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Abstract. In [7], we have proved that P 2(Cay) cannot be isometrically immersed into

R25 even locally. In this paper, we investigate isometric immersions of P 2(Cay) into

R26 and prove that the canonical isometric imbedding f0 of P 2(Cay) into R26, which

is defined in Kobayashi [17], is rigid in the following strongest sense: Any isometric

immersion f1 of a connected open set U(⊂ P 2(Cay)) into R26 coincides with f0 up

to a euclidean transformation of R26, i.e., there is a euclidean transformation a of R26

satisfying f1 = af0 on U .
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1. Introduction

In the previous paper [7], we investigated the problem of (local) isomet-
ric immersions of the quaternion projective plane P 2(H) and the Cayley
projective plane P 2(Cay). In particular, we proved the following non-
existence theorem of (local) isometric immersions:

Theorem 1 Any open set of the Cayley projective plane P 2(Cay) cannot
be isometrically immersed into R25.

As is well-known, there is an isometric immersion f0 of P 2(Cay) into
the euclidean space R26, which is called the canonical isometric imbedding
of P 2(Cay) (Kobayashi [17]). This fact, together with Theorem 1, implies
that R26 is the least dimensional euclidean space into which P 2(Cay) can
be (locally) isometrically immersed.

In this paper, we consider (local) isometric immersions of P 2(Cay)
into R26 and discuss the rigidity of the canonical isometric imbedding f0.
Concerning the rigidity of f0 Kaneda [15] has shown that the canonical
isometric imbedding f0 is of finite type, i.e., the space of local infinitesimal
isometric deformations of f0 is of finite dimension. However, it seems to the
authors that any further result concerning the rigidity of f0 has not been
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obtained.
In the present paper, we will show the rigidity of the canonical isometric

imbedding f0 in the following strongest form:

Theorem 2 Let f0 be the canonical isometric imbedding of P 2(Cay) into
the euclidean space R26. Then, for any isometric immersion f1 defined
on a connected open set U of P 2(Cay) into R26, there exists a euclidean
transformation a of R26 satisfying f1 = af0 on U .

To prove Theorem 2, we first establish a rigidity theorem for an iso-
metric immersion of a Riemannian manifold. Let M be an n-dimensional
Riemannian manifold and let f0 be an isometric immersion of M into the
m-dimensional euclidean space Rm. We will prove that if the Gauss equa-
tion in codimension r (= m−n) admits essentially one solution everywhere
on M , then f0 is rigid, i.e., for any isometric immersion f1 of M into
Rm there exists a euclidean transformation a of Rm such that f1 = af0

(see Theorem 5). This theorem may be established by various methods;
for example, by combining the results of Nomizu [19] and Szczarba [21],
[22] (cf. Agaoka [1]) or by solving a differential system of Pfaff (cf. Bishop–
Crittenden [10], Ch. X). In this paper, we will give a simple proof based on a
congruence theorem of differentiable mappings, which is easy to understand
and gives a clear view on the geometric meaning (see Theorem 6).

Next, we will show that for the Cayley projective plane P 2(Cay) the
Gauss equation in codimension 10 (= 26−dimP 2(Cay)) admits essentially
one solution (see Theorem 10). To show this, we utilize the results obtained
in [6] and [7]. Among all, the result concerning pseudo-abelian subspaces
(Proposition 8) plays an important role in our proof.

Then, Theorem 2 is a direct consequence of Theorem 5 and Theorem 10.
Throughout this paper we assume the differentiability of class C∞. No-

tations for Lie algebras are the same as those used in [6] and [7].

2. The Gauss equation

Let M be a Riemannian manifold and T (M) the tangent bundle of M .
We denote by g the Riemannian metric of M and by R the Riemannian
curvature tensor of type (1, 3) with respect to g.

Let N be a euclidean vector space, i.e., N is a vector space over R

endowed with an inner product
〈

,
〉
. Let p ∈ M and let S2T ∗p (M) ⊗ N

be the space of N -valued symmetric bilinear forms on Tp(M). We call the
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following equation on Ψ ∈ S2T ∗p (M)⊗N the Gauss equation at p ∈ M :

−gp(Rp(x, y)z, w)=
〈
Ψ(x, z),Ψ(y, w)

〉−〈
Ψ(x, w),Ψ(y, z)

〉
, (2.1)

where x, y, z, w ∈ Tp(M). We denote by Gp(N) the set of all solutions of
(2.1), which is called the Gaussian variety associated with N at p ∈ M . As
is well-known, Gp(N) = ∅ happens in case the dimensionality r (= dim N)
is so small, however, Gp(N) 6= ∅ if r is sufficiently large (see Cartan [11] or
Kaneda–Tanaka [16]).

Let N1 and N2 be two euclidean vector spaces and let ϕ be a lin-
ear mapping of N1 to N2. Define a linear map ϕ̂ of S2T ∗p (M) ⊗ N1 to
S2T ∗p (M)⊗N2 by

(ϕ̂Ψ)(x, y)=ϕ(Ψ(x, y)), Ψ∈S2T ∗p (M)⊗N1, x, y∈Tp(M). (2.2)

Then, we can easily verify

Lemma 3 Let ϕ be a linear mapping of a euclidean vector space N1 to a
euclidean vector space N2. Assume that ϕ is isometric, i.e.,

〈
ϕ(x), ϕ(y)

〉
2

=
〈
x, y

〉
1

(x, y ∈ N1), where
〈

,
〉
i

(i = 1, 2) denotes the inner product of
N i. Then ϕ̂Gp(N1) ⊂ Gp(N2). In particular, if dimN1 = dim N2, then
ϕ̂Gp(N1) = Gp(N2).

In view of Lemma 3, the solvability of the Gauss equation (2.1) sub-
stantially depends on the dimensionality of N . To emphasize dim N we
call (2.1) the Gauss equation in codimension r (= dim N).

Let N be a euclidean vector space and let O(N) be the orthogonal
transformation group of N . We define an action of O(N) on S2T ∗p (M)⊗N

by

(hΨ)(x, y) = h(Ψ(x, y)),

where Ψ ∈ S2T ∗p (M) ⊗ N , h ∈ O(N), x, y ∈ Tp(M). We say that two
elements Ψ and Ψ′ ∈ S2T ∗p (M) ⊗N are equivalent if there is an element
h ∈ O(N) such that Ψ′ = hΨ. It is easily seen that if Ψ and Ψ′ ∈
S2T ∗p (M) ⊗N are equivalent and Ψ ∈ Gp(N), then Ψ′ ∈ Gp(N). We say
that the Gaussian variety Gp(N) is EOS if Gp(N) 6= ∅ and if it consists of
essentially one solution, i.e., any solutions of the Gauss equation (2.1) are
equivalent to each other under the action of O(N).
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Proposition 4 Let M be a Riemannian manifold and let p ∈ M . Let N

be an r-dimensional euclidean vector space such that Gp(N) is EOS. Then:
(1) Let Ψ be an arbitrary element of Gp(N). Then, the vectors Ψ(x, y)
(x, y ∈ Tp(M)) span the whole space N .
(2) Let N1 be a euclidean vector space. Then:

(2a) Gp(N1) = ∅ if dimN1 < r;
(2b) Gp(N1) is EOS if dimN1 = r;
(2c) Gp(N1) is not EOS if dimN1 > r.

