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Pluriharmonic maps in affine differential geometry

and (1, 1)-geodesic affine immersions
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Abstract. We define a pluriharmonic map from a complex manifold with a complex

affine connection to a manifold with an affine connection and obtain some fundamental

results which generalize those for a pluriharmonic map from a Kähler manifold to a

Riemannian manifold. Especially, by using an associated family, we find a sufficient

condition for the product of two (1, 1)-geodesic affine immersions to an affine space to

be a complex affine immersion from the manifold to the product of affine spaces with a

certain complex structure.

Key words: pluriharmonic map, (1, 1)-geodesic affine immersion, complex affine immer-

sion.

1. Introduction

An isometric immersion from a Kähler manifold to a Riemannian mani-
fold is said to be (1, 1)-geodesic if the (1, 1)-part of the complexified second
fundamental form vanishes. In [3], Dajczer and Gromoll showed that a
(1, 1)-geodesic isometric immersion from a simply connected Kähler mani-
fold to a Euclidean space has a distinguished deformation called an associ-
ated family which they used to construct a holomorphic isometric immer-
sion. When the ambient space is a pseudo-Euclidean space, similar results
are given in [7]. A (1, 1)-geodesic affine immersion is a special notion of a
pluriharmonic map, that is, a map of which (1, 1)-part of the complexified
Hessian vanishes. A pluriharmonic map can be considered as a generaliza-
tion of a holomorphic map between complex manifolds. Recently, in [6],
Eschenburg and Tribuzy characterize a pluriharmonic map from a Kähler
manifold to a Riemannian symmetric space by the property of having an
associated family.

In this paper, we define a pluriharmonic map from a complex manifold
with a complex affine connection to a manifold with an affine connection
and a (1, 1)-geodesic affine immersion as a special case and generalize some
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of the results in [3], [6], [7] and [11]. Let M be a complex manifold with a
complex affine connection and M̃ a manifold with an affine connection. In
Section 2, we define a pluriharmonic map from M to M̃ and obtain some
fundamental results which include generalizations of some of the results in
[6] and [11]. We also define an associated family for a map from M to M̃

which is a generalization of that in [6] and obtain some results including
a sufficient condition for the existence of the associated family when M̃ is
an affine space. In Section 3, we define a (1, 1)-geodesic affine immersion
as a special case, apply the results for a pluriharmonic map to such an
immersion and generalize some results in [3] and [7]. For an affine immersion
from M to M̃ , we define an associated family as a special case and obtain
generalized results in [3] and [7]. In Section 4, we prepare some results on
the product of two affine immersions for the next section. In Section 5, we
find a sufficient condition for the product of two maps from M to an affine
space to be a holomorphic map from M to the product of affine spaces with a
certain complex structure. Applying this result to the product of two affine
immersions from M to an affine space, we find a sufficient condition for
the product of two affine immersions to be a complex affine immersion. In
particular, for a (1, 1)-geodesic affine immersion from M to an affine space,
by using its associated family, we get a result which is a generalization of
the corresponding result in [3] and [7].

2. Pluriharmonic maps

Throughout this paper, all objects and morphisms are assumed to be
smooth. Let M be a manifold, TM its tangent bundle and T ∗M its cotan-
gent bundle. We use letters E, Ẽ to denote real vector bundles over M .
The fibre of a vector bundle E at x ∈ M is denoted by Ex, the dual bundle
of E by E∗, the set of all connections on E by C(E) and the space of cross
sections of E by Γ(E). We denote by Ap(E) = Γ(∧pT ∗M ⊗E) the space of
E-valued p-forms over M . Let Hom(Ẽ, E) be the vector bundle of which
fibre Hom(Ẽ, E)x at x ∈ M is the vector space HomR(Ẽx, Ex) of linear
mapping from Ẽx to Ex. Let HOM(Ẽ, E) be the space of vector bundle
homomorphisms from Ẽ to E and END(E) := HOM(E, E). We note that
HOM(Ẽ, E) can be identified with Γ(Hom(Ẽ, E)). For Φ ∈ HOM(Ẽ, E)
and x ∈ M , put Φx := Φ|Ex . The space of vector bundle isomorphisms from
Ẽ to E is denoted by ISO(Ẽ, E). Let M and M̃ be manifolds, f : M → M̃ a
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map, f ]TM̃ and f] : f ]TM̃ → TM̃ the induced bundle and its bundle map.
We define if : TM → f ]TM̃ by ifx := (f]x)−1f∗x for each x ∈ M . We denote
by C0(TM) (resp. C0(TM̃)) the set of all torsion free affine connections on
M (resp. M̃). Let M , M̃ be manifolds, ∇ ∈ C0(TM) and ∇̃ ∈ C0(TM̃). For
a map f : M → M̃ , we denote by f ]∇̃ the pull-back of ∇̃ ∈ C0(TM̃). For a
map f : M → M̃ , we denote by Hf the Hessian of f defined by

Hf (X, Y ) := f ]∇̃XifY − if∇XY

for X, Y ∈ Γ(TM). Since both ∇̃ and ∇ are torsion free, Hf is a bilinear
homomorphism and symmetric, that is, Hf (X, Y ) = Hf (Y, X) for each
x ∈ M and any X, Y ∈ TxM . We denote by (M, J) a 2m-dimensional
manifold M with complex structure J and call it a complex manifold. For
a complex manifold (M, J), we denote by C0(TM, J) the set of all torsion
free affine connections ∇ ∈ C0(TM) such that ∇XJ = J∇X for each x ∈ M

and any X ∈ TxM . Such connections are called complex affine connections.
Note that C0(TM, J) 6= {0} since J is integrable. Hereafter in this paper,
we always denote by M̃ a manifold equipped with ∇̃ ∈ C0(TM̃).

Definition 2.1 For a complex manifold (M, J), ∇ ∈ C0(TM, J) and a
map f : M → M̃ , we say that f is pluriharmonic if

Hf (JX, Y ) = Hf (X, JY )

for each x ∈ M and any X, Y ∈ TxM .

Note that the equation above is equivalent to the condition that the
(1, 1)-part of the complexified Hessian vanishes. We mention that any
holomorphic or anti-holomorphic maps between complex manifolds with
complex affine connections are pluriharmonic. The property that a map
f : M → M̃ from a complex manifold (M, J) with ∇ ∈ C0(TM, J) is pluri-
harmonic does not depend on the choice of ∇ ∈ C0(TM, J). On the other
hand, this property depends on the choice of ∇̃ ∈ C0(TM̃) as follows. For
∇̃ and ∇̃′ ∈ C0(TM̃), we define the difference tensor P by

PUV := ∇̃UV − ∇̃′UV

for any U, V ∈ Γ(TM̃) and we denote by f ]P the pull-back of P by f .
If a map f : M → M̃ is pluriharmonic with respect to ∇̃ ∈ C0(TM̃), f is
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pluriharmonic with respect to ∇̃′ if and only if it holds that

(f ]P )XJY = (f ]P )JXY

for each x ∈ M and any X, Y ∈ TxM . We have the following for a pluri-
harmonic map.

Proposition 2.2 A map f : M → M̃ from a complex manifold (M, J)
with ∇ ∈ C0(TM, J) is pluriharmonic if and only if, for any holomorphic
map φ : S → M from a complex manifold (S, JS) with complex affine con-
nection to M , f ◦ φ is also pluriharmonic.

Proof. For simplicity, put g = f ◦ φ. Then we have

Hg(X, Y )=(g]x)−1f]φ(x)Hf (φ∗xX, φ∗xY )

+ (g]x)−1f∗φ(x)φ]xHφ(X, Y )

for each x ∈ S and any X, Y ∈ TxS. If f is pluriharmonic, we get

Hg(JSX, Y )

= (g]x)−1f]φ(x)Hf (Jφ∗xX, φ∗xY ) + (g]x)−1f∗φ(x)φ]xHφ(X, JSY )

= (g]x)−1f]φ(x)Hf (φ∗xX, Jφ∗xY ) + (g]x)−1f∗φ(x)φ]xHφ(X, JSY )

= Hg(X, JSY )

for each x ∈ S and any X, Y ∈ TxS. The converse is trivial since the
identity map of M is holomorphic. ¤

When M̃ is a Riemannian manifold, a similar result as Proposition 2.2
is given in [11], where they use the Levi-Civita connections.

