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Well-posedness of the Cauchy problem for the semilinear
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in Besov spaces
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Abstract. Well-posedness of the Cauchy problem for the semilinear Schrödinger equa-

tion with quadratic nonlinear terms is studied. By making use of Besov spaces we

can improve the regularity assumption on the initial data. When the nonlinear term

is c1u2 + c2ū2, our results are as follows: When d = 1 or 2, for any initial data u0 ∈
H−3/4(Rd) there exists a unique local-in-time solution u ∈ B

(−3/4,1/2)

2,(2,1),−|ξ|2 (Rd×IT ). When

d ≥ 3, for any small data u0 ∈ Hρ(Rd), where ρ(z) = zd/2−2 log(2 + z), there exists

a unique local-in-time solution u ∈ B
(ρ,1/2)

2,(2,1),−|ξ|2 (Rd × IT ), and for any u0 ∈ Hs(Rd),

s > d/2−2, there exists a unique local-in-time solution u ∈ B
(s,1/2)

2,(2,1),−|ξ|2 (Rd× IT ). Here

IT = (−T, T ). We also have results for the equation with the nonlinear term c3uū.

Key words: semilinear Schrödinger equation, Besov type norm, initial value problem.

1. Introduction

This paper is a continuation of our study on the Cauchy problem for
the semilinear Schrödinger equation

{
∂tu = i∆u+N(u, ū), x ∈ Rd, t ∈ R,
u(x, 0) = u0(x), x ∈ Rd,

(1.1)

where N(u, ū) = c1u
2 + c2ū

2 or N(u, ū) = c3uū, c1, c2, c3 are constants.
In [5] we proved that the Cauchy problem (1.1) with N(u, ū) = c1u

2 + c2ū
2

in one space dimension is locally well-posed in B
−3/4
2,1 (R). In this paper

we improve this result, that is, this Cauchy problem is locally well-posed
in H−3/4(R). Further, by the same method we show that when N(u, ū) =
c1u

2+c2ū2 the Cauchy problem (1.1) in two space dimensions is locally well-
posed in H−3/4(R2) and when N(u, ū) = c3uū it is well-posed in Hρ(R2)
with ρ(z) = z−1/4 log(2 + z). For 3-D case we prove that the Cauchy
problem (1.1) with N(u, ū) = c1u

2+c2ū2 has a unique local-in-time solution
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for small data in Hρ(R3) with ρ(z) = z−1/2 log(2 + z) and it has a unique
local-in-time solution for any data in Hs(R3) if s > −1/2. As far as we
know, there is no paper in which the well-posedness of (1.1) in Hs(R3) with
s > −1/2 is proved. We also give the results for higher-dimensional case.

By means of the Fourier restriction norm method (due to Bourgain [1])
Kenig, Ponce and Vega ([3]) have studied the Cauchy problem for the 1-D
semilinear Schrödinger equation. They used the following bilinear estimates

‖fg‖Xs,b−1
≤ c‖f‖Xs,b

‖g‖Xs,b
, (1.2)

‖f̄ ḡ‖Xs,b−1
≤ c‖f‖Xs,b

‖g‖Xs,b
. (1.3)

They showed that the 1-D Cauchy problem with N(u, ū) = c1u
2 + c2ū

2 (or
N(u, ū) = c3uū) has a unique local-in-time solution in Hs if s > −3/4 (or
s > −1/4). Our results in [5] are improvement of their results.

Staffilani ([6]) generalized the results of Kenig, Ponce and Vega to
the 2-dimensional case, who showed that a unique local-in-time solution
of the 2-D Cauchy problem exists in Hs if s > −1/2 when N(u, ū) = c3ū

2.
To prove this, she showed that the estimate (1.3) holds for any s > −1/2 in
R2 × R. The study for the 2-dimensional case was improved further, that
is, Colliander, Delort, Kenig and Staffilani ([2]) proved local well-posedness
of the 2-D Cauchy problem with nonlinearity N(u, ū) = c1u

2 + c2ū
2 (or

N(u, ū) = c3uū) in Hs if s > −3/4 (or s > −1/4). In this paper we improve
their results.

When the space dimension d ≥ 2 in the case N(u, ū) = u2 there arises
a difficulty that

−ξ2 +(ξ−η)2 +η2 = 2η(ξ−η) goes near to 0 while |η| and |ξ−η|
are large

(ξ, η are the Fourier variables). We resolve this difficulty by expressing
a function f̂(ξ, τ) as an integral sum of functions f̂ [ω]

ν (ξ, τ) supported in the
set R+D(ν, ω) × R, where D(ν, ω) := {ξ ∈ Sd−1; arccos(ξ · ω) ≤ 2−ν} (see
proof of Lemma 4.6 for detail). By this method we can get sharp estimates.

This paper is organized as follows. In §2 we give the definition of the
spaces we use, and state our main results and our bilinear estimates. In
§4 we give the lemmas which give the estimates of the norm of bilinear
operators which are needed to calculate the norm of products. The bilinear
estimates for c1u2 + c2ū

2 (Theorem 1) is proved in §5 and §6, and that for
the case c3uū (Theorem 2) is proved in §7. Finally, in §8 we explain the
method to get our main results.
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Notations We use the following notations:
Lp

x denotes Lp-space of functions of x,
‖f(x, y, z)‖Lp

x×Lq
y×Lr

z
:= ‖[‖{‖f(x, y, z)‖Lr

z
}‖Lq

y
]‖Lp

x
,

`(q1,q2) denotes the sequence space defined by the norm

‖{ajk}‖`(q1,q2) =
{∑

k

(∑

j

|ajk|q1

)q2/q1
}1/q2

. (1.4)

For a Banach space X and an open set Ω in the Euclidean space
Bσ

p,q(Ω;X) denotes the X-valued Besov space.
χM denotes the defining function of a set M .
j ∧ k = min(j, k) and j ∨ k = max(j, k).

2. Definition and Main results

The Besov type norm which corresponds to the Fourier restriction norm
is defined as follows:

Definition 1 For a weight ρ on R+, b ∈ R, 1 ≤ p ≤ ∞, 1 ≤ q1 ≤ ∞,
1 ≤ q2 ≤ ∞ and a real-valued C∞-function P (ξ) the space B(ρ,b)

p,(q1,q2),P (Rd+1)
is the space of tempered distributions f such that the norm

‖f‖
B

(ρ,b)
p,(q1,q2),P

:=
∥∥{ρ(2j) 2bk‖fjk,P (x, t)‖Lp(Rd+1)}

∥∥
`(q1,q2)(N̄×N̄)

(2.1)

is finite. Here, N̄ := N ∪ {0},
f̂jk,P (ξ, τ) = ϕj(|ξ|)ϕk(τ − P (ξ))f̂(ξ, τ), (2.2)

and ϕj(z), j = 0, 1, . . . , are C∞-functions of z ∈ R with the following
relations:

ϕj(z) = ϕj(−z), suppϕ0 ⊂ {z; |z|< 2}, suppϕ1 ⊂ {z; 1< |z|< 4},

ϕk(z) = ϕ1(2−k+1z) (for k ≥ 1),
∞∑

j=0

ϕj(z) = 1.

We write the space by B(s,b)
p,(q1,q2),P (Rd+1) when ρ(z) = zs and B(ρ,b)

p,(q,q),P =

B
(ρ,b)
p,q,P , and omit the subscript P when P = 0.

For a function space X(Rd+1) and an open set Ω in Rd+1 the space X(Ω)
is the set of all distributions f which have an extension f̃ ∈ X(Rd+1), and
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its norm is defined by

‖f‖X(Ω) := inf{‖f̃‖X(Rd+1); f = f̃ |Ω}. (2.3)

In order to solve the Cauchy problem in Hρ(Rd) (instead of Bρ
2,1) we

are forced to use the spaces with indices (q1, q2).
Note that

Bρ
2,2(R

d) = Hρ(Rd), (2.4)

B
(ρ,b)
2,(2,1)(R

d × I) = Bb
2,1(I;H

ρ(Rd)), (2.5)

and it is easy to see that f ∈ Hρ(Rd) if and only if ρ(
√

1 + |ξ|2 )f̂(ξ) ∈ L2.
Assume that |∂α

ξ P (ξ)| ≤ C(α)(1 + |ξ|)ν−|α| holds for any α, where ν is
a constant independent of α and C(α) is a constant depend on α. Then
B

(ρ,b)
p,(q1,q2),P (Rd+1) is a Banach space and S(Rd+1) is dense in the space if

p < ∞, q1 < ∞, q2 < ∞ (see Theorem 2.1 in [5]). Also we see that
B

(ρ,1/2)
2,(q,1),P (Rd+1) s continuously imbedded into the space of bounded con-

tinuous Bρ
2,q(Rd)-valued functions of t ∈ R, which guarantees the initial

condition makes sense in this space (see Theorem 2.2 in [5]).

