{V}\right)$ the objects $A F, F A \in \operatorname{Hom}\left(\mathcal{A}^{\mathrm{op}}, \mathcal{V}\right)$ are defined by

$$
(A F)(X)=F\left(A^{c} X\right), \quad(F A)(X)=F\left(X A^{d}\right)
$$

for $X \in \mathcal{A}$. Recall also that an object of $\mathbf{Z}_{\mathcal{A}}\left(\operatorname{Hom}\left(\mathcal{A}^{\mathrm{op}}, \mathcal{V}\right)\right)$ is an object $F \in \operatorname{Hom}\left(\mathcal{A}^{\mathrm{op}}, \mathcal{V}\right)$ equipped with a family of isomorphisms $\omega_{A}: A F \rightarrow F A$ for all A satisfying (1.4.i)-(1.4.iii). The isomorphism ω_{A} is in itself a family of isomorphisms

$$
\left(\omega_{A}\right)_{X}:(A F)(X)=F\left(A^{c} X\right) \rightarrow F\left(X A^{d}\right)=(F A)(X)
$$

for all X which are natural in X. (1.4.i)-(1.4.iii) are rephrased into the following:
(4.1.i) For a morphism $f: A \rightarrow B$ of \mathcal{A} the diagram

$$
\begin{array}{ccc}
F\left(A^{c} X\right) \xrightarrow{\left(\omega_{A}\right)_{X}} & F\left(X A^{d}\right) \\
\left(f^{c} 1\right)^{*} \downarrow & & \downarrow\left(1 f^{d}\right)^{*} \\
F\left(B^{c} X\right) \xrightarrow[\left(\omega_{B}\right)_{X}]{ } & F\left(X B^{d}\right)
\end{array}
$$

is commutative.
(4.1.ii) The diagram

$$
F\left(B^{c} A^{c} X\right) \xrightarrow{\left(\omega_{B}\right)_{A}^{c} X} \underbrace{}_{\left(\omega_{A B}\right)_{X}} F\left(A^{c} X B^{d}\right)
$$

is commutative.
(4.1.iii) $\quad\left(\omega_{I}\right)_{X}=1$.

Thus we may say an object of $\mathbf{Z}_{\mathcal{A}}\left(\operatorname{Hom}\left(\mathcal{A}^{\text {op }}, \mathcal{V}\right)\right)$ is an object $F \in$ $\operatorname{Hom}\left(\mathcal{A}^{\mathrm{op}}, \mathcal{V}\right)$ equipped with a family of isomorphisms $\left(\omega_{A}\right)_{X}: F\left(A^{c} X\right) \rightarrow$ $F\left(X A^{d}\right)$ which are natural in X and satisfy (4.1.i)-(4.1.iii).

Let us give another description of $\mathbf{Z}_{\mathcal{A}}\left(\operatorname{Hom}\left(\mathcal{A}^{\mathrm{op}}, \mathcal{V}\right)\right)$. Let $F: \mathcal{A}^{\mathrm{op}} \rightarrow \mathcal{V}$
be a functor. For $A \in \mathcal{A}$ define the functor $F^{A}: \mathcal{A}^{\mathrm{op}} \rightarrow \mathcal{V}$ by

$$
F^{A}(X)=F\left(A X A^{d}\right)
$$

Proposition 4.2 Let $F \in \operatorname{Hom}\left(\mathcal{A}^{\mathrm{op}}, \mathcal{V}\right)$. There is a one-to-one correspondence between the following two objects.

- A family of isomorphisms $\omega_{A}: A F \rightarrow F A$ in $\operatorname{Hom}\left(\mathcal{A}^{\text {op }}, \mathcal{V}\right)$ for all $A \in$ \mathcal{A} satisfying (4.1.i)-(4.1.iii).
- A family of morphisms $\gamma_{A}: F \rightarrow F^{A}$ in $\operatorname{Hom}\left(\mathcal{A}^{\mathrm{op}}, \mathcal{V}\right)$ for all $A \in \mathcal{A}$ satisfying the following conditions.
(i) For a morphism $f: A \rightarrow B$ of \mathcal{A} the diagram

commutes.
(ii) For $A, B \in \mathcal{A}$ the diagram

commutes.
(iii) $\gamma_{I}=1$.

We call the family of such γ_{A} the conjugate structure. The proposition says that there is a one-to-one correspondence between central structures and conjugate structures on F.

Proof. (a) Construction of $\omega \mapsto \gamma$: Suppose that a family ω is given. Define $\left(\gamma_{A}\right)_{X}$ to be the composite

$$
F(X) \xrightarrow{\left(\epsilon_{A} 1\right)^{*}} F\left(A^{c} A X\right) \xrightarrow{\left(\omega_{A}\right)_{A X}} F\left(A X A^{d}\right) .
$$

Let us verify (i)-(iii).
Proof of (i): Let $f: A \rightarrow B$ be a morphism. We have commutative dia-
grams

$$
\begin{gathered}
F(X) \xrightarrow{\left(\epsilon_{A} 1\right)^{*}} F\left(A^{c} A X\right) \xrightarrow{\left(f^{c} 11\right)^{*}} F\left(B^{c} A X\right) \\
F\left(A X A^{d}\right) \xrightarrow[\left(11 f^{d}\right)^{*}]{\longrightarrow} F\left(A X B^{d}\right), \\
F(X) \xrightarrow{\gamma_{A}} \stackrel{\left.\epsilon_{B} 1\right)^{*}}{\longrightarrow} F\left(B^{c} B X\right) \xrightarrow{(1 f 1)^{*}} F\left(B^{c} A X\right) \\
\gamma_{B} \quad \downarrow \omega_{B} \\
F\left(B X B^{d}\right) \xrightarrow{(f 11)^{*}} F\left(A X B^{d}\right),
\end{gathered}
$$

and

$$
\begin{array}{ccc}
F(X) & \xrightarrow{\left(\epsilon_{A} 1\right)^{*}} & F\left(A^{c} A X\right) \\
\left(\epsilon_{B} 1\right)^{*} \downarrow & & \downarrow\left(f^{c} 11\right)^{*} \\
F\left(B^{c} B X\right) \xrightarrow[(1 f 1)^{*}]{ } & F\left(B^{c} A X\right) .
\end{array}
$$

It follows that

$$
\begin{array}{ccc}
F(X) & \xrightarrow{\gamma_{A}} & F\left(A X A^{d}\right) \\
\gamma_{B} \downarrow & & \left(11 f^{d}\right)^{*} \\
F\left(B X B^{d}\right) \xrightarrow[(f 11)^{*}]{ } & F\left(A X B^{d}\right)
\end{array}
$$

is commutative.
Proof of (ii): We have a commutative diagram

The composition of the upper horizontal arrows equals $\left(\epsilon_{A B} 1\right)^{*}$, and the
composition of the right vertical arrows equals $\omega_{A B}$. The composition of these equals $\gamma_{A B}$. Hence $\gamma_{A} \circ \gamma_{B}=\gamma_{A B}$.
(iii) is obvious.
(b) Construction of $\gamma \mapsto \omega$. Suppose that a family γ is given. Define $\left(\omega_{A}\right)_{X},\left(\omega_{A}^{\prime}\right)_{X}$ to be the composites

$$
\begin{aligned}
& \left(\omega_{A}\right)_{X}: F\left(A^{c} X\right) \xrightarrow{\gamma_{A}} F\left(A A^{c} X A^{d}\right) \xrightarrow{\left(\eta_{A} 11\right)^{*}} F\left(X A^{d}\right) \\
& \left(\omega_{A}^{\prime}\right)_{X}: F\left(X A^{d}\right) \xrightarrow{\gamma_{A^{c}}} F\left(A^{c} X A^{d}\left(A^{c}\right)^{d}\right) \\
& \quad=F\left(A^{c} X\left(A^{c} A\right)^{d}\right) \xrightarrow{\left(11 \epsilon_{A}^{d}\right)^{*}} F\left(A^{c} X\right) .
\end{aligned}
$$

Let us verify (4.1.i)-(4.1.iii) and that ω_{A} and ω_{A}^{\prime} are inverse to each other. Proof of (4.1.i): Let $f: A \rightarrow B$ be a morphism. We have a commutative diagram

Hence the composites

$$
F\left(A^{c} X\right) \xrightarrow{\gamma_{A}} F\left(A A^{c} X A^{d}\right) \xrightarrow{\left(\eta_{A} 11\right)^{*}} F\left(X A^{d}\right) \xrightarrow{\left(1 f^{d}\right)^{*}} F\left(X B^{d}\right)
$$

and

$$
F\left(A^{c} X\right) \xrightarrow{\left(f^{c} 1\right)^{*}} F\left(B^{c} X\right) \xrightarrow{\gamma_{B}} F\left(B B^{c} X B^{d}\right) \xrightarrow{\left(\eta_{B} 11\right)^{*}} F\left(X B^{d}\right)
$$

are equal.
By the definition of ω, this means that

is commutative.

Proof of (4.1.ii): We have a commutative diagram

The composition of the upper horizontal arrows equals $\gamma_{A B}$ and the composition of the right vertical arrows equals $\left(\eta_{A B} 111\right)^{*}$. The composition of these equals $\omega_{A B}$. Hence $\left(\omega_{A}\right)_{X B^{d}} \circ\left(\omega_{B}\right)_{A^{c} X}=\left(\omega_{A B}\right)_{X}$.
(4.1.iii) is obvious.