For z ∈ C\{0}, consider a (1, 1)-tensor field Ez on a complex manifold
(M, J) defined by

Ez := Re(z)I + Im(z)J,

where I is the identity of TM , Re(z) and Im(z) are the real part and the
imaginary part of z ∈ C\{0}. It is clear that Ez has the following properties.

EzEz−1
=I, (2.1)

∇XEz=Ez∇X (2.2)

for ∇ ∈ C0(TM, J), each x ∈ M and any X ∈ TxM .
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Definition 2.3 For a complex manifold (M, J) and ∇ ∈ C0(TM, J), an
associated family for a map f : M → M̃ is a family of maps fz : M → M̃ ,
z ∈ C \ {0}, such that f1 = f ,

f ]
z∇̃XΨz=Ψzf

]∇̃X , (2.3)

ΨzxifxEzX=ifz
x X (2.4)

for a bundle isomorphism Ψz ∈ ISO(f ]TM̃, f ]
zTM̃), each x ∈ M and any

X ∈ TxM .

An associated family is considered for a map from a Kähler manifold to
a Riemannian symmetric space in [6], where they use a (1, 1)-tensor field

Eθ := cos θI + sin θJ (2.5)

for θ ∈ [0, 2π).
From (2.3) and (2.4), we obtain

Hfz(X, Y ) = ΨzxHf (X, EzY ) (2.6)

for each x ∈ M and any X, Y ∈ TxM .

Lemma 2.4 For a complex manifold (M, J), ∇ ∈ C0(TM, J) and a map
f : M → M̃ , if there is an associated family fz, z ∈ C \ {0}, for f , then fz

is pluriharmonic.

Proof. From (2.6), we get

Hfz(X, Y ) = Re(z)ΨzxHf (X, Y ) + Im(z)ΨzxHf (X, JY ) (2.7)

for each x ∈ M and any X, Y ∈ TxM . Since Hfz is symmetric and z ∈ C \
{0} is taken arbitrary, f is pluriharmonic. Moreover, by (2.7), we have

Hfz(JX, Y )=Re(z)ΨzxHf (JX, Y ) + Im(z)ΨzxHf (JX, JY )

=Re(z)ΨzxHf (X, JY ) + Im(z)ΨzxHf (X, J2Y )

=Hfz(X, JY )

because f is pluriharmonic. This completes the proof. ¤

We prepare the following to show the existence of an associated family.
For a complex manifold (M, J), ∇ ∈ C0(TM, J), if a map f : M → M̃ is
pluriharmonic, then it holds that
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Hf (EzX, Y ) = Hf (X, EzY )

for each z ∈ C \ {0}, x ∈ M and any X, Y ∈ TxM . Hence in a slight more
general form, we consider the following. For a map f : M → M̃ , consider a
parallel (1, 1)-tensor field K on M such that

Hf (KX, Y ) = Hf (X, KY )

for each x ∈ M and any X, Y ∈ TxM . For such a tensor field K, a map
fK : M → M̃ such that

f ]
K∇̃XΨK=ΨKf ]∇̃X , (2.8)

ΨKxifxKX=ifK
x X (2.9)

for some ΨK ∈ ISO(f ]TM̃, f ]
KTM̃), each x ∈ M and any X ∈ TxM is

called an associated map with respect to K.
To state and prove the next proposition, we prepare the following. In

this paper, we denote by (Rn+p, D) an (n + p)-dimensional affine space
with the standard affine connection D. We denote by (e1, . . . , en+p) the
standard basis of Rn+p, ēα the global parallel tangent vector field obtained
from eα and θα the dual of ēα, α = 1, . . . , n + p.

Proposition 2.5 For a simply connected manifold M , ∇ ∈ C0(TM), a
parallel (1, 1)-tensor field K on M and a map f : M → Rn+p, if the Hessian
satisfies Hf (KX, Y ) = Hf (X, KY ) for each x ∈ M and any X, Y ∈ TxM ,
then there is an associated map fK with respect to K.

Proof. For the 1-forms f∗θα ◦K, α = 1, . . . , n + p, we have

f∗(KX) =
∑
α

(f∗θα)(KX)ēα (2.10)

for any X ∈ Γ(TM). For simplicity, we put f∗θα ◦K = ωα. The condition
that 1-forms ωα, α = 1, . . . , n+p, are closed is equivalent to

∑
α dωα(f ]ēα)

= 0, where f ]ēα ∈ Γ(f ]TRn+p) is defined by (f ]ēα)x := (f]x)−1(ēα)f(x) for
each x ∈ M . On the other hand, by (2.10), we get

2
∑
α

(dωα)(X, Y )(f ]ēα)

= f ]DXifKY − f ]DY ifKX − ifK(∇XY −∇Y X)

= Hf (X, KY )−Hf (Y, KX)
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for any X, Y ∈ Γ(TM). Therefore (dωα)(X, Y ) = 0 for α = 1, . . . , n + p

if and only if Hf (X, KY ) = Hf (Y, KX) for each x ∈ M and any X, Y ∈
TxM . Then from the assumption, there exist ϕα such that

dϕα = f∗θα ◦K

by Poincaré’s lemma for α = 1, . . . , n+p. Put fK(x) := ϕα(x)eα and define
ΨK by ΨKx(f ]ēα)x := (f ]

K ēα)x for each x ∈ M and α = 1, . . . , n+p. Then
the equations (2.8) and (2.9) hold. ¤

From Lemma 2.4 and Proposition 2.5, we get

Proposition 2.6 For a simply connected complex manifold (M, J), ∇ ∈
C0(TM, J) and a map f : M → R2m+p, there is an associated family fz,
z ∈ C \ {0}, if and only if f is pluriharmonic.

Proof. If f is pluriharmonic, then we obtain

Hf (EzX, Y ) = Hf (X, EzY )

for each x ∈ M and any X, Y ∈ TxM . Hence from Proposition 2.5, there
is an associated family fz, z ∈ C \ {0}, for f . Since f is pluriharmonic,
fz is also pluriharmonic by a direct calculation. The converse follows from
Lemma 2.4. ¤

For a pluriharmonic map from a Kähler manifold to a Riemannian
symmetric space, Proposition 2.6 is proved in [6], where they use Eθ instead
of Ez.

3. (1, 1)-geodesic affine immersions

Let M and M̃ be manifolds and f : M → M̃ an immersion. For a
subbundle N of f ]TM̃ , if

f ]TM̃ = if (TM)⊕N,

then we call such an immersion an immersion with transversal bundle N .
Let ιif (TM) : if (TM) → f ]TM̃ , ιN : N → f ]TM̃ be the inclusions and
πif (TM) : f ]TM̃ → if (TM), πN : f ]TM̃ → N the projections. We put îf :=
πif (TM)i

f ∈ ISO(TM, if (TM)). Let ∇ ∈ C0(TM) and ∇̃ ∈ C0(TM̃) be tor-
sion free affine connections. For an immersion f : M → M̃ with transversal
bundle N , if the induced connection πif (TM)(f ]∇̃)ιif (TM) on if (TM) for



466 S. Kurosu

f ]∇̃ coincides with îf∇(̂if )−1, we say such a morphism (f, N) : (M, ∇) →
(M̃, ∇̃) an affine immersion with transversal bundle N and denote it by
f : (M, ∇) → (M̃, ∇̃) if the transversal bundle is stated. When for an
immersion f : (M, ∇) → (M̃, ∇̃), there is a subbundle N of f ]TM̃ such
that f : (M, ∇) → (M̃, ∇̃) is an affine immersion with transversal bundle
N , we call f : (M, ∇) → (M̃, ∇̃) an affine immersion. For an affine im-
mersion f : (M, ∇) → (M̃, ∇̃) with transversal bundle N , we define the
affine fundamental form B ∈ A1(Hom(TM, N)), the shape tensor A ∈
A1(Hom(N, TM)) and the transversal connection ∇N ∈ C(N) by

B:=πN (f ]∇̃)ιif (TM )̂i
f ,

A:=−(̂if )−1πif (TM)(f
]∇̃)ιN ,

∇N :=πN (f ]∇̃)ιN .

