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Pluriharmonic maps in affine differential geometry
and (1, 1)-geodesic affine immersions

Sanae KUROSU
(Received November 6, 2003)

Abstract. We define a pluriharmonic map from a complex manifold with a complex
affine connection to a manifold with an affine connection and obtain some fundamental
results which generalize those for a pluriharmonic map from a Kéahler manifold to a
Riemannian manifold. Especially, by using an associated family, we find a sufficient
condition for the product of two (1, 1)-geodesic affine immersions to an affine space to
be a complex affine immersion from the manifold to the product of affine spaces with a
certain complex structure.

Key words: pluriharmonic map, (1, 1)-geodesic affine immersion, complex affine immer-

sion.

1. Introduction

An isometric immersion from a Kéhler manifold to a Riemannian mani-
fold is said to be (1, 1)-geodesic if the (1, 1)-part of the complexified second
fundamental form vanishes. In [3], Dajczer and Gromoll showed that a
(1, 1)-geodesic isometric immersion from a simply connected Kéhler mani-
fold to a Euclidean space has a distinguished deformation called an associ-
ated family which they used to construct a holomorphic isometric immer-
sion. When the ambient space is a pseudo-Euclidean space, similar results
are given in [7]. A (1, 1)-geodesic affine immersion is a special notion of a
pluriharmonic map, that is, a map of which (1, 1)-part of the complexified
Hessian vanishes. A pluriharmonic map can be considered as a generaliza-
tion of a holomorphic map between complex manifolds. Recently, in [6],
Eschenburg and Tribuzy characterize a pluriharmonic map from a Ké&hler
manifold to a Riemannian symmetric space by the property of having an
associated family.

In this paper, we define a pluriharmonic map from a complex manifold
with a complex affine connection to a manifold with an affine connection
and a (1, 1)-geodesic affine immersion as a special case and generalize some
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of the results in [3], [6], [7] and [11]. Let M be a complex manifold with a
complex affine connection and M a manifold with an affine connection. In
Section 2, we define a pluriharmonic map from M to M and obtain some
fundamental results which include generalizations of some of the results in
[6] and [11]. We also define an associated family for a map from M to M
which is a generalization of that in [6] and obtain some results including
a sufficient condition for the existence of the associated family when M is
an affine space. In Section 3, we define a (1, 1)-geodesic affine immersion
as a special case, apply the results for a pluriharmonic map to such an
immersion and generalize some results in [3] and [7]. For an affine immersion
from M to M, we define an associated family as a special case and obtain
generalized results in [3] and [7]. In Section 4, we prepare some results on
the product of two affine immersions for the next section. In Section 5, we
find a sufficient condition for the product of two maps from M to an affine
space to be a holomorphic map from M to the product of affine spaces with a
certain complex structure. Applying this result to the product of two affine
immersions from M to an affine space, we find a sufficient condition for
the product of two affine immersions to be a complex affine immersion. In
particular, for a (1, 1)-geodesic affine immersion from M to an affine space,
by using its associated family, we get a result which is a generalization of
the corresponding result in [3] and [7].

2. Pluriharmonic maps

Throughout this paper, all objects and morphisms are assumed to be
smooth. Let M be a manifold, T'M its tangent bundle and T* M its cotan-
gent bundle. We use letters F, E to denote real vector bundles over M.
The fibre of a vector bundle E at z € M is denoted by E,, the dual bundle
of E by E*, the set of all connections on E by C(FE) and the space of cross
sections of E by I'(E). We denote by AP(E) = I'(APT*M ® E) the space of
E-valued p-forms over M. Let Hom(E E) be the vector bundle of which
fibre Hom(E, E), at € M is the vector space Homg(E,, E,) of linear
mapping from Ex to E,. Let HOM(E, E) be the space of vector bundle
homomorphisms from E to E and END(E) := HOM(E, E). We note that
HOM(E, E) can be identified with I'(Hom(FE, E)). For ® € HOM(E, E)
and x € M, put ¢, := 9| B, The space of vector bundle isomorphisms from
E to E is denoted by ISO(E, E). Let M and M be manifolds, f: M — M a
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map, f 'TM and foi f ¥TM — TM the induced bundle and its bundle map.
We define if : TM — fﬁTM by il = (ftz) ! fssz for each x € M. We denote
by Co(T'M) (resp. Co (TM )) the set of all torsion free affine connections on
M (resp. M). Let M, M be manifolds, V € Co(T'M) and Ve CO(TM) For
amap f: M — M we denote by fﬁV the pull-back of V € CO(TM) For a
map f: M — M , we denote by Hy the Hessian of f defined by

Hi(X,Y):= fiVxiY —i/VxY

for X, Y € T(TM). Since both V and V are torsion free, Hy is a bilinear
homomorphism and symmetric, that is, Hy(X,Y) = H(Y, X) for each
x € M and any X, Y € T,M. We denote by (M, J) a 2m-dimensional
manifold M with complex structure J and call it a complex manifold. For
a complex manifold (M, J), we denote by Co(T M, J) the set of all torsion
free affine connections V € Cy(T'M) such that VxJ = JVx for each x € M
and any X € T, M. Such connections are called complex affine connections.
Note that Co(TM, J) # {0} since J is integrable. Hereafter in this paper,
we always denote by M a manifold equipped with Ve CO(TM ).

Definition 2.1 For a complex manifold (M, J), V € Co(T'M, J) and a
map f: M — M, we say that f is pluriharmonic if

Hy(JX,Y)=H¢X, JY)
for each z € M and any X, Y € T, M.

Note that the equation above is equivalent to the condition that the
(1, 1)-part of the complexified Hessian vanishes. We mention that any
holomorphic or anti-holomorphic maps between complex manifolds with
complex affine connections are pluriharmonic. The property that a map
f: M — M from a complex manifold (M, J) with V € Co(T'M, J) is pluri-
harmonic does not depend on the choice of V € Co(T'M, J). On the other
hand, this property depends on the choice of VeQg (TM) as follows. For
V and V' € CO(TM ), we define the difference tensor P by

PyV :=VyV -V, V

for any U, V € I‘(TM) and we denote by f!P the pull-back of P by f.
If a map f: M — M is pluriharmonic with respect to Ve CO(TM) fis



462 S. Kurosu

pluriharmonic with respect to V' if and only if it holds that
(f*P)xJY = (f*P);xY

for each x € M and any X, Y € T, M. We have the following for a pluri-
harmonic map.

Proposition 2.2 A map f: M — M from a complex manifold (M, J)
with V € Co(TM, J) is pluriharmonic if and only if, for any holomorphic
map ¢: S — M from a complex manifold (S, J°) with complex affine con-
nection to M, f o ¢ is also pluriharmonic.