Using these spaces, our MAIN RESULTS are stated as follows:

We write IT := (−T, T ) here.
Part (I). The case d = 1 or 2.
(a) If N(u, ū) = c1u

2 + c2ū
2, then for any u0 ∈ H−3/4(Rd) there exists T =

T (‖u0‖H−3/4(Rd)) > 0 and a unique solution u(x, t) ∈ B(−3/4,1/2)
2,(2,1),−|ξ|2(R

d × IT )

to (1.1) satisfying u(x, t)−W (t)u0(x) ∈ B(ρ,1/2)
2,(2,1),−|ξ|2(R

d× IT ). Here ρ(z) =

z−3/4 log(2 + z) and {W (t)f}(x, t) := F−1
x eitP (ξ)Fxf(x, t).

(b) If N(u, ū) = c3uū, then for any u0 ∈ Hρ(Rd) there exists T =
T (‖u0‖Hρ(Rd)) > 0 and a unique solution u(x, t) ∈ B

(ρ,1/2)
2,(2,1),−|ξ|2(R

d × IT )

to (1.1). Here ρ(z) = z−1/4 log(2 + z).
Part (II). The case d ≥ 3.
(a) If N(u, ū) = c1u

2 + c2ū
2 and s = d/2 − 2, then for any T > 0

there exists δ(T ) > 0 such that (1.1) has a unique solution u(x, t) ∈
B

(ρ,1/2)
2,(2,1),−|ξ|2(R

d × IT ) for any u0 ∈ Hρ(Rd) with ‖u0‖Hρ ≤ δ(T ). Here
ρ(z) = zs log(2 + z).

Also, if N(u, ū) = c1u
2 + c2ū

2 and s > d/2− 2, then for any
u0 ∈ Hs(Rd) there exists T = T (‖u0‖Hs(Rd)) > 0 and a unique solution
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u(x, t) ∈ B(s,1/2)
2,(2,1),−|ξ|2(R

d × IT ) to (1.1).
(b) The case d = 3. If N(u, ū) = c3uū, then the same result as Part (I) (b)
holds.
The case d ≥ 4. If N(u, ū) = c3uū, then the same result as Part (II) (a)
holds.

As in [2], [3], [5], the keys to prove these results are the following bilinear
estimates:

Theorem 1 Let P (ξ) = ±|ξ|2, and let Q be P or −P , and define ρ(z) =
log(2 + z)zs.
(a) Let d = 1 or 2, s ≥ −3/4 and let b > 1/2. Then we have the inequalities

‖fg‖
B

(ρ,−1/2)
2,1,P

≤c‖f‖
B

(ρ,1/2)
2,(2,1),Q

‖g‖
B

(s,1/2)
2,(2,1),Q

, (2.6)

‖fg‖
B

(ρ,−1/2)
2,1,P

≤c{‖f‖
B

(s,b)
2,(2,1),Q

‖g‖
B

(s,1/2)
2,(2,1),Q

+‖f‖
B

(s,1/2)
2,(2,1),Q

‖g‖
B

(s,b)
2,(2,1),Q

}
.

(2.7)

(b) Let d ≥ 3, s = d/2− 2. Then, we have the inequality

‖fg‖
B

(ρ,−1/2)
2,1,P

≤ c‖f‖
B

(ρ,1/2)
2,(2,1),Q

‖g‖
B

(ρ,1/2)
2,(2,1),Q

. (2.8)

Also, if d ≥ 3, s > d/2− 2, then we have the inequality

‖fg‖
B

(ρ,−1/2)
2,1,P

≤ c‖f‖
B

(s,1/2)
2,(2,1),Q

‖g‖
B

(s,1/2)
2,(2,1),Q

. (2.9)

Theorem 2 Let P (ξ) = ±|ξ|2, ξ ∈ Rd, and define ρ(z) = log(2 + z)zs.
(a) Let d = 1, 2 or 3, −1/4 ≤ s. Then, we have the inequality

‖fg‖
B

(ρ,−1/2)
2,1,P

≤ cmin
{‖f‖

B
(ρ,1/2)
2,(2,1),P

‖g‖
B

(s,1/2)
2,(2,1),−P

,

‖f‖
B

(s,1/2)
2,(2,1),P

‖g‖
B

(ρ,1/2)
2,(2,1),−P

}
. (2.10)

(b) Let d ≥ 4, s ≥ (d− 4)/2. Then, we have the inequality

‖fg‖
B

(ρ,−1/2)
2,1,P

≤ c‖f‖
B

(ρ,1/2)
2,(2,1),P

‖g‖
B

(ρ,1/2)
2,(2,1),−P

. (2.11)

Also, if s > (d− 4)/2, then we have

‖fg‖
B

(ρ,−1/2)
2,1,P

≤ c‖f‖
B

(s,1/2)
2,(2,1),P

‖g‖
B

(s,1/2)
2,(2,1),−P

. (2.12)
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3. Norm of bilinear operators

Definition 2 For a kernel K(x, y) defined on Rd ×Rd the bilinear opera-
tors B(K; f, g) is defined by

B(K; f, g)(x) :=
∫
K(x, y)f(y)g(x− y)dy, (3.1)

and its norm is denoted by Nbl(K).

First note the basic properties of bilinear operators which have been
proved in [5].

Lemma 3.1 Let K(x, y) be a measurable function on R2d.
(a) Put K1(x, y) = K(y, x), K2(x, y) = K(x, x − y), K3(x, y) =

K(y, y − x), K4(x, y) = K(x − y,−y), K5(x, y) = K(x − y, x). Then we
have Nbl(K) = Nbl(K1) = Nbl(K2) = Nbl(K3) = Nbl(K4) = Nbl(K5).

(b) If M(x, y) is a non-negative measurable function such that
|K(x, y)| ≤M(x, y) for almost everywhere, then Nbl(K) ≤ Nbl(M).

Next, we prove the following lemma which gives sharp estimates of the
norm of bilinear operators:

Lemma 3.2 Let d = d′ + d′′, and write x = (x′, x′′), y = (y′, y′′), x′, y′ ∈
Rd′, x′′, y′′ ∈ Rd′′. Then for a kernel K(x, y) = K(x′, x′′, y′, y′′) we have
Nbl(K) ≤ min{C1, C2}, where

C1 = ‖K(x′, x′′, y′, y′′)‖L2
x′×L∞

(x′′,y′)×L2
y′′
, (3.2)

C2 = ‖K(x′, x′′, y′, y′′)‖L2
y′×L∞

(x′,y′′)×L2
x′′
. (3.3)

In particular, taking d′′ = 0, d′ = d, we have

Nbl(K) ≤ min{ess. sup
x

‖K(x, y)‖L2
y
, ess. sup

y
‖K(x, y)‖L2

x
}. (3.4)

Proof. Put

K1(x′) := ‖K(x′, x′′, y′, y′′)‖L∞
(x′′,y′)×L2

y′′
,

F (x′, x′′) :=
∫∫

K(x′, x′′, y′, y′′)f(y′, y′′)g(x′ − y′, x′′ − y′′)dy′ dy′′.

Then, by Schwarz’s inequality we have
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|F (x′,x′′)|

≤
∫
dy′ ‖K(x′,x′′, y′, y′′)‖L2

y′′

(∫
|f(y′, y′′)g(x′−y′,x′′−y′′)|2dy′′

)1/2

≤
∫
dy′K1(x′)

(∫
|f(y′, y′′)g(x′−y′,x′′−y′′)|2dy′′

)1/2

.

This combined with the identity
∥∥∥∥
(∫

|f(y′, y′′)g(x′ − y′, x′′ − y′′)|2dy′′
)1/2∥∥∥∥

L2
x′′

=
(∫ ∣∣∣∣

∫
|f(y′, y′′)g(x′ − y′, x′′ − y′′)|2dy′′

∣∣∣∣dx′′
)1/2

=
(∫

|f(y′, y′′)|2dy′′
)1/2(∫

|g(x′ − y′, x′′)|2dx′′
)1/2

,

yields

‖F (x′, x′′)‖L2
x′′

≤ K1(x′)
∫
dy′

(∫
|f(y′, y′′)|2dy′′

)1/2(∫
|g(x′ − y′, x′′)|2dx′′

)1/2

≤ K1(x′)
(∫∫

|f(y′, y′′)|2dy′ dy′′
)1/2(∫∫

|g(y′, x′′)|2dy′ dx′′
)1/2

= K1(x′)‖f‖L2‖g‖L2 .