Proof. Note that if Ψ′ ∈ S2T ∗p (M)⊗N is equivalent to Ψ, then we have
|Ψ′(x, y)| = |Ψ(x, y)| for any x, y ∈ Tp(M), where |n| denotes the norm of
n ∈ N with respect to

〈
,

〉
.

Now, suppose that the vectors Ψ(x, y) (x, y ∈ Tp(M)) do not span
the whole space N . Then, there is a non-zero vector n ∈ N satisfying〈
n, Ψ(x, y)

〉
= 0 for any x, y ∈ Tp(M). Define an element Ψ′ ∈ S2T ∗p (M)⊗

N by

Ψ′ = Ψ + (ξ∗)2 ⊗ n,

where ξ∗ is a non-zero element of T ∗p (M). Then, it is easy to see that
Ψ′ ∈ Gp(N). However, by a simple calculation, we have |Ψ′(x, x)|2 =
|Ψ(x, x)|2 + |n|2ξ∗(x)2. Therefore, if we take x ∈ Tp(M) such that ξ∗(x) 6=
0, then we have |Ψ′(x, x)| 6= |Ψ(x, x)|. This proves that Ψ′ is not equivalent
to Ψ and hence Gp(N) is not EOS. Thus, we obtain (1).

Next we prove (2). First assume dim N1 = r. Let ϕ be an isometric
linear isomorphism of N onto N1. Then we have O(N1) = ϕ ·O(N) ·ϕ−1.
Moreover, by Lemma 3 we have ϕ̂Gp(N) = Gp(N1). Since Gp(N) is EOS,
O(N) acts transitively on Gp(N). Therefore, it is easily seen that O(N1)
acts transitively on Gp(N1). This proves that Gp(N1) is EOS.

We next consider the case dim N1 < r. Suppose that Gp(N1) 6= ∅ and
Ψ1 ∈ Gp(N1). Let ϕ be an isometric linear mapping of N1 to N . Then,
we know that ϕ̂Ψ1 ∈ Gp(N) and the vectors (ϕ̂Ψ1)(x, y) (x, y ∈ Tp(M))
are contained in the proper subspace ϕ(N1) (( N). This contradicts (1).
The case dim N1 > r is similarly dealt with. ¤

We say that a Riemannian manifold M is formally rigid in codimension
r if there is a euclidean vector space N with dimN = r such that the Gaus-
sian variety Gp(N) is EOS at each p ∈ M . By virtue of Proposition 4 (2),
we know that if M is formally rigid in codimension r, then it is not formally
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rigid in any other codimension r′ (6= r).

Remark 1 It should be noted that there is a Riemannian manifold M

that is not formally rigid in any codimension r. For example, assume that
M is the space of negative constant curvature of dimension n. Let N be a
euclidean vector space of dimension r. Then, by Ôtsuki’s lemma we have
Gp(N) = ∅ if r < n − 1 (see Ôtsuki [20]). On the other hand, Kaneda [13]
proved that if r = n − 1, then Gp(N) 6= ∅ and around a suitable Ψ0 ∈
Gp(N), Gp(N) forms a submanifold of S2T ∗p (M)⊗N of dimension n(n−1)
(see Theorem 3.1 of [13]). Since n(n − 1) > dimO(N), Gp(N) cannot be
EOS. If r ≥ n, then by Proposition 4 (2a) we know that Gp(N) is not EOS.
Accordingly, the space of negative constant curvature M is not formally
rigid in any codimension r.

Remark 2 For each Riemannian submanifold M ⊂ Rm listed below,
Gp(N) is known to be EOS at each p ∈ M , where N is the normal vector
space of M at p in Rm:
(1) The sphere Sn ⊂ Rn+1 (n ≥ 3);
(2) The symplectic group Sp(2) ⊂ R16 (see Agaoka [1]);
(3) A submanifold M ⊂ Rm with type number ≥ 3 (see Allendoerfer [9],

Kobayashi–Nomizu [18]).
Consequently, these submanifolds are formally rigid in our sense and it

has been proved that they are actually rigid in Rm (see [1], [9]).
However, we note that the formal rigidness of M in codimension r does

not imply the existence of an isometric immersion of M into Rn+r (n =
dimM). Indeed, Kaneda [14] gave an example of three dimensional Rie-
mannian manifold M that is formally rigid in codimension 1 but cannot be
locally isometrically immersed into R4.

We will prove in the next section that if a connected Riemannian mani-
fold M is formally rigid in codimension r and if there is an isometric immer-
sion f of M into Rn+r (n = dimM), then M (precisely, f(M)) is actually
rigid in Rn+r (see Theorem 5).

3. Rigidity theorem

In this section, we will prove the following rigidity theorem:

Theorem 5 Let M be an n-dimensional Riemannian manifold and let f0

be an isometric immersion of M into the euclidean space Rm. Assume:
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(1) M is connected;
(2) M is formally rigid in codimension r = m− n.
Then, any isometric immersion f1 of M into the euclidean space Rm co-
incides with f0 up to a euclidean transformation of Rm, i.e., there exists a
euclidean transformation a of Rm such that f1 = af0.

Before proceeding to the proof of Theorem 5, we make some prepara-
tions. Let M(m, m′) be the space of real matrices of degree m×m′, where
m and m′ are non-negative integers. In what follows we identify M(m, 1)
with the m-dimensional euclidean space Rm in a natural way. Then, we
note that the canonical inner product

〈
,

〉
of Rm is given by

〈
v, w

〉
= tv ·

w for v, w ∈ Rm.
Let us define an operation of M(m, m) on Rm by

M(m, m)×Rm 3 (
H, v) 7−→ H · v ∈ Rm,

where · means the usual matrix multiplication.
Let ∇ be the Riemannian connection associated with M . Let f =

t(f1, . . . , fm) be a differentiable map of M into the euclidean space Rm.

By

k︷ ︸︸ ︷
∇· · ·∇f we denote the k-th order covariant derivative of f , which is

defined as follows:
k︷ ︸︸ ︷

∇x1 · · · ∇xk
f = t(. . . ,

k︷ ︸︸ ︷
∇x1 · · · ∇xk

f i, . . .) ∈ Rm,

where p ∈ M ; x1, . . . , xk ∈ Tp(M). (Precisely, see Tanaka [23], Kaneda–
Tanaka [16] or Kaneda [14].) It is known that ∇∇f and ∇∇∇f satisfy the
following integrability conditions:

∇x∇yf =∇y∇xf , (3.1)

∇z∇x∇yf =∇x∇z∇yf −∇R(z, x)yf . (3.2)

We say that a differentiable map f of M into Rm is 2-generic if at
each p ∈ M , the whole space Rm is spanned by the vectors of the form
∇xf (x ∈ Tp(M)), ∇y∇zf (y, z ∈ Tp(M)). It is clear that if f is 2-generic,
then we have the inequality m ≤ (1/2)n(n + 3). Note that a 2-generic map
f is not necessarily an immersion.