Proof of $\omega_{A}^{\prime} \circ \omega_{A}=1$: We have a commutative diagram

By (ii) this results in a commutative diagram

$$
\begin{array}{cc}
F\left(X A^{d}\right) \xrightarrow{\gamma_{A A^{c}}} & F\left(A A^{c} X A^{d}\left(A^{c}\right)^{d} A^{d}\right) \\
\omega_{A} \circ \omega_{A}^{\prime} \downarrow & \downarrow\left(\eta_{A} 1111\right)^{*} \\
F\left(X A^{d}\right) \underset{\left(1 \epsilon_{A}^{d} 1\right)^{*}}{\stackrel{1}{2}} & F\left(X A^{d}\left(A^{c}\right)^{d} A^{d}\right) .
\end{array}
$$

By (i) and (iii)

is commutative. Hence

$$
\omega_{A} \circ \omega_{A}^{\prime}=\left(1 \epsilon_{A}^{d} 1\right)^{*} \circ\left(11 \eta_{A}^{d}\right)^{*}=1
$$

Proof of $\omega_{A} \circ \omega_{A}^{\prime}=1$: We have a commutative diagram

$$
F\left(A^{c} X\right) \xrightarrow{\gamma_{A}} F\left(A A^{c} X A^{d}\right) \xrightarrow{\gamma_{A^{c}}} F\left(A^{c} A A^{c} X A^{d}\left(A^{c}\right)^{d}\right)
$$

By (ii) this results in a commutative diagram

$$
\begin{gathered}
F\left(A^{c} X\right) \xrightarrow{\gamma_{A^{c} A}} \\
\omega_{A}^{\prime} \circ \omega_{A} \downarrow\left(A^{c} A A^{c} X A^{d}\left(A^{c}\right)^{d}\right) \\
F\left(A^{c} X\right) \underset{\left(1 \eta_{A} 1\right)^{*}}{\overleftarrow{\omega^{*}}} \\
\qquad\left(1111 \epsilon_{A}^{d}\right)^{*} \\
\end{gathered}
$$

By (i) and (iii) the diagram

is commutative. Hence

$$
\omega_{A}^{\prime} \circ \omega_{A}=\left(1 \eta_{A} 1\right)^{*} \circ\left(\epsilon_{A} 11\right)^{*}=1
$$

(c) Let us verify that the constructions of (a) and (b) are inverse to each other.

Firstly suppose that ω is given. Let $\omega \mapsto \gamma$. We have a commutative diagram

$$
F\left(A^{c} X\right) \xrightarrow{\left(\epsilon_{A} 11\right)^{*}} F\left(A^{c} A A^{c} X\right) \xrightarrow{\left(1 \eta_{A} 1\right)^{*}} F\left(A^{c} X\right)
$$

Since the composition of the horizontal arrows is the identity, we have

$$
\omega_{A}=\left(\eta_{A} 11\right)^{*} \circ \gamma_{A}
$$

This means that $\gamma \mapsto \omega$.
Secondly suppose that γ is given. Let $\gamma \mapsto \omega$. We have a commutative diagram

Since the composition of the horizontal arrows is the identity, we have

$$
\gamma_{A}=\omega_{A} \circ\left(\epsilon_{A} 1\right)^{*}
$$

This means that $\omega \mapsto \gamma$.
The proof is completed.

5. Equivalence $\mathrm{Z}_{\mathcal{A}}\left(\operatorname{Hom}\left(\mathcal{A}^{\mathrm{op}}, \mathcal{V}\right)\right) \simeq{ }_{\mathcal{A}} \mathrm{D}(\mathcal{A}, \mathcal{A})_{\mathcal{A}}$

Theorem 5.1 We have an equivalence

$$
\Delta: \mathbf{Z}_{\mathcal{A}}\left(\operatorname{Hom}\left(\mathcal{A}^{\mathrm{op}}, \mathcal{V}\right)\right) \rightarrow_{\mathcal{A}} \mathbf{D}(\mathcal{A}, \mathcal{A})_{\mathcal{A}}
$$

Under this equivalence an object $F \in \mathbf{Z}_{\mathcal{A}}\left(\operatorname{Hom}\left(\mathcal{A}^{\mathrm{op}}, \mathcal{V}\right)\right)$ is mapped to an object $L \in{ }_{\mathcal{A}} \mathbf{D}(\mathcal{A}, \mathcal{A})_{\mathcal{A}}$ defined as follows: We have

$$
L(X, Y)=F\left(X Y^{d}\right)
$$

The operation $!A: L(X, Y) \rightarrow L(X A, Y A)$ is given by

$$
\left(1 \epsilon_{A} 1\right)^{*}: F\left(X Y^{d}\right) \rightarrow F\left(X A A^{d} Y^{d}\right)=F\left(X A(Y A)^{d}\right)
$$

The operation $A!: L(X, Y) \rightarrow L(A X, A Y)$ is given by

$$
\left(\gamma_{A}\right)_{X Y^{d}}: F\left(X Y^{d}\right) \rightarrow F\left(A X Y^{d} A^{d}\right)
$$

where $\gamma_{A}: F \rightarrow F^{A}$ is the conjugate structure of F.

Proof. Applying Proposition 3.7 to the $(\mathcal{A}, \mathcal{A})$-bimodule $\mathcal{X}=\mathcal{Y}=\mathcal{A}$, we have the isomorphism

$$
\begin{equation*}
{ }_{\mathcal{A}} \mathbf{D}(\mathcal{A}, \mathcal{A})_{\mathcal{A}} \cong \operatorname{Hom}_{\mathcal{A}, \mathcal{A}}\left(\mathcal{A}, \operatorname{Hom}\left(\mathcal{A}^{\mathrm{op}}, \mathcal{V}\right)\right) \tag{1}
\end{equation*}
$$

Applying Proposition 1.5 to the $(\mathcal{A}, \mathcal{A})$-bimodule $\operatorname{Hom}\left(\mathcal{A}^{\text {op }}, \mathcal{V}\right)$, we have the equivalence

$$
\begin{equation*}
\operatorname{Hom}_{\mathcal{A}, \mathcal{A}}\left(\mathcal{A}, \operatorname{Hom}\left(\mathcal{A}^{\mathrm{op}}, \mathcal{V}\right)\right) \simeq \mathbf{Z}_{\mathcal{A}}\left(\operatorname{Hom}\left(\mathcal{A}^{\mathrm{op}}, \mathcal{V}\right)\right) \tag{2}
\end{equation*}
$$

Combining these, we obtain the equivalence

$$
{ }_{\mathcal{A}} \mathbf{D}(\mathcal{A}, \mathcal{A})_{\mathcal{A}} \simeq \mathbf{Z}_{\mathcal{A}}\left(\operatorname{Hom}\left(\mathcal{A}^{\mathrm{op}}, \mathcal{V}\right)\right)
$$

Suppose that an object $F \in \mathbf{Z}_{\mathcal{A}}\left(\operatorname{Hom}\left(\mathcal{A}^{\text {op }}, \mathcal{V}\right)\right)$ is mapped to an object $K \in \operatorname{Hom}_{\mathcal{A}, \mathcal{A}}\left(\mathcal{A}, \operatorname{Hom}\left(\mathcal{A}^{\mathrm{op}}, \mathcal{V}\right)\right)$ under (2), and K is mapped to an object $L \in{ }_{\mathcal{A}} \mathbf{D}(\mathcal{A}, \mathcal{A})_{\mathcal{A}}$ under (1). Then we have

$$
K(Y)=F Y
$$

for $Y \in \mathcal{A}$, and

$$
L(X, Y)=K(Y)(X)
$$

for $X, Y \in \mathcal{A}$, so

$$
L(X, Y)=(F Y)(X)=F\left(X Y^{d}\right)
$$

By Proposition 1.5 the right \mathcal{A}-linear structure $\rho_{Y, A}: K(Y A) \rightarrow K(Y) A$ of K is the identity $F Y A \rightarrow F Y A$. By Proposition 3.6 the operation

$$
!A: L(X, Y) \rightarrow L(X A, Y A)
$$

is the map

$$
\begin{aligned}
K(Y)(X) \xrightarrow{K(Y)\left(1 \epsilon_{A}\right)} K(Y)\left(X A A^{d}\right) & \\
& =(K(Y) A)(X A) \xrightarrow{\rho_{Y, A}^{-1}} K(Y A)(X A)
\end{aligned}
$$

This equals the map

$$
\left(1 \epsilon_{A} 1\right)^{*}: F\left(X Y^{d}\right) \rightarrow F\left(X A A^{d} Y^{d}\right)=F\left(X A(Y A)^{d}\right)
$$

By Proposition 1.5 the inverse $\lambda_{A, Y}^{-1}: A K(Y) \rightarrow K(A Y)$ of the left
\mathcal{A}-linear structure is given by

$$
\omega_{A} 1: A F Y \rightarrow F A Y
$$

where $\omega_{A}: A F \rightarrow F A$ is the central structure of F. By Proposition 3.5 the operation $A!: L(X, Y) \rightarrow L(A X, A Y)$ is the map

$$
\begin{aligned}
K(Y)(X) \xrightarrow{K(Y)\left(\epsilon_{A} 1\right)} K(Y) & \left(A^{c} A X\right) \\
& =(A(K(Y)))(A X) \xrightarrow{\lambda_{A, Y}^{-1}} K(A Y)(A X) .
\end{aligned}
$$

This equals the map

$$
F\left(X Y^{d}\right) \xrightarrow{\left(\epsilon_{A} 111\right)^{*}} F\left(A^{c} A X Y^{d}\right) \xrightarrow{\omega_{A}} F\left(A X Y^{d} A^{d}\right),
$$

which is identical to the map $\left(\gamma_{A}\right)_{X Y^{d}}$ by (a) of the proof of Proposition 4.2.
The proof is completed.