Take L2
x′-norm. Then we get ‖F‖L2

x
≤ C1‖f‖L2‖g‖L2 .

Moreover, by Lemma 3.1 we have Nbl(K(x, y)) = Nbl(K(y, x)), and
hence

Nbl(K(x, y)) ≤ ‖K(y′, y′′, x′, x′′)‖L2
x′×L∞

(x′′,y′)×L2
y′′

= ‖K(x′, x′′, y′, y′′)‖L2
y′×L∞

(y′′,x′)×L2
x′′

= C2. ¤

Since Lp(Rd)-norm is invariant with respect to orthogonal transforma-
tions, that is, ‖f(x)‖Lp = ‖f(Tx)‖Lp for any orthogonal transformation T ,
we have the following lemma:

Lemma 3.3 Let K(x, y) be a kernel, T a orthogonal transformation on Rd,
and define K [T ](x, y) = K(Tx, Ty). Then Nbl(K) = Nbl(K [T ]).
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4. A special class of bilinear operators

In this section we write ξ = (ξ1, . . . , ξd), η = (η1, . . . , ηd) ∈ Rd, τ, σ ∈
R, and define γj := χ{z∈R; 2j−1<|z|<2j+1} for j > 0, γ0 := χ{z∈R; |z|<2},
γ̃j(z) = γ0(2−jz). Further, for any real-valued function P , Q, R we de-
fine γ[P ]

jk (ξ, τ) := γj(|ξ|)γk(τ − P (ξ)),

H
[P,Q]
jk`m(ξ, τ, η, σ) = γ

[P ]
jk (η, σ)γ[Q]

`m (ξ − η, τ − σ), (4.1)

H
[P,Q]
hjk`m(ξ, τ, η, σ) = γh(|ξ|)H [P,Q]

jk`m(ξ, τ, η, σ), (4.2)

H
[P,Q,R]
hnjk`m(ξ, τ, η, σ) = γ

[P ]
hn (ξ, τ)H [Q,R]

jk`m (ξ, τ, η, σ). (4.3)

The following lemma has been proved in [5].

Lemma 4.1 Assume that γh(|ξ|)γj(|η|)γ`(|ξ−η|) 6= 0 for some ξ, η. Then
h ≤ j ∨ `+ 2.

Moreover, h ≥ j∨`−2 when |j−`| ≥ 3 and |j−`| ≤ 2 when h ≤ j∨`−3.

The following seven lemmas concern with the norm of bilinear operators
of special kind in (d + 1)-dimensional space. In these lemmas, c denotes
a constant depending only on d.

First, Lemma 3.1 and Lemma 3.2 together with inequalities

‖H [P,Q]
jk`m(ξ, τ, η, σ)‖2

L2
(η,σ)

=
∫
γj(|ξ|)γ`(|ξ− η|)dη

∫
γk(σ−P (η))γm(τ − σ−Q(ξ− η))dσ

≤ 2d(j∧`)+k∧m+2(d+1),

‖H [P,Q]
hjk`m(ξ, τ, η, σ)‖2

L2
(ξ,τ)

≤
∫
γh(|ξ|)dξ

∫
γm(τ − σ−Q(ξ− η))dτ

≤ 2dh+m+2(d+1),

‖H [P,Q,R]
hnjk`m(ξ, τ, η, σ)‖2

L2
(ξ,τ)

≤
∫
γh(|ξ|)γ`(|ξ− η|)dξ

∫
γn(τ −P (ξ))dτ

≤ 2d(h∧`)+n+2(d+1),

and identities

H
[P,Q]
hjk`m(ξ, τ, ξ − η, τ − σ) = H

[P,Q]
h`mjk(ξ, τ, η, σ),

H
[P,Q,R]
hnjk`m(ξ, τ, ξ − η, τ − σ) = H

[P,Q,R]
hn`mjk(ξ, τ, η, σ),
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yield the following

Lemma 4.2 Let P , Q and R be real-valued functions. Then

Nbl(H
[P,Q]
jk`m) ≤ c 2{k∧m+d(j∧`)}/2, (4.4)

Nbl(H
[P,Q]
hjk`m) ≤ c 2(dh+k∧m)/2, (4.5)

Nbl(H
[P,Q,R]
hnjk`m) ≤ c 2{d min(h,j,`)+n}/2. (4.6)

Next,

Lemma 4.3 Let P (ξ) = ±|ξ|2, d ≥ 2. Then,

Nbl(H
[P,P ]
jk`m) ≤ c 2{k+m+(d−1)(j∧`)−j∨`}/2, (4.7)

Nbl(H
[P,P ]
hjk`m) ≤ c 2{k+m+(d−1)min(h,j,`)−j∨`}/2. (4.8)

Proof. By changing variables σ′ = σ−P (η), η1−ξ1/2 = r cos θ, η2 − ξ2/2 =
r sin θ, s = τ − σ′ ∓ 2r2 ∓ |ξ|2/2 ∓ 2|η′′ − ξ′′/2|2, where ξ = (ξ1, ξ2, ξ′′),
η = (η1, η2, η

′′), ξ1, ξ2, η1, η2 ∈ R, ξ′′, η′′ ∈ Rd−2, we have

‖H [P,P ]
jk`m(ξ, τ, η, σ)‖2

L2
(η,σ)

≤
∫
γj(|η′′|)γ`(|ξ′′ − η′′|)dη′′

∫
γk(σ′)dσ′

∫ 2π

0
dθ

×
∫
γm(τ − σ′ ∓ 2r2 ∓ |ξ|2/2∓ 2|η′′ − ξ′′/2|2)r dr

≤ 2π · 2k

∫
γj(|η′′|)γ`(|ξ′′ − η′′|)dη′′

∫
γm(s)ds

= c 2k+m+(d−2)(j∧`) (c = 22d−1π).

Thus we have (4.7) for the case |j − `| < 3 + (log2 d)/2.
Now, we consider the case where j ≥ ` + 3 + (log2 d)/2. For α ∈

{1, 2, . . . , d} we define

Γα := {ξ = (ξ1, . . . , ξd) ∈ Rd; |ξα| ≥ |ξβ|
for every β ∈ {1, 2, . . . , d}} (4.9)

(the cone in Rd where α-th coordinate is the largest in absolute value).
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Then we see that
d∑

α=1

χΓα(ξ) = 1 (4.10)

holds for almost everywhere. We show

‖H [P,P ]
jk`m(ξ, τ, η, σ)χΓα(η)‖L2

(η,τ)
≤ c 2{k+m−j+(d−1)`}/2,

where c is a constant independent of j, k, `, m, α. We may assume that
α = 1 since ‖H [P,P ]

jk`m(ξ, τ, η, σ)χΓα(η)‖L2
(η,τ)

= ‖H [P,P ]
jk`m(ξ, τ, η, σ)χΓ1(η)‖L2

(η,τ)

follows from Lemma 3.3.
We write ξ = (ξ1, ξ′), η = (η1, η

′), ξ1, η1 ∈ R, ξ′, η′ ∈ Rd−1. Since
|η1| ≥ |η|/

√
d when γj(|η|)χΓ1(η) 6= 0, by setting σ′ = σ − P (η), we have

∫∫
|H [P,P ]

jk`m(ξ, τ, η, σ)χΓ1(η)|2dη1 dσ

≤
∫
γk(σ′)dσ′

∫

|η1|≥2j−1/
√

d
γm(τ − σ′ − P (ξ − η)− P (η))dη1.

Set ζ1 = τ − σ′ − P (ξ − η)− P (η). Then we have
∣∣∣dζ1
dη1

∣∣∣ = |4η1 − 2ξ1| ≥ 2j−1

√
d

if |ξ − η| < 2`+1,

and consequently
∫∫

|H [P,P ]
jk`m(ξ, τ, η, σ)χΓ1(η)|2dη dσ

≤
√
d 2−j+1

∫
γ`(|ξ′ − η′|)dη′

∫
γk(σ′)dσ′

∫
γm(ζ1)dζ1

= c 2k+m−j+(d−1)` (c =
√
d 22d+3).

Therefore

‖H [P,P ]
jk`m(ξ, τ, η, σ)χΓ1(η)‖L2

(η,σ)
≤ c 2{k+m−j+(d−1)`}/2.