Proof. For simplicity, put g = f o ¢. Then we have

Hy(X, Y)=(95) " froo) Hp (012X, dsaY)
+ (942) " frp) PtaHo (X, Y)

for each z € S and any X, Y € T,S. If f is pluriharmonic, we get
Hy(J°X,Y)
= (922) " foso) Hr (T 01X, 6:2Y) + (952) " fepw) St Ho (X, J°Y)
= (91) " fro Hr (02X, T2 ) + (922) ™ froa braHo(X, TY)
= H,(X, J°Y)

for each x € S and any X, Y € T,S. The converse is trivial since the
identity map of M is holomorphic. O

When M is a Riemannian manifold, a similar result as Proposition 2.2
is given in [11], where they use the Levi-Civita connections.

For z € C\ {0}, consider a (1, 1)-tensor field E* on a complex manifold
(M, J) defined by

E? :=Re(2)I + Im(z)J,

where I is the identity of TM, Re(z) and Im(z) are the real part and the
imaginary part of z € C\{0}. It is clear that E* has the following properties.

E*E* '=I, (2.1)
VxE*=FE*Vx (2.2)
for V€ Co(T'M, J), each x € M and any X € T, M.
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Definition 2.3 For a complex manifold (M, J) and V € Co(T'M, J), an
associated family for a map f: M — M is a family of maps f,: M — M,
z € C\ {0}, such that f; = f,

fiVx U=V, fiVy, (2.3)
U, il F*X=il: X (2.4)

for a bundle isomorphism ¥, € ISO(fﬁTM, ngM), each x € M and any
XeT,M.

An associated family is considered for a map from a Kéhler manifold to
a Riemannian symmetric space in [6], where they use a (1, 1)-tensor field

E? = cosOI +sin6.J (2.5)

for 6 € [0, 27).
From (2.3) and (2.4), we obtain

Hy (X,Y)=V,, Hi (X, EY) (2.6)
for each x € M and any X, Y € T, M.

Lemma 2.4 For a complex manifold (M, J), V € Co(TM, J) and a map
f: M — M, if there is an associated family f., z € C\ {0}, for f, then f,
18 pluritharmonic.

Proof. From (2.6), we get
Hp (X, Y) = Re(2)U., Hy(X, V) + Im(2)U., Hy(X, JY) (2.7

for each x € M and any X, Y € T, M. Since Hy_ is symmetric and z € C\
{0} is taken arbitrary, f is pluriharmonic. Moreover, by (2.7), we have

Hy (JX,Y)=Re(2)V., H;(JX,Y)+Im(2)V., H(JX, JY)
=Re(2)V,, H;(X, JY) +Im(2)V,, H (X, J?Y)
=Hy (X, JY)
because f is pluriharmonic. This completes the proof. ([l

We prepare the following to show the existence of an associated family.
For a complex manifold (M, J), V € Co(T'M, J), if amap f: M — M is
pluriharmonic, then it holds that
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Hy(E*X,Y) = Hy(X, E*Y)

for each z € C\ {0}, x € M and any X, Y € T, M. Hence in a slight more
general form, we consider the following. For a map f: M — M, consider a
parallel (1, 1)-tensor field K on M such that

Hy(KX,Y)=HiX, KY)

for each z € M and any X, Y € T, M. For such a tensor field K, a map
fr: M — M such that

VX Ug=UgfVx, (2.8)

Wy, il K X=i/k X (2.9)
for some Vg € ISO(fﬁT]f\Z7 fﬁ(TM), each x € M and any X € T, M is
called an associated map with respect to K.

To state and prove the next proposition, we prepare the following. In
this paper, we denote by (R"™P, D) an (n + p)-dimensional affine space

with the standard affine connection D. We denote by (eq, ..., entp) the
standard basis of R"™?, g, the global parallel tangent vector field obtained
from e, and 0° the dual of e, « =1, ..., n+p.

Proposition 2.5 For a simply connected manifold M, V € Co(TM), a
parallel (1, 1)-tensor field K on M and a map f: M — R"P_if the Hessian
satisfies Hy(KX,Y) = Hp(X, KY') for each x € M and any X, Y € T, M,

then there is an associated map fx with respect to K.

Proof. For the 1-forms f*0“o K, o =1, ..., n+ p, we have
FAKEX) =) (F0")(KX)eq (2.10)

(67

for any X € I'(T'M). For simplicity, we put f*0%* o K = w,. The condition
that 1-forms w,, o =1, ..., n+p, are closed is equivalent to ) dwa (ffes)
=0, where ffe, € T(f*TR"?) is defined by (f*€a)s = (fiz) ' (€a) () for
each z € M. On the other hand, by (2.10), we get

23 (o) (X, ¥)(ffe0)

= [ Dxi! KY — f*Dyi/ KX — i/ K(VxY — Vy X)
— Hi(X, KY) — H{(Y, KX)
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for any X, Y € I'(TM). Therefore (dwy)(X,Y)=0fora=1,...,n+p
if and only if Hy(X, KY) = H¢(Y, KX) for each x € M and any X, Y €
T, M. Then from the assumption, there exist ¢® such that

by Poincaré’s lemma for « =1, ..., n+p. Put fx(x) := ¢*(z)e, and define
Vg by Vg (fleq)s = (fﬁ(éa)x foreachz € Manda=1, ..., n+p. Then
the equations (2.8) and (2.9) hold. O

From Lemma 2.4 and Proposition 2.5, we get

Proposition 2.6 For a simply connected complex manifold (M, J), V €
Co(TM, J) and a map f: M — R?>"P_ there is an associated family f.,
z € C\ {0}, if and only if f is pluriharmonic.

Proof. 1If f is pluriharmonic, then we obtain
Hy(E*X,Y)=Hs(X, E?Y)

for each x € M and any X, Y € T, M. Hence from Proposition 2.5, there
is an associated family f,, z € C\ {0}, for f. Since f is pluriharmonic,
f~ is also pluriharmonic by a direct calculation. The converse follows from
Lemma 2.4. O

For a pluriharmonic map from a Ké&hler manifold to a Riemannian

symmetric space, Proposition 2.6 is proved in [6], where they use E? instead
of E7.