We first show the following congruence theorem:
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Theorem 6 Let M be an n-dimensional Riemannian manifold and let
f i (i = 0, 1) be two differentiable maps of M into the euclidean space Rm.
Assume:
(1) M is connected;
(2) f0 is 2-generic;
(3) At each p ∈ M there is an element H(p) ∈ O(m) satisfying

∇xf1 = H(p) · (∇xf0), ∀x ∈ Tp(M), (3.3)

∇y∇zf1 = H(p) · (∇y∇zf0), ∀y, z ∈ Tp(M). (3.4)

Then, f1 coincides with f0 up to a euclidean transformation of Rm. More
precisely, H(p) is identically equal to a constant value H0 ∈ O(m) every-
where on M and f1 can be written as f1 = H0f0+c0, where c0 is a constant
vector of Rm.

Proof. We first note that, since f0 is 2-generic, H(p) satisfying (3.3)
and (3.4) is uniquely determined at each p ∈ M and the map H : M 3
p 7−→ H(p) ∈ O(m) is differentiable. Via the canonical inclusion O(m) ⊂
M(m, m), we can regard H as an M(m, m)-valued function on M satisfying

tHH = Im, (3.5)

where Im denotes the identity matrix of degree m. Differentiate (3.5) co-
variantly. Then by Leibnitz’ law we get

∇x(tH)H(p) + tH(p)(∇xH) = 0, ∀x ∈ Tp(M). (3.6)

In this equality, the covariant derivative∇xH means the element of M(m,m)
given by ∇xH =

(∇xhj
i

)
, where hj

i denotes the (i, j)-component of H. By
the very definition of ∇xH we have ∇x(tH) = t(∇xH).

Let us define an M(m, m)-valued 1-form L by

L(x) = tH(p)(∇xH), x ∈ Tp(M). (3.7)

Then, by (3.6) we have

tL(x) + L(x) = 0, ∀x ∈ Tp(M), (3.8)

implying that the matrix L(x) ∈ M(m, m) is skew-symmetric.
We now show that the equality L(x) = 0 holds for any x ∈ Tp(M).

Since f0 is 2-generic, it suffices to prove

L(y) · (∇xf0) = 0, ∀x, y ∈ Tp(M), (3.9)
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L(z) · (∇y∇xf0) = 0, ∀x, y, z ∈ Tp(M). (3.10)

Differentiating (3.3) and (3.4) covariantly, we have

∇y∇xf1 = ∇yH · (∇xf0) + H(p) · (∇y∇xf0),

∀x, y ∈ Tp(M),
(3.11)

∇z∇y∇xf1 = ∇zH · (∇y∇xf0) + H(p) · (∇z∇y∇xf0),

∀x, y, z ∈ Tp(M).
(3.12)

Then by (3.4) and (3.11) we have ∇yH · (∇xf0) = 0 for each x, y ∈ Tp(M).
Consequently, multiplying tH(p) from the left, we have (3.9).

We now prove (3.10). Exchanging z and y in (3.12), we have

∇y∇z∇xf1 = ∇yH · (∇z∇xf0) + H(p) · (∇y∇z∇xf0),

∀x, y, z ∈ Tp(M).
(3.13)

Subtract (3.13) from (3.12). Then, using the integrability condition (3.2)
and the equality (3.3), we have

∇zH(∇y∇xf0) = ∇yH(∇z∇xf0), ∀x, y, z ∈ Tp(M). (3.14)

Consequently, multiplying tH(p) from the left, we get

L(z) · (∇y∇xf0) = L(y) · (∇z∇xf0), ∀x, y, z ∈ Tp(M). (3.15)

Since L(z) is a skew-symmetric matrix, we have
〈
L(z) · (∇y∇xf0), ∇uf0

〉
= −〈∇y∇xf0, L(z) · (∇uf0)

〉
= 0.

Therefore, to prove (3.10), we have to show
〈
L(z) · (∇y∇xf0), ∇v∇wf0

〉
= 0, ∀x, y, z, v, w ∈ Tp(M). (3.16)

Define an element X ∈ ⊗5T ∗p (M) by

X(z, y, x, v, w) =
〈
L(z) · (∇y∇xf0), ∇v∇wf0

〉
,

x, y, z, v, w ∈ Tp(M).
(3.17)

In the following, we will show X(z, y, x, v, w) = 0 for x, y, z, v, w ∈
Tp(M). By the integrability condition (3.1) and by (3.15), we easily know
that X(z, y, x, v, w) is symmetric with respect to the pairs {x, y}, {v, w}
and {z, y}. Further, since L(z) is a skew-symmetric endomorphism of Rm
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(see (3.8)), it follows that

X(z, y, x, v, w) = −X(z, v, w, y, x). (3.18)

Therefore, X(z, y, x, v, w) is anti-symmetric with respect to the pair {x, w},
because

X(z, y, x, v, w) =−X(z, v, w, y, x) = −X(v, z, w, y, x)

= X(v, y, x, z, w) = X(y, v, x, z, w)

=−X(y, z, w, v, x) = −X(z, y, w, v, x).

Consequently, we get

X(z, y, x, v, w) =−X(z, y, w, v, x) = −X(z, w, y, x, v)

= X(z, w, v, x, y) = X(z, v, w, y, x).

This, together with (3.18), proves X(z, y, x, v, w) = 0. Thus we get (3.10).
By the above argument, we know that L(x) = tH(p)(∇xH) = 0 for

any x ∈ Tp(M). This implies that H is a locally constant function and
hence H is identically equal to an element H0 ∈ O(m) on M , because M is
connected. Consequently, the difference c = f1 −H0 · f0 satisfies

∇xc =∇x(f1 −H0 · f0) =∇xf1 −H0 · (∇xf0) = 0, ∀x ∈ Tp(M).

Therefore, c is also identically equal to a constant vector c0 ∈ Rm, com-
pleting the proof of the theorem. ¤

Remark 3 The argument in the proof of the equality X = 0 is essentially
the same that is developed in the proof of the uniqueness of the metric
connection of the normal bundle associated with an isometric imbedding
(see the proof of Theorem 1 of [19]); It is almost the same that is used
to calculate the third prolongation of the symbol of the operator L (see
Proposition 2.2 of [16]). Here we remark that X = 0 can be proved without
assuming the existence of (isometric) immersions.

We are now in a position to prove Theorem 5.

Proof of Theorem 5. We show that the map f i (i = 0, 1) is 2-generic and
for each p ∈ M there is an element H(p) ∈ O(m) satisfying the equalities
(3.3) and (3.4).