Also, by the same consideration we have
∫
dξ′ sup

ξ1,η′,τ

∫∫
|H [P,P ]

hjk`m(ξ, τ, η, σ)χΓ1(η)|2dη1 dσ ≤ c 2k+m−j+(d−1)h,
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which implies

‖H [P,P ]
hjk`m(ξ, τ, η, σ)χΓ1(η)‖L2

ξ′×L∞
(τ,ξ1,η′)×L2

(η1,σ)
≤ c2{k+m−j+(d−1)h}/2.

With the aid of Lemma 3.2 and (4.10), this gives the conclusion of the
lemma. ¤

Lemma 4.4 Let P (ξ) = ±|ξ|2. Then

Nbl(H
[P,−P ]
jk`m ) ≤ c 2{k+m−(j∨`)+(d−1)(j∧`)}/2 (4.11)

holds when |j − `| ≥ 4 + (log2 d)/2, and

Nbl(H
[P,−P ]
hjk`m ) ≤ c 2{k+m−h+(d−1) min(h,j,`)}/2. (4.12)

Proof. Assume that |j − `| ≥ 4 + (log2 d)/2 and consider (4.11). We may
assume that j ≥ ` + 4 + (log2 d)/2, since Nbl(H

[P,−P ]
hjk`m ) = Nbl(H

[−P,P ]
h`mjk ). By

changing variables ζ1 = τ − σ′ + P (ξ − η) − P (η), σ′ = σ − P (η), and
noting that

∣∣dζ1/dη1

∣∣ = |2ξ1| ≥ 2j−1/
√
d, (In fact, |ξ1| ≥ |η1| − |ξ1 − η1| ≥

2j−1/
√
d− 2`+1 > 2j−2/

√
d when γj(η)γ`(ξ − η)χΓ1(η) 6= 0) we obtain

‖H [P,−P ]
jk`m (ξ, τ, η, σ)χΓ1(η)‖2

L2
(η,σ)

≤ c 2−j

∫
γ̃`(|ξ′ − η′|)dη′

∫
γk(σ′)dσ′

∫
γm(ζ1)dζ1

= c 2k+m−j+(d−1)`.

Combining this with (4.10) and Nbl(H
[P,−P ]
hjk`m (ξ, τ, η, σ)Γα(η)) =

Nbl(H
[P,−P ]
hjk`m (ξ, τ, η, σ)Γ1(η)), we obtain (4.11).

Next we consider (4.12). We may assume h > 0. When ξ ∈ Γ1 we have∣∣dζ1/dη1

∣∣ = |2ξ1| ≥ 2h/
√
d. Therefore,

∫∫
|H [P,−P ]

hjk`m (ξ, τ, η, σ)|2dη1 dσ ≤ cγ̃j(η′)γ̃`(|ξ′ − η′|) 2k+m−h,

which implies
∫∫

|H [P,−P ]
hjk`m (ξ, τ, η, σ)|2dη dσ ≤ c 2k+m−h+(d−1)(j∧`). (4.13)
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In the same way, we have the estimate (4.13) when ξ ∈ Γα. We also have
∫
dξ′ sup

τ,η′

∫∫
|H [P,−P ]

hjk`m (ξ, τ, η, σ)χΓα(ξ)|2dηα dσ ≤ c 2k+m+(d−2)h,

(4.14)

where ξ′ = (ξ1, . . . , ξα−1, ξα+1, . . . , ξd), η′ = (η1, . . . , ηα−1, ηα+1, . . . , ηd),
which implies, with the help of Lemma 3.2,

Nbl(H
[P,−P ]
hjk`m ) ≤

d∑

α=1

Nbl(H
[P,−P ]
hjk`m (ξ, τ, η, σ)χΓα(ξ))

≤ c 2{k+m+(d−2)h}/2. ¤

Lemma 4.5 Let P (ξ) = ±|ξ|2, Q a real-valued function. Then we have

Nbl(H
[P,Q,P ]
hnjk`m) ≤ c 2{n+m+(d−1) min(h,j,`)−j}/2, (4.15)

Nbl(H
[P,Q,−P ]
hnjk`m ) ≤ c 2{n+m+(d−1) min(h,j,`)−max(h,j,`)}/2, (4.16)

Nbl(H
[P,−P,−P ]
hnjk`m ) ≤ c 2{n+k∧m+(d−1) min(h,j,`)−max(h,j,`)}/2, (4.17)

Nbl(H
[P,P,P ]
hnjk`m) ≤ c 2{n+k∧m−(j∨`)+(d−1)h}/2. (4.18)

Proof. Since Lemma 3.1 implies that Nbl(H
[P,Q,P ]
hnjk`m) = Nbl(H

[Q,P,−P ]
jkhn`m ),

(4.15) follows from (4.12).
By Nbl(H

[P,Q,−P ]
hnjk`m ) = Nbl(H

[Q,P,P ]
jkhn`m) and (4.8) we have

Nbl(H
[P,Q,−P ]
hnjk`m ) ≤ c 2{n+m+(d−1) min(h,j,`)−h∨`}/2.

If h < j ∨ ` − 2, then |j − `| ≤ 2 by Lemma 4.1. Hence max(h, j, `) ≤
h ∨ `+ 2. If h ≥ j∨ `−2, then it is clear that max(h, j, `) ≤ h∨ `+2. Thus
we have (4.16).

Since Nbl(H
[P,−P,−P ]
hnjk`m ) = Nbl(H

[P,−P,−P ]
hn`mjk ), (4.17) follows from (4.16).

Finally, we consider (4.18). By (4.15) andNbl(H
[P,P,P ]
hnjk`m) = Nbl(H

[P,P,P ]
hn`mjk)

we have

Nbl(H
[P,P,P ]
hnjk`m) ≤ c 2{n+(k−`)∧(m−j)+(d−1)min{h,j,`}}/2. (4.19)

If h < j ∨ `− 2, then |j − `| ≤ 2, and hence (4.19) implies (4.18).
Also, by (4.19) we have Nbl(H

[P,P,P ]
hnjk`m) ≤ c 2{n+k∧m+(d−2)(j∧`)}/2. There-

fore (4.18) holds when h ≥ j ∨ `− 2. ¤
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In this section we use the following symbols: Sd−1 = {ξ ∈ Rd; |ξ| = 1}.
For any ω ∈ Sd−1,

D(ν, ω) := {ξ ∈ Sd−1; arccos(ξ · ω) ≤ 2−ν},
E(ν, ω) := {ξ ∈ Sd−1; |π/2− arccos(ξ · ω)| < 2−ν+4}.

Here we take arccos 1 = 0, 0 ≤ arccos z ≤ π.
The following estimate (4.21) is crucial to prove Theorem 1 for the case

Q = P .

Lemma 4.6 Let j ∧ ` > 0, and let P (ξ) = ±|ξ|2. Define

H
[P,P ]
jk`mν(ξ, τ, η, σ) := ϕj+`−ν((ξ − η) · η)γ[P ]

jk (η, σ)γ[P ]
`m (ξ − η, τ − σ).

(4.20)

Then we have

Nbl(H
[P,P ]
jk`mν) ≤ c 2{k+m+(d−2)(j∧`)−ν}/2. (4.21)

To show this lemma we need the following:

Lemma 4.7 γj(|η|)γ`(|ξ−η|)ϕj+`−ν((ξ−η) ·η)χD(ν,ω)(|η|−1η) 6= 0 implies
|ξ − η|−1(ξ − η) ∈ E(ν, ω).

Proof. If γj(|η|)γ`(|ξ−η|)ϕj+`−ν((ξ−η) ·η)χD(ν,(1,0,...,0))(|η|−1η) 6= 0, then

η = (|η| cos θ, ω|η| sin θ), ω ∈ Sd−2,

ξ − η = (|ξ − η| cos θ′, ω′|ξ − η| sin θ′), ω′ ∈ Sd−2,

|(ξ − η) · η| ≤ 2j+`−ν+1, 0 ≤ θ ≤ 2−ν .

Hence

|η| |ξ − η| |cos(θ − θ′)| ≤ 2j+`−ν+1 + 2|ξ − η| |η|2−ν ,

which gives

|cos(θ − θ′)| ≤ 2−ν+3 + 2−ν+1 = 5 · 2−ν+1.

Therefore, |π/2+θ−θ′|< 12×2−ν , that is, |ξ−η|−1(ξ−η)∈E(ν, (1, 0, . . . , 0)).
Assume now that γj(|η|)γ`(|ξ−η|)ϕj+`−ν((ξ−η) ·η)χD(ν,ω)(|η|−1η) 6= 0.