6. Tensor product in $\mathrm{D}(\mathcal{X}, \mathcal{X})$

We first review the definition of the tensor product (called also the composition) of distributors ([1]). Let \mathcal{X} be a category. Let $L, M, N \in$ $\mathbf{D}(\mathcal{X}, \mathcal{X})$. A bilinear morphism $\pi:(L, M) \rightarrow N$ is a family of linear maps

$$
\pi_{X, Y, Z}: L(X, Y) \otimes M(Y, Z) \rightarrow N(X, Z)
$$

for all $X, Y, Z \in \mathcal{X}$ satisfying the following conditions.
(i) $\pi_{X, Y, Z}$ is natural in X, Y, and Z.
(ii) If $g: Y \rightarrow Y^{\prime}$ is a morphism of \mathcal{X}, then the digram

$$
\begin{gathered}
L(X, Y) \otimes M\left(Y^{\prime}, Z\right) \xrightarrow{L(1, g) \otimes 1} L\left(X, Y^{\prime}\right) \otimes M\left(Y^{\prime}, Z\right) \\
1 \otimes M(g, 1) \downarrow \\
L(X, Y) \otimes M(Y, Z) \xrightarrow[\pi_{X, Y, Z}]{ } \quad \begin{array}{l}
\pi_{X, Y^{\prime}, Z} \\
N(X, Z)
\end{array}
\end{gathered}
$$

is commutative.
Given $L, M \in \mathbf{D}(\mathcal{X}, \mathcal{X})$, there is a bilinear morphism $\pi:(L, M) \rightarrow N$ having the universal property: if $\pi^{\prime}:(L, M) \rightarrow N^{\prime}$ is a bilinear morphism, there exists a unique morphism $f: N \rightarrow N^{\prime}$ such that $\pi_{X, Y, Z}^{\prime}=f_{X, Z} \circ$ $\pi_{X, Y, Z}$ for all X, Y, Z. One may construct such an N as

$$
\begin{aligned}
N(X, Z)=\text { Coequalizer }\left(\bigoplus_{g: Y \rightarrow Y^{\prime}}\right. & L(X, Y) \otimes M\left(Y^{\prime}, Z\right) \\
& \left.\rightrightarrows \bigoplus_{Y} L(X, Y) \otimes M(Y, Z)\right),
\end{aligned}
$$

where the two arrows have components $L(1, g) \otimes 1$ and $1 \otimes M(g, 1)$. We choose a universal bilinear morphism $\pi:(L, M) \rightarrow N$ and write $L \otimes M=$ N.

The hom-functor

$$
\text { Hom: } \mathcal{X}^{\mathrm{op}} \times \mathcal{X} \rightarrow \mathcal{V}:(X, Y) \mapsto \operatorname{Hom}(X, Y)
$$

is a distributor on \mathcal{X}. This has the property

$$
L \otimes \operatorname{Hom} \cong L \cong \operatorname{Hom} \otimes L
$$

for any $L \in \mathbf{D}(\mathcal{X}, \mathcal{X})$. These isomorphisms are given by

$$
\pi\left(x \otimes 1_{Y}\right) \leftrightarrow x \leftrightarrow \pi\left(1_{X} \otimes x\right)
$$

for $x \in L(X, Y)$.
With the above tensor product and the unit object Hom, the category $\mathbf{D}(\mathcal{X}, \mathcal{X})$ becomes a tensor category.

Let \mathcal{X} be an $(\mathcal{A}, \mathcal{A})$-bimodule. Let $L, M, N \in{ }_{\mathcal{A}} \mathbf{D}(\mathcal{X}, \mathcal{X})_{\mathcal{A}}$ and let $\pi:(L, M) \rightarrow N$ be a bilinear morphism. We say π is $(\mathcal{A}, \mathcal{A})$-linear if the diagram

$$
\begin{array}{ccc}
L(X, Y) \otimes M(Y, Z) & \xrightarrow{\pi_{X, Y, Z}} & N(X, Z) \\
A!\otimes A!\downarrow & \downarrow A! \\
L(A X, A Y) \otimes M(A Y, A Z) \xrightarrow{\pi_{A X, A Y, A Z}} N(A X, A Z)
\end{array}
$$

is commutative and a similar diagram for $!A$ is commutative for all A, X, Y, Z.
Given $L, M \in{ }_{\mathcal{A}} \mathbf{D}(\mathcal{X}, \mathcal{X})_{\mathcal{A}}$, the object $L \otimes M \in \mathbf{D}(\mathcal{X}, \mathcal{X})$ naturally admits two-sided action of \mathcal{A} so that $L \otimes M \in{ }_{\mathcal{A}} \mathbf{D}(\mathcal{X}, \mathcal{X})_{\mathcal{A}}$ and the universal bilinear morphism $\pi:(L, M) \rightarrow L \otimes M$ is $(\mathcal{A}, \mathcal{A})$-linear.

With this tensor product the category ${ }_{\mathcal{A}} \mathbf{D}(\mathcal{X}, \mathcal{X})_{\mathcal{A}}$ becomes a tensor category.

7. Tensor product in $\operatorname{Hom}\left(\mathcal{A}^{\mathrm{op}}, \mathcal{V}\right)$

In this section we first review the definition of the tensor product in $\operatorname{Hom}\left(\mathcal{A}^{\text {op }}, \mathcal{V}\right)$ (Day's product [2]) and then examine some isomorphisms of associativity. They are needed later for describing the tensor product in the centralizer $\mathbf{Z}_{\mathcal{A}}\left(\operatorname{Hom}\left(\mathcal{A}^{\mathrm{op}}, \mathcal{V}\right)\right)$.

Let $F, G, H \in \operatorname{Hom}\left(\mathcal{A}^{\mathrm{op}}, \mathcal{V}\right)$. A bilinear morphism $\pi:(F, G) \rightarrow H$ is a family of linear maps

$$
\pi_{X, Y}: F(X) \otimes G(Y) \rightarrow H(X Y)
$$

for all $X, Y \in \mathcal{A}$ which are natural in X and Y.
Given $F, G \in \operatorname{Hom}\left(\mathcal{A}^{\text {op }}, \mathcal{V}\right)$, there is a universal bilinear morphism $\pi:(F, G) \rightarrow F \otimes G$. A construction is given by

$$
(F \otimes G)(Z)=\underline{\longrightarrow} F(X) \otimes G(Y),
$$

where the limit is taken over morphisms $Z \rightarrow X Y$ of \mathcal{A}.
For $A \in \mathcal{A}$ let $h_{A}: \mathcal{A}^{\text {op }} \rightarrow \mathcal{V}$ denote the representable functor $X \mapsto$ $\operatorname{Hom}(X, A)$. The bilinear morphism $\left(h_{A}, h_{B}\right) \rightarrow h_{A B}$ given by

$$
\operatorname{Hom}(X, A) \otimes \operatorname{Hom}(Y, B) \rightarrow \operatorname{Hom}(X Y, A B): f \otimes g \mapsto f g
$$

yields the isomorphism $h_{A} \otimes h_{B} \cong h_{A B}$.
For $F, G, H \in \operatorname{Hom}\left(\mathcal{A}^{\text {op }}, \mathcal{V}\right)$ we similarly define the tensor product $F \otimes$ $G \otimes H$ with universal trilinear morphism $(F, G, H) \rightarrow F \otimes G \otimes H$. We have the canonical isomorphisms

$$
(F \otimes G) \otimes H \cong F \otimes G \otimes H \cong F \otimes(G \otimes H)
$$

The object h_{I} has the property

$$
h_{I} \otimes F \cong F \cong F \otimes h_{I}
$$

for any $F \in \operatorname{Hom}\left(\mathcal{A}^{\mathrm{op}}, \mathcal{V}\right)$.
With this tensor product and the unit object h_{I}, the category $\operatorname{Hom}\left(\mathcal{A}^{\mathrm{op}}, \mathcal{V}\right)$ becomes a tensor category.

In Section 3 we defined $A F$ and $F A$ for $A \in \mathcal{A}$ and $F \in \operatorname{Hom}\left(\mathcal{A}^{\mathrm{op}}, \mathcal{V}\right)$. We now interpret them in terms of tensor product in $\operatorname{Hom}\left(\mathcal{A}^{\mathrm{op}}, \mathcal{V}\right)$.

The universal bilinear morphism $(F, G) \rightarrow F \otimes G$ and the universal trilinear morphism $(F, G, H) \rightarrow F \otimes G \otimes H$ are always denoted by π.

