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Bounded circular distortion curves and quasidisks∗
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Abstract. Let D be a Jordan domain in R
2

and Γ = ∂D be the boundary of D. Then

D is a quasidisk if and only if Γ is a bounded circular distortion curve.
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1. Introduction

Let D be a Jordan domain in R
2 and f : R

2 → R
2 be a k-quasiconformal

mapping, where 1 ≤ k < +∞. D is called a quasidisk if D is the image of
the unit disk B2 under f .

It is well-known that quasidisks play a very important role in quasicon-
formal mapping theory, complex dynamics, Fuchsian groups, Teichmüller
space theory and low dimensional topology, see [2, 3, 7, 9, 11] etc.

In 1963, L.V. Ahlfors obtained the three-point property of qua-
sidisks ([1]). Later, F.W. Gehring [5], B.G. Osgood [10], J.G. Krzyz [8],
Y. Chu and J. Cheng [4] studied the quasidisks extensively. Several charac-
terizations of quasidisks were obtained. In this paper, we shall prove a new
characterization of quasidisks.

Definition 1 Let E be a set in R
2 and c ≥ 1 be a constant. E is called

a c-linearly locally connected set if for any x ∈ R2 and 0 < r < +∞, the
following are satisfied:
(1) any two points in E∩B

2(x, r) can be joined by a curve in E∩B
2(x, cr);

(2) any two points in E\B2(x, r) can be joined by a curve in E\B2(x, r/c).
E is called a linearly locally connected set if E is a c-linearly locally

connected set for some c ≥ 1.

F.W. Gehring and O. Martio obtained the following result ([6]):
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Theorem A If D is a Jordan domain in R
2, then D is a quasidisk if and

only if D is a linearly locally connected domain.

Definition 2 A curve Γ ⊂ R
2 is said to be of c-bounded circular distor-

tion, where 0 < c ≤ 1, if for all x ∈ Γ ∩ R2 and r > 0, the disk B2(x, cr)
meets only the x-component of Γ∩B

2(x, r). Γ is called a bounded circular
distortion curve if Γ is a c-bounded circular distortion curve for some c,
where 0 < c ≤ 1.

Remark 1 It follows from definitions 1 and 2 that a Jordan curve with
c-bounded circular distortion is b-linearly locally connected, where b = 1/c.

The main aim of this paper is to prove the following result:

Theorem 1.1 Let D be a Jordan domain in R
2 and Γ = ∂D be the bound-

ary of D. Then D is a quasidisk if and only if Γ is a bounded circular
distortion curve.

2. The proof of Theorem 1.1

Lemma 2.1 Let Γ be a Jordan curve. If Γ is a bounded circular distortion
curve, then Γ is a quasicircle.

Proof. Since Γ is a bounded circular distorsion curve, by definition 2, there
exists a constant c (0 < c ≤ 1) such that Γ is a c-bounded circular distortion
curve.

Suppose first that ∞ ∈ Γ. Let x1, x2, x3 be three points on Γ in this
order. If c|x1−x2| > |x1−x3|, then obviously Γ is not a c-bounded circular
distortion curve. Consequently,

|x1 − x2|
|x1 − x3| ≤

1
c
. (2.1)

It follows from [1, Theorem1] that Γ is a quasicircle.
Then suppose that Γ ∈ R2. Without loss of generality, we may assume

0 < c ≤ 1/2. By [1, P295], Γ is a quasicircle if

|x1 − x2| |x3 − x4|
|x1 − x3| |x2 − x4| ≤ b, (2.2)

where xi ∈ Γ (i = 1, 2, 3, 4), x2 and x4 lie in different components of
Γ \ {x1, x3, }. In the following we shall show that (2.2) holds for b = c−4.
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Let xi (i = 1, 2, 3, 4) be the above stated four points on Γ, and let u =
|x1 − x2|/|x1 − x3|. Suppose u > 1/c2. Now |x1 − x4| ≤ |x1 − x3|/c since
otherwise Γ is not a c-bounded circular distortion curve. It follows that

|x1 − x4| ≤ |x1 − x3|
c

=
|x1 − x2|

cu
< c|x1 − x2|. (2.3)

On the other hand, if we set a = |x1 − x2|/|x2 − x4|, then (2.3) implies
that

a ≤ |x1 − x4|+ |x2 − x4|
|x2 − x4| ≤ c|x1 − x2|+ |x2 − x4|

|x2 − x4| = ac + 1. (2.4)

Obviously a ≤ 1/(1− c) ≤ 2. Combining the following inequalities:

|x3 − x4| ≤ |x3 − x1|+ |x1 − x4| ≤
(
1 +

1
c

)
|x1 − x3| ≤ 2

c
|x1 − x3|,

(2.5)

we conclude that (2.2) holds with b = 4/c ≤ 1/c4.
The cases where v = |x3 − x4|/|x2 − x4| > 1/c2 and u, v ≤ 1/c2 can be

proved in analogous way. These complete the proof.

Remark 2 The result that a Jordan domain D ⊂ R
2 is a quasidisk if and

only if ∂D is linearly locally connected had been proved by M.F. Walker
in [12, Corollary 4.4], but the method in the proof of Lemma 2.1 is different
from that in [12].

Lemma 2.2 Let D be a Jordan domain and Γ = ∂D be the boundary
of D. If D is a quasidisk, then Γ is a bounded circular distortion curve.

Proof. Since D is a quasidisk, by Theorem A, D is a linearly locally con-
nected domain. Then there exists a constant c ≥ 1 such that D is a c-linearly
locally connected domain. In the following we shall prove that Γ = ∂D is
a 1/c-bounded circular distortion curve.

Suppose that Γ is not a 1/c-bounded circular distortion curve. Then
there exist x ∈ Γ ∩R2 and r (0 < r < +∞) such that B2(x, r/c) meets
a component E1 of Γ ∩B

2(x, r), which isn’t the x-component E2 of
Γ ∩B

2(x, r). Let Gi be the component of B2(x, r) ∩D which contains Ei

as a part of a boundary (i = 1, 2). There are two possibilities:
(1) G1 = G2. It is easy to see that there exist points x1, x2 ∈ D\B2(x, r)

which can be joined by a curve in D only through B2(x, r/c). Hence x1,
x2 cannot be joined by a curve in D \B2(x, r/c).
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(2) G1 6= G2. Choose points xi ∈ B2(x, r/c) ∩ Gi (i = 1, 2). If x1

and x2 can be joined by a curve α in D, then α will meet R
2 \ B

2(x, r).
Hence x1, x2 cannot be joined by a curve in D ∩B

2(x, r).
The above shows that D isn’t a c-linearly locally connected domain.

This is a contradiction. Hence Γ is a bounded circular distortion curve.

Proof of Theorem 1.1. If D is a quasidisk, then Γ = ∂D is a bounded
circular distortion curve by Lemma 2.2. On the other hand, if Γ = ∂D is
a bounded circular distortion curve, then Γ is a quasicircle by Lemma 2.1,
hence D is a quasidisk.
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