Then it follows that γj(|Tωη|)γ`(|Tωξ − Tωη|)ϕj+`−ν((Tωξ − Tωη) · Tωη)
χD(ν,(1,0,...,0))(|η|−1Tωη) 6= 0, where Tω is the rotation with Tωω =
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(1, 0, . . . , 0). Hence, |ξ − η|−1Tω(ξ − η) ∈ E(ν, (1, 0, . . . , 0)), so that
|ξ − η|−1(ξ − η) ∈ T−1

ω E(ν, (1, 0, . . . , 0)) = E(ν, ω). ¤

Proof of Lemma 4.6. As Nbl(H
[P,P ]
jk`mν) = Nbl(H

[P,P ]
`mjkν), we may assume that

` ≥ j > 0.
Since Nbl(H

[P,P ]
jk`mν) ≤ Nbl(H

[P,P ]
jk`m) ≤ c 2(k+m+(d−2)(j∧`))/2 follows from

(4.7), we also may assume that ν ≥ 6 + (log2 d)/2.
Define

f̂ [ω]
ν (ξ, τ) := χD(ν,ω)(ξ|ξ|−1)f̂(ξ, τ), (4.22)

H
[P,P ]
jk`mν,ω(ξ, τ, η, σ) := χD(ν,ω)(η|η|−1)H [P,P ]

jk`mν(ξ, τ, η, σ). (4.23)

Then we have

f̂(ξ, τ) = Aν

∫

Sd−1

f̂ [ω]
ν (ξ, τ)dω, Aν = cd 2(d−1)ν . (4.24)

We show first

Nbl(H
[P,P ]
jk`mν,ω) ≤ c 2(k+m+(d−2)j−(d−1)ν)/2. (4.25)

Since, taking Tω to be the rotation in ξ-space which goes ω to (1, 0, . . . , 0),
we have H

[P,P ]
jk`mν,ω(Tωξ, τ, Tωη, σ) = H

[P,P ]
jk`mν,(1,0,...,0)(ξ, τ, η, σ), we see by

Lemma 3.3 that it is sufficient to consider only the case where ω =
(1, 0, . . . , 0). The estimate of Nbl(H

[P,P ]
jk`mν,(1,0,...,0)) follows from Lemma 3.2

combined with the following inequality

sup
ξ,τ

∫∫
|H [P,P ]

jk`mν,(1,0,...,0)(ξ, τ, η, σ)|2dη dσ ≤ c 2k+m+(d−2)j−(d−1)ν ,

(4.26)

which is proved as follows:
Assume that H [P,P ]

jk`mν,(1,0,...,0)(ξ, τ, η, σ) 6= 0. Then, we have 2j−1 <

|η| < 2j+1, η = (|η| cos θ, ω|η| sin θ), ω ∈ Sd−2, 0 ≤ θ < 2−ν , hence η1 ≥
|η|(1− 2−2ν/2) > 2j−1(1−2−9), |η′| ≤ |η| 2−ν . Since |η · (ξ−η)| < 2j+`−ν+1,
we have |(ξ1 − η1)η1| < 2j+`−ν+1 + |ξ′ − η′| |η′| ≤ 2j+`−ν+1 + |ξ − η| |η| 2−ν ,
which implies that |ξ1 − η1| < 2`−ν+1(3 · (1− 2−9)−1) < 2`−ν+3.

We consider the case where H [P,P ]
jk`mν,ω(ξ, τ, η, σ)χΓ2(0, ξ

′ − η′) 6= 0. We
use change of variables σ′ = σ − P (ξ), ζ1 = τ − σ′ − P (ξ − η) − P (η).
Since |ξ2 − η2| ≥ 2`−1/

√
d− 1 > 2`−1−(log2 d)/2, |dζ1/dη2| = |2ξ2 − 4η2| ≥

2|ξ2−η2|−2|η2| ≥ 2`−(log2 d)/2−2j−ν+2 > 2`−1/
√
d when ν ≥ 5+(log2 d)/2.
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Therefore we have

sup
ξ,τ

∫∫
|H [P,P ]

jk`mν,(1,0,...,0)(ξ, τ, η, σ)χΓ2(0, ξ
′ − η′)|2dη dσ

≤ c 2k+m−`

∫

|η′′|<2j−ν+1

dη′′
∫

|ξ1−η1|<2`−ν+3

dη1

≤ c 2k+m−`+(d−2)(j−ν)+`−ν

= c 2k+m+(d−2)j−(d−1)ν ,

which leads to (4.26), because

H
[P,P ]
jk`mν,ω(ξ, τ, η, σ) =

d∑

β=2

H
[P,P ]
jk`mν,ω(ξ, τ, η, σ)χΓβ

(0, ξ′ − η′) a.e.

Next, it follows from Lemma 4.7 that

Hjk`mν,ω(ξ, τ, η, σ) = Hjk`mν,ω(ξ, τ, η, σ)χE(ν,ω)(|ξ − η|−1(ξ − η)),

which implies

B(H [P,P ]
jk`mν ; f̂ , ĝ)(ξ, τ) = Aν

∫

Sd−1

B(H [P,P ]
jk`mν,ω; f̂ [ω]

ν , ĝ
[ω]
ν∗ )(ξ, τ)dω,

(4.27)

where

ĝ
[ω]
ν∗ (ξ, τ) = χE(ν,ω)(ξ|ξ|−1)ĝ(ξ, τ). (4.28)

Schwarz’s inequality gives that

‖B(H [P,P ]
jk`mν ; f̂ , ĝ)‖L2

≤ Aν

∫

Sd−1

‖B(H [P,P ]
jk`mν,ω; f̂ [ω]

ν , ĝ
[ω]
ν∗ )‖L2 dω

≤ c2(k+m+(d−2)j)/2

{∫

Sd−1

Aν‖f̂ [ω]
ν ‖2

L2dω

}1/2{∫

Sd−1

‖ĝ[ω]
ν∗ ‖2

L2dω

}1/2

≤ c′ 2(k+m+(d−2)j−ν)/2‖f‖L2‖g‖L2 .

Here we used the following facts:
∫

Sd−1

Aν‖f̂ [ω]
ν ‖2

L2 dω =
∫∫

|f̂(ξ, τ)|2 dξ dτ
∫

D(ν,|ξ|−1ξ)
Aν dω = ‖f̂‖2

L2 ,
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∫

Sd−1

‖ĝ[ω]
ν∗ ‖2

L2 dω =
∫∫

|ĝ(ξ, τ)|2 dξ dτ
∫

E(ν,|ξ|−1ξ)
dω ≤ c 2−ν‖ĝ‖2

L2 .

¤

Similarly, a crucial estimate to prove Theorem 2 is the following:

Lemma 4.8 Let j ∧ ` > 0, h > 0, and let P (ξ) = ±|ξ|2. Define

H
[P,−P ]∗
hjk`mν (ξ, τ, η, σ) := ϕh+`−ν((ξ − η) · ξ)H [P,−P ]

hjk`m (ξ, τ, η, σ). (4.29)

Then we have

Nbl(H
[P,−P ]∗
hjk`mν ) ≤ c 2{k+m+(d−2)h∧`−ν}/2. (4.30)

Proof. First, consider the case h ≤ `. In view of (4.12) we may assume
that ν ≥ 6. Writing

H
[P,−P ]∗
hjk`mν,ω(ξ, τ, η, σ) = H

[P,−P ]∗
hjk`mν (ξ, τ, η, σ)χD(ν,ω)(|ξ|−1ξ),

we have by Lemma 4.7
∫∫

ψ̂(ξ, τ)B(H [P,−P ]∗
hjk`mν ; f̂ , ĝ)(ξ, τ)dξ dτ (4.31)

= Aν

∫∫∫

Sd−1

ψ̂[ω]
ν (ξ, τ)B(H [P,−P ]∗

hjk`mν,ω; f̂ , ĝ[ω]
ν∗ )(ξ, τ)dξ dτ dω

for ψ ∈ S, where ψ[ω]
ν is defined by (4.22) with f replaced by ψ.

Thus the conclusion follows from the fact that

Nbl(H
[P,−P ]∗
hjk`mν,ω) ≤ c 2(k+m+(d−2)h−(d−1)ν)/2. (4.32)

In fact, Schwarz’s inequality gives that
∣∣∣∣
∫∫

ψ̂(ξ, τ)B(H [P,−P ]∗
hjk`mν ; f̂ , ĝ)dξ dτ

∣∣∣∣

≤ c
√
Aν 2(k+m+(d−2)h)/2‖f̂‖L2

∫
‖ψ̂[ω]

ν ‖L2‖ĝ[ω]
ν∗ ‖L2 dω

≤ c′ 2(k+m+(d−2)h−ν)/2‖f‖L2‖ψ‖L2‖g‖L2 .