Proposition 7.1 Let $F \in \operatorname{Hom}\left(\mathcal{A}^{\mathrm{op}}, \mathcal{V}\right)$ and $A \in \mathcal{A}$. We have an isomorphism

$$
h_{A} \otimes F \cong A F
$$

This isomorphism takes an element $b \in(A F)(X)=F\left(A^{c} X\right)$ to the element

$$
\left(X \xrightarrow{\eta_{A}^{1}} A A^{c} X\right)^{*} \pi_{A, A^{c} X}\left(1_{A} \otimes b\right) \in\left(h_{A} \otimes F\right)(X)
$$

and conversely takes an element

$$
\pi_{Y, Z}((Y \xrightarrow{f} A) \otimes c) \in\left(h_{A} \otimes F\right)(Y Z)
$$

for $f \in \operatorname{Hom}(Y, A)$ and $c \in F(Z)$ to the element

$$
\left(A^{c} Y Z \xrightarrow{1 f 1} A^{c} A Z \xrightarrow{\epsilon_{A}^{1}} Z\right)^{*}(c) \in(A F)(Y Z)
$$

Proof. For an object $B \in \mathcal{A}$, let $L_{B}: \mathcal{A} \rightarrow \mathcal{A}$ be the functor $X \mapsto B X$. Let $L_{B}^{*}: \operatorname{Hom}\left(\mathcal{A}^{\text {op }}, \mathcal{V}\right) \rightarrow \operatorname{Hom}\left(\mathcal{A}^{\text {op }}, \mathcal{V}\right)$ be the functor $F \mapsto F \circ L_{B}$. Since $L_{A^{c}}$ is a left adjoint of L_{A}, the functor $L_{A^{c}}^{*}$ is a left adjoint of L_{A}^{*}. Thus we have a one-to-one correspondence

$$
\begin{equation*}
\left(\text { morphism } \phi: F \circ L_{A^{c}} \rightarrow G\right) \leftrightarrow\left(\text { morphism } \psi: F \rightarrow G \circ L_{A}\right) \tag{1}
\end{equation*}
$$

in which

$$
\phi_{Z}=\left(F\left(A^{c} Z\right) \xrightarrow{\psi_{A^{c}}} G\left(A A^{c} Z\right) \xrightarrow{\left(\eta_{A} 1\right)^{*}} G(Z)\right)
$$

and

$$
\psi_{Z}=\left(F(Z) \xrightarrow{\left(\epsilon_{A} 1\right)^{*}} F\left(A^{c} A Z\right) \xrightarrow{\phi_{A Z}} G(A Z)\right)
$$

for $Z \in \mathcal{A}$.
As in Yoneda's lemma we have also a one-to-one correspondence

$$
\begin{align*}
\text { (bilinear morphism } \theta:\left(h_{A}, F\right) & \rightarrow G) \\
& \leftrightarrow\left(\text { morphism } \psi: F \rightarrow G \circ L_{A}\right) \tag{2}
\end{align*}
$$

in which

$$
\theta_{Y, Z}((Y \xrightarrow{f} A) \otimes c)=(Y Z \xrightarrow{f 1} A Z)^{*}\left(\psi_{Z}(c)\right)
$$

for $f \in \operatorname{Hom}(Y, A)$ and $c \in F(Z)$.

Combining (1) and (2), we have a one-to-one correspondence (bilinear morphism $\left.\theta:\left(h_{A}, F\right) \rightarrow G\right)$ $\leftrightarrow\left(\right.$ morphism $\left.\phi: F \circ L_{A^{c}} \rightarrow G\right)$
in which

$$
\theta_{Y, Z}((Y \xrightarrow{f} A) \otimes c)=\phi_{Y Z}\left(\left(A^{c} Y Z \xrightarrow{1 f 1} A^{c} A Z \xrightarrow{\epsilon_{A}^{1}} Z\right)^{*}(c)\right)
$$

for $f \in \operatorname{Hom}(Y, A)$ and $c \in F(Z)$. Also $F \circ L_{A^{c}}=A F$. When ϕ is the identity, the corresponding $\theta:\left(h_{A}, F\right) \rightarrow A F$ is given by

$$
\theta_{Y, Z}((Y \xrightarrow{f} A) \otimes c)=\left(A^{c} Y Z \xrightarrow{1 f 1} A^{c} A Z \xrightarrow{\epsilon_{A} 1} Z\right)^{*}(c) .
$$

This means that we have an isomorphism $h_{A} \otimes F \cong A F$ taking the element

$$
\pi_{Y, Z}((Y \xrightarrow{f} A) \otimes c) \in\left(h_{A} \otimes F\right)(Y Z)
$$

to

$$
\left(A^{c} Y Z \xrightarrow{1 f 1} A^{c} A Z \xrightarrow{\epsilon_{A}^{1}} Z\right)^{*}(c) \in(A F)(Y Z) .
$$

For every $b \in(A F)(X)$ this isomorphism takes the element

$$
\left(X \xrightarrow{\eta_{A} 1} A A^{c} X\right)^{*} \pi_{A, A^{c} X}\left(1_{A} \otimes b\right) \in\left(h_{A} \otimes F\right)(X)
$$

to

$$
\left(A^{c} X \xrightarrow{1 \eta_{A} 1} A^{c} A A^{c} X \xrightarrow{\epsilon_{A} 11} A^{c} X\right)^{*}(b)=b .
$$

This proves the proposition.
The version for the right action is as follows.
Proposition 7.2 Let $F \in \operatorname{Hom}\left(\mathcal{A}^{\mathrm{op}}, \mathcal{V}\right)$ and $A \in \mathcal{A}$. We have an isomorphism

$$
F \otimes h_{A} \cong F A
$$

This isomorphism takes an element $b \in(F A)(X)=F\left(X A^{d}\right)$ to the element

$$
\left(X \xrightarrow{1 \eta_{A}} X A^{d} A\right)^{*} \pi_{X A^{d}, A}\left(b \otimes 1_{A}\right) \in\left(F \otimes h_{A}\right)(X),
$$

and conversely takes an element

$$
\pi_{Y, Z}(c \otimes(Z \xrightarrow{f} A)) \in\left(F \otimes h_{A}\right)(Y Z)
$$

for $f \in \operatorname{Hom}(Z, A)$ and $c \in F(Y)$ to the element

$$
\left(Y Z A^{d} \xrightarrow{1 f 1} Y A A^{d} \xrightarrow{1 \epsilon_{A}} Y\right)^{*}(c) \in(F A)(Y Z) .
$$

Our next task is to describe explicitly the natural isomorphisms

$$
A F \otimes G \cong A(F \otimes G), F A \otimes G \cong F \otimes A G, F \otimes G A \cong(F \otimes G) A
$$

Proposition 7.3 Let $F, G \in \operatorname{Hom}\left(\mathcal{A}^{\mathrm{op}}, \mathcal{V}\right)$ and $A \in \mathcal{A}$. We have an isomorphism

$$
A F \otimes G \cong A(F \otimes G)
$$

in which the element

$$
\left(A^{c} X \xrightarrow{p} Y Z\right)^{*} \pi_{Y, Z}(a \otimes c) \in(A(F \otimes G))(X)
$$

for $p: A^{c} X \rightarrow Y Z, a \in F(Y), c \in G(Z)$ is mapped to the element

$$
\begin{aligned}
&\left(X \xrightarrow{\eta_{A} 1} A A^{c} X \xrightarrow{1 p} A Y Z\right)^{*} \pi_{A Y, Z}\left(\left(A^{c} A Y \xrightarrow{\epsilon_{A} 1} Y\right)^{*}(a) \otimes c\right) \\
& \in(A F \otimes G)(X),
\end{aligned}
$$

and conversely the element

$$
(X \xrightarrow{q} Y Z)^{*} \pi_{Y, Z}(b \otimes c) \in(A F \otimes G)(X)
$$

for $q: X \rightarrow Y Z, b \in(A F)(Y), c \in G(Z)$ is mapped to the element

$$
\left(A^{c} X \xrightarrow{1 q} A^{c} Y Z\right)^{*} \pi_{A^{c} Y, Z}(b \otimes c) \in(A(F \otimes G))(X)
$$

Proof. The natural isomorphism of associativity

$$
\left(h_{A} \otimes F\right) \otimes G \cong h_{A} \otimes(F \otimes G)
$$

and the isomorphism of Proposition 7.1 yield an isomorphism

$$
A F \otimes G \cong A(F \otimes G)
$$

We examine the correspondence of elements under this isomorphism.
(a) Under the isomorphism of Proposition 7.1 the element

$$
\left(A^{c} X \xrightarrow{p} Y Z\right)^{*} \pi_{Y, Z}(a \otimes c) \in(A(F \otimes G))(X)
$$

for $a \in F(Y), c \in G(Z)$ corresponds to the element

$$
\begin{aligned}
&\left(X \xrightarrow{\eta_{A} 1} A A^{c} X\right)^{*} \pi_{A, A^{c} X}\left(1_{A} \otimes\left(A^{c} X \xrightarrow{p} Y Z\right)^{*} \pi_{Y, Z}(a \otimes c)\right) \\
& \in\left(h_{A} \otimes(F \otimes G)\right)(X) .
\end{aligned}
$$

Under the isomorphism $h_{A} \otimes(F \otimes G) \cong h_{A} \otimes F \otimes G$ this element corresponds to the element

$$
\left(X \xrightarrow{\eta_{A} 1} A A^{c} X \xrightarrow{1 p} A Y Z\right)^{*} \pi_{A, Y, Z}\left(1_{A} \otimes a \otimes c\right) \in\left(h_{A} \otimes F \otimes G\right)(X) .
$$