Since ∇̃ is torsion free, B is symmetric, that is, BXY = BY X for each x ∈
M and any X, Y ∈ TxM . Note that BXY (resp. AXξ) is usually denoted
by α(X, Y ) (resp. AξX) for each x ∈ M , any X, Y ∈ TxM and ξ ∈ Nx.
Then we can write the Gauss and Weingarten formulas as

(f ]∇̃)XifY =if∇XY + BXY,

(f ]∇̃)Xξ=−ifAXξ +∇N
Xξ

for each x ∈ M , any X ∈ TxM , Y ∈ Γ(TM) and ξ ∈ Γ(N).
Next we consider another transversal bundle N̄ and the decomposition

f ]TM̃ = if (TM)⊕ N̄ . (3.1)

According to the decomposition (3.1), let

ῑif (TM) : if (TM) → f ]TM̃, ιN̄ : N̄ → f ]TM̃

be the inclusions and

π̄if (TM) : f ]TM̃ → if (TM), πN̄ : f ]TM̃ → N̄

the projections. Note that ιif (TM) = ῑif (TM). Let ∇̄ ∈ C0(TM) be a connec-
tion such that f : (M, ∇̄) → (M̃, ∇̃) is an affine immersion with transversal
bundle N̄ and B̄, Ā and ∇̄N̄ the affine fundamental form, the shape ten-
sor and the transversal connection of the affine immersion f : (M, ∇̄) →
(M̃, ∇̃) with transversal bundle N̄ . Then we have
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Lemma 3.1 [2], [10]

∇̄X=∇X + (̂if )−1π̄if (TM)ιNBX ,

B̄X=πN̄ ιNBX ,

ĀX=AXπN ιN̄ −∇X (̂if )−1πif (TM)ιN̄

− (̂if )−1π̄if (TM)ιNBX (̂if )−1πif (TM)ιN̄

− (̂if )−1π̄if (TM)ιN∇N
XπN ιN̄ ,

∇̄N̄
X=πN̄ ιN∇N

XπN ιN̄ + πN̄ ιNBX (̂if )−1πif (TM)ιN̄

for each x ∈ M and any X ∈ TxM .

Note that the above equations in Lemma 3.1 uniquely determine the
relations of induced objects, the connections on M , the affine fundamental
forms, the shape tensors and the transversal connections, when we replace
the transversal bundle N̄ with N . From Lemma 3.1, both N and N̄ induce
the same connection ∇ on M if and only if π̄if (TM)ιNB = 0.

Definition 3.2 For a complex manifold (M, J), ∇ ∈ C0(TM, J) and an
affine immersion f : (M, ∇) → (M̃, ∇̃) with transversal bundle N , we say
that f is (1, 1)-geodesic if

BJXY = BXJY

for each x ∈ M and any X, Y ∈ TxM .

Note that the equation above is equivalent to the condition that (1, 1)-
part of the complexified affine fundamental form vanishes. We note that
an isometric immersion from a Kähler manifold to a pseudo-Riemannian
manifold is (1, 1)-geodesic if and only if the shape tensor satisfies

AJXξ = −JAXξ (3.2)

for each x ∈ M , any X ∈ TxM and ξ ∈ T⊥x M , where T⊥x M is the normal
space of the immersion at x. Hence any (1, 1)-geodesic isometric immersion
from a Kähler manifold to a Riemannian manifold is minimal. For a (1, 1)-
geodesic affine immersion from a complex manifold with complex affine
connection to a manifold with affine connection, the equation (3.2) does
not hold in general.
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We mention that an isometric immersion from a Kähler manifold to a
pseudo-Riemannian manifold is (1, 1)-geodesic if and only if the immersion
is pluriharmonic as a map. If an affine immersion with transversal bundle
N from a complex manifold with complex affine connection to a manifold
with affine connection is pluriharmonic as a map, then the immersion is
a (1, 1)-geodesic affine immersion with transversal bundle N . Conversely,
a (1, 1)-geodesic affine immersion with transversal bundle from a complex
manifold with complex affine connection to a manifold with affine connec-
tion is pluriharmonic as a map. From Lemma 3.1, we get

Proposition 3.3 For a complex manifold (M, J), ∇ ∈ C0(TM, J) and
an affine immersion f : (M, ∇) → (M̃, ∇̃) with transversal bundle N , the
property that f is (1, 1)-geodesic does not depend on the choice of transversal
bundles.

Proof. Let N̄ be another transversal bundle of the affine immersion
f : (M, ∇) → (M̃, ∇̃) and B̄ the affine fundamental form for the affine
immersion f : (M, ∇) → (M̃, ∇̃) with transversal bundle N̄ . Then by the
second formula in Lemma 3.1, it holds that

B̄X = πN̄ ιNBX

for any X ∈ TxM , x ∈ M . If the affine immersion f : (M, ∇) → (M̃, ∇̃)
with transversal bundle N is (1, 1)-geodesic, we get

B̄XJY = πN̄ ιNBXJY = πN̄ ιNBJXY = B̄JXY

for any X, Y ∈ TxM , x ∈ M and the affine immersion f : (M, ∇) → (M̃, ∇̃)
with transversal bundle N̄ is (1, 1)-geodesic. ¤

An affine immersion to a hyperquadric is considered in [9] and such an
immersion can be considered as generalization of an isometric immersion to
a space form. Let (x1, . . . , x2m+p+1) be the standard coordinate of R2m+p+1

and D the standard connection of R2m+p+1. We define a hyperquadric Q

in R2m+p+1 by

Q :=
{

x ∈ R2m+p+1

∣∣∣∣ −
s∑

i=1

(xi)2 +
s+s̄∑

j=s+1

(xj)2 = ε

}
,

where 0 5 s, 0 5 s̄, 0 < s+ s̄ 5 2m+p+1 and ε = ±1. Let ι : Q → R2m+p+1
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be the inclusion map. Define ξ ∈ Γ(TR2m+p+1) by

ξ := −
2m+p+1∑

i=1

xi ∂

∂xi

and NQ by

NQ
q := Span{(ι]q)−1ξ}

for each q ∈ Q. Then NQ is a transversal bundle of the immersion ι.
Let ∇Q be the connection determined by the above decomposition and D,
ι : (Q, ∇Q) → (R2m+p+1, D) is a centro-affine immersion with transversal
bundle NQ. We denote by BQ the affine fundamental form of the affine
immersion ι : (Q, ∇Q) → (R2m+p+1, D) with transversal bundle NQ. Then
hQ defined by BQ

U V = εhQ(U, V )(ι]q)−1ξ for any U, V ∈ TqQ, q ∈ Q is a
symmetric bilinear function on Q.

We mention that a non-degenerate hyperquadric which is immersed in
an affine space as a centro-affine hypersurface corresponds to the space form
of non-zero sectional curvature. It is given in [3] for an isometric immersion
from a Kähler manifold to a space form of non-zero sectional curvature that
if the immersion is (1, 1)-geodesic, then the dimension of the manifold equals
to two. We can generalize this result to the case of an affine immersion,
that is, we can prove the following proposition.

Proposition 3.4 For a (1, 1)-geodesic affine immersion f : (M, ∇) →
(Q, ∇Q) with transversal bundle N , we assume that

AJX=−JAX , (3.3)

(f∗hQ)x(JX, JY )=(f∗hQ)x(X, Y ) (3.4)

for any X, Y ∈ TxM , x ∈ M . Then f∗hQ = 0 on M or dimM = 2.