3. (1, 1)-geodesic affine immersions

Let M and M be manifolds and f: M — M an immersion. For a
subbundle N of f4TM, if

FETM =il (TM) @ N,
then we call such an immersicgl/ an immersion fw@ transversal bundle N.
Let ¢i5(rarny: if(TM) — f'TM, 1n: N — f*TM be the inclusions and
Tif (TM) - FTM — il (TM), 7y fYTM — N the projections. We put i/ :=
Fif(TM)if € ISO(TM, i/ (TM)). Let V € Co(TM) and V € Co(T M) be tor-

sion free affine connections. For an immersion f: M — M with transversal
bundle N, if the induced connection 771z ( fﬁV)l/if(T My on if (TM) for
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fﬁ% coincides with /z\fV(/z\f) we say such a morphism (f, N): (M, V) —
(M V) an affine_immersion wzth transversal bundle N and denote it by
f: (M, V) — (M V) if the transversal bundle is stated. When for an
immersion f: (M, V) — (M V), there is a subbundle N of f#T'M such
that f: (M, V) — ( V) is an affine immersion with transversal bundle
N, we call f. (M, ) (M, V) an affine immersion. For an affine im-
mersion f: (M, V) — (M , V) with transversal bundle N, we define the
affine fundamental form B € A!'(Hom(TM, N)), the shape tensor A €
A'(Hom(N, TM)) and the transversal connection V¥ € C(N) by

B:']TN(fﬁ%)LZf(TM)/Z\f,
Ai:—(gf)flﬁif(TM)(fﬁV)LNv
V=N (f V).
Since V is torsion free, B is symmetric, that is, BxY = By X for each = €
M and any X, Y € T, M. Note that BxY (resp. Ax¢) is usually denoted

by a(X,Y) (resp. A¢X) for each x € M, any X, Y € T, M and £ € N,.
Then we can write the Gauss and Weingarten formulas as

(f*V)xilY=i/VxY + ByY,
(f*V)xe=—if Axe + V¢

foreach x € M, any X €e T, M, Y € I'(TM) and £ € I'(N).
Next we consider another transversal bundle N and the decomposition

FiTM =i (TM) @ N. (3.1)
According to the decomposition (3.1), let

Lif (TM) i (TM) — fiTM, ty: N — M
be the inclusions and

Tif (TM) FITM — i (TM), ng: f'TM — N

the projections. Note that ¢;rpap = L7 (rar)- Let V € Co(TM) be a connec-

tion such that f: (M, V) — (M, V) is an affine immersion with transversal
bundle N and B, A and V¥ the affine fundamental form, the shape ten-
sor and the transversal connection of the affine immersion f: (M, V) —
(M, 6) with transversal bundle N. Then we have
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Lemma 3.1 [2], [10]

Vx=Vx + (/i\f)flfrif(TM)LNBX,
Bx=mnyinBx,

Ax=Axmniy — VX(/Z‘\f)ilﬂif(TM)LN
— () s eanyen Bx () i ran
— (?f)_lﬁif(TM)bNV%WNLN,
?QZWNLNV%WNLN + 7TNLNBX(?f)fl”if(TM)LN
for each x € M and any X € T, M.

Note that the above equations in Lemma 3.1 uniquely determine the
relations of induced objects, the connections on M, the affine fundamental
forms, the shape tensors and the transversal connections, when we replace
the transversal bundle N with N. From Lemma 3.1, both N and N induce
the same connection V on M if and only if ;s (7ppenB = 0.

Definition 3.2 For a complex manifold (M, J), V € Co(T'M, J) and an
affine immersion f: (M, V) — (M, V) with transversal bundle N, we say
that f is (1, 1)-geodesic if

BjxY = BxJY
for each x € M and any X, Y € T, M.

Note that the equation above is equivalent to the condition that (1, 1)-
part of the complexified affine fundamental form vanishes. We note that
an isometric immersion from a Kéhler manifold to a pseudo-Riemannian
manifold is (1, 1)-geodesic if and only if the shape tensor satisfies

Ajxé=—JAxE (3.2)

for each € M, any X € T,M and & € T;-M, where T;-M is the normal
space of the immersion at . Hence any (1, 1)-geodesic isometric immersion
from a Ké&hler manifold to a Riemannian manifold is minimal. For a (1, 1)-
geodesic affine immersion from a complex manifold with complex affine
connection to a manifold with affine connection, the equation (3.2) does
not hold in general.
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We mention that an isometric immersion from a Kéahler manifold to a
pseudo-Riemannian manifold is (1, 1)-geodesic if and only if the immersion
is pluriharmonic as a map. If an affine immersion with transversal bundle
N from a complex manifold with complex affine connection to a manifold
with affine connection is pluriharmonic as a map, then the immersion is
a (1, 1)-geodesic affine immersion with transversal bundle N. Conversely,
a (1, 1)-geodesic affine immersion with transversal bundle from a complex
manifold with complex affine connection to a manifold with affine connec-
tion is pluriharmonic as a map. From Lemma 3.1, we get

Proposition 3.3 For a complex manifold (M, J), V € Co(TM, J) and
an affine immersion f: (M, V) — (M, V) with transversal bundle N, the
property that f is (1, 1)-geodesic does not depend on the choice of transversal
bundles.

Proof. Let N be another transversal bundle of the affine immersion
f: (M, V) — (M, V) and B the affine fundamental form for the affine
immersion f: (M, V) — (M , V) with transversal bundle N. Then by the
second formula in Lemma 3.1, it holds that

BX = WNLNBX

for any X € T,M, v € M. If the affine immersion f: (M, V) — (]\7, V)
with transversal bundle N is (1, 1)-geodesic, we get

BxJY = TyinBxJY = mginByxY = ByxY

forany X, Y € T, M, x € M and the affine immersion f: (M, V) — (M, V)
with transversal bundle N is (1, 1)-geodesic. O

An affine immersion to a hyperquadric is considered in [9] and such an
immersion can be considered as generalization of an isometric immersion to
aspace form. Let (2!, ..., 22™*P+1) be the standard coordinate of R?m+p+1
and D the standard connection of R?™*P+1  We define a hyperquadric Q
in R2m+p+1 by

S s+5
S Y (@) :s},

Q — {l‘ c R2m+p+1
=1 Jj=s+1

where 0 < 5,0 < 5,0 < s4+5 < 2m+p+1lande = £1. Let v: Q — R¥FPH!
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be the inclusion map. Define ¢ € I'(TR?*™+P+1) by

2m+p+1

; 0
£ Z T oz

=1

and N9 by

NqQ = Span{(bﬁq)_lf}

for ecach ¢ € Q. Then N¥ is a transversal bundle of the immersion ¢.
Let V? be the connection determined by the above decomposition and D,
v (Q, V) — (R P41 D) is a centro-affine immersion with transversal
bundle N9. We denote by B? the affine fundamental form of the affine
immersion ¢: (Q, V¥) — (R?™+P+1 D) with transversal bundle N9. Then
hQ defined by BEV = ehQ(U, V)(149) '€ for any U, V € T,Q, g € Q is a
symmetric bilinear function on Q.