Thus we have an isomorphism $\alpha: A(F \otimes G) \rightarrow h_{A} \otimes F \otimes G$ given by

$$
\begin{aligned}
& \left(A^{c} X \xrightarrow{p} Y Z\right)^{*} \pi_{Y, Z}(a \otimes c) \\
& \mapsto\left(X \xrightarrow{p_{\sharp}} A Y Z\right)^{*} \pi_{A, Y, Z}\left(1_{A} \otimes a \otimes c\right),
\end{aligned}
$$

where $p_{\sharp}=1_{A} p \circ \eta_{A} 1: X \rightarrow A Y Z$.
(b) Under the isomorphism $A F \otimes G \cong\left(h_{A} \otimes F\right) \otimes G$ the element

$$
(X \xrightarrow{q} Y Z)^{*} \pi_{Y, Z}(b \otimes c) \in(A F \otimes G)(X)
$$

for $b \in(A F)(Y)$ and $c \in G(Z)$ corresponds to the element

$$
\begin{aligned}
&(X \xrightarrow{q} Y Z)^{*} \pi_{Y, Z}\left(\left[\left(Y \xrightarrow{\eta_{A} 1} A A^{c} Y\right)^{*} \pi_{A, A^{c} Y}\left(1_{A} \otimes b\right)\right] \otimes c\right) \\
& \in\left(\left(h_{A} \otimes F\right) \otimes G\right)(X) .
\end{aligned}
$$

Under the isomorphism $\left(h_{A} \otimes F\right) \otimes G \cong h_{A} \otimes F \otimes G$ this corresponds to the element

$$
\left(X \xrightarrow{\eta_{A} q} A A^{c} Y Z\right)^{*} \pi_{A, A^{c} Y, Z}\left(1_{A} \otimes b \otimes c\right) \in\left(h_{A} \otimes F \otimes G\right)(X) .
$$

Thus we have an isomorphism $\beta: A F \otimes G \rightarrow h_{A} \otimes F \otimes G$ given by

$$
\begin{aligned}
& (X \xrightarrow{q} Y Z)^{*} \pi_{Y, Z}(b \otimes c) \\
& \mapsto\left(X \xrightarrow{\eta_{A} q} A A^{c} Y Z\right)^{*} \pi_{A, A^{c} Y, Z}\left(1_{A} \otimes b \otimes c\right) .
\end{aligned}
$$

(c) To describe the isomorphism $\beta^{-1} \circ \alpha: A(F \otimes G) \rightarrow A F \otimes G$, take an element

$$
x=\left(A^{c} X \xrightarrow{p} Y Z\right)^{*} \pi_{Y, Z}(a \otimes c) \in(A(F \otimes G))(X)
$$

for $a \in F(Y), c \in G(Z)$. Put

$$
\left.y=\left(X \xrightarrow{p_{\sharp}} A Y Z\right)^{*} \pi_{A Y, Z}\left(\left(A^{c} A Y \xrightarrow{\epsilon_{A}^{1}} Y\right)^{*}(a) \otimes c\right)\right) \in(A F \otimes G)(X) .
$$

Then

$$
\begin{aligned}
\beta(y) & =\left(X \xrightarrow{\eta_{A} p_{\sharp}} A A^{c} A Y Z\right)^{*} \pi_{A, A^{c} A Y, Z}\left(1_{A} \otimes\left(A^{c} A Y \xrightarrow{\epsilon_{A} 1} Y\right)^{*}(a) \otimes c\right) \\
& =\left(X \xrightarrow{p_{\sharp}} A Y Z\right)^{*}\left(A Y Z \xrightarrow{\eta_{A} 111} A A^{c} A Y Z \xrightarrow{1 \epsilon_{A} 11} A Y Z\right)^{*} \\
& =\left(X \xrightarrow{p_{\sharp}} A Y Z\right)^{*} \pi_{A, Y, Z}\left(1_{A} \otimes a \otimes c\right) \\
& =\alpha(x) .
\end{aligned}
$$

Hence $\beta^{-1} \alpha(x)=y$.
(d) To describe the isomorphism $\alpha^{-1} \circ \beta: A F \otimes G \rightarrow A(F \otimes G)$, take an element

$$
z=(X \xrightarrow{q} Y Z)^{*} \pi_{Y, Z}(b \otimes c) \in(A F \otimes G)(X)
$$

for $b \in(A F)(Y), c \in G(Z)$. Put

$$
w=\left(A^{c} X \xrightarrow{1 q} A^{c} Y Z\right)^{*} \pi_{A^{c} Y, Z}(b \otimes c) \in(A(F \otimes G))(X) .
$$

Then

$$
\begin{aligned}
\alpha(w) & =\left(X \xrightarrow{(1 q)_{\sharp}} A A^{c} Y Z\right)^{*} \pi_{A, A^{c} Y, Z}\left(1_{A} \otimes b \otimes c\right) \\
& =\left(X \xrightarrow{\eta_{A} q} A A^{c} Y Z\right)^{*} \pi_{A, A^{c} Y, Z}\left(1_{A} \otimes b \otimes c\right) \\
& =\beta(z) .
\end{aligned}
$$

Hence $\alpha^{-1} \beta(z)=w$.
Thus $\alpha^{-1} \circ \beta$ is the desired isomorphism.
A version for the right action is analogously obtained.
Proposition 7.4 We have an isomorphism

$$
F \otimes G A \cong(F \otimes G) A
$$

in which the element

$$
\left(X A^{d} \xrightarrow{p} Y Z\right)^{*} \pi_{Y, Z}(a \otimes c) \in((F \otimes G) A)(X)
$$

for $a \in F(Y), c \in G(Z)$ is mapped to the element

$$
\begin{aligned}
&\left(X \xrightarrow{1 \eta} X A^{d} A \xrightarrow{p 1} Y Z A\right)^{*} \pi_{Y, Z A}\left(a \otimes\left(Z A A^{d} \xrightarrow{1 \epsilon} Z\right)^{*}(c)\right) \\
& \in(F \otimes G A)(X),
\end{aligned}
$$

and conversely the element

$$
(X \xrightarrow{q} Y Z)^{*} \pi_{Y, Z}(a \otimes d) \in(F \otimes G A)(X)
$$

for $a \in F(Y), d \in(G A)(Z)$ is mapped to the element

$$
\left(X A^{d} \xrightarrow{q 1} Y Z A^{d}\right)^{*} \pi_{Y, Z A^{d}}(a \otimes d) \in((F \otimes G) A)(X) .
$$

Proposition 7.5 We have an isomorphism

$$
F A \otimes G \cong F \otimes A G
$$

in which the element

$$
(X \xrightarrow{p} Y Z)^{*} \pi_{Y, Z}(b \otimes c) \in(F A \otimes G)(X)
$$

for $b \in(F A)(Y), c \in G(Z)$ is mapped to the element

$$
\begin{aligned}
\left(X \xrightarrow{p} Y Z \xrightarrow{1 \eta 1} Y A^{d} A Z\right)^{*} \pi_{Y A^{d}, A Z}\left(b \otimes \left(A^{c} A Z\right.\right. & \left.\xrightarrow{\epsilon 1} Z)^{*}(c)\right) \\
& \in(F \otimes A G)(X),
\end{aligned}
$$

and conversely the element

$$
(X \xrightarrow{p} Y Z)^{*} \pi_{Y, Z}(a \otimes d) \in(F \otimes A G)(X)
$$

for $a \in F(Y), d \in(A G)(Z)$ is mapped to the element

$$
\begin{aligned}
\left(X \xrightarrow{p} Y Z \xrightarrow{1 \eta 1} Y A A^{c} Z\right)^{*} \pi_{Y A, A^{c} Z}\left(\left(Y A A^{d} \xrightarrow{1 \epsilon}\right.\right. & \left.Y)^{*}(a) \otimes d\right) \\
& \in(F A \otimes G)(X) .
\end{aligned}
$$

Proof. (a) The isomorphism of Proposition 7.2 and the canonical isomorphism yield the isomorphism

$$
F A \otimes G \rightarrow\left(F \otimes h_{A}\right) \otimes G \rightarrow F \otimes h_{A} \otimes G .
$$

Denote this composite by α. It effects as

$$
\begin{aligned}
& (X \xrightarrow{p} Y Z)^{*} \pi_{Y, Z}(b \otimes c) \\
& \mapsto\left(X \xrightarrow{p} Y Z \xrightarrow{1 \eta 1} Y A^{d} A Z\right)^{*} \pi_{Y A^{d}, A, Z}\left(b \otimes 1_{A} \otimes c\right)
\end{aligned}
$$

for $b \in(F A)(Y), c \in G(Z)$.
(b) The isomorphism of Proposition 7.1 and the canonical isomorphism yield the isomorphism

$$
F \otimes A G \rightarrow F \otimes\left(h_{A} \otimes G\right) \rightarrow F \otimes h_{A} \otimes G
$$

Denote this composite by β. It effects as

$$
\begin{aligned}
& (X \xrightarrow{p} Y Z)^{*} \pi_{Y, Z}(a \otimes d) \\
& \mapsto\left(X \xrightarrow{p} Y Z \xrightarrow{1 \eta 1} Y A A^{c} Z\right)^{*} \pi_{Y, A, A^{c} Z}\left(a \otimes 1_{A} \otimes d\right)
\end{aligned}
$$

for $a \in F(Y), d \in(A G)(Z)$.
(c) To describe $\alpha^{-1} \circ \beta: F \otimes A G \rightarrow F A \otimes G$, take an element

$$
x=(X \xrightarrow{p} Y Z)^{*} \pi_{Y, Z}(a \otimes d) \in(F \otimes A G)(X)
$$

for $a \in F(Y), d \in(A G)(Z)$. Put

$$
\begin{array}{r}
y=\left(X \xrightarrow{p} Y Z \xrightarrow{\underline{l \eta 1}} Y A A^{c} Z\right)^{*} \pi_{Y A, A^{c} Z}\left(\left(Y A A^{d} \xrightarrow{1 \epsilon} Y\right)^{*}(a) \otimes d\right) \\
\in(F A \otimes G)(X) .
\end{array}
$$