Proof. Fix a point x ∈ M . The equation of Gauss of the affine immersion
f : (M, ∇) → (Q, ∇Q) with transversal bundle N is

RX, Y Z=AXBY Z −AY BXZ

+ ε(f∗hQ)x(Y, Z)X − ε(f∗hQ)x(X, Z)Y (3.5)

for any X, Y, Z ∈ TxM . By (3.3) and (3.5), we have

RicX, Y = − tr(AXBY ) + ε(2m− 1)(f∗hQ)x(X, Y ). (3.6)
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for any X, Y ∈ TxM , x ∈ M . Since it holds that RX, Y = −JRX, Y J

for any X, Y ∈ TxM , x ∈ M , (3.3), (3.4) hold and the immersion f is
(1, 1)-geodesic, we obtain

RicX, Y = − tr(AXBY ) + ε(f∗hQ)x(X, Y ). (3.7)

From (3.6) and (3.7), it follows that ε(2m − 2)(f∗hQ)x(X, Y ) = 0 and we
get 2m− 2 = 0 or (f∗hQ)x is identically zero. ¤

As a corollary of this proposition, we have

Corollary 3.5 Under the same assumptions as in Proposition 3.4, if it
holds that

max
{

s̄− p− 1
2
(1 + ε), s− p− 1

2
(1− ε)

}
> 0,

then dimM = 2.

Proof. Fix a point x ∈ M . For any subspace W of Tf(x)Q such that
hQ|W×W = 0, we have

dimW 5 min
{

2m + p− s̄ +
1
2
(1 + ε), 2m + p− s +

1
2
(1− ε)

}
.

From the assumption, we obtain

min
{

2m + p− s̄ +
1
2
(1 + ε), 2m + p− s +

1
2
(1− ε)

}

< 2m = dim f∗xTxM .

Thus f∗hQ 6= 0. Hence, we get dim M = 2 from Proposition 3.4. ¤

When Q is a Riemannian space form with non-zero sectional curvature,
we have s = (1− ε)/2, s̄ = 2m + p + (1 + ε)/2. If M is a Kähler manifold
and the immersion f : M → Q is a (1, 1)-geodesic isometric immersion,
assumptions (3.3) and (3.4) in Proposition 3.4 hold. Hence from Corollary
3.5, we see that dim M = 2. This is one of the results given in [3].

As an analogue of Proposition 2.2, we obtain

Proposition 3.6 For a complex manifold (M, J), ∇ ∈ C0(TM, J) and
an affine immersion f : (M, ∇) → (M̃, ∇̃) with transversal bundle N , f is
(1, 1)-geodesic if and only if, for any complex affine immersion φ : (S,∇S)→
(M, ∇) from a complex manifold (S, JS) with ∇S ∈ C0(TS, JS), f ◦ φ is a
(1, 1)-geodesic affine immersion.
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Proof. We regard g := f ◦φ as an affine immersion with transversal bundle
N̂ given by

N̂x := (g]x)−1f]φ(x)Nφ(x) ⊕ (g]x)−1f∗φ(x)φ]xNx

for each x ∈ S, where N is a transversal bundle of φ. Then the affine
fundamental form Bg of g satisfies

Bg
XY = (g]x)−1f]φ(x)Bφ∗xXφ∗xY + (g]x)−1f∗φ(x)φ]xBφ

XY

for each x ∈ S and any X, Y ∈ TxS, where Bφ is the affine fundamental
form of φ. Since φ is a complex affine immersion, φ is (1, 1)-geodesic and
φ∗JS = Jφ∗. If f is (1, 1)-geodesic, we have

Bg
JSX

Y =(g]x)−1f]φ(x)BJφ∗xXφ∗xY + (g]x)−1f∗φ(x)φ]xBφ
XJSY

=(g]x)−1f]φ(x)Bφ∗xXJφ∗xY + (g]x)−1f∗φ(x)φ]xBφ
XJSY

=Bg
XJSY

for each x ∈ S and any X, Y ∈ TxS. The converse is true since the identity
map of M is regarded as a complex affine immersion. ¤

We define an associated family for an affine immersion from a complex
manifold with complex affine connection to a manifold with affine connec-
tion, which is a special case of an associated family defined for a map in
Section 2.

Definition 3.7 For a complex manifold (M, J), ∇ ∈ C0(TM, J) and an
affine immersion f : (M, ∇) → (M̃, ∇̃) with transversal bundle N , an asso-
ciated family for f is a family of affine immersions fz : (M, ∇) → (M̃, ∇̃),
z ∈ C\{0}, with transversal bundle Nz such that fz is an associated family
for a map f and

Ψz(N) = Nz

for some Ψz ∈ ISO(f ]TM̃, f ]
zTM̃).

We define Fz ∈ ISO(N, Nz) by Fz := πNzΨzιN , where πNz : f ]
zTM̃ →

Nz is the projection. Then from the definition, the affine fundamental form
Bz, the shape tensor Az and the transversal connection ∇Nz of fz satisfy

Az
XFz=Ez−1

AX , (3.8)

Bz
X=FzBXEz, (3.9)
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Fz∇N
X=∇Nz

X Fz (3.10)

for each x ∈ M , any X ∈ TxM and z ∈ C \ {0}.
Remark For an isometric immersion from a Kähler manifold to a pseudo-
Riemannian manifold, the equation (3.8) is equivalent to the equation (3.9).

An associated family is considered for an isometric immersion from a
Kähler manifold to a Euclidean space in [3] and to a pseudo-Euclidean space
in [7]. In these cases, they consider a (1, 1)-tensor field Eθ given by (2.5).

Remark For a complex manifold (M, J), ∇ ∈ C0(TM, J) and an affine
immersion f : (M, ∇) → (R2m+p, D), assume that there is an associated
family fz, z ∈ C \ {0}. If there exists r ∈ R \ {0} such that z1 = rz2 for
z1, z2 ∈ C \ {0}, then fz1 and fz2 are affine congruent of R2m+p.

The following result is similar to Lemma 2.4.

Lemma 3.8 For a complex manifold (M, J), ∇ ∈ C0(TM, J) and an
affine immersion f : (M, ∇) → (M̃, ∇̃) with transversal bundle N , if there
is an associated family fz, z ∈ C \ {0}, then f is (1, 1)-geodesic.

Proof. From (3.9), we see that

Bz
XY = FzxBXEzY = Re(z)FzxBXY + Im(z)FzxBXJY

for each x ∈ M and any X, Y ∈ TxM . Since B is symmetric and z ∈ C\{0}
is taken arbitrary, we get

BXJY = BJXY

for each x ∈ M and any X, Y ∈ TxM , that is, f is (1, 1)-geodesic. ¤

By using the associated map defined in Section 2, we prepare the follow-
ing. For an affine immersion f : (M, ∇) → (M̃, ∇̃) with transversal bundle
N , consider a parallel invertible (1, 1)-tensor field K on M such that

BKXY = BXKY

for each x ∈ M and any X, Y ∈ TxM . An affine immersion fK : (M, ∇) →
(M̃, ∇̃) with transversal bundle NK is called an associated immersion with
respect to K if fK is an associated map for f with respect to K such that
ΨK(N) = NK . When we define FK ∈ ISO(N, NK) by FK := πNK

ΨKιN ,
where πNK

: f ]
KTM̃ → NK is the projection, the shape tensor AK , the affine
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fundamental form BK and the transversal connection∇NK of the immersion
fK are characterized by

AK
XFK = K−1AX , BK

X = FKBXK, ∇NK
X FK = FK∇N

X

for each x ∈ M and any X ∈ TxM . In [3], the authors consider an associated
immersion for an isometric immersion from a Riemannian manifold to a Eu-
clidean space by using a parallel orthogonal tensor field on the Riemannian
manifold.

Proposition 3.9 For a simply connected manifold M , ∇ ∈ C0(TM),
a parallel invertible (1, 1)-tensor field K on M and an affine immersion
f : (M, ∇) → (Rn+p, D) with transversal bundle N , if the affine fundamen-
tal form B satisfies BKXY = BXKY for each x ∈ M and any X, Y ∈
TxM , then there is an associated immersion fK with respect to K.