We mention that a non-degenerate hyperquadric which is immersed in
an affine space as a centro-affine hypersurface corresponds to the space form
of non-zero sectional curvature. It is given in [3] for an isometric immersion
from a Kéhler manifold to a space form of non-zero sectional curvature that
if the immersion is (1, 1)-geodesic, then the dimension of the manifold equals
to two. We can generalize this result to the case of an affine immersion,
that is, we can prove the following proposition.

Proposition 3.4 For a (1, 1)-geodesic affine immersion f: (M, V) —
(Q, V?) with transversal bundle N, we assume that

Ajx=—JAx, (3.3)
(f*h9)e(JX, JY)=(f*h%)o(X, V) (3.4)

for any X, Y € TyM, x € M. Then f*h9 =0 on M or dim M = 2.

Proof. Fix a point © € M. The equation of Gauss of the affine immersion
f: (M, V) — (Q, V) with transversal bundle N is

RxyZ=AxByZ — AyBxZ
+e(f R (Y, 2)X —e(f*h9)(X, 2)Y (3.5)

for any X, Y, Z € T, M. By (3.3) and (3.5), we have
Ricy,y = — tr(Ax By) +e(2m — 1)(f*h9).(X, Y). (3.6)
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for any X,Y € T, M, x € M. Since it holds that Rxy = —JRx,yJ
for any X, Y € T,M, z € M, (3.3), (3.4) hold and the immersion f is
(1, 1)-geodesic, we obtain

Ricy y = —tr(AxBy) + e(f*h9).(X, Y). (3.7)

From (3.6) and (3.7), it follows that e(2m — 2)(f*h9).(X, Y) = 0 and we
get 2m — 2 = 0 or (f*h®?), is identically zero. O

As a corollary of this proposition, we have

Corollary 3.5 Under the same assumptions as in Proposition 3.4, if it
holds that

_ 1 1
maX{S*p*5(1+6),8*p*§(1*6)} > 0,

then dim M = 2.

Proof. Fix a point € M. For any subspace W of T, such that
hC|ww = 0, we have

1 1
dimW§min{2m+p—§+§(l+a), 2m+p—s+§(1—€)}.

From the assumption, we obtain

1 1
min{2m—|—p—§—|—5(1+£),2m+p—s+§(1—6)}

<2m =dim f,, T, M.
Thus f*h? # 0. Hence, we get dim M = 2 from Proposition 3.4. g

When @ is a Riemannian space form with non-zero sectional curvature,
we have s = (1 —¢)/2, s =2m +p+ (1 +¢)/2. If M is a Kéhler manifold
and the immersion f: M — @ is a (1, 1)-geodesic isometric immersion,
assumptions (3.3) and (3.4) in Proposition 3.4 hold. Hence from Corollary
3.5, we see that dim M = 2. This is one of the results given in [3].

As an analogue of Proposition 2.2, we obtain

Proposition 3.6 For a complex manifold (M, J), V € Co(TM, J) and
an affine immersion f: (M, V) — (M, V) with transversal bundle N, f is
(1, 1)-geodesic if and only if, for any complex affine immersion ¢: (S, V°)—
(M, V) from a complex manifold (S, J%) with V° € Co(TS, J®), fo¢ isa

(1, 1)-geodesic affine immersion.
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Proof. We regard g := fo¢ as an affine immersion with transversal bundle
N given by

Ni = (92) ™ frot) Note) ® (920) ™ fepla) Baa Na

for each x € S, where N is a transversal bundle of ¢. Then the affine
fundamental form BY of g satisfies

B%Y = (g52) " fao() Boox $saY + (920) " fro(u)b1a BLY

for each € S and any X, Y € 7,5, where B? is the affine fundamental
form of ¢. Since ¢ is a complex affine immersion, ¢ is (1, 1)-geodesic and
b J° = Jbs. If fis (1, 1)-geodesic, we have

Bgsxyz(gﬁx)_lfﬁ¢(x)BJ¢*xX¢*xY + (gm)_lf*qﬁ(x)ﬁbﬁzBi'JSY
=(9t) " io(e) Borox TbsaY + (g52) " frp(e) S B TY
=B%J%Y

for each x € S and any X, Y € T, S. The converse is true since the identity

map of M is regarded as a complex affine immersion. ([l

We define an associated family for an affine immersion from a complex
manifold with complex affine connection to a manifold with affine connec-
tion, which is a special case of an associated family defined for a map in
Section 2.

Definition 3.7 For a complex manifold (M, J), V € Co(TM, J) and an
affine immersion f: (M, V) — (]Tj, V) with transversal bundle N, an asso-
ciated family for f is a family of affine immersions f,: (M, V) — (M, %),
z € C\ {0}, with transversal bundle N, such that f, is an associated family
for a map f and

U, (N)=N,
for some W, € ISO(f*TM, fiTM).
We define F, € ISO(N, N,) by F, := 7y V,in, where my, : ngM —

N, is the projection. Then from the definition, the affine fundamental form

B?, the shape tensor A% and the transversal connection V= of f, satisfy
s F=E" Ay, (3.8)
B%=F.BxE*, (3.9)
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F.VY=VYF, (3.10)
for each x € M, any X € T, M and z € C\ {0}.

Remark For an isometric immersion from a Kahler manifold to a pseudo-
Riemannian manifold, the equation (3.8) is equivalent to the equation (3.9).

An associated family is considered for an isometric immersion from a
Kéhler manifold to a Euclidean space in [3] and to a pseudo-Euclidean space
n [7]. In these cases, they consider a (1, 1)-tensor field EY given by (2.5).

Remark For a complex manifold (M, J), V € Co(TM, J) and an affine
immersion f: (M, V) — (R?"*? D), assume that there is an associated
family f,, z € C\ {0}. If there exists r € R\ {0} such that z; = rz for
21, z2 € C\ {0}, then f,, and f,, are affine congruent of R?™*P,

The following result is similar to Lemma 2.4.

Lemma 3.8 For a complex manifold (M, J), V € Co(T'M, J) and an
affine immersion f: (M, V) — (M V) with transversal bundle N, if there
is an associated family f,, z € C\ {0}, then f is (1, 1)-geodesic.

Proof. From (3.9), we see that
B%YY = F,,BxE*Y = Re(2)F,,BxY + Im(2)F,,BxJY

for each x € M and any X, Y € T, M. Since B is symmetric and z € C\ {0}
is taken arbitrary, we get

BxJY = ByxY
for each x € M and any X, Y € T, M, that is, f is (1, 1)-geodesic. O

By using the associated map defined in Section 2, we prepare the follow-
ing. For an affine immersion f: (M, V) — (M, V) with transversal bundle
N, consider a parallel invertible (1, 1)-tensor field K on M such that

BigxY = BxKY

for each z € M and any X, Y € T, M. An affine immersion fx: (M, V) —
(]\7 , %) with transversal bundle Ny is called an associated tmmersion with
respect to K if fx is an associated map for f with respect to K such that
\I/K(N) NK When we define Fx € ISO(N NK) by Fg = WNK\I/KLN,
where 7wy, : fKTM — N is the projection, the shape tensor AX, the affine
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fundamental form B and the transversal connection V& of the immersion
fK are characterized by

AR F = K 'Ax, BY = FxBxK, VY<Fr = FVy

for each x € M and any X € T, M. In [3], the authors consider an associated
immersion for an isometric immersion from a Riemannian manifold to a Eu-
clidean space by using a parallel orthogonal tensor field on the Riemannian
manifold.