Now we proceed to prove (4.32). The estimate (4.32) is verified by
Lemma 3.3 if we give the proof for the case ω = (1, 0, . . . , 0), and (4.32) for
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this case follows from Lemma 3.2 and the inequality
∫
dξ′

{∫
dξ1 sup

η′,τ

∫∫
|H [P,−P ]∗

hjk`mν,(1,0,...,0)(ξ, τ, η, σ)|2dη1 dσ

}

≤ c 2k+m+(d−2)h−(d−1)ν , (4.33)

which is proved as follows:
Assume that H [P,−P ]∗

hjk`mν,(1,0,...,0)(ξ, τ, η, σ) 6= 0. Then, we have |ξ1| ≥ 2h−2,
|ξ′| ≤ 2h−ν+2. Therefore, by changing variables σ′ = σ − P (η), ζ = τ −
σ′ + P (ξ − η) − P (η), in view of the fact that |dζ/dη1| = |2ξ1| > 2h−1, we
obtain (4.33).

Next, consider the case ` ≤ h. Using the identity
∫∫

ψ̂(ξ, τ)B(H [P,−P ]∗
hjk`mν ; f̂ , ĝ)(ξ, τ)dξ dτ

=Aν

∫∫∫

Sd−1

ψ̂
[ω]
ν∗ (ξ, τ)B(H [P,−P ]∗∗

hjk`mν,ω; f̂ , ĝ[ω]
ν )(ξ, τ)dξ dτ dω, (4.34)

where

H
[P,−P ]∗∗
hjk`mν,ω(ξ, τ, η, σ) = H

[P,−P ]∗
hjk`mν (ξ, τ, η, σ)χD(ν,ω)(|ξ − η|−1(ξ − η)),

(4.30) is a consequence of the inequality

Nbl(H
[P,−P ]∗∗
hjk`mν,ω) ≤ c 2(k+m+(d−2)`−(d−1)ν)/2, (4.35)

which can be proved as follows:
Assume that H [P,−P ]∗∗

hjk`mν,(1,0,...,0)(ξ, τ, η, σ) 6= 0. Then, we have |ξ1 − η1| ≥
2`−1(1− 2−9), |ξ′ − η′| ≤ 2`−ν+1, |ξ1| ≤ 2h−ν+3, |ξ′| ≥ 2h−2. We make use
of the identity H [P,−P ]∗∗

hjk`mν,(1,0,...,0)(ξ, τ, η, σ) =
∑d

β=2H
[P,−P ]∗∗
hjk`mν,(1,0,...,0)(ξ, τ, η, σ)

χΓβ
(0, ξ′). When β = 2, we put σ′ = σ−P (η), ζ = τ −σ′+P (ξ−η)−P (η).

Since |dζ/dη2| = |2ξ2| > 2h−2−(log2 d)/2, we obtain that
∫

|ξ1|≤2h−ν+3

dξ1 sup
ξ′,η1,τ

∫
γ̃`−ν(ξ′′ − η′′)dη′′

×
∫∫

|H [P,−P ]∗∗
hjk`mν,(1,0,...,0)(ξ, τ, η, σ)χΓ2(0, ξ

′)|2dη2 dσ

≤ c 2k+m+(d−2)`−(d−1)ν ,

which means (4.35). ¤
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Lemma 4.9 Let j ∧ ` > 0, h > 0 and let P (ξ) = ±|ξ|2. Then we have

Nbl

(
H

[P,P,P ]
hnjk`m(ξ, τ, η, σ)ϕj+`−ν(η · (ξ − η))

)

≤ c 2{n+k∧m+(d−2)j∧`−ν}/2, (4.36)

Nbl

(
H

[P,P,−P ]
hnjk`m (ξ, τ, η, σ)ϕ`+h−ν(ξ · (ξ − η))

)

≤ c 2(n+k∧m+(d−2) min(h,j,`)−ν)/2. (4.37)

Proof. By (4.30), we have

Nbl

(
H

[P,P,P ]
hnjk`m(ξ, τ, η, σ)ϕj+`−ν(η · (ξ − η))

)

= Nbl

(
H

[P,P,−P ]
jkhn`m (ξ, τ, η, σ)ϕj+`−ν(ξ · (ξ − η))

)

≤ c 2{n+m+(d−2)j∧`−ν}/2.

Since Nbl

(
H

[P,P,P ]
hnjk`mϕj+`−ν(η · (ξ − η))

)
= Nbl

(
H

[P,P,P ]
hn`mjkϕj+`−ν(η · (ξ − η))

)
,

we also have Nbl

(
H

[P,P,P ]
hnjk`mϕj+`−ν(η · (ξ − η))

) ≤ c 2{n+k+(d−2)j∧`−ν}/2.
Next we consider (4.37). By (4.30), we see that

Nbl

(
H

[P,P,−P ]
hnjk`m (ξ, τ, η, σ)ϕ`+h−ν(ξ · (ξ − η))

)

= Nbl

(
H

[P,−P,P ]
hn`mjk (ξ, τ, η, σ)ϕ`+h−ν(ξ · η)

)

= Nbl

(
H

[−P,P,−P ]
`mhnjk (ξ, τ, η, σ)ϕ`+h−ν(ξ · η)

)

= Nbl

(
H

[−P,−P,P ]
`mjkhn (ξ, τ, η, σ)ϕ`+h−ν(ξ · (ξ − η))

)

≤ Nbl

(
H

[−P,P ]
`jkhn (ξ, τ, η, σ)ϕ`+h−ν(ξ · (ξ − η))

)

≤ c 2(n+k+(d−2)h∧`−ν)/2.

Using (4.21), we obtain that

Nbl

(
H

[P,P,−P ]
hnjk`m (ξ, τ, η, σ)ϕ`+h−ν(ξ · (ξ − η))

)

= Nbl

(
H

[P,P,P ]
jkhn`m(ξ, τ, η, σ)ϕ`+h−ν(η · (ξ − η))

)

≤ Nbl

(
H

[P,P ]
hn`m(ξ, τ, η, σ)ϕ`+h−ν(η · (ξ − η))

)

≤ c 2{n+m+(d−2)(h∧`)−ν}/2.

Hence, we get (4.37) if h∧` can be replaced by min(h, j, `). To do so we may
assume that ν ≥ 6 because of (4.16), and show that h∧ ` ≤ min(h, j, `) + 4,
which can be done as follows: Obviously, it is sufficient to consider the case
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j = min(h, j, `). If h < ` − 2, then Lemma 4.1 says that |j − `| ≤ 2, and
hence j ≥ ` − 2. If h ≥ ` − 2, it follows that 2j+h+2 ≥ |ξ · η| ≥ |ξ|2 −
|ξ · (ξ − η)| > 22h−2 − 2h+`−ν+1 > 22h−3, so that j ≥ h− 4. ¤

5. Proof of Theorem 1. Part I.

In this section we put ϕ
[P ]
hn (ξ, τ) := ϕh(|ξ|)ϕn(τ − P (ξ)), and write

f̂jk,Q(ξ, τ) :=ϕ
[Q]
jk (ξ, τ)f̂(ξ, τ). Then we have f =

∑
j,k fjk,Q, g=

∑
`,m g`m,Q,

which give

fg =
∑

j, k, `, m

fjk,Qg`m,Q. (5.1)

We need the following lemmas:

Lemma 5.1 (Lemma 5.2 in [5]) Let P (ξ) = ±|ξ|2. Assume that
H

[P,−P,−P ]
hnjk`m (ξ, τ, η, σ) 6≡ 0. Then, we have max(n, k,m) ≥ 2(j ∨ `)− 3.