Proof. For the 1-forms ωα, α = 1, . . . , n + p, given in the proof of Propo-
sition 2.5, we have

2
∑
α

(dωα)(X, Y )(f ]ēα) = BXKY −BY KX

for any X, Y ∈ Γ(TM) by (2.10). From the assumption, there are ϕα, α =
1, . . . , n + p, such that dϕα = ωα and fK : M → Rn+p given by fK(x) :=
ϕα(x)eα for each x ∈ M is an associated map with respect to K. Since f is
an affine immersion, we see that fK is an immersion and the image of the
tangent space of f and fK are parallel in Rn+p at each point of M . We may
choose NK such that NK := ΨK(N). The equations (2.8) and (2.9) imply

f ]
KDXifK Y =f ]

KDXΨKifKY = ΨKf ]DXifKY

=ΨK(if∇XKY + BXKY ) = ΨK(ifK∇XY + BXKY )

=ifK∇XY + ΨKBXKY

for each x ∈ M , any X ∈ TxM and Y ∈ Γ(TM). Therefore the induced
connection on M is ∇ and fK : (M, ∇) → (Rn+p, D) is an affine immersion
with transversal bundle NK . Hence fK is the associated immersion with
respect to K for f . ¤

Note that Proposition 3.9 generalizes a result in [3], where they consider
an isometric immersion from a Riemannian manifold to a Euclidean space
and K is an orthogonal parallel tensor field on the Riemannian manifold.
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Lemma 3.8 and Proposition 3.9 yield

Proposition 3.10 For a simply connected complex manifold (M, J), ∇ ∈
C0(TM, J) and an affine immersion f : (M, ∇) → (R2m+p, D) with trans-
versal bundle N , there exists an associated family fz : (M, ∇)→ (R2m+p, D),
z ∈ C \ {0}, with transversal bundle Nz if and only if the immersion f is
(1, 1)-geodesic.

Proof. First we assume that f is (1, 1)-geodesic. Then we obtain

BEzXY = BXEzY

for each x ∈ M and any X, Y ∈ TxM . Therefore from Proposition 3.9, for
each z ∈ C \ {0}, there is an affine immersion fz : (M, ∇) → (R2m+p, D)
with transversal bundle Nz, that is, there exists an associated family fz for
f . Since f is (1, 1)-geodesic, we get

Bz
JXY = FzBJXEzY = FzBXJEzY = FzBXEzJY = Bz

XJY

for each x ∈ M , any X, Y ∈ TxM and z ∈ C \ {0}. The converse is true
from Lemma 3.8. ¤

We mention that an associated family for a (1, 1)-geodesic isometric im-
mersion from a Kähler manifold to a Euclidean space is constructed by Da-
jczer and Gromoll in [3] and when the ambient space is a pseudo-Euclidean
space, Furuhata constructed an associated family in [7].

4. Product of affine immersions

In this section, we study a product of two affine immersions for the next
section.

Throughout this paper, we always assume that i, j = 1, 2 and i 6= j.
Let Mi be a manifold. For (x1, x2) ∈ M1×M2, we define qixj : Mi → M1×
M2 by

qixj (xi) := (x1, x2)

for each xj ∈ Mj . For Y ∈ TxiMi, we define the lift Ỹ
i
of Y to M1×M2 by

Ỹ
i
:= qixj∗xiY ∈ T(x1,x2)M1 ×M2

for each xj ∈ Mj . We often write ( · )∼i instead of (̃ · )
i

. For ∇i ∈ C0(TMi),
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there is a unique connection ∇̃ ∈ C(T (M1 × M2)) on a product manifold
M1 ×M2 such that

∇̃fW1

1
+ fW2

2 X̃1

1

+ X̃2

2

= (∇1
W1

X1)∼1 + (∇2
W2

X2)∼2

for each xi ∈ Mi, any Wi ∈ TxiMi and Xi ∈ Γ(TMi). By a direct calcu-
lation, we have ∇̃ ∈ C0(T (M1 × M2)) since ∇i ∈ C0(TMi). We call ∇̃ a
product connection of ∇1 and ∇2. Note that when (Mi, ∇i) = (Rni , Di),
then the product connection D̄ of D1 and D2 is affine diffeomorphic to the
standard affine connection D of Rn1 ×Rn2 , where Di is the standard affine
connection of Rni .

Let M i be a manifold and ∇i ∈ C0(TM i). For an affine immersion
fi : (Mi, ∇i) → (M i, ∇i) with transversal bundle Ni, we denote by Bi, Ai

and ∇Ni the affine fundamental form, the shape tensor and the transversal
connection of fi.

By a similar way, for each yi ∈ M i, we denote the lift of X ∈ TyiM i to
M1 ×M2 by X

i. We consider the immersion

f̄ := f1×f2 : M1×M2 → M1×M2.

For each xi ∈ Mi and any Ui ∈ (f ]
i TM i)xi , we define Ui

i ∈ (f̄ ]T (M1 ×
M2))(x1,x2) by

Ui
i := (f̄](x1,x2))

−1(fi]xi
Ui

i)

for each xj ∈ Mj . By a straightforward computation, we get

if̄(x1,x2)(Ỹ1

1

+ Ỹ2

2

) = if1
x1Y1

1
+ if2

x2Y2

2

for each xi ∈ Mi and any Yi ∈ TxiMi. For the product connection ∇ of ∇1

and ∇2, we have

f̄ ]∇fX1

1
+ fX2

2 (Z1
1 + Z2

2) = f ]
1∇

1
X1

Z1

1

+ f ]
2∇

2
X2

Z2

2

(4.1)

for each xi ∈ Mi, any Xi ∈ TxiMi and Zi ∈ Γ(f ]
i TM i). When we define

N (x1,x2) := N1x1

1 ⊕N2x2

2 (4.2)

for each (x1, x2) ∈ M1 ×M2, it holds that

f̄ ]T (M1 ×M2) = if̄ (T (M1 ×M2))⊕N
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and f̄ is an immersion with transversal bundle N . Since it follows that

f̄ ]∇fX1

1
+ fX2

2 if̄ (Ỹ1

1

+ Ỹ2

2

)=f̄ ]∇fX1

1
+ fX2

2 if1Y1
1
+ if2Y2

2

=f ]
1∇

1
X1

if1Y1

1

+ f ]
2∇

2
X2

if2Y2

2

=if1∇1
X1

Y1
1
+ if2∇2

X2
Y2

2

+ B1
X1

Y1
1
+ B2

X2
Y2

2
,

if̄ (∇̃fX1

1
+ fX2

2 Ỹ1

1

+ Ỹ2

2

)=if̄ ((∇1
X1

Y1)∼1 + (∇2
X2

Y2)∼2)

=if1∇1
X1

Y1
1
+ if2∇2

X2
Y2

2

for each xi ∈ Mi, any Xi ∈ TxiMi and Yi ∈ Γ(TMi), the induced connection
on M1×M2 coincides with ∇̃ and f̄ : (M1×M2, ∇̃) → (M1×M2, ∇) is an
affine immersion with transversal bundle N given by (4.2). The equation
(4.1) yields

f̄ ]∇fX1

1
+ fX2

2 (ξ1
1 + ξ2

2)=f ]
1∇

1
X1

ξ1

1

+ f ]
2∇

2
X2

ξ2

2

=−if1A1
X1

ξ1
1
+−if2A1

X2
ξ2

2

+∇N1
X1

ξ1

1
+∇N1

X2
ξ2

2

for each xi ∈ Mi, any Xi ∈ TxiMi and ξi ∈ Γ(Ni). Thus we obtain

Proposition 4.1 For the affine immersion f̄ = f1×f2 : (M1×M2, ∇̃) →
(M1 ×M2, ∇) with transversal bundle N given by (4.2), the affine funda-
mental form B̄, the shape tensor Ā and the transversal connection ∇̄N̄ are
characterized by

B̄fX1

1
+ fX2

2 (Ỹ1

1

+ Ỹ2

2

)=B1
X1

Y1
1
+ B2

X2
Y2

2
,

ĀfX1

1
+ fX2

2 (ξ1
1 + ξ2

2)=(A1
X1

ξ1)∼1 + (A2
X2

ξ2)∼2,

∇̄N̄

fX1

1
+ fX2

2 (ξ1
1 + ξ2

2)=∇N1
X1

ξ1

1
+∇N2

X2
ξ2

2

for each xi ∈ Mi, any Xi, Yi ∈ TxiMi and ξi ∈ Γ(Ni).