Proposition 3.9 For a simply connected manifold M, V € Co(TM),
a parallel invertible (1, 1)-tensor field K on M and an affine immersion
f: (M, V) — (R"P D) with transversal bundle N, if the affine fundamen-
tal form B satisfies BxkxY = BxKY for each x € M and any X, Y €

T, M, then there is an associated immersion fx with respect to K.

Proof. For the 1-forms wy, @« =1, ..., n+ p, given in the proof of Propo-
sition 2.5, we have

2> (dwa)(X, Y)(f%€) = BxKY — ByKX

for any X, Y € I'(TM) by (2.10). From the assumption, there are ¢*, a =
1, ..., n+ p, such that dp® = wy and frx: M — R"*P given by fx(x) :=
©Y(x)eq for each x € M is an associated map with respect to K. Since f is
an affine immersion, we see that fx is an immersion and the image of the
tangent space of f and fx are parallel in R"™? at each point of M. We may
choose Nk such that Ng := Ui (N). The equations (2.8) and (2.9) imply

DX’ Y =fi Dx Uil KY = U f*Dxil KY
=Uk(i/VxKY 4+ BxKY) = Vg (i/ KVxY + BxKY)
=i/KVxY + U BxKY
for each x € M, any X € T,M and Y € I'(TM). Therefore the induced
connection on M is V and frx: (M, V) — (R™"P, D) is an affine immersion

with transversal bundle Nx. Hence fx is the associated immersion with
respect to K for f. O

Note that Proposition 3.9 generalizes a result in [3], where they consider
an isometric immersion from a Riemannian manifold to a Euclidean space
and K is an orthogonal parallel tensor field on the Riemannian manifold.



474 S. Kurosu

Lemma 3.8 and Proposition 3.9 yield

Proposition 3.10 For a simply connected complex manifold (M, J), V €
Co(TM, J) and an affine immersion f: (M, V) — (R*™*P_ D) with trans-
versal bundle N, there exists an associated family f,: (M, V) — (R*™*P D),
z € C\ {0}, with transversal bundle N, if and only if the immersion f is
(1, 1)-geodesic.

Proof. First we assume that f is (1, 1)-geodesic. Then we obtain
Bg:xY = BxE?Y

for each x € M and any X, Y € T, M. Therefore from Proposition 3.9, for
each z € C\ {0}, there is an affine immersion f,: (M, V) — (R®*™*P D)
with transversal bundle N,, that is, there exists an associated family f, for
f. Since f is (1, 1)-geodesic, we get

BiyY = F,BjxE*Y = F,BxJE*Y = F,BxE*JY = B} JY

for each x € M, any X,Y € T, M and z € C\ {0}. The converse is true
from Lemma 3.8. O

We mention that an associated family for a (1, 1)-geodesic isometric im-
mersion from a Kéhler manifold to a Euclidean space is constructed by Da-
jezer and Gromoll in [3] and when the ambient space is a pseudo-Euclidean
space, Furuhata constructed an associated family in [7].

4. Product of affine immersions

In this section, we study a product of two affine immersions for the next
section.

Throughout this paper, we always assume that i, 7 = 1, 2 and 7 # j.
Let M; be a manifold. For (z1, z2) € My x Mz, we define g;,;: M; — M X
M2 by

Qiz; (75) := (21, 22)
for each x; € M;. For Y € T, M;, we define the lift Y' of Y to My x My by

~

Y = Qixj*a:iy S T(:Jcl,:vz)Ml X Mo

for each x; € M;. We often write (- )~ instead of (N) . For V' € Co(TM;),
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there is a unique connection V € C(T(M; x Ms)) on a product manifold
My x My such that

1 2
o 3 3 1 ~1 2 ~2
VI/IA\/Jll—i-I/IA/J;Xl + Xy = (VWle) + (VWZXQ)

for each z; € M;, any W; € T,,M; and X; € I'(TM;). By a direct calcu-
lation, we have V € Co(T(M; x My)) since V' € Co(TM;). We call V a
product connection of V! and V2. Note that when (M;, Vi) = (R™, DY),
then the product connection D of D' and D? is affine diffeomorphic to the
standard affine connection D of R™ x R™2 where D' is the standard affine
connection of R™. .

Let M; be a manifold and V' € Co(TM;). For an affine immersion
fir (M;, V) — (M;, V') with transversal bundle N;, we denote by B, A’
and Vi the affine fundamental form, the shape tensor and the transversal
connection of f;.

By a similar way, for each y; € M;, we denote the lift of X € Tyiﬂi to

M x Mo by Yi. We consider the immersion

f_:: f1><f2: M1><M2 —>M1XM2.
For each z; € M; and any U; € (fiﬁTMi)zi, we define ﬁzz € (f'T(M; x
M2))(:c1,x2) by

iy B PP

Uiz = (fti(:vl,azz)) (flﬁﬂ?zUll)

for each x; € M;. By a straightforward computation, we get

= 1 2 1 e —]
o +Ye ) =iy, +il2y,

('7:1"7:2)

for each z; € M; and any Y; € T, M;. For the product connection V of ?l
and VQ, we have

] —1 =2 | 1 =2
f*V __1 NQ(Zl + Zo ) = fIVXlZl + f2VX222 (41)
X1 +Xo

for each x; € M;, any X; € T,,, M; and Z; € F(ffTMi). When we define

— —_1  —2

N($17$2) = Nig, @® Nog, (4.2)
for each (z1, z2) € My x My, it holds that

FT(I, x M) =i (T(M; x M) & N
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and f is an immersion with transversal bundle N. Since it follows that

e e e N —_—1 2
fﬁV~1 ~2if<Y1 + Y5 ):fﬁv~1 __2ihY] +if2Y,
X1 +Xo X1 +Xo

== A== 2
:flelif1Y1 +f2vX21,f2}/2
1 2
=iV Y1 +iPV5 Vs

T v 1 7 v 2
+BLY, +BLY,

1 ) _
(V1 oY1 4+ Y )= (Vi V)™ + (VE, Y2) ™)
X1 +Xo

1 2
=if1 v}(l Y, +if2 vg(zYQ

for each x; € M;, any X; € T,, M; and Y; € I'(T'M;), the induced connection
on Mj x My coincides with V and f: (Mg x M, %) — (M1 x Mo, V) is an
affine immersion with transversal bundle N given by (4.2). The equation
(4.1) yields

TR — 1 — 2
& +&)=fIVx,&1 + fiVx,t

1 2
=—ih Ay & + —if2 A% &

o
N etz

1 2
+VEREG + VS

1

for each x; € M;, any X; € T, M; and &; € I'(N;). Thus we obtain

Proposition 4.1 For the affine immersion f = f1 x fa: (M x My, 6) —
(M1 x My, V) with transversal bundle N given by (4.2), the affine funda-
mental form B, the shape tensor A and the transversal connection VN are
characterized by

1

= v AT v 7 v 2
B_i (i +Y2)=BLYi +B3.Y:

for each x; € M;, any X, Y; € Ty, M; and & € T'(N;).