Then

$$
\begin{aligned}
\alpha(y)= & \left(X \xrightarrow{p} Y Z \xrightarrow{1 \eta 1} Y A A^{c} Z \xrightarrow{11 \eta 11} Y A A^{d} A A^{c} Z\right)^{*} \\
& =\left(X \xrightarrow{p} Y Z \xrightarrow{p A A^{d}, A, A^{c} Z}\left(\left(Y A A^{d} \xrightarrow{1 \epsilon} Y\right)^{*}(a) \otimes 1_{A} \otimes d\right)\right. \\
& \pi_{Y, A, A^{c} Z}\left(a \otimes A_{A} Z \xrightarrow{11 \eta 11} Y A A^{d} A A^{c} Z \xrightarrow{1 \epsilon 111} Y A A^{c} Z\right)^{*} \\
= & \left(X \xrightarrow{p} Y Z \xrightarrow{1 \eta 1} Y A A^{c} Z\right)^{*} \pi_{Y, A, A^{c} Z}\left(a \otimes 1_{A} \otimes d\right) \\
= & \beta(x) .
\end{aligned}
$$

Hence $\alpha^{-1} \beta(x)=y$.
(d) The correspondence in the reverse direction is similarly described. Thus $\alpha^{-1} \circ \beta$ is the desired isomorphism.

8. Tensor product in $\mathrm{Z}_{\mathcal{A}}\left(\operatorname{Hom}\left(\mathcal{A}^{\text {op }}, \mathcal{V}\right)\right)$

The purpose of this section is to describe the tensor product in the centralizer $\mathbf{Z}_{\mathcal{A}}\left(\operatorname{Hom}\left(\mathcal{A}^{\text {op }}, \mathcal{V}\right)\right)$ induced from the tensor product in $\operatorname{Hom}\left(\mathcal{A}^{\text {op }}, \mathcal{V}\right)$.

Proposition 8.1 We have an isomorphism of categories

$$
\mathbf{Z}_{\mathcal{A}}\left(\operatorname{Hom}\left(\mathcal{A}^{\mathrm{op}}, \mathcal{V}\right)\right) \cong \mathbf{Z}\left(\operatorname{Hom}\left(\mathcal{A}^{\mathrm{op}}, \mathcal{V}\right)\right)
$$

Proof. Let $F \in \mathbf{Z}_{\mathcal{A}}\left(\operatorname{Hom}\left(\mathcal{A}^{\mathrm{op}}, \mathcal{V}\right)\right)$ with central structure $\omega_{A}: A F \rightarrow F A$ for $A \in \mathcal{A}$. We know the isomorphisms $h_{A} \otimes F \cong A F$ and $F \otimes h_{A} \cong F A$ of Propositions 7.1 and 7.2. Since representable functors form generators in $\operatorname{Hom}\left(\mathcal{A}^{\mathrm{op}}, \mathcal{V}\right)$, the morphisms ω_{A} for all $A \in \mathcal{A}$ give rise to morphisms $\omega_{G}: G \otimes F \rightarrow F \otimes G$ for all $G \in \operatorname{Hom}\left(\mathcal{A}^{\mathrm{op}}, \mathcal{V}\right)$. Namely ω_{G} are natural in G and $\omega_{h_{A}}: h_{A} \otimes F \rightarrow F \otimes h_{A}$ corresponds to ω_{A} through the isomorphisms $h_{A} \otimes F \cong A F$ and $F \otimes h_{A} \cong F A$. Then F together with the family $\left(\omega_{G}\right)_{G}$ is an object of $\mathbf{Z}\left(\operatorname{Hom}\left(\mathcal{A}^{\mathrm{op}}, \mathcal{V}\right)\right)$. The correspondence $\left(\omega_{A}\right)_{A} \mapsto\left(\omega_{G}\right)_{G}$ of central structures on F gives the desired isomorphism of categories.

The center $\mathbf{Z}\left(\operatorname{Hom}\left(\mathcal{A}^{\mathrm{op}}, \mathcal{V}\right)\right)$ is a tensor category (the end of Section 1$)$. Its tensor product is defined as follows. Let F and G be objects of $\mathbf{Z}\left(\operatorname{Hom}\left(\mathcal{A}^{\mathrm{op}}, \mathcal{V}\right)\right)$ with central structures

$$
\omega_{H}: H \otimes F \rightarrow F \otimes H, \quad \omega_{H}: H \otimes G \rightarrow G \otimes H
$$

for $H \in \operatorname{Hom}\left(\mathcal{A}^{\text {op }}, \mathcal{V}\right)$. Then the tensor product of F and G in $\mathbf{Z}\left(\operatorname{Hom}\left(\mathcal{A}^{\mathrm{op}}, \mathcal{V}\right)\right)$ has the underlying functor $F \otimes G \in \operatorname{Hom}\left(\mathcal{A}^{\mathrm{op}}, \mathcal{V}\right)$ and the central structure

$$
\omega_{H}: H \otimes(F \otimes G) \rightarrow(F \otimes G) \otimes H
$$

given as the composite

$$
\begin{aligned}
& H \otimes(F \otimes G) \cong(H \otimes F) \otimes G \xrightarrow{\omega_{H} \otimes 1}(F \otimes H) \otimes G \\
& \cong F \otimes(H \otimes G) \xrightarrow{1 \otimes \omega_{H}} F \otimes(G \otimes H) \cong(F \otimes G) \otimes H .
\end{aligned}
$$

The centralizer $\mathbf{Z}_{\mathcal{A}}\left(\operatorname{Hom}\left(\mathcal{A}^{\mathrm{op}}, \mathcal{V}\right)\right)$ becomes a tensor category via the isomorphism of Proposition 8.1. Let F and G be objects of $\mathbf{Z}_{\mathcal{A}}\left(\operatorname{Hom}\left(\mathcal{A}^{\text {op }}, \mathcal{V}\right)\right)$ with central structures

$$
\omega_{A}: A F \rightarrow F A, \quad \omega_{A}: A G \rightarrow G A
$$

for $A \in \mathcal{A}$. Then the tensor product of F and G in $\mathbf{Z}_{\mathcal{A}}\left(\operatorname{Hom}\left(\mathcal{A}^{\mathrm{op}}, \mathcal{V}\right)\right)$ has the underlying functor $F \otimes G \in \operatorname{Hom}\left(\mathcal{A}^{\mathrm{op}}, \mathcal{V}\right)$ and the central structure

$$
\omega_{A}: A(F \otimes G) \rightarrow(F \otimes G) A
$$

given as the composite

$$
\begin{aligned}
A(F \otimes G) \cong A F \otimes G \xrightarrow{\omega_{A} \otimes 1} & F A \otimes G \\
& \cong F \otimes A G \xrightarrow{1 \otimes \omega_{A}} F \otimes G A \cong(F \otimes G) A
\end{aligned}
$$

where the unlabeled isomorphisms are those of Propositions 7.3-7.5. This is obvious from the definition of those isomorphisms.

Proposition 8.2 The map $\omega_{A}:(A(F \otimes G))(X) \rightarrow((F \otimes G) A)(X)$ takes the element

$$
p^{*} \pi_{Y, Z}(a \otimes c)
$$

for $p: A^{c} X \rightarrow Y Z, a \in F(Y), c \in G(Z)$ to the element

$$
q^{*} \pi_{A Y A^{d}, A Z A^{d}}(b \otimes d)
$$

where q is the composite

$$
X A^{d} \xrightarrow{\eta 11} A A^{c} X A^{d} \xrightarrow{1 p 1} A Y Z A^{d} \xrightarrow{11 \eta 11} A Y A^{d} A Z A^{d},
$$

b is the image of a under the map

$$
F(Y) \xrightarrow{(\epsilon 1)^{*}} F\left(A^{c} A Y\right) \xrightarrow{\omega_{A}} F\left(A Y A^{d}\right)
$$

and d is the image of c under the map

$$
G(Z) \xrightarrow{(\epsilon 1)^{*}} G\left(A^{c} A Z\right) \xrightarrow{\omega_{A}} G\left(A Z A^{d}\right)
$$