From now on, we consider the case where (M1, ∇1) = (M2, ∇2) =
(M, ∇). Let ∆: M 3 x 7→ (x, x) ∈ M ×M be an immersion. We define
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N∆ by N∆
x := Span{X̃1 − X̃

2 | X ∈ TxM} for each x ∈ M . Then we have

∆]T (M ×M) = i∆(TM)⊕∆]N∆

and we see that ∆ is an immersion with transversal bundle ∆]N∆. Since
we get

∆]∇̃Xi∆Y = i∆∇XY

for each x ∈ M , any X ∈ TxM and Y ∈ Γ(TM), the induced connection on
M is∇ and the immersion ∆: (M, ∇) → (M×M, ∇̃) is an affine immersion
with transversal bundle ∆]N∆. Moreover, the affine immersion ∆ is totally
geodesic and the shape tensor vanishes identically. Thus we can regard ∆
as a natural immersion from M to M ×M .

We consider the immersion

f̃ := f̄ ◦∆ = (f1 × f2) ◦∆: M → M1 ×M2.

For each x ∈ M and any Ui ∈ (f ]
i TM i)x, we define Ui

i ∈ (f̃ ]T (M1×M2))x

by

Ui
i := (f̃]x)−1(fi]xUi

i).

Then we obtain

i
ef
xX=if1

x X
1
+ if2

x X
2
, (4.3)

f̃ ]∇X(U1
1 + U2

2)=f ]
1∇

1
XU1

1

+ f ]
2∇

2
XU2

2

(4.4)

for each x ∈ M , any X ∈ TxM and Ui ∈ Γ(f ]
i TM i). Define Ñ by

Ñx := N1x
1 ⊕N2x

2 ⊕ (f̃]x)−1f̄∗∆(x)N
∆
x (4.5)

for each x ∈ M . Then it holds that

f̃ ]T (M1 ×M2) = i
ef (TM)⊕ Ñ

and f̃ is an immersion with transversal bundle Ñ . We mention that there are
various choices for a transversal bundle of the immersion f̃ . When M and
M i are Riemannian manifolds and both f1 and f2 are isometric immersions,
Ñ given by (4.5) corresponds to the normal bundle of the immersion f̃ ,
where Ni corresponds to the normal bundle of fi. Therefore the immersion
f̃ with transversal bundle Ñ given by (4.5) is a generalization of a product
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of isometric immersions. Since we have

f̃ ]∇Xi
efY =if1∇XY

1
+ if2∇XY

2
+ B1

XY
1
+ B2

XY
2
,

i
ef∇XY =if1∇XY

1
+ if2∇XY

2

for each x ∈ M , any X ∈ TxM and Y ∈ Γ(TM) from (4.3) and (4.4),
the induced connection on M coincides with ∇ and f̃ : (M, ∇) → (M1 ×
M2, ∇) is an affine immersion with transversal bundle Ñ . For each x ∈ M ,
any X ∈ TxM , Y ∈ Γ(TM) and ξi ∈ Γ(Ni), it holds that

f̃ ]∇X(ξ1
1 + ξ2

2 + if1Y
1 − if2Y

2
)

= f ]
1∇

1
Xξ1

1

+ f ]
2∇

2
Xξ2

2

+ f ]
1∇

1
XY

1

− f ]
1∇

2
XY

2

= −if1A1
Xξ1

1
+−if2A2

Xξ2
2
+∇N1

X ξ1

1
+ B1

XY
1

+∇N2
X ξ2

2
−B2

XY
2
+ if1∇XY

1 − if2∇XY
2
.

Thus we recall

Proposition 4.2 For the affine immersion f̃ : (M, ∇) → (M1 ×M2, ∇)
with transversal bundle Ñ given by (4.5), the affine fundamental form B̃,
the shape tensor Ã and the transversal connection ∇̃ eN are characterized by

B̃XY =B1
XY

1
+B2

XY
2
,

ÃX(ξ1
1 + ξ2

2 + if1Y
1− if2Y

2
)=

1
2
(A1

Xξ1 +A2
Xξ2),

∇̃ eN
X(ξ1

1 + ξ2
2 + if1Y

1− if2Y
2
)=∇N1

X ξ1

1
+∇N2

X ξ2

2
+B1

XY
1−B2

XY
2

+ if1∇XY
1− 1

2
if1(A1

Xξ1−A2
Xξ2)

1

− if2∇XY
2
+

1
2
if2(A1

Xξ1−A2
Xξ2)

2

for each x ∈ M , any X ∈ TxM , Y ∈ Γ(TM) and ξi ∈ Γ(Ni).

5. Holomorphic maps and complex affine immersions

In this section, we investigate a complex affine immersion between com-
plex manifolds with complex affine connections and prove our main theo-
rem. Throughout this section, we always denote by (M, J) a real 2m-
dimensional complex manifold with complex structure J and assume that
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∇ ∈ C0(TM, J).
We recall that for complex manifolds (M, J) and (M̃, J̃), a map f :

M → M̃ is holomorphic if and only if f∗J = J̃f∗ which is equivalent to
ifJ = (f ]J̃)if .

Proposition 5.1 For a complex manifold (M, J) and a map fi : M →
R2m+p, i = 1, 2, assume that there is

Ψ ∈ ISO(f ]
1TR

2m+p, f ]
2TR

2m+p)

such that

(f ]
2D)XΨ=Ψ(f ]

1D)X , (5.1)

−Ψif1J=if2 (5.2)

for each x ∈ M and any X ∈ TxM . Then Ĵ ∈ END(f̃ ]T (R2m+p ×R2m+p))
given by

Ĵ(U1
1 + U2

2) := −Ψ−1U2
1
+ ΨU1

2

for each x ∈ M and any Ui ∈ (f ]
i TR2m+p)x, i = 1, 2, can be extended to a

parallel complex structure J̃ on R2m+p×R2m+p such that f̃ := (f1× f2) ◦∆
is a holomorphic map with respect to J and J̃ .

Proof. It holds that (Ĵ)2 = − id ef]T (R2m+p×R2m+p)
by a direct calculation.

From (4.4) and (5.1), we have

(f̃ ]D)X Ĵ(U1
1 + U2

2)=(f̃ ]D)X(−Ψ−1U2
1
+ ΨU1

2)

=(f ]
1D)X(−Ψ−1U2)

1
+ (f ]

2D)X(ΨU1)
2

=−Ψ−1(f ]
2D)XU2

1
+ Ψ(f ]

1D)XU1

2

=Ĵ((f ]
1D)XU1

1
+ (f ]

2D)XU2

2
)

=Ĵ(f̃ ]D)X(U1
1 + U2

2)

for each x ∈ M and any X ∈ TxM and Ui ∈ Γ(f ]
i TR2m+p). Hence it holds

that

(f̃ ]D)X Ĵ = Ĵ(f̃ ]D)X

for each x ∈ M and any X ∈ TxM and there is a complex structure J̃ of
R2m+p×R2m+p such that f̃ ]J̃ = Ĵ . For each x ∈ M and any X ∈ TxM , we
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obtain

i
efX = if1X

1
+ if2X

2
.

By (4.3) and (5.2), it follows that

i
efJX=if1JX

1
+ if2JX

2

=−Ψ−1if2X
1
+ Ψif1X

2

=(f̃ ]J̃)(if1X
1
+ if2X

2
)

=(f̃ ]J̃)i efX

for each x ∈ M and any X ∈ TxM . Therefore we obtain (f̃ ]J̃)i ef = i
efJ and

f̃ is a holomorphic map with respect to J and J̃ . ¤

From Propositions 2.6 and 5.1, we get

Corollary 5.2 For a complex manifold (M, J) and ∇ ∈ C0(TM, J), we
assume that M is simply connected and f : M → R2m+p is a pluriharmonic
map. Then there is a parallel complex structure J̃ of R2m+p × R2m+p such
that (f × (−f√−1)) ◦∆ is a holomorphic map with respect to J and J̃ .