Lemma 5.2 (A special case of Lemma 3.1 in [5]) Let c1 = supj

∑
` |cj`|,

c2 = sup`

∑
j |cj`|. Then we have

∣∣∣∣
∑

j

∑

`

cj`ajb`

∣∣∣∣ ≤
√
c1c2 ‖{aj}‖`2‖{b`}‖`2 . (5.2)

Let f, g ∈ S(Rd+1). To prove Theorem 1 we divide the norm of the
terms of the formula (5.1) into five parts in consideration of Lemma 4.1.
That is, we set





I(1) := {(h, n, j, k, `,m); k ∨m ≤ n ≤ 4(j + `),

j, ` ≥ 5, 0 ≤ h ≤ j ∨ `− 5},
I(2) := {(h, n, j, k, `,m); k ∨m ≤ n ≤ 4(j + `),

j, ` ≥ 5, j ∨ `− 4 ≤ h ≤ j ∨ `+ 2},
I(3) := {(h, n, j, k, `,m); k ∨m > n, n ≤ 4(j + `), j, ` ≥ 5,

0 ≤ h ≤ j ∨ `− 5},
I(4) := {(h, n, j, k, `,m); k ∨m > n, n ≤ 4(j + `), j, ` ≥ 5,

j ∨ `− 4 ≤ h ≤ j ∨ `+ 2},
I(5) := {(h, n, j, k, `,m); n > 4(j + `), j, ` ≥ 5}

∪ {(h, n, j, k, `,m); j ≤ 5 or ` ≤ 5},
(5.3)
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and put Fν :=
∑

I(ν) ρ(2
h) 2−n/2‖ϕ[P ]

hn f̂jk,Q ∗ ĝ`m,Q‖L2 , ν = 1, . . . , 5. Then,
by (5.1) we have

‖fg‖
B

(ρ,−1/2)
2,1,P

≤ F1 + F2 + F3 + F4 + F5. (5.4)

Now we proceed to prove Theorem 1 for the case Q = −P .

It follows from (4.8), Lemma 4.1 and Lemma 5.1 that

F1 ≤ c
∑

|j−`|≤2

∑

k, m

∑

n≥2(j∨`)−3

j∨`−5∑

h=0

ρ(2h) 2(−n+k+m−(j∨`)+(d−1)h)/2

× ‖fjk,−P ‖L2‖g`m,−P ‖L2

≤ c′
∑

|j−`|≤2

∑

k, m

j∨`−5∑

h=0

ρ(2h) 2(k+m−3(j∨`)+(d−1)h)/2

× ‖fjk,−P ‖L2‖g`m,−P ‖L2 .

When d = 2 this gives that F1 ≤ c‖f‖
B

(s,1/2)
2,(2,1),−P

‖g‖
B

(s,1/2)
2,(2,1),−P

for any

s ≥ −3/4, since

∑

h

(h+ 1) 2(s+1/2)h ≤
{
c < +∞ if s < −1/2,

c(j ∨ `+ 1)2 2(s+1/2)(j∨`) if s ≥ −1/2,
(5.5)

and
∑

|j−`|≤2

ajb` ≤ c‖{aj}‖`2‖{b`}‖`2 . (5.6)

When d ≥ 3 F1 can be bounded by cmin{‖f‖
B

(s,1/2)
2,(2,1),−P

‖g‖
B

(ρ,1/2)
2,(2,1),−P

,

‖f‖
B

(ρ,1/2)
2,(2,1),−P

‖g‖
B

(s,1/2)
2,(2,1),−P

} for s = d/2 − 2, since |j − `| ≤ 2 and (5.6). For

s > d/2−2 F1 is estimated by ‖f‖
B

(s,1/2)
2,(2,1),−P

‖g‖
B

(s,1/2)
2,(2,1),−P

since (j+1) 2−δj ≤
C(δ) <∞ if δ > 0.

Lemma 5.1 and (4.7) imply that

F2 ≤ c
∑

j, `

∑

k, m

∑

n≥2(j∨`)−3

j∨`+2∑

h=j∨`−4

ρ(2h) 2{−n+k+m−(j∨`)+(d−1)(j∧`)}/2
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× ‖fjk,−P ‖L2‖g`m,−P ‖L2

≤ c′
∑

j, `

∑

k, m

(j ∨ `+ 1) 2(k+m)/2+s(j∨`)+(d/2−1/2)(j∧`)−3(j∨`)/2

× ‖fjk,−P ‖L2‖g`m,−P ‖L2

≤ c′′
∑

j, `

∑

k, m

(j ∧ `+ 1) 2(k+m)/2+s(j+`)+(d/2−2−s)(j∧`)−|j−`|

× ‖fjk,−P ‖L2‖g`m,−P ‖L2 ,

since
j ∨ `+ 1
j ∧ `+ 1

2−δ|j−`| ≤ C(δ) if δ > 0, (5.7)

where C(δ) is a constant depend only on δ.
When d ≥ 3, s = d/2 − 2, we have by Lemma 5.2 F2 ≤

c‖f‖
B

(ρ,1/2)
2,(2,1),−P

‖g‖
B

(s,1/2)
2,(2,1),−P

, since
∑

j 2−|j−`| < 3,
∑

` 2−|j−`| < 3.

When d = 2, s ≥ −3/4 or when d ≥ 3, s > d/2 − 2, we have F2 ≤
c‖f‖

B
(s,1/2)
2,(2,1),−P

‖g‖
B

(s,1/2)
2,(2,1),−P

, since (j + 1) 2−δj is bounded if δ > 0.

By (4.17), Lemma 4.1 and Lemma 5.1, we see that

F3 ≤ c
∑

|j−`|≤2

∑

k∨m≥2(j∨`)−3

∑

n≤4(j+`)

j∨`−5∑

h=0

ρ(2h)

× 2(−n+n+k∧m−(j∨`)+(d−1)h)/2‖fjk,−P ‖L2‖g`m,−P ‖L2

≤ c′
∑

|j−`|≤2

∑

k, m

j∨`−5∑

h=0

(4(j + `) + 1)ρ(2h) 2(k+m−3(j∨`)+(d−1)h)/2

× ‖fjk,−P ‖L2‖g`m,−P ‖L2 .

When d = 2 we have by this estimate and (5.5) that F3 ≤
cmin{‖f‖

B
(s,1/2)
2,(2,1),−P

‖g‖
B

(ρ,1/2)
2,(2,1),−P

, ‖f‖
B

(ρ,1/2)
2,(2,1),−P

‖g‖
B

(s,1/2)
2,(2,1),−P

} if s = −3/4, and

that F3 ≤ c‖f‖
B

(s,1/2)
2,(2,1),−P

‖g‖
B

(s,1/2)
2,(2,1),−P

if s > −3/4.

When d ≥ 3 we have

F3 ≤ c
∑

|j−`|≤2

∑

k, m

(j ∨ `+ 1)2 2s(j∨`)+(k+m)/2+(d/2−2)(j∨`)

× ‖fjk,−P ‖L2‖g`m,−P ‖L2 .
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Thus when s = d/2− 2 we have F3 ≤ c‖f‖
B

(ρ,1/2)
2,(2,1),−P

‖g‖
B

(ρ,1/2)
2,(2,1),−P

, and when

s > d/2 − 2 we have F3 ≤ c‖f‖
B

(s,1/2)
2,(2,1),−P

‖g‖
B

(s,1/2)
2,(2,1),−P

, since (j + 1)2 2−δj is

bounded if δ > 0.

It follows from (4.17) and Lemma 5.1 that

F4 ≤ c
∑

j, `

∑

k∨m≥2(j∨`)−3

∑

n≤4(j+`)

j∨`+2∑

h=j∨`−4

ρ(2h)

× 2{k∧m+(d−1)(j∧`)−j∨`}/2‖fjk,−P ‖L2‖g`m,−P ‖L2

≤ c′
∑

j, `

∑

k, m

(4(j + `) + 1)ρ(2j∨`) 2{k+m+(d−1)(j∧`)−3(j∨`)}/2

× ‖fjk,−P ‖L2‖g`m,−P ‖L2 .

Hence, by (5.7) we have

F4 ≤ c
∑

j, `

∑

k, m

(j ∨ `+ 1)2 2(k+m)/2+s(j+`)+(d/2−2−s)(j∧`)−3|j−`|/2

× ‖fjk,−P ‖L2‖g`m,−P ‖L2

≤ c′
∑

j, `

∑

k, m

(j ∧ `+ 1)2 2(k+m)/2+s(j+`)+(d/2−2−s)(j∧`)−|j−`|

× ‖fjk,−P ‖L2‖g`m,−P ‖L2 .

Therefore, when d ≥ 3, F4 is estimated in the same way as F3.

Estimate of F5 follows from the lemma below.

Lemma 5.3 Let P , Q, R be real-valued C∞-functions, ρ(z)=zs log(2+z),
s≥ d/2− 2. Then

∑

j, `

∑

k, m

∑

n≥4(j+`)−40

∑

h

ρ(2h) 2−n/2‖ϕhn,P (f̂jk,Q ∗ ĝ`m,R)‖L2

≤ c‖f‖
B

(s,1/2)
2,(2,1),Q

‖g‖
B

(s,1/2)
2,(2,1),R

. (5.8)

Proof. It follows from (4.4) that
∑

j, `

∑

k, m

∑

n≥4(j+`)−40

∑

h

ρ(2h) 2−n/2‖ϕhn,P (f̂jk,Q ∗ ĝ`m,R)‖L2
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≤ c
∑

j, `

∑

k, m

∑

h

ρ(2h) 2−2(j+`)+{k∧m+d(j∧`)}/2‖fjk,Q‖L2‖g`m,R‖L2.