Let i = 0 or 1. Let f i∗Tp(M) (resp. N i) be the tangent vector space
(resp. normal vector space) of f i(M) at f i(p) ∈ Rm. Then, we have
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dimf i∗Tp(M) = n and dimN i = m − n. We regard f i∗Tp(M) and N i

as euclidean vector spaces endowed with the inner products induced from
the inner product

〈
,

〉
of Rm. By a natural parallel displacement from

f i(p) to the origin o ∈ Rm, we regard f i∗Tp(M) and N i as linear sub-
spaces of Rm. Since f i is an isometric immersion, f i∗Tp(M) is spanned by
the vectors ∇xf i (x ∈ Tp(M)) and

〈∇xf i, ∇yf i

〉
= gp(x, y), ∀x, y ∈ Tp(M). (3.19)

The second order derivative ∇∇f i, which is so called the second fun-
damental form of f i, satisfies ∇∇f i ∈ S2T ∗p (M)⊗N i and ∇∇f i ∈ Gp(N i)
(see [23], [16]). Since Gp(N i) is EOS, the vectors ∇x∇yf i (x, y ∈ Tp(M))
span N i, implying that f i is 2-generic (see Proposition 4 (1)). Take an
isometric linear isomorphism ϕ2 of N0 onto N1. Since ϕ̂2∇∇f0 ∈ Gp(N1)
and since Gp(N1) is EOS (see Proposition 4 (2b)), there is an element h1 ∈
O(N1) such that h1(ϕ̂2∇∇f0) = ∇∇f1. On the other hand, in view of
(3.19) we also know that there is an isometric linear isomorphism ϕ1 of
f0∗Tp(M) onto f1∗Tp(M) satisfying ϕ1(∇xf0) = ∇xf1 (x ∈ Tp(M)). De-
fine a linear endomorphism H(p) of Rm satisfying H(p)|f 0∗Tp(M) = ϕ1 and
H(p)|N 0

= h1 · ϕ2. Then, it is easily seen that H(p) ∈ O(m) and the
equalities (3.3) and (3.4) are satisfied.

Therefore, by Theorem 6 we know that f1 can be written as f1 = af0,
where a denotes the euclidean transformation of Rm defined by Rm 3 x 7−→
H0 · x + c0 ∈ Rm. Thus, we obtain the theorem. ¤

4. The Cayley projective plane P 2(Cay)

Let M = G/K be a compact Riemannian symmetric space. Let g (resp.
k) be the Lie algebra of G (resp. K). We denote by g = k + m the canonical
decomposition of g associated with the symmetric pair (G, K). We denote
by

(
,

)
the inner product of g given by the (−1)-multiple of the Killing

form of g. As usual, we can identify m with the tangent space To(G/K) at
the origin o = {K}. We assume that the G-invariant Riemannian metric g

of G/K satisfies

go(X, Y ) =
(
X, Y

)
, ∀X, Y ∈ m.

Then, it is well-known that at the origin o the Riemannian curvature tensor
R of type (1, 3) is given by
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Ro(X, Y )Z = −[
[X, Y ], Z

]
, X, Y, Z ∈ m.

Hereafter, we consider the case of the Cayley projective plane P 2(Cay).
As is well-known, P 2(Cay) can be represented by P 2(Cay) = G/K, where
G = F4 and K = Spin(9). Take a maximal abelian subspace a of m and fix
it in the following discussions. We note that since rank(P 2(Cay)) = 1, we
have dim a = 1.

For each element λ ∈ a we define two subspaces k(λ) ⊂ k and m(λ) ⊂ m

by

k(λ) =
{
X ∈ k

∣∣ [
H, [H, X]

]
= −(λ, H)2X, ∀H ∈ a

}
,

m(λ) =
{
Y ∈ m

∣∣ [
H, [H, Y ]

]
= −(λ, H)2Y, ∀H ∈ a

}
.

We call λ a restricted root if m(λ) 6= 0. Let Σ be the set of all non-zero
restricted roots. In the case of P 2(Cay), there is a restricted root µ such
that Σ = {±µ, ±2µ}. We take and fix such a restricted root µ. Then we
have m(0) = a = Rµ and

k = k(0) + k(µ) + k(2µ) (orthogonal direct sum),

m = m(0) + m(µ) + m(2µ) (orthogonal direct sum).

(For details, see [6], [7].) For simplicity, for each integer i we set ki = k(|i|µ),
mi = m(|i|µ) (|i| ≤ 2), ki = mi = 0 (|i| > 2). Then we have

Proposition 7 ([7]) (1) Let i, j = 0, 1, 2. Then:
[
ki, kj

] ⊂ ki+j + ki−j ,[
mi, mj

] ⊂ ki+j + ki−j , (4.1)[
ki, mj

] ⊂ mi+j + mi−j .

(2) dimm = 16, dim k1 = dim m1 = 8, dim k2 = dim m2 = 7.

In what follows, we recall the results obtained in [7], which will be
needed in the proof of Theorem 2. Let V be a subspace of m. V is called
pseudo-abelian if it satisfies

[
V, V

] ⊂ k0 (or equivalently
[
[V, V ], a

]
= 0).

(Precisely, see [6].) As is easily seen, m2 is a pseudo-abelian subspace of m,
because

[
m2, m2

] ⊂ k0 (see (4.1)).
On the contrary, we have

Proposition 8 Let G/K = P 2(Cay). Then, any pseudo-abelian sub-
space V of m with dimV > 2 must be contained in m2.
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For the proof, see Lemma 6 of [7]. The following proposition summarizes
the results of [7] (see Proposition 7, Proposition 10 and Lemma 17 of [7]).

Proposition 9 (1) Let Y0 ∈ a + m2 and Y1 ∈ m1. Assume that Y0 6= 0,
Y1 6= 0. Then, there are elements k0, k1 ∈ K satisfying

Ad(k0)µ ∈ RY0, Ad(k0)m2 =
{
Y ′

0 ∈ a + m2

∣∣ (Y ′
0 , Y0) = 0

}
, (4.2)

Ad(k1)µ ∈ RY1, Ad(k1)m2 =
{
Y ′

1 ∈ m1

∣∣ (Y ′
1 , Y1) = 0

}
. (4.3)

(2) Let Y0, Y ′
0 ∈ a + m2, Y1, Y ′

1 ∈ m1 and X1 ∈ k1. Then:

[
Y0, [Y0, Y ′

0 ]
]
=

{
−4

(
µ, µ

)(
Y0, Y0

)
Y ′

0 , if
(
Y0, Y ′

0

)
= 0,

0, if Y ′
0 ∈ RY0,

(4.4)

[
Y0, [Y0, Y1]

]
=−(

µ, µ
)(

Y0, Y0

)
Y1, (4.5)

[
Y1, [Y1, Y0]

]
=−(

µ, µ
)(

Y1, Y1

)
Y0, (4.6)

[
Y1, [Y1, Y ′

1 ]
]
=

{
−4

(
µ, µ

)(
Y1, Y1

)
Y ′

1 , if
(
Y1, Y ′

1

)
= 0,

0, if Y ′
1 ∈ RY1,

(4.7)

[
X1, [X1, Y0]

]
=−(

µ, µ
)(

X1, X1

)
Y0. (4.8)

5. Solutions of the Gauss equation

In this and the next sections, we prove

Theorem 10 The projective plane P 2(Cay) is formally rigid in codimen-
sion 10 (= 26− dimP 2(Cay)).

If this theorem is established, then Theorem 2 immediately follows from
Theorem 5.