Proof. Since M is simply connected and f is pluriharmonic, there is an
associated family fz, z ∈ C \ {0} by Proposition 2.6. From the definition
of an associated family, −Ψ√−1 ∈ ISO(f ]TR2m+p, f ]√−1

TR2m+p) satisfies
(5.1) and (5.2). Thus by virtue of Proposition 5.1, we obtain the result. ¤

When we choose a simply connected neighbourhood of each point and
apply Corollary 5.2, we have

Corollary 5.3 For a complex manifold (M, J) and ∇ ∈ C0(TM, J), any
pluriharmonic map f : M → R2m+p is real analytic.

Next we prepare the definition of a complex affine immersion.

Definition 5.4 For a complex manifold (M, J), (resp. (M̃, J̃)) with com-
plex structure J (resp. J̃), ∇ ∈ C0(TM, J) (resp. ∇̃ ∈ C0(TM̃, J̃)) and
an affine immersion f : (M, ∇) → (M̃, ∇̃) with transversal bundle N , if
f : M → M̃ is a holomorphic map with respect to J and J̃ and N is a
complex subbundle of f ]TM̃ , that is, (f ]J̃)(N) = N , then such an affine
immersion is said to be complex and we denote the induced complex struc-
ture of N by JN := πN (f ]J̃)ιN .
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A complex affine immersion is studied by many authors ([1], [4], [5],
[8] and [12] for example). We note that if an isometric immersion between
Kähler manifolds is holomorphic as a map, then the affine immersion is
complex with respect to the Levi-Civita connections, where the transver-
sal bundle of the affine immersion is the normal bundle of the isometric
immersion. But an affine immersion between complex manifolds with com-
plex affine connections which is a holomorphic map is not always a complex
affine immersion. We find a sufficient condition for a product of two affine
immersions from a complex manifold with complex affine connection to an
affine space to be a complex affine immersion from the manifold to the prod-
uct of affine spaces with a certain complex structure by using Proposition
5.1.

Theorem 5.5 For a complex manifold (M, J), ∇ ∈ C0(TM, J) and an
affine immersion fi : (M, ∇) → (R2m+p, D) with transversal bundle Ni,
assume that there exists F ∈ ISO(N1, N2) such that

−B2
X = FB1

XJ, A2
XF = JA1

X , F∇N1
X = ∇N2

X F

for each x ∈ M and any X ∈ TxM . Then there is a parallel complex
structure J̃ of R2m+p × R2m+p such that an affine immersion

f̃ = (f1 × f2) ◦∆: (M, ∇) → (R2m+p × R2m+p, D)

with transversal bundle Ñ given by (4.5) is a complex affine immersion with
respect to J and J̃ .

Proof. Define Ψ: f ]
1TR2m+p → f ]

2TR2m+p by

Ψx(if1
x X + ξ) := if2

x JX + Fxξ

for each x ∈ M , any X ∈ TxM and ξ ∈ N1x . Then we see that Ψ ∈
ISO(f ]

1TR2m+p, f ]
2TR2m+p). From the assumptions, we have

(f ]
2D)XΨ(if1Y + ξ)=(f ]

2D)X(if2JY + Fξ)

=if2∇XJY + B2
XJY − if2A2

XFξ +∇N2
X Fξ

=Ψ(f ]
1D)X(if1Y + ξ)

for any X, Y ∈ Γ(TM) and ξ ∈ Γ(N1). On the other hand, from the
definition of Ψ, it holds that−Ψif1J = if2 . Then from Proposition 5.1, there
is a parallel complex structure J̃ on R2m+p × R2m+p such that f̃ := (f1 ×
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f2)◦∆ is a holomorphic map with respect to J and J̃ . By a straightforward
calculation, we get

(f̃ ]J̃)(ξ1 + η2 + if1Y
1 − if2Y

2
)

= −Ψ−1η
1
+ Ψξ

2 + Ψ−1if2Y
1
+ Ψif1Y

2

= −F−1η
1
+ Fξ

2 − (if1JY
1 − if2JY

2
)

for any Y ∈ Γ(TM), ξ ∈ Γ(N1) and η ∈ Γ(N2). Hence Ñ is f̃ ]J̃-invariant.
Therefore f̃ is a complex affine immersion with transversal bundle Ñ . ¤

As a corollary, we have

Corollary 5.6 For a simply connected complex manifold (M, J), ∇ ∈
C0(TM, J) and a (1, 1)-geodesic affine immersion f : (M, ∇)→ (R2m+p, D)
with transversal bundle N , there exists a parallel complex structure J̃ of
R2m+p × R2m+p such that an affine immersion (f × (−f√−1)) ◦ ∆ with
transversal bundle Ñ given by (4.5) is a complex affine immersion with
respect to J and J̃ .

From Corollary 5.6, we obtain the following which is given in [7]. We
mention that if the ambient space is a Euclidean space, the same result as
next corollary in shown in [3].

Corollary 5.7 ([7]) For a simply connected Kähler manifold M and a
(1, 1)-geodesic isometric immersion f : M → Rn+p

N to an (n+p)-dimensional
pseudo-Euclidean space of index N , there exists a parallel complex structure
of Rn+p

N × Rn+p
N such that (1/

√
2)(f × (−f√−1)) ◦∆ is a holomorphic iso-

metric immersion.

Proof. From Corollary 5.6, there is a parallel complex structure of Rn+p
N ×

Rn+p
N such that (1/

√
2)(f × (−f√−1))◦∆ is a complex affine immersion. By

a direct calculation, we see that (1/
√

2)(f×(−f√−1))◦∆ is isometric. ¤

We will consider an example of a (1, 1)-geodesic affine immersion and
construct a complex affine immersion which is a product of two (1, 1)-
geodesic affine immersions by using its associated family. We denote by
(R2, J) a 2-dimensional affine space with the complex structure J which is
induced from the standard complex structure J0 of R2.

Let (x1, x2) be a coordinate of R2 such that J∂1 = ∂2 and J∂2 = −∂1,
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where we denote by ∂i = ∂/∂xi, i = 1, 2. Define f : R2 → R3 by

f(x1, x2) := (x1, x2, h),

where h := x1x2 + (x2
1/2) − (x2

2/2). For ξ := (0, 0, 1), define a transversal
bundle N by

Nx := Span{(f]x)−1ξ}
for each x ∈ R2. We regard f as an affine immersion with transversal bundle
N by considering the standard affine connection D on R3 and denote by ∇
the induced connection on R2. Since f is a graph immersion, we have

(B∂α∂β)x = (∂α∂βh)x(f]x)−1ξ

for each x ∈ R2, where α, β = 1, 2. By a direct calculation, we get

(B∂1∂1)x=(f]x)−1ξ, (B∂1∂2)x = (B∂2∂1)x = (f]x)−1ξ,

(B∂2∂2)x=(BJ∂1J∂1)x = −(B∂1∂1)x = −(f]x)−1ξ

for each x ∈ R2 and we see that f is a (1, 1)-geodesic affine immersion with
transversal bundle N .

Since R2 is simply connected, we can construct an associated family for
f . For z = a + b

√−1 ∈ C \ {0}, a, b ∈ R, we define a map fz by

fz(x1, x2) =
(
ax1 − bx2, bx1 + ax2, (a− b)x1x2 + (a + b)

x2
1 − x2

2

2

)
.