From now on, we consider the case where (M, V!) = (M, V?) =
(M, V). Let A: M >z — (z,x) € M x M be an immersion. We define
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N by N2 .= Span{X' — X’ | X € T, M} for each # € M. Then we have
A'T(M x M) =i*(TM) ® A*NA

and we see that A is an immersion with transversal bundle A*N2. Since
we get,

APV itY = AV Y

for each z € M, any X € T, M and Y € I'(T'M), the induced connection on
M is V and the immersion A: (M, V) — (M x M, V) is an affine immersion
with transversal bundle A*N2. Moreover, the affine immersion A is totally
geodesic and the shape tensor vanishes identically. Thus we can regard A
as a natural immersion from M to M x M.

We consider the immersion

f::foA:(fleg)oA:Maﬁl x M.

For each x € M and any U; € (ffTMi)x, we define ﬁzl € (fﬁT(Ml X M3))z
by

U;' = (fro) ' (FiraUi ).
Then we obtain

- =1 2
dX=ilX +il2x | (4.3)

= 1 =2 —— — —
VXU +U)=fIVU + fiVyU, (4.4)

for each € M, any X € T, M and U; € T'(f*TM;). Define N by

~ - 72 ~ _ —

Na: = Nla;l S N2x S (fji:v) 1f*A(z)NxA (45)
for each x € M. Then it holds that

P, x My) =il (TM) & N

and fis an immersion with transversal bundle N. We mention that there are
various choices for a transversal bundle of the immersion f When M and
M are Riemannian manifolds and both f; and fo are isometric immersions,
N given by (4.5) corresponds to the normal bundle of the immersion f,
where N; corresponds to the normal bundle of f;. Therefore the immersion
fwith transversal bundle N given by (4.5) is a generalization of a product
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of isometric immersions. Since we have

~—  F 1 2 1 2
FVxilY=ihVxY +ilVxY +BLY +B%Y ,
T . . 2
A VXy:ZﬁVXY +Zf2vXY

for each z € M, any X € T,M and Y € I'(TM) from (4.3) and (4.4),
the induced connection on M coincides with V and f: (M, V) — (M x
Mo, V) is an affine immersion with transversal bundle N. For each z € M,
any X € T,M,Y € I'(TM) and &; € I'(};), it holds that

SO
fﬁvx(§11+§22+ifly —ikY")

=1 ! —5 2 p—— — .2

= fiVx& + fiVx& + VY — fIVyY
1 2 1 — 1

= —ih AL +—ikAZ G + VG +BLY

2 2
+ Ve —BLY 4+ ihVxY —ikVxY .
Thus we recall

Proposition 4.2 For the affine immersion f: (M, V) — (My x M, V)
with transversal bundle N given by (4.5), the affine fundamental form B,
the shape tensor A and the transversal connection VN are characterized by

~ ——1 =52
BxY=BlY +BY,

~ 1 =2 ol 2 1
Ax (& +& +ihY —ilY )=§(A§(§1+A§(52),

~~ _ -1 ——2 1 2 ——1 ——2
VNG +& +ihY —ikY )=v¥g +Vig +BLY —BLY

; 1 1- 1
+Zf1 VxY — §’Lf1 (Aﬁ(gl — AZXfQ)

- 2 1- 2
—i2VxY —I—§Zf2(A§(§1 — A% &)
for eachx € M, any X € T,M,Y e I'(T'M) and & € T'(IV;).

5. Holomorphic maps and complex affine immersions

In this section, we investigate a complex affine immersion between com-
plex manifolds with complex affine connections and prove our main theo-
rem. Throughout this section, we always denote by (M, J) a real 2m-
dimensional complex manifold with complex structure J and assume that
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Ve C(TM, J). o
We recall that for complex manifolds (M, J) and (M, J), a map f:

M — M is holomorphic if and only if f.J = Jf. which is equivalent to
if J = (f80)il.

Proposition 5.1 For a complex manifold (M, J) and a map fi: M —
R2™*P =1, 2, assume that there is

U € ISO(fiTR>™ P fiTR>™P)

such that

(fiD)xU=W(fiD)x, (5.1)
— Wit j=if2 (5.2)

for each x € M and any X € TyM. Then J € END(fﬁT(RQm*p x R2m+P))
given by

JO 4T3 = =010, + 90,

for each x € M and any U; € (fﬁTR%”‘“p)I, 1 =1, 2, can be extended to a
parallel complex structure J on R2™HP x R2™HP sych that f = (f1 X fa) o A
18 a holomorphic map with respect to J and J.

Proof. Tt holds that (J)? = —idx FT(R2m+p xR2m+p) by a direct calculation.
From (4.4) and (5.1), we have

(FAD)x J(T1' + T2)=('D)x (01T, +VT,°)
(FED)x(—=1Us) + (fAD)x (WUy)
L(fED)xUs + W(FiD)xU;
—J((fID)xU1 + (fED)x Uy )
=J(ffD)x (U1 + ")
for each x € M and any X € T, M and U; € F(ffT]RQm“‘p). Hence it holds
that

(f*D)xJ = J(f*D)x

for each x € M and any X € T, M and there is a complex structure J of
R2m+P x R2m+P such that f*J = J. For each z € M and any X € T, M, we
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obtain
= e R—)
X =ihX +ifkX .

By (4.3) and (5.2), it follows that

TIX=ih X +ikIX
S —
=—U-Li2X + Wi X
—(ADEAX 4+ X))
(DT x

for each z € M and any X € T, M. Therefore we obtain (fﬁj)zf =i/ J and
f is a holomorphic map with respect to J and J. g

From Propositions 2.6 and 5.1, we get

Corollary 5.2 For a complex manifold (M, J) and V € Co(TM, J), we
assume that M is simply connected and f: M — R?>™*P is a pluriharmonic
map. Then there is a parallel complex structure J of R?M+P x R2MHP sych
that (f x (—f\/_—l)) o A is a holomorphic map with respect to J and J.