On account of homogeneity of P 2(Cay), in order to show Theorem 10
we have only to prove that the Gaussian variety Go(N) is EOS at the origin
o for any euclidean vector space N with dimN = 10.

In what follows we assume that M = P 2(Cay) and that N is a eu-
clidean vector space with dim N = 10. We will prove the following theorem:

Theorem 11 Let Ψ ∈ Go(N). Then:
(1) There are linearly independent vectors A and B ∈ N satisfying

(1a) 〈A, A〉 = 〈B, B〉 = 4(µ, µ) and 〈A, B〉 = 2(µ, µ);
(1b) Ψ(Y0, Y ′

0) = (Y0, Y ′
0)A, ∀Y0, Y ′

0 ∈ a + m2;
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(1c) Ψ(Y1, Y ′
1) = (Y1, Y ′

1)B, ∀Y1, Y ′
1 ∈ m1;

(1d) 〈A, Ψ(µ, m1)〉 = 〈B, Ψ(µ, m1)〉 = 0.
(2) Ψ(Y1, Y2) +

(
1/(µ, µ)2

)
Ψ

(
µ,

[
[µ, Y1], Y2

])
= 0, ∀Y1 ∈ m1, ∀Y2 ∈

m2.
(3) 〈Ψ(µ, Y1), Ψ(µ, Y ′

1)〉 = (µ, µ)2(Y1, Y ′
1), ∀Y1, Y ′

1 ∈ m1.

Before proceeding to the proof of Theorem 11 we make a somewhat
lengthy preparation. Let N be a euclidean vector space and let S2m∗ ⊗N

be the space of N -valued symmetric bilinear forms on m. Let Ψ ∈ S2m∗ ⊗
N and Y ∈ m. We define a linear map ΨY of m to N by

ΨY : m 3 Y ′ 7−→ Ψ(Y, Y ′) ∈ N

and denote by Ker(ΨY ) the kernel of ΨY . We say that an element Y ∈ m

is singular (resp. non-singular) with respect to Ψ if ΨY (m) 6= N (resp.
ΨY (m) = N). Apparently, 0 (∈ m) is a singular element for any Ψ ∈
S2m∗ ⊗N .

Proposition 12 Let Ψ ∈ Go(N). Let Y ∈ m (Y 6= 0) and let k be an
element of K satisfying Ad(k)µ ∈ RY . Then:
(1) Ker(ΨY ) ⊂ Ad(k)m2. Consequently, dimKer(ΨY ) ≤ 7.
(2) Assume that Y is non-singular with respect to Ψ. Then, it holds that
dimKer(ΨY ) = 6 and Ker(ΨY ) ( Ad(k)m2.
(3) Assume that Y is singular with respect to Ψ. Then, it holds that
Ker(ΨY ) = Ad(k)m2, dimKer(ΨY ) = 7 and dimΨY (m) = 9.

Proof. First, note that dimKer(ΨY ) ≥ dimm−dimN = 6. Consequently,
it is easy to see that Y is singular (resp. non-singular) with respect to Ψ if
and only if dimKer(ΨY ) > 6 (resp. dimKer(ΨY ) = 6).

Multiplying Y by a non-zero scalar if necessary, we may assume that
Y = Ad(k)µ. From the Gauss equation (2.1) it follows that

Ro

(
Ker(ΨY ),Ker(ΨY )

)
Y = 0.

In our terminology we have
[
[Ker(ΨY ), Ker(ΨY )], Y

]
= 0.

Applying Ad(k−1) to the both sides of the above equality, we have
[
[Ad(k−1)Ker(ΨY ), Ad(k−1)Ker(ΨY )], µ

]
= 0.
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Since a = Rµ, it follows that Ad(k−1)Ker(ΨY ) is a pseudo-abelian sub-
space of m. By Proposition 8 and by the fact dimKer(ΨY ) ≥ 6, we have
Ad(k−1)Ker(ΨY ) ⊂ m2 and hence Ker(ΨY ) ⊂ Ad(k)m2, proving (1).

Assume that Y is non-singular with respect to Ψ. Then, as we have
stated above, we have dimKer(ΨY ) = 6. Since dimm2 = 7 (see Proposi-
tion 7 (2)), it follows that Ker(ΨY ) ( Ad(k)m2, proving (2).

Finally, we assume Y is singular with respect to Ψ. Then, we have
dimKer(ΨY ) > 6. Since Ker(ΨY ) ⊂ Ad(k)m2 and since dim m2 = 7, we
have dimKer(ΨY ) = 7 and Ker(ΨY ) = Ad(k)m2. This proves (3). ¤

Corollary 13 Let Ψ ∈ Go(N). Let Y0 ∈ a + m2 (Y0 6= 0) and Y1 ∈
m1 (Y1 6= 0). Then:
(1) Ker(ΨY0) ⊂ {Y ′

0 ∈ a + m2 | (Y ′
0 , Y0) = 0}. In particular, if Y0 is

singular with respect to Ψ, then Ker(ΨY0) = {Y ′
0 ∈ a + m2 | (Y ′

0 , Y0) = 0}.
(2) Ker(ΨY1) ⊂ {Y ′

1 ∈ m1 | (Y ′
1 , Y1) = 0}. In particular, if Y1 is singular

with respect to Ψ, then Ker(ΨY1) = {Y ′
1 ∈ m1 | (Y ′

1 , Y1) = 0}.
Proof. Let Y0 ∈ a+m2 (Y0 6= 0). By Proposition 9 (1), we know that there
is an element k0 ∈ K satisfying (4.2). Applying Proposition 12 to Y0, we
easily get Ker(ΨY0) ⊂ {Y ′

0 ∈ a + m2 | (Y ′
0 , Y0) = 0}. Assume that Y0 is

singular with respect to Ψ. Then, by the equality Ker(ΨY0) = Ad(k0)m2,
we get (1).

The assertion (2) is similarly dealt with. ¤

Let Ψ ∈ S2m∗ ⊗N . A subspace U of m is called singular with respect
to Ψ if each element of U is singular with respect to Ψ.

Proposition 14 Let Ψ ∈ Go(N). Let Y ∈ m (Y 6= 0) and let k ∈ K

satisfy Ad(k)µ ∈ RY . Assume that Y is non-singular with respect to Ψ.
Then:
(1) Ker(ΨY ) is a singular subspace with respect to Ψ.
(2) There is an element Y ′ ∈ Ad(k)m2 satisfying Ψ(Y, Y ′) 6= 0 and

N = RΨ(Y, Y ′) + ΨY ′′(m) (orthogonal direct sum), (5.1)

where Y ′′ is an arbitrary non-zero element of Ker(ΨY ).