Proof. We follow the definition of $\omega_{A}: A(F \otimes G) \rightarrow(F \otimes G) A$. The isomorphism $A(F \otimes G) \cong A F \otimes G$ of Proposition 7.3 takes the element

$$
x=p^{*} \pi_{Y, Z}(a \otimes c) \in A(F \otimes G)(X)
$$

for $p: A^{c} X \rightarrow Y Z, a \in F(Y), c \in G(Z)$ to the element

$$
x_{1}=p_{\sharp}^{*} \pi_{A Y, Z}\left(a^{\prime} \otimes c\right) \in(A F \otimes G)(X),
$$

where

$$
p_{\sharp}: X \xrightarrow{\eta 1} A A^{c} X \xrightarrow{1 p} A Y Z,
$$

and a^{\prime} is the image of a under the map $F(Y) \xrightarrow{(\epsilon 1)^{*}} F\left(A^{c} A Y\right)$. The map
$\omega_{A} \otimes 1:(A F \otimes G)(X) \rightarrow(F A \otimes G)(X)$ takes x_{1} to the element

$$
x_{2}=p_{\sharp}^{*} \pi_{A Y, Z}(b \otimes c) \in(F A \otimes G)(X),
$$

where $b=\omega_{A}\left(a^{\prime}\right)$. The isomorphism $F A \otimes G \cong F \otimes A G$ of Proposition 7.5 takes x_{2} to the element

$$
x_{3}=r^{*} \pi_{A Y A^{d}, A Z}\left(b \otimes c^{\prime}\right) \in(F \otimes A G)(X),
$$

where

$$
r: X \xrightarrow{p_{\sharp}} A Y Z \xrightarrow{11 \eta 1} A Y A^{d} A Z,
$$

and c^{\prime} is the image of c under the map $G(Z) \xrightarrow{(\epsilon 1)^{*}} G\left(A^{c} A Z\right)$. The map $1 \otimes \omega_{A}:(F \otimes A G)(X) \rightarrow(F \otimes G A)(X)$ takes x_{3} to the element

$$
x_{4}=r^{*} \pi_{A Y A^{d}, A Z}(b \otimes d) \in(F \otimes G A)(X),
$$

where $d=\omega_{A}\left(c^{\prime}\right)$. Finally the isomorphism $F \otimes G A \cong(F \otimes G) A$ of Proposition 7.4 takes x_{4} to the element

$$
x_{5}=q^{*} \pi_{A Y A^{d}, A Z A^{d}}(b \otimes d) \in((F \otimes G) A)(X),
$$

where

$$
q: X A^{d} \xrightarrow{r 1} A Y A^{d} A Z A^{d} .
$$

Then

$$
q: X A^{d} \xrightarrow{\eta 11} A A^{c} X A^{d} \xrightarrow{1 p 1} A Y Z A^{d} \xrightarrow{11 \eta 11} A Y A^{d} A Z A^{d}
$$

and

$$
b=\omega_{A}(\epsilon 1)^{*}(a), \quad d=\omega_{A}(\epsilon 1)^{*}(c) .
$$

Thus the map $\omega_{A}:(A(F \otimes G))(X) \rightarrow((F \otimes G) A)(X)$ takes x to x_{5}. This proves the proposition.

By Proposition 4.2 the central structures

$$
\omega_{A}: A F \rightarrow F A, \quad \omega_{A}: A G \rightarrow G A
$$

correspond to the conjugate structures

$$
\gamma_{A}: F \rightarrow F^{A}, \quad \gamma_{A}: G \rightarrow G^{A} .
$$

Define a morphism

$$
\gamma_{A}: F \otimes G \rightarrow(F \otimes G)^{A}
$$

so that the diagram

commutes for every Y, Z.
Proposition 8.3 The morphism $\gamma_{A}: F \otimes G \rightarrow(F \otimes G)^{A}$ is the conjugate structure of $F \otimes G$ corresponding to $\omega_{A}: A(F \otimes G) \rightarrow(F \otimes G) A$.

Proof. By the definition of the correspondence between ω and $\gamma((\mathrm{b})$ of the proof of Proposition 4.2), it is enough to show that the diagram

$$
(F \otimes G)\left(A^{c} X\right) \xrightarrow{\gamma_{A}}(F \otimes G)\left(A A^{c} X A^{d}\right)
$$

is commutative. Take an element $x=p^{*} \pi_{Y, Z}(a \otimes c) \in(F \otimes G)\left(A^{c} X\right)$ for $p: A^{c} X \rightarrow Y Z, a \in F(Y), c \in G(Z)$. Then

$$
\begin{aligned}
& \gamma_{A}(x)=\left(A A^{c} X A^{d} \xrightarrow{1 p 1} A Y Z A^{d} \xrightarrow{11 \eta 11} A Y A^{d} A Z A^{d}\right)^{*} \\
& \pi_{A Y A^{d}, A Z A^{d}}\left(\gamma_{A}(a) \otimes \gamma_{A}(c)\right)
\end{aligned}
$$

by definition, so

$$
(\eta 11)^{*} \gamma_{A}(x)=q^{*} \pi_{A Y A^{d}, A Z A^{d}}\left(\gamma_{A}(a) \otimes \gamma_{A}(c)\right)
$$

where q is the composite

$$
X A^{d} \xrightarrow{\eta 11} A A^{c} X A^{d} \xrightarrow{1 p 1} A Y Z A^{d} \xrightarrow{11 \eta 11} A Y A^{d} A Z A^{d} .
$$

This coincides with $\omega_{A}(x)$ by Proposition 8.2.

9. Tensor equivalence $\mathrm{Z}_{\mathcal{A}}\left(\operatorname{Hom}\left(\mathcal{A}^{\mathrm{op}}, \mathcal{V}\right)\right) \simeq{ }_{\mathcal{A}} \mathrm{D}(\mathcal{A}, \mathcal{A})_{\mathcal{A}}$

The purpose of this section is to show the equivalence

$$
\Delta: \mathbf{Z}_{\mathcal{A}}\left(\operatorname{Hom}\left(\mathcal{A}^{\mathrm{op}}, \mathcal{V}\right)\right) \rightarrow{ }_{\mathcal{A}} \mathbf{D}(\mathcal{A}, \mathcal{A})_{\mathcal{A}}
$$

of Theorem 5.1 preserves tensor products. This equivalence is a restriction of the functor

$$
\Delta: \operatorname{Hom}\left(\mathcal{A}^{\mathrm{op}}, \mathcal{V}\right) \rightarrow \mathbf{D}(\mathcal{A}, \mathcal{A})
$$

given by

$$
\Delta F(X, Y)=F\left(X Y^{d}\right)
$$

for $F \in \operatorname{Hom}\left(\mathcal{A}^{\mathrm{op}}, \mathcal{V}\right)$. We first construct an isomorphism $\Delta F \otimes \Delta G \cong$ $\Delta(F \otimes G)$ of $\mathbf{D}(\mathcal{A}, \mathcal{A})$ for every $F, G \in \operatorname{Hom}\left(\mathcal{A}^{\text {op }}, \mathcal{V}\right)$, and then show that this is an isomorphism of ${ }_{\mathcal{A}} \mathbf{D}(\mathcal{A}, \mathcal{A})_{\mathcal{A}}$ if $F, G \in \mathbf{Z}_{\mathcal{A}}\left(\operatorname{Hom}\left(\mathcal{A}^{\mathrm{op}}, \mathcal{V}\right)\right)$.

Let $F, G \in \operatorname{Hom}\left(\mathcal{A}^{\mathrm{op}}, \mathcal{V}\right)$. Let

$$
\pi_{X, Y}: F(X) \otimes G(Y) \rightarrow(F \otimes G)(X Y)
$$

be the universal bilinear morphism. Define the map

$$
\mu_{X, Y, Z}: \Delta F(X, Y) \otimes \Delta G(Y, Z) \rightarrow \Delta(F \otimes G)(X, Z)
$$

to be the composite

$$
F\left(X Y^{d}\right) \otimes G\left(Y Z^{d}\right) \xrightarrow{\pi}(F \otimes G)\left(X Y^{d} Y Z^{d}\right) \xrightarrow{\left(\eta_{Y} 1\right)^{*}}(F \otimes G)\left(X Z^{d}\right) .
$$

Proposition 9.1 There exists a unique morphism

$$
\xi: \Delta F \otimes \Delta G \rightarrow \Delta(F \otimes G)
$$

of $\mathbf{D}(\mathcal{A}, \mathcal{A})$ such that the diagram

$$
\Delta F(X, Y) \otimes \Delta G \underbrace{(Y, Z) \xrightarrow{\pi_{X, Y_{Z} Z}}(\Delta F \otimes \Delta G)(X, Z)}_{\mu_{X, Y, Z}} \underset{\Delta(F \otimes G)(X, Z)}{\left.\right|_{X, Z}}
$$

commutes, where π is the universal bilinear morphism.

Proof. It is enough to show that the maps $\mu_{X, Y, Z}$ form a bilinear morphism $(\Delta F, \Delta G) \rightarrow \Delta(F \otimes G)$. Let $g: Y_{1} \rightarrow Y_{2}$ be a morphism. Put $H=F \otimes G$. We have the diagram

in which the three quadrangles are commutative. Hence the surrounding hexagon is commutative. This means that

$$
\begin{array}{cc}
\Delta F\left(X, Y_{1}\right) \otimes \Delta G\left(Y_{2}, Z\right) \xrightarrow{g_{*} \otimes 1} & \Delta F\left(X, Y_{2}\right) \otimes \Delta G\left(Y_{2}, Z\right) \\
1 \otimes g^{*} & \Delta \\
\Delta F\left(X, Y_{1}\right) \otimes \Delta G\left(Y_{1}, Z\right) \xrightarrow[\mu_{X, Y_{1}, Z}]{ } & \mu_{X, Y_{2}, Z} \\
\Delta H(X, Z)
\end{array}
$$

is commutative. Thus μ is a bilinear morphism.
Proposition 9.2 For every $F, G \in \operatorname{Hom}\left(\mathcal{A}^{\text {op }}, \mathcal{V}\right), \xi: \Delta F \otimes \Delta G \rightarrow \Delta(F \otimes$ $G)$ is an isomorphism of $\mathbf{D}(\mathcal{A}, \mathcal{A})$.