Define Ψz by

Ψzx := (fz]x)−1(f]x)

for each x ∈ R2. Then fz is an associated family for the map f : R2 → R3.
Define Nz by

Nzx := Span{(fz]x)−1ξ}
for each x ∈ R2, then fz : (R2, ∇) → (R3, D) is an affine immersion with
transversal bundle Nz and is an associated family for the affine immersion
f . In this case, f̃ := (f × (−f√−1)) ◦∆: R2 → R6 given by

f̃(x1, x2) =
(
x1, x2, x1x2 +

x2
1 − x2

2

2
, x2, −x1, x1x2 − x2

1 − x2
2

2

)
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is an affine immersion with transversal bundle Ñ given by

Ñx := Nx
1 ⊕N√−1x

2 ⊕ (f̃]x)−1(f × (−f√−1))∗∆(x)N
∆
x

for each x ∈ R2. For the standard basis e1, . . . , e6 of R6, we define a
complex structure Ĵ0 of R6 by

Ĵ0e1 = e2, Ĵ0e2 = −e1, Ĵ0e3 = e6,

Ĵ0e4 = e5, Ĵ0e5 = −e4, Ĵ0e6 = −e3

and we denote by J̃ the induced complex structure on TR6 from Ĵ0. From
the definition of J̃ , we see that Ñ is f̃ ]J̃-invariant and f̃ is a complex affine
immersion with respect to J and J̃ .

We put z := x1 +
√−1x2 and let

e1 +
√−1e2, e3 +

√−1e6, e4 +
√−1e5

be a complex basis of C3. Then we can write f̃ as

f̃(z) =
(
z, −√−1z,

(1−√−1)z2

2

)
.

Note that the real part of the right hand side is f and the imaginary part
is −f√−1.

For a product of two complex manifolds (Mi, Ji), i = 1, 2, the complex
structure JM1×M2 ∈ END(T (M1 ×M2)) given by

JM1×M2(X̃1

1

+ X̃2

2

) = J̃1X1

1

+ J̃2X2

2

for each xi ∈ Mi and Xi ∈ TxiMi, i = 1, 2, equals the natural complex
structure on M1 × M2 induced from its complex analytic coordinate. We
regard M1×M2 as a complex manifold with complex structure JM1×M2 . We
mention that the product connection ∇̃ of ∇i ∈ C0(TMi, Ji) satisfies ∇̃ ∈
C0(T (M1 × M2), JM1×M2), that is, ∇̃ is a complex affine connection with
respect to JM1×M2 . For a product of two maps from a complex manifold,
we get

Proposition 5.8 Let (Mi, Ji), (M1×M2, JM1×M2) be complex manifolds,
M i a manifold, fi : Mi → M i a map, i = 1, 2, ∇̃ the product connection
of ∇1 ∈ C0(TM1, J1) and ∇2 ∈ C0(TM2, J2), ∇ the product connection of
∇1 ∈ C0(TM1) and ∇2 ∈ C0(TM2) and f̄ := f1×f2 : M1×M2 → M1×M2

a map. Then f̄ is pluriharmonic with respect to ∇̃ and ∇ if and only if both
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f1 and f2 are pluriharmonic with respect to ∇i and ∇i, i = 1, 2.

Proof. The Hessian Hf̄ of f̄ is given by

Hf̄ (X̃1

1

+ X̃2

2

, Ỹ1

1

+ Ỹ2

2

) (5.3)

= (f̄ ]∇)fX1

1
+ fX2

2 if̄ (Ỹ1

1

+ Ỹ2

2

)− if̄ ∇̃fX1

1
+ fX2

2 (Ỹ1

1

+ Ỹ2

2

)

=
2∑

k=1

(
(f ]

k∇
k)Xk

ifkYk − ifk∇k
Xk

Yk

k
)

=
2∑

k=1

Hfk
(Xk, Yk)

k

for any Xk, Yk ∈ Γ(TMk). If f̄ is pluriharmonic, then it holds from (5.3)
that

Hfk
(JkXk, Yk)

k
=Hf̄ (JM1×M2X̃k

k

, Ỹk

k

)

=Hf̄ (X̃k

k

, JM1×M2 Ỹk

k

) = Hfk
(Xk, JkYk)

k

for each xk ∈ Mk and any Xk, Yk ∈ Txk
Mk and we see that both f1 and f2

are pluriharmonic. The converse is trivial from (5.3). ¤

We have the following corollary.

Corollary 5.9 Let (M, J) be a complex manifold, ∇ ∈ C0(TM, J), M i

a manifold, fi : M → M i a map, i = 1, 2, ∇ the product connection of
∇1 ∈ C0(TM1) and ∇2 ∈ C0(TM2) and f̃ := (f1 × f2) ◦∆: M → M1 ×M2

a map. Then f̃ is pluriharmonic with respect to ∇ and ∇ if and only if both
f1 and f2 are pluriharmonic with respect to ∇ and ∇i, i = 1, 2.

As a corollary of Proposition 5.8, for the product of two affine immer-
sions, we obtain

Corollary 5.10 Let (M, J) be a complex manifold, ∇ ∈ C0(TM, J), M i

a manifold, ∇ the product connection of ∇1 ∈ C0(TM1) and ∇2 ∈ C0(TM2)
and fi : (M, ∇) → (M i, ∇i) an affine immersion with transversal bundle
Ni. Then an affine immersion f̃ = (f1× f2) ◦∆: (M, ∇) → (M1×M2, ∇)
with transversal bundle Ñ given by (4.5) is a (1, 1)-geodesic affine immer-
sion if and only if both f1 and f2 are (1, 1)-geodesic.
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Next we will construct an example for Corollary 5.10. Define f1 : R2 →
R3 by

f1(x1, x2) :=
(
x1, x2, x1x2 +

x2
1 − x2

2

2

)

and f2 : R2 → R5 by

f2(x1, x2) :=
(
x1, x2, −x2

1 − x2
2

2
, x1x2, x3

1 − 3x1x
2
2

)
.

For ξ := (0, 0, 1), we define N1 by

N1x := Span{(f1]x)−1ξ}
for each x ∈ R2. Then f1 is an affine immersion with transversal bundle
N1 by considering the standard affine connection D on R3 and denote by
∇ the induced connection on R2.

For η1 := (0, 0, 1, 0, 0), η2 := (0, 0, 0, 1, 0) and η3 := (0, 0, 0, 0, 1),
we define a transversal bundle N2 by

N2x := Span{(f2]x)−1η1, (f2]x)−1η2, (f2]x)−1η3}
for each x ∈ R2. Then f2 is an affine immersion with transversal bundle
N2 by considering the standard affine connection D on R5 and denote by
∇ the induced connection on R2. We mention that the induced connection
on M for f1 and f2 are the same connection and both f1 and f2 are full
immersions. It is easy to show that both f1 and f2 are (1, 1)-geodesic.

On the other hand, f̃ := (f1 × f2) ◦∆: (R2, ∇) → (R8, D) given by

f̃(x1, x2) :=
(
x1, x2, x1x2 +

x2
1 − x2

2

2
, x1, x2,

− x2
1 − x2

2

2
, x1x2, x3

1 − 3x1x
2
2

)

is an affine immersion with transversal bundle Ñ given by (4.5). For an
affine immersion f̃ , the affine fundamental form B̃ satisfies

(B̃∂1∂1)x=(B1
∂1

∂1)x
1
+ (B2

∂1
∂1)x

2

=((f1]x)−1ξ)x
1 − ((f2]x)−1(η1 − 6x1η3))x

2
,

(B̃∂1∂2)x=(B̃∂2∂1)x = (B1
∂2

∂1)x
1
+ (B2

∂2
∂1)x

2

=((f1]x)−1ξ)x
1
+ ((f2]x)−1(η2 − 6x2η3))x

2
,
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(B̃∂2∂2)x=(B1
∂2

∂2)x
1
+ (B2

∂2
∂2)x

2

=−((f1]x)−1ξ)x
1
+ (((f2]x)−1(η1 − 6x1η3))x

2
)

=−(B̃∂1∂1)x

for each x ∈ R2 and f̃ is a (1, 1)-geodesic affine immersion. We note that
the essential codimension of the affine immersion f̃ : (R2, ∇) → (R8, D)
with transversal bundle Ñ given by (4.5) is four since the first normal space
is contained in N1x

1 ⊕N2x
2 for each x ∈ R2 and the subbundle N1

1 ⊕N2
2

of Ñ is parallel with respect to ∇̃ eN .
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