Proof. Since Y is non-singular with respect to Ψ, we have Ker(ΨY ) (
Ad(k)m2 (see Proposition 12). Take a non-zero element Y ′ ∈ Ad(k)m2 such
that

(
Y ′, Ker(ΨY )

)
= 0. Then, since Y ′ 6∈ Ker(ΨY ), we have Ψ(Y, Y ′) 6=

0.
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Let Y ′′ ∈ Ker(ΨY ) (Y ′′ 6= 0). Then, by the Gauss equation (2.1) we
have

([
[Y ′, Y ′′], Y

]
, W

)

= 〈Ψ(Y ′, Y ), Ψ(Y ′′, W )〉 − 〈Ψ(Y ′, W ), Ψ(Y ′′, Y )〉, (5.2)

where W is an arbitrary element of m. Note that the left hand side of (5.2)
vanishes, because

[
[Y ′, Y ′′], Y

]∈ [
[Ad(k)m2, Ad(k)m2], Ad(k)µ

]

= Ad(k)
[
[m2, m2], µ

]
= 0.

We also note that Ψ(Y ′′, Y ) = 0, because Y ′′ ∈ Ker(ΨY ). Consequently,
we have 〈Ψ(Y ′, Y ), Ψ(Y ′′, W )〉 = 0. This implies that each element of
ΨY ′′(m) is orthogonal to Ψ(Y ′, Y ). Therefore, ΨY ′′(m) 6= N , implying
that Y ′′ is singular with respect to Ψ. Hence, by Proposition 12 (3) we
have dimΨY ′′(m) = 9, which proves (5.1). ¤

The following lemma assures that for each Ψ ∈ Go(N) there are many
high dimensional singular subspaces with respect to Ψ.

Lemma 15 Let Ψ ∈ Go(N). Then, there are singular subspaces U and V

with respect to Ψ satisfying U ⊂ a+m2, V ⊂ m1, dimU ≥ 6 and dimV ≥ 6.

Proof. If a + m2 contains no non-singular element with respect to Ψ, then
we can take U = a + m2. (Note that dim(a + m2) = 8.) On the contrary,
if a + m2 contains a non-singular element Y0, then we set U = Ker(ΨY0).
Then, we know that U ⊂ a + m2, dim U = 6 (see Proposition 12 (2) and
Corollary 13 (1)) and that U is a singular subspace with respect to Ψ (see
Proposition 14 (1)). Similarly, we can select a singular subspace V ⊂ m1

with dimV ≥ 6. ¤

Proposition 16 Let Ψ ∈ Go(N). Let U and V be arbitrary singular
subspaces with respect to Ψ satisfying U ⊂ a + m2, V ⊂ m1, dimU ≥ 6 and
dimV ≥ 6. Then there are two vectors A and B ∈ N satisfying:
(1) 〈A, A〉 = 〈B, B〉 = 4(µ, µ);
(2) Ψ(ξ, Y0) = (ξ, Y0)A, ∀ξ ∈ U, ∀Y0 ∈ a + m2;
(3) Ψ(η, Y1) = (η, Y1)B, ∀η ∈ V, ∀Y1 ∈ m1;
(4) 〈A, ΨY0(m1)〉 = 〈B, ΨY0(m1)〉 = 0, ∀Y0 ∈ a + m2.
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Proof. Let ξ ∈ U (ξ 6= 0). Since ξ is singular with respect to Ψ, Ker(Ψξ)
coincides with the orthogonal complement of Rξ in a + m2 (see Corol-
lary 13 (1)). Hence, the equality Ψ(ξ, Y0) = 0 holds for each Y0 ∈ a +
m2 satisfying (ξ, Y0) = 0. In particular, we have

Ψ(ξ, ξ′) = 0, ∀ξ, ξ′ ∈ U with (ξ, ξ′) = 0.

Then, applying the same argument as in the proof of Proposition 9 of [7],
we can prove that there is a vector A ∈ N satisfying

Ψ(ξ, ξ′) = (ξ, ξ′)A, ∀ξ, ξ′ ∈ U. (5.3)

Let Y0 ∈ a + m2 satisfy (Y0, U) = 0. Then, since (ξ, Y0) = 0, we have
Ψ(ξ, Y0) = 0 and (ξ, Y0)A = 0. This, together with (5.3), proves (2). The
assertion (3) can be proved in the same way.

We now prove (1). Let ξ, ξ′ ∈ U satisfy (ξ, ξ′) = 0 and (ξ, ξ) =
(ξ′, ξ′) = 1. Put X = Z = ξ and Y = W = ξ′ into the Gauss equation (2.1).
Then, we have

([
[ξ, ξ′], ξ

]
, ξ′

)
= 〈Ψ(ξ, ξ), Ψ(ξ′, ξ′)〉 − 〈Ψ(ξ, ξ′), Ψ(ξ′, ξ)〉.

Since
[
[ξ, ξ′], ξ

]
= 4(µ, µ)ξ′ (see (4.4)), Ψ(ξ, ξ) = Ψ(ξ′, ξ′) = A and

Ψ(ξ, ξ′) = 0, we have 〈A, A〉 = 4(µ, µ). Similarly, by (4.7) we can prove
〈B, B〉 = 4(µ, µ), proving (1).

Finally, we prove (4). Let Y1 ∈ m1 and Y0 ∈ a+m2. Take an element ξ ∈
U satisfying (ξ, Y0) = 0 and (ξ, ξ) = 1. Such ξ can exist, because dim U ≥
6. Put X = Z = ξ, Y = Y0 and W = Y1 into the Gauss equation (2.1).
Then we have

([
[ξ, Y0], ξ

]
, Y1

)
= 〈Ψ(ξ, ξ), Ψ(Y0, Y1)〉 − 〈Ψ(ξ, Y1), Ψ(Y0, ξ)〉.

Since (ξ, Y0) = 0, we have Ψ(ξ, Y0) = 0 and
[
[ξ, Y0], ξ

]
= 4(µ, µ)Y0 (see

(4.4)). Moreover, since Ψ(ξ, ξ) = A and (Y0, Y1) = 0, we have

〈A, ΨY0(Y1)〉= 〈Ψ(ξ, ξ), Ψ(Y0, Y1)〉
= 〈Ψ(ξ, Y1), Ψ(Y0, ξ)〉+ 4(µ, µ)(Y0, Y1)

= 0.

Since Y1 is an arbitrary element of m1, we have 〈A, ΨY0(m1)〉 = 0. In a
similar way, the equality 〈B, ΨY0(m1)〉 = 0 can be proved. ¤
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Remark 4 As seen in the proof of Lemma 15, singular subspaces U and
V may not be uniquely determined. However, it is noted that the vectors A
and B in Proposition 16 do not depend on the choice of U and V . In fact,
let U ′ and V ′ be different singular subspaces with respect to Ψ satisfying
U ′ ⊂ a + m2 and V ′ ⊂ m1 with dim U ′ ≥ 6, dim V ′ ≥ 6. Let A′ and B′ be
vectors of N satisfying (1) ∼ (4) of Proposition 16. Then, since dim(a +
m2) = dimm1 = 8, we have U ∩ U ′ 6= 0, V ∩ V ′ 6= 0. Take ξ ∈ U ∩ U ′ and
η ∈ V ∩ V ′ such that (ξ, ξ) = (η, η) = 1. Then we have A = Ψ(ξ, ξ) = A′

and B = Ψ(η, η) = B′, showing our assertion.