Proof. Since \otimes is right exact and representable functors form generators in $\operatorname{Hom}\left(\mathcal{A}^{\text {op }}, \mathcal{V}\right)$, it is enough to show that

$$
\xi: \Delta h_{A} \otimes \Delta h_{B} \rightarrow \Delta\left(h_{A} \otimes h_{B}\right)
$$

is an isomorphism for every $A, B \in \mathcal{A}$.
For an object $A \in \mathcal{A}$ define $U_{A} \in \mathbf{D}(\mathcal{A}, \mathcal{A})$ by

$$
U_{A}(X, Y)=\operatorname{Hom}(X, A Y)
$$

We have an isomorphism $\lambda: \Delta h_{A} \cong U_{A}$ given by

$$
\left(\Delta h_{A}\right)(X, Y)=h_{A}\left(X Y^{d}\right)=\operatorname{Hom}\left(X Y^{d}, A\right) \cong \operatorname{Hom}(X, A Y)
$$

For $X, Y, Z \in \mathcal{A}$ we define a map

$$
\nu_{X, Y, Z}: U_{A}(X, Y) \otimes U_{B}(Y, Z) \rightarrow U_{A B}(X, Z)
$$

by

$$
\nu_{X, Y, Z}((X \xrightarrow{f} A Y) \otimes(Y \xrightarrow{g} B Z))=(X \xrightarrow{f} A Y \xrightarrow{1 g} A B Z) .
$$

It is easy to see that the maps $\nu_{X, Y, Z}$ give a bilinear morphism

$$
\nu:\left(U_{A}, U_{B}\right) \rightarrow U_{A B}
$$

We claim that ν is universal. To prove this, let

$$
\pi^{\prime}:\left(U_{A}, U_{B}\right) \rightarrow L
$$

be a bilinear morphism. Then

$$
\begin{aligned}
& \pi_{X, Y, Z}^{\prime}((X \xrightarrow{f} A Y) \otimes(Y \xrightarrow{g} B Z)) \\
& =\pi_{X, B Z, Z}^{\prime}((X \xrightarrow{f} A Y \xrightarrow{1 g} A B Z) \otimes(B Z \xrightarrow{1} B Z)) .
\end{aligned}
$$

Define $\phi: U_{A B} \rightarrow L$ by

$$
\phi_{X, Z}(X \xrightarrow{h} A B Z)=\pi_{X, B Z, Z}^{\prime}((X \xrightarrow{h} A B Z) \otimes(B Z \xrightarrow{1} B Z)) .
$$

Then $\pi_{X, Y, Z}^{\prime}=\phi_{X, Z} \circ \nu_{X, Y, Z}$. This proves the claim. Therefore ν yields an isomorphism

$$
\zeta: U_{A} \otimes U_{B} \rightarrow U_{A B}
$$

So we will know that

$$
\xi: \Delta h_{A} \otimes \Delta h_{B} \rightarrow \Delta\left(h_{A} \otimes h_{B}\right)
$$

is an isomorphism once we show that the diagram

is commutative, where $\theta: h_{A} \otimes h_{B} \rightarrow h_{A B}$ is the canonical isomorphism of Section 7.

In order to show this, it suffices to show that the diagram

is commutative for every $X, Y, Z \in \mathcal{A}$.
By the definition of μ and θ, the composite

$$
\begin{aligned}
& \Delta h_{A}(X, Y) \otimes \Delta h_{B}(Y, Z) \\
& \xrightarrow{\mu_{X, Y, Z}} \Delta\left(h_{A} \otimes h_{B}\right)(X, Z) \xrightarrow{\Delta(\theta)} \Delta h_{A B}(X, Z)
\end{aligned}
$$

is equal to the composite

$$
\begin{aligned}
\kappa: \operatorname{Hom}\left(X Y^{d}, A\right) & \otimes \operatorname{Hom}\left(Y Z^{d}, B\right) \\
& \rightarrow \operatorname{Hom}\left(X Y^{d} Y Z^{d}, A B\right) \xrightarrow{(1 \eta 1)^{*}} \operatorname{Hom}\left(X Z^{d}, A B\right)
\end{aligned}
$$

where the first arrow is the tensor product of morphisms of \mathcal{A}. So it suffices to show the following diagram is commutative.

Let $f^{\prime}: X Y^{d} \rightarrow A$ correspond to $f: X \rightarrow A Y$ under the isomorphism λ, and $g^{\prime}: Y Z^{d} \rightarrow B$ correspond to $g: Y \rightarrow B Z$. We have the diagram

in which the three triangles are commutative. Hence the surrounding pen-
tagon is commutative. This means that the map

$$
\kappa\left(f^{\prime} \otimes g^{\prime}\right): X Z^{d} \xrightarrow{1 \eta 1} X Y^{d} Y Z^{d} \xrightarrow{f^{\prime} g^{\prime}} A B
$$

corresponds to the map

$$
\nu(f \otimes g): X \xrightarrow{f} A Y \xrightarrow{1 g} A B Z
$$

under λ. This proves the commutativity of (1), and completes the proof.

Let

$$
F, G \in \mathbf{Z}_{\mathcal{A}}\left(\operatorname{Hom}\left(\mathcal{A}^{\mathrm{op}}, \mathcal{V}\right)\right)
$$

Then

$$
F \otimes G \in \mathbf{Z}_{\mathcal{A}}\left(\operatorname{Hom}\left(\mathcal{A}^{\mathrm{op}}, \mathcal{V}\right)\right)
$$

as defined in Section 8. By Theorem 5.1 the distributors $\Delta(F), \Delta(G)$, and $\Delta(F \otimes G)$ admit two-sided \mathcal{A}-action.

Proposition 9.3 The isomorphism

$$
\xi: \Delta(F) \otimes \Delta(G) \rightarrow \Delta(F \otimes G)
$$

is a morphism of ${ }_{\mathcal{A}} \mathbf{D}(\mathcal{A}, \mathcal{A})_{\mathcal{A}}$.
Proof. We have to show that ξ commutes with the operations $A!$ and $!A$ for every $A \in \mathcal{A}$. For A ! we have to show that the diagram

is commutative. By the definition of ξ it is enough to show that the diagram $(\Delta F)(X, Z) \otimes(\Delta G)(Z, Y) \xrightarrow{A!\otimes A!}(\Delta F)(A X, A Z) \otimes(\Delta G)(A Z, A Y)$

is commutative. By the definition of μ and the description of A ! in terms
of γ_{A} in Theorem 5.1, this diagram reads

$$
\begin{array}{ccc}
F\left(X Z^{d}\right) \otimes G\left(Z Y^{d}\right) \xrightarrow{\gamma_{A} \otimes \gamma_{A}} & F\left(A X Z^{d} A^{d}\right) \otimes G\left(A Z Y^{d} Z^{d}\right) \\
\pi \downarrow & & \downarrow \pi \\
(F \otimes G)\left(X Z^{d} Z Y^{d}\right) & & (F \otimes G)\left(A X Z^{d} A^{d} A Z Y^{d} A^{d}\right) \\
\left(1 \eta_{Z} 1\right)^{*} \downarrow & & \downarrow\left(11 \eta_{A Z} 11\right)^{*} \\
(F \otimes G)\left(X Y^{d}\right) & \xrightarrow[\gamma_{A}]{ } & (F \otimes G)\left(A X Y^{d} A^{d}\right),
\end{array}
$$

where π is the universal map. This is commutative by the description of γ_{A} for $F \otimes G$ in Proposition 8.3.

For $!A$ it is enough to show that the diagram

is commutative. By the description of $!A$ in Theorem 5.1 this diagram reads

We are reduced to showing the commutativity of the diagram

$$
\begin{array}{cc}
X Z^{d} Z Y^{d} & \stackrel{1 \epsilon_{A} 11 \epsilon_{A} 1}{\longleftarrow}
\end{array} \begin{array}{cc}
1 \eta_{Z} 1 \uparrow & \uparrow 1 A^{d} Z^{d} Z A A^{d} Y^{d} \\
X Y^{d} & \overleftarrow{1 \epsilon_{A} 1}
\end{array}
$$

But this follows from the commutative diagram

The proof is completed.
From Propositions 9.2 and 9.3 we obtain
Theorem 9.4 The equivalence $\Delta: \mathbf{Z}_{\mathcal{A}}\left(\operatorname{Hom}\left(\mathcal{A}^{\mathrm{op}}, \mathcal{V}\right)\right) \rightarrow{ }_{\mathcal{A}} \mathbf{D}(\mathcal{A}, \mathcal{A})_{\mathcal{A}}$ preserves tensor products.

References

[1] Borceux F., Handbook of Categorical Algebra 1. Cambridge University Press, Cambridge, 1994.
[2] Day B.J., On closed categories of functors. in: MacLane S. (Ed), Reports of the Midwest Category Seminar IV, Lecture Notes in Math. vol. 137, Springer, Berlin, 1970, pp. 1-38.
[3] Joyal A. and Street A., Tortile Yang-Baxter operators in tensor categories. Journal of Pure and Applied Algebra 71 (1991), 43-51.
[4] Kassel C., Quantum Groups. Springer, New York, 1995.
[5] Majid S., Representations, duals and quantum doubles of monoidal categories. Rend. Circ. Math. Palermo (2) Suppl. vol. 26, 1991, pp. 197-206.
[6] Tambara D., A duality for modules over monoidal categories of representations of semisimple Hopf algebras. Journal of Algebra 241 (2001), 515-547.

Department of Mathematical Sciences
Hirosaki University
Hirosaki 036-8561, Japan
E-mail: tambara@cc.hirosaki-u.ac.jp

[^0]: 2000 Mathematics Subject Classification : 18D10.