Proof. Since M is simply connected and f is pluriharmonic, there is an
associated family f,, z € C\ {0} by Proposition 2.6. From the definition
of an associated family, —W — € ISO( fETR2m AP, ffﬁTRzmﬂD) satisfies
(5.1) and (5.2). Thus by virtue of Proposition 5.1, we obtain the result. [J

When we choose a simply connected neighbourhood of each point and
apply Corollary 5.2, we have

Corollary 5.3 For a complex manifold (M, J) and V € Co(TM, J), any
pluriharmonic map f: M — R*™*P js real analytic.

Next we prepare the definition of a complex affine immersion.

Definition 5.4 For a complex manifold (M, J), (resp. (M, J)) with com-
plex structure J (resp. J), V € Co(TM, J) (resp. V € Co(TM,J)) and
an affine immersion f: (M, V) — (M, V) with transversal bundle N, if
M — M is a holomorphic map with respect to J and J and N is a
complex subbundle of f#TM, that is, (f2J)(N) = N, then such an affine
immersion is said to be complexr and we denote the induced complex struc-

ture of N by JV := an(f0)en.
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A complex affine immersion is studied by many authors ([1], [4], [5],
[8] and [12] for example). We note that if an isometric immersion between
Kahler manifolds is holomorphic as a map, then the affine immersion is
complex with respect to the Levi-Civita connections, where the transver-
sal bundle of the affine immersion is the normal bundle of the isometric
immersion. But an affine immersion between complex manifolds with com-
plex affine connections which is a holomorphic map is not always a complex
affine immersion. We find a sufficient condition for a product of two affine
immersions from a complex manifold with complex affine connection to an
affine space to be a complex affine immersion from the manifold to the prod-
uct of affine spaces with a certain complex structure by using Proposition
5.1.

Theorem 5.5 For a complex manifold (M, J), V € Co(TM, J) and an
affine immersion f;: (M, V) — (R®™*P_ D) with transversal bundle N;,
assume that there exists F € ISO(Ny, Na) such that

—B% = FBYJ, A%F=JAY, FVi =vEF

for each x € M and any X € T, M. Then there is a parallel complex
structure J of R¥™HP x R2™HP such that an affine immersion

F=(fi x fa) o A: (M, V) — (RZ™HP x R¥™P_ D)

with transversal bundle N given by (4.5) is a complex affine immersion with
respect to J and J.

Proof. Define V: ffTRQmﬂ’ N ngR2m+p by
U, (i1 X + &) = il2JX + Fyt

for each x € M, any X € T,M and £ € N;,. Then we see that ¥ €
ISO( ffTRQm*'p , ng R2m+P). From the assumptions, we have

(D) x U (i1Y + &)=(fiD)x (i JY + F¢)
=il2VxJY + B%JY —il2A% F¢ + V2 Fe¢
=U(fiD)x (i"Y +€)

for any X,Y € I'(T'M) and £ € I'(Ny). On the other hand, from the
definition of W, it holds that —\Ifi{ 1J = if2. Then from Proposition 5.1, there
is a parallel complex structure J on R?™P x R?™*P guch that f := (f; x



482 S. Kurosu

f2) oA is a holomorphic map with respect to J and J. By a straightforward
calculation, we get

(ADE +7 +ihY —ikY)

_ — 1 2
— Ul 4 U+ ULkY + Uiy

—TF ) 4 FE (Y —ikJY)

for any Y € T(T'M), £ € T'(N1) and n € I'(V2). Hence N is fvﬁj—irivariant.
Therefore f is a complex affine immersion with transversal bundle N. O

As a corollary, we have

Corollary 5.6 For a simply connected complex manifold (M, J), V €
Co(TM, J) and a (1, 1)-geodesic affine immersion f: (M, V) — (R*™*P, D)
with transversal bundle N, there exists a parallel complex structure J of
R0 5 R¥™P such that an affine immersion (f x (=f =) © A with

transversal bundle N given by (4.5) is a complex affine immersion with
respect to J and J.

From Corollary 5.6, we obtain the following which is given in [7]. We
mention that if the ambient space is a Euclidean space, the same result as
next corollary in shown in [3].

Corollary 5.7 ([7]) For a simply connected Kdihler manifold M and a
(1, 1)-geodesic isometric immersion f: M — R?Vﬂ) to an (n+p)-dimensional
pseudo-FEuclidean space of index N, there exists a parallel complex structure
of RA? x RYP such that (1/v/2)(f x (=fy=1)) © A is a holomorphic iso-

metric immersion.

Proof. From Corollary 5.6, there is a parallel complex structure of R
RR?LP such that (1/v/2)(f x (=f,=1)) oA is a complex affine immersion. By
a direct calculation, we see that (1/v/2)(f x (—=fy=1)) oA is isometric. O

n—+p
N X

We will consider an example of a (1, 1)-geodesic affine immersion and
construct a complex affine immersion which is a product of two (1, 1)-
geodesic affine immersions by using its associated family. We denote by
(R2%,J) a 2-dimensional affine space with the complex structure J which is
induced from the standard complex structure Jy of R2.

Let (x1, x2) be a coordinate of R? such that JO; = 0, and JO» = —01,
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where we denote by 0; = 0/0z;, i = 1, 2. Define f: R?2 — R3 by

fa1, x2) = (w1, 22, D),
where h := z179 + (23/2) — (23/2). For £ := (0, 0, 1), define a transversal
bundle N by

N := Span{(fz.) "¢}

for each z € R?. We regard f as an affine immersion with transversal bundle
N by considering the standard affine connection D on R? and denote by V
the induced connection on R?. Since f is a graph immersion, we have

(Bo,0p)x = (0a0sh)e(fie) ™'

for each x € R?, where o, 8 = 1, 2. By a direct calculation, we get

(Balal)ﬂﬁz(fﬁm)ilfv (33182)33 = (362(91%: = (fjia:)ilfa
(Bo,02)2=(B1a, JO1 )z = — (B, 01)z = —(fia) '€

for each € R? and we see that f is a (1, 1)-geodesic affine immersion with
transversal bundle N.
Since R? is simply connected, we can construct an associated family for

f. For z=a+by/—1 € C\ {0}, a, b € R, we define a map f, by

22— o2
fo(x1, x0) = (aa:l — bxa, bx1 + aza, (a —b)z122 + (a + b)%)
Define ¥, by

U,y = (fzﬁx)_l (ftix)

for each x € R2. Then f, is an associated family for the map f: R? — R3,
Define N, by

Nz:z; = Span{(fzttz)_lf}

for each z € R?, then f,: (R?, V) — (R?, D) is an affine immersion with
transversal bundle N, and is an associated family for the affine immersion
f. In this case, f := (f x (=f /7)) 0 A: R? — RS given by
2 _ .2 2 _ .2

1

r{ — r{ — T
1 2 2
2 y L2, —T1, T1X2 — 2 )

f(x1, x2) = (3?17 T2, T1T2 +
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is an affine immersion with transversal bundle N given by

Ne =N, © N1, & (Fu) H(F % (=F 1))@ N2

for each x € R?. For the standard basis eq, ..., eg of RS, we define a
complex structure Jy of RS by

Joer = e2, Joea = —e1, Joes = eg,
Joes = e5, Joes = —eq, Joeg = —e3

and we denote by J the induced complex structure on IR6 from Jy. From
the definition of .J, , we see that N is ]?ﬁj—invariant and f is a complex affine
immersion with respect to J and J.