In the following discussions, we fix an element Ψ ∈ Go(N), singular
subspaces U , V and vectors A, B stated in Proposition 16 and prove several
lemmas which are indispensable to the proof of Theorem 11.

Lemma 17 Let ξ ∈ U , η ∈ V , Y0 ∈ a + m2 and Y1 ∈ m1. Set C =
〈A, B〉 − (µ, µ). Then C > 0 and:
(1) 〈ΨY0(η), ΨY0(Y1)〉 = {〈Ψ(Y0, Y0), B〉 − (µ, µ)(Y0, Y0)}(η, Y1);
(2) 〈Ψξ(η), Ψξ(Y1)〉 = C(ξ, ξ)(η, Y1).

Proof. Putting X = Z = Y0, Y = Y1 and W = η into (2.1), we have
([

[Y0, Y1], Y0

]
, η

)
= 〈Ψ(Y0, Y0), Ψ(Y1, η)〉− 〈Ψ(Y0, η), Ψ(Y1, Y0)〉.

Since
[
[Y0, Y1], Y0

]
= (µ, µ)(Y0, Y0)Y1 (see (4.5)) and Ψ(Y1, η) = (Y1, η)B,

we easily get (1). Putting Y0 = ξ ∈ U into (1), we easily have (2). If
we set Y1 = η ∈ V in (2), we have 〈Ψξ(η), Ψξ(η)〉 = C(ξ, ξ)(η, η). Since
Ker(Ψξ) ∩ m1 = 0 (see Corollary 13 (1)), we have Ψξ(η) 6= 0 if η 6= 0.
Consequently, we have C > 0. ¤

Let Y0 ∈ a+m2. Let ξ0 be a non-zero element of U satisfying (ξ0, Y0) =
0. (Such ξ0 exists, because dim U ≥ 6.) We define a linear mapping
ΘY0,ξ0 : V −→ N by

ΘY0,ξ0(η) = ΨY0(η) +
1

C(ξ0, ξ0)
Ψξ0(

[
[ξ0, η], Y0

]
), η ∈ V.

Then we have

Lemma 18 〈A, ΘY0,ξ0(V )〉 = 〈Ψξ0(V ), ΘY0,ξ0(V )〉 = 0.

Proof. We first note that
[
[ξ0, η], Y0

] ∈ m1 for η ∈ V and note that
ΘY0,ξ0(V ) ⊂ ΨY0(m1) + Ψξ0(m1). By Proposition 16 (4), we have
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〈A, ΨY0(m1)〉 = 〈A, Ψξ0(m1)〉 = 0 and hence 〈A, ΘY0, ξ0(V )〉 = 0.
Let η, η′ ∈ V . Then by putting X = Y0, Y = η′, Z = η and W = ξ0

into the Gauss equation (2.1), we have
([

[Y0, η′], η
]
, ξ0

)
= 〈Ψ(Y0, η), Ψ(η′, ξ0)〉 − 〈Ψ(Y0, ξ0), Ψ(η′, η)〉
= 〈ΨY0(η), Ψξ0(η′)〉 − 〈A, B〉(Y0, ξ0)(η′, η).

Since (Y0, ξ0) = 0, we have

〈ΨY0(η), Ψξ0(η′)〉 =
([

[Y0, η′], η
]
, ξ0

)
. (5.4)

On the other hand, we have
〈
Ψξ0

([
[ξ0, η], Y0

])
, Ψξ0(η′)

〉
= C(ξ0, ξ0)

([
[ξ0, η], Y0

]
, η′

)

(see Lemma 17 (2)). Therefore,

〈ΘY0, ξ0(η), Ψξ0(η′)〉

=
〈
ΨY0(η) +

1
C(ξ0, ξ0)

Ψξ0

([
[ξ0, η], Y0

])
, Ψξ0(η′)

〉

=
([

[Y0, η′], η
]
, ξ0

)
+

([
[ξ0, η], Y0

]
, η′

)

=−([Y0, η′], [ξ0, η]) + ([ξ0, η], [Y0, η′])

= 0.

This completes the proof. ¤

We can further show

Lemma 19 Let η ∈ V . Assume that
[
[ξ0, η], Y0

] ∈ V . Then:

|ΘY0,ξ0(η)|2

=
[
〈Ψ(Y0, Y0), B〉 − (µ, µ)(Y0, Y0)

{
1 +

(µ, µ)
C

}]
(η, η). (5.5)

Proof. Set η′ =
[
[ξ0, η], Y0

]
. By Lemma 18, Lemma 17 and the equality

(5.4) we have

〈ΘY0,ξ0(η), ΘY0,ξ0(η)〉

=
〈
ΨY0(η) +

1
C(ξ0, ξ0)

Ψξ0(η′), ΘY0,ξ0(η)
〉

= 〈ΨY0(η), ΘY0,ξ0(η)〉
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= 〈ΨY0(η), ΨY0(η)〉+
1

C(ξ0, ξ0)
〈ΨY0(η), Ψξ0(η′)〉

= {〈Ψ(Y0, Y0), B〉 − (µ, µ)(Y0, Y0)}(η, η)

+
1

C(ξ0, ξ0)
([

[Y0, η′], η
]
, ξ0

)
.

Since [ξ0, η] ∈ k1, by (4.8) and (4.5) we have
([

[Y0, η′], η
]
, ξ0

)
=−([Y0, η′], [ξ0, η])

=
(
Y0,

[
[ξ0, η], η′

])

=
(
Y0,

[
[ξ0, η],

[
[ξ0, η], Y0

]])

=−(µ, µ)([ξ0, η], [ξ0, η])(Y0, Y0)

= (µ, µ)
([

ξ0, [ξ0, η]
]
, η

)
(Y0, Y0)

=−(µ, µ)2(ξ0, ξ0)(η, η)(Y0, Y0).

Therefore, we obtain (5.5). ¤

Lemma 20 Let Y0 ∈ a + m2. Then:
(1) 〈Ψ(Y0, Y0), B

〉
= (µ, µ)(Y0, Y0){1 + (µ, µ)/C}.

(2) Let ξ0 be a non-zero element of U satisfying (Y0, ξ0) = 0. Then,
ΘY0,ξ0(η) = 0, i.e., the equality

Ψ(Y0, η) +
1

C(ξ0, ξ0)
Ψ

(
ξ0,

[
[ξ0, η], Y0

])
= 0 (5.6)

holds for each η ∈ V satisfying
[
[ξ0, η], Y0

] ∈ V .