We put z := 21 + v/—1x and let

e1 +vV—1ley, ez ++v—leg, es+—les

be a complex basis of C3. Then we can write ]7 as

Fe) = (2 —vs, LV

Note that the real part of the right hand side is f and the imaginary part
is —f\/jl

For a product of two complex manifolds (M;, J;), i = 1, 2, the complex
structure JM*Mz ¢ END(T(M; x Ms)) given by

2 1 2

1 —~ e~ e~
JMUM (X 4 Xy ) = 11Xt + o Xo

for each z; € M; and X; € T,,M;, 1 = 1, 2, equals the natural complex
structure on M7 x Ms induced from its complex analytic coordinate. We
regard M, x Mo as a complex manifold with complex structure JM1 M2 We
mention that the product connection V of Vi € Co(T'M;, J;) satisfies Ve
Co(T(My x My), JMixMz) that is, V is a complex affine connection with
respect to JMXM2  For a product of two maps from a complex manifold,
we get

Proposition 5.8 Let (M;, J;), (M1 x My, JM1*M2) be complex manifolds,
M; a manifold, f;: M; — M; a map, i = 1, 2, V the product connection
of VI € Co(TMy, J1) and V? € Co(TMa, Jo), V the product connection of
Ve Co(TMy) and Ve Co(TMs) and f := f1 x fo: My x My — My x Mo
a map. Then f is pluriharmonic with respect to V and V if and only if both
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f1 and fy are pluriharmonic with respect to V' and ﬁi, 1=1, 2.

Proof.  The Hessian Hy of f is given by

1 2 1 __2
Hf(Xl + X9, +Y ) (5.3)
12 1 2

IV Y, +Y, )= ilV Y, +Y
=(f )X1+X2 (Y3 2 ) —i X11+X2(1 2 )

2 1
=k . . v
:Z <(f£V )XkakYk — szV’)“(kYk >
k=1
2 ————k
:Z Hy, (Xk, Yi)
k=1
for any Xy, Y3, € I'(T'My). If f is pluriharmonic, then it holds from (5.3)
that

k

) ~k
Hy, (JoXp, Ya) =Hp(JM M X0 Yy

__k __k k
=Hp( Xy, , JMMY, ) = Hy, (X, JeYe)

for each x, € M), and any Xy, Y}, € T, M}, and we see that both f; and fs
are pluriharmonic. The converse is trivial from (5.3). (]

We have the following corollary.

Corollary 5.9 Let (M, J) be a complex manifold, V € Co(TM, J), M,
a mamfold fi: M -, M; a map, i = 1,2, V the product connection of
V GCO(TMl) andV GCQ(TMQ) andf = (fl X fg)oA M—>M1 X M2
a map. Then f is pluriharmonic with respect to ¥V and ¥V if and only if both
f1 and fo are pluriharmonic with respect to ¥V and V', i = 1, 2.

As a corollary of Proposition 5.8, for the product of two affine immer-
sions, we obtain

Corollary 5.10 Let (M, J) be a complex manifold, V € Co(TM, J), M;
a manifold, ¥V the product connection ofﬁ1 € Co(T M) and Ve Co(TMs)
and fi: (M, V) — (M;, V') an affine immersion with transversal bundle
N;. Then an affine immersion f = (f1 x fa)o A: (M, V) — (M1 x My, V)
with transversal bundle N given by (4.5) is a (1, 1)-geodesic affine immer-
sion if and only if both fi and fy are (1, 1)-geodesic.
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Next we will construct an example for Corollary 5.10. Define f;: R? —
R3 by

9 .9
fL‘ — X
fi(z1, z2) = (3317 T2, T1T2 + 5 2)
and fo: R? — R5 by
2 2
xry — X
fo(z, z2) = (x1, T, —— 5 2 2139, T — 3961:62)

For £ := (0, 0, 1), we define N; by
N1, = Span{(fiz) '€}

for each z € R%2. Then f; is an affine immersion with transversal bundle
N by considering the standard affine connection D on R? and denote by
V the induced connection on R2.

For n; := (0,0, 1,0, 0), ne := (0,0, 0, 1, 0) and n3 := (0, 0, 0, 0, 1),
we define a transversal bundle Ny by

No, = Span{(fasz) 'm1, (forz) "2, (fore) 03}

for each z € R%2. Then f, is an affine immersion with transversal bundle
N by considering the standard affine connection D on R and denote by
V the induced connection on R?. We mention that the induced connection
on M for f; and fo are the same connection and both f; and fs are full

immersions. It is easy to show that both fi and fo are (1, 1)-geodesic.
On the other hand, f := (f; x f2) o A: (R?, V) — (R8, D) given by

2 2
X X
f(x1, x2) := <x1, T, T1T2 +

— Ty

2 ) '1"17 x27
af — a3

5 , T1X2, wl 3w1x2

is an affine immersion with transversal bundle N given by (4.5). For an
affine immersion f , the affine fundamental form B satisfies

(§81 al)x

(B e + (32 e

((flﬁx) . - ((f2t1x)_1(771 —6217))a »
(

(

~ 2
(Ba, 02)e=(Ba,01)0 = (33231) + (B3,01)z
2

(figa)! )x + ((fope) "1 (m2 — 622m3))2
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- 1 2
(Bo,02)e=(Bj 02)z + (B5,02)z
2

——((Fie) O + (Foze) L1 — 6213))2 )
:_(Eal al)ac

for cach # € R2 and f is a (1, 1)-geodesic affine immersion. We note that
the essential codimension of the affine immersion f: (R2, V) — (RS, D)
with transversal bundle N given by (4.5) is four since the first normal space
is contained in Nilxl &) Ni%z for each x € R2 and the subbundle Fll @ Ff
of N is parallel with respect to vV,
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