Proof. We first show that there is a non-zero element η0 ∈ V satisfying
ΘY0, ξ0(η0) = 0 and

[
[ξ0, η0], Y0

] ∈ V . Let D be the orthogonal complement
of RA + Ψξ0(V ) in N and let V ′ be the orthogonal complement of V in
m1. By Lemma 18, we easily have ΘY0,ξ0(V ) ⊂ D. Therefore, to obtain
η0 satisfying the above condition, it suffices to find a non-zero solution η =
η0 ∈ V of the system of linear homogeneous equations

〈ΘY0,ξ0(η), D〉 =
([

[ξ0, η], Y0

]
, V ′) = 0. (5.7)

Since Ker(Ψξ0) ∩m1 = 0 (see Corollary13 (1)) and 〈A, Ψξ0(m1)〉 = 0 (see
Proposition 16 (4)), we have dim(RA + Ψξ0(V )) = 1 + dimV ≥ 7. (Recall
that we are assuming V ⊂ m1 and dimV ≥ 6.) Hence, we have dim D ≤
dimN − 7 = 3. Moreover, we have dimV ′ = 8− dimV ≤ 2. Consequently,
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the rank of the system (5.7) is less than or equal to 5. Therefore, we can find
a non-zero solution η0 ∈ V of (5.7). Putting η = η0 into (5.5), we obtain
the equality (1). Further, putting (1) into (5.5), we have ΘY0,ξ0(η) = 0 for
any η ∈ V satisfying

[
[ξ0, η], Y0

] ∈ V . ¤

Lemma 21 The vectors A and B are linearly independent and 〈A, B〉 =
2(µ, µ), C = (µ, µ).

Proof. Let ξ ∈ U with (ξ, ξ) = 1. Since Ψ(ξ, ξ) = A (see (5.3)), by
putting Y0 = ξ into the equality in Lemma 20 (1), we easily have 〈A, B〉 =
(µ, µ){1 + (µ, µ)/C}. Since C = 〈A, B〉 − (µ, µ), it immediately follows
that C2 = (µ, µ)2. Since C > 0, we get C = (µ, µ) and hence 〈A, B〉 =
2(µ, µ). This, together with Proposition 16 (1), proves that A and B are
linearly independent. ¤

These being prepared, we show Theorem 11.

Proof of Theorem 11. First we show that µ is singular with respect to
any element Ψ ∈ Go(N). Suppose that there is an element Ψ0 ∈ Go(N)
such that µ is non-singular with respect to Ψ0. Then, Ker((Ψ0)µ) is a
singular subspace with respect to Ψ0 and it satisfies dimKer((Ψ0)µ) = 6
and Ker((Ψ0)µ) ⊂ m2 (see Proposition 12 and Proposition 14).

Now, set Ψ = Ψ0 and U = Ker((Ψ0)µ) in Proposition 16. Let A,
B be the vectors of N satisfying (1)–(4) of Proposition 16. Let ξ ∈
U = Ker((Ψ0)µ) with ξ 6= 0. First, we show B ∈ (Ψ0)ξ(m). In fact,
there is a non-zero element Y 0

2 ∈ m2 satisfying Ψ0(µ, Y 0
2 ) 6= 0 and N =

RΨ0(µ, Y 0
2 ) + (Ψ0)ξ(m) (orthogonal direct sum) (see Proposition 14). By

Lemma 20 (1) and by the relation

Ψ0(µ, Y 0
2 ) =

1
2

(
Ψ0(µ + Y 0

2 , µ + Y 0
2 )−Ψ0(µ, µ)−Ψ0(Y 0

2 , Y 0
2 )

)
,

we easily have 〈Ψ0(µ, Y 0
2 ), B〉 = 0, which proves B ∈ (Ψ0)ξ(m). Since

(Ψ0)ξ(m) = RA+(Ψ0)ξ(m1) (orthogonal direct sum) and 〈B, (Ψ0)ξ(m1)〉 =
0 (see Proposition 16 (2), (4)), we have B ∈ RA. This contradicts Lemma
21. Accordingly, we can conclude that µ is singular with respect to any
element Ψ ∈ Go(N).

Now we show that any element of m is singular with respect to any
Ψ ∈ Go(N). Let Y be a non-zero element of m. Take an element k ∈ K

such that Ad(k)µ ∈ RY and define Ψ′ ∈ S2m∗ ⊗N by
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Ψ′(Y ′, Y ′′) = Ψ(Ad(k)Y ′, Ad(k)Y ′′), Y ′, Y ′′ ∈ m.

Then, it is easily seen that Ψ′ ∈ Go(N). Applying the arguments devel-
oped above, we know that µ is also singular with respect to Ψ′. Note that
Ψ′

µ(m) = ΨAd(k)µ(Ad(k)m) = ΨY (m). Then, since Ψ′
µ(m) 6= N , we have

ΨY (m) 6= N , implying that Y is singular with respect to Ψ.
Accordingly, in Proposition 16 and in the discussion after it, we may

allow to put U = a + m2 and V = m1. Therefore, by Proposition 16 and
Lemma 21, we get (1) of Theorem 11. Further, putting Y0 = Y2 ∈ m2,
ξ0 = µ and η = Y1 into (5.6), we get (2) of Theorem 11. The assertion (3)
of Theorem 11 follows from Lemma 17 (2) and Lemma 21. This completes
the proof of the theorem. ¤

6. Proof of Theorem 10

Let {Ei (1 ≤ i ≤ 8)} be an orthonormal basis of m1. (Note that
dimm1 = 8.) Let Ψ ∈ Go(N) and let A, B be the vectors of N stated in
Theorem 11. We define vectors {Fi (1 ≤ i ≤ 10)} of N by setting Fi =
Ψ(µ, Ei)/(µ, µ) (1 ≤ i ≤ 8), F9 = (A+B)/2

√
3|µ| and F10 = (A−B)/2|µ|.

We now show that {Fi (1 ≤ i ≤ 10)} forms an orthonormal basis of N . By
Theorem 11 (3) we have 〈Fi, Fj〉 = δij (1 ≤ i, j ≤ 8), where δij denotes
Kronecker’s delta. Moreover, since 〈A, Fi〉 = 〈B, Fi〉 = 0 (1 ≤ i ≤ 8) (see
Theorem 11 (1d)), we have 〈F9, Fi〉 = 〈F10, Fi〉 = 0 (1 ≤ i ≤ 8). The
equalities 〈F9, F9〉 = 〈F10, F10〉 = 1 and 〈F9, F10〉 = 0 immediately follow
from Theorem 11 (1a).

Now let Ψ′ be another element of Go(N). Let A′ and B′ be the vectors
stated in Theorem 11 for Ψ′. As in the case of Ψ we can also define an
orthonormal basis {F′i (1 ≤ i ≤ 10)} of N . Then, there is an element h ∈
O(10) satisfying F′i = hFi (1 ≤ i ≤ 10). Here we note that A′ = hA, B′ =
hB and Ψ′(µ, Ei) = hΨ(µ, Ei) (1 ≤ i ≤ 8). Set Φ = Ψ′−hΨ ∈ S2m∗⊗N .
Then, by Theorem 11 (1) we have

Φ(a + m2, a + m2) = Φ(m1, m1) = Φ(a, m1) = 0.

By the fact
[
[µ, m1], m2

] ⊂ m1 and Theorem 11 (2), we have

Φ(m2, m1) ⊂ Φ
(
µ,

[
[µ, m1], m2

]) ⊂ Φ(a, m1) = 0,

which proves that Φ(m2, m1) = 0. Therefore, we have Φ = 0, i.e., Ψ′ = hΨ.
This implies that the Gaussian variety Go(N) is EOS. This completes the
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proof of Theorem 10. ¤
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