For the case s < 0 (5.8) is proved by the observations that
∑

h ρ(2
h) is

bounded and that −2(j+ `) + (d/2)(j ∧ `) = (d/2− 2)(j+ `)− (d/2)(j ∨ `).
For the case s ≥ 0 (5.8) follows from the observations that∑j∨`+2

h=0 ρ(2h) ≤ c(j ∨ ` + 1)2 2s(j∨`), and that −2(j + `) + (d/2)(j ∧ `) =
(d/2− 2)(j ∧ `)− 2(j ∨ `).

The above estimates also give (2.7). (See proof of Theorem 5.1 in [5]).
¤

6. Proof of Theorem 1. Part II

Here we give the proof of Theorem 1 for the case Q = P . We start with

Lemma 6.1 Let P (ξ) = ±|ξ|2. Assume that H [P,P,P ]
hnjk`mν(ξ, τ, η, σ) 6≡ 0.

Then, we have max(n, k,m) ≥ j + `− ν − 2.
Moreover, if h < j ∨ ` − 5 and H

[P,P,P ]
hnjk`m(ξ, τ, η, σ) 6≡ 0, then we have

max(n, k,m) ≥ j + `− 4.

Proof. Assume that H [P,P,P ]
hnjk`mν(ξ, τ, η, σ) 6= 0. Then we see that

2j+`−ν < 2|η · (ξ − η)| < |τ ′|+ |τ ′ − σ′ ± 2(ξ − η) · η|+ |σ′|
< 2n+1 + 2m+1 + 2k+1 ≤ 3 · 2max(n,k,m)+1,

where τ ′ = τ −P (ξ), σ′ = σ−P (η), so that we have max(n, k,m) ≥ j+ `−
ν − 2.

Assume that h < j ∨ ` − 5. When j ≥ `, |(ξ − η) · η| ≥ |η|2 − |ξ| |η| ≥
22j−2 − 2h+j+2 ≥ 2j+`−3. When ` ≥ j, |(ξ − η) · η| ≥ |ξ − η|2 − |ξ| |ξ − η| ≥
22`−2 − 2h+`+2 ≥ 2j+`−3. So we see |(ξ − η) · η| ≥ 2j+`−3. This implies
that

2j+`−2 ≤ 2|η · (ξ − η)| ≤ |τ ′|+ |τ ′ − σ′ ± 2(ξ − η) · η|+ |σ′|
< 2n+1 + 2m+1 + 2k+1 ≤ 3 · 2max(n,k,m)+1.

Therefore we have max(n, k,m) ≥ j + ` − 4. This completes the proof of
Lemma 6.1.

¤

Let f, g ∈ S(Rd+1), and use the inequality (5.4) with Q = P .
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It follows from (4.8), Lemma 4.1 and Lemma 6.1 that

F1 ≤ c
∑

|j−`|≤2

∑

k, m

∑

n≥j+`−4

j∨`−5∑

h=0

ρ(2h) 2(−n+k+m−(j∨`)+(d−1)h)/2

× ‖fjk,P ‖L2‖g`m,P ‖L2 .

This estimate is the same one as for the case Q = −P , since |j − `| ≤ 2.
Therefore we have the same estimate of F1 as for the case Q = −P .

F2 is estimated in the same way as F4 in the case Q = −P , since
(4.21) together with Lemma 6.1 gives

F2 ≤ c
∑

j, `

∑

k, m

j+∑̀

ν=−2

∑

n≥j+`−ν−2

j∨`+2∑

h=j∨`−4

ρ(2h)

× 2{−n+k+m+(d−2)(j∧`)−ν}/2‖fjk,P ‖L2‖g`m,P ‖L2

≤ c′
∑

j, `

∑

k, m

(j ∨ `+ 1)ρ(2j∨`) 2{k+m+(d−2)(j∧`)−j−`}/2

× ‖fjk,P ‖L2‖g`m,P ‖L2

≤ c′′
∑

j, `

∑

k, m

(j ∨ `+ 1)2 2(k+m)/2+s(j+`)+(d/2−2−s)(j∧`)−|j−`|/2

× ‖fjk,P ‖L2‖g`m,P ‖L2 .

We have the same estimate for F3 as for F1 in the case Q = −P , since
(4.18) combined with Lemma 4.1 and Lemma 6.1 implies that

F3 ≤ c
∑

|j−`|≤2

∑

k, m

j∨`−5∑

h=0

(j ∨ `+ 1)ρ(2h) 2(k+m−3(j∨`)+(d−1)h)/2

× ‖fjk,P ‖L2‖g`m,P ‖L2 .

It follows from (4.36) and Lemma 6.1 that

F4 ≤ c
∑

j, `

∑

k∨m>n

∑

n≤4(j+`)

∑
ν

∑

k∨m≥j+`−ν−2

j∨`+2∑

h=j∨`−4

ρ(2h)

× 2{k∧m+(d−2)(j∧`)−ν}/2‖fjk,P ‖L2‖g`m,P ‖L2

≤ c′
∑

j, `

∑

k∨m>n

∑

n≤4(j+`)

∑

ν≥j+`−k∨m−2

ρ(2j∨`)
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× 2{k∧m+(d−2)(j∧`)−ν}/2‖fjk,P ‖L2‖g`m,P ‖L2

≤ c′′
∑

j, `

∑

k, m

(j ∨ `+ 1)ρ(2j∨`) 2{k+m+(d−2)(j∧`)−j−`}/2

× ‖fjk,P ‖L2‖g`m,P ‖L2 .

Therefore F4 can be estimated in the same way as F2.

Estimate of F5 follows from Lemma 5.3. ¤

7. Proof of Theorem 2.

To prove Theorem 2 we need the following lemma:

Lemma 7.1 Let P (ξ) = ±|ξ|2.
(a) H [P,P,−P ]

hnjk`m (ξ, τ, η, σ) 6≡ 0 implies that n ≤ max(h + ` + 2, k,m) + 3.
Moreover, max{k,m, n} > 2`− 4 if j ≤ `− 5.
(b) H [P,P,−P ]

hnjk`m (ξ, τ, η, σ)ϕh+`−ν(ξ · (ξ − η)) 6≡ 0 implies that max(n, k,m) ≥
h+ `− ν − 2.

Proof. Let H [P,P,−P ]
hnjk`m (ξ, τ, η, σ) 6= 0. Since

2n−1 < |τ ′| ≤ |τ ′ − σ′ ± 2(ξ − η) · ξ|+ |σ′|+ 2|ξ · (ξ − η)|
< 3 · 2max(m,k,h+`+2)+1,

we have n ≤ max(m, k, h+ `+ 2) + 3, where τ ′ = τ − P (ξ), σ′ = σ − P (η).
Assume that j ≤ `− 5. Then we have
2|ξ · (ξ − η)| ≥ 2|ξ − η|2 − 2|η| · |ξ − η| > 22`−1 − 2j+`+3 ≥ 22`−2,
which gives 3 ·2max{k,m,n}+1 ≥ |τ ′|+ |τ ′−σ′±2(ξ−η) · ξ|+ |σ′| ≥
2|ξ · (ξ − η)| > 22`−2.

Hence we have max{k,m, n} > 2`− 4 if j ≤ `− 5.
Assume that H [P,P,−P ]

hnjk`m (ξ, τ, η, σ)ϕh+`−ν(ξ · (ξ − η)) 6= 0. Then we see
that 2h+`−ν < 2|ξ·(ξ−η)| < |τ ′|+|τ ′−σ′±2(ξ−η)·ξ|+|σ′| < 3·2max(n,k,m)+1,
so that we have max(n, k,m) > h+ `− ν − 3. ¤

Now we proceed to prove Theorem 2. Let f, g ∈ S(Rd+1), and define

G0i := cd
∑

(h,n,j,k,`,m)∈I(0i)

ρ(2h) 2−n/2‖ϕ[P ]
hn f̂jk,P ∗ ĝ`m,−P ‖L2 ,

for i = 0, 1, 2, 3, (7.1)
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Gi := cd
∑

(h,n,j,k,`,m)∈I(i)

ρ(2h) 2−n/2‖ϕ[P ]
hn f̂jk,P ∗ ĝ`m,−P ‖L2 ,

for i = 1, 2, 3, (7.2)

where 



I(00) := {(h, n, j, k, `,m); j ≤ 2, ` ≤ 2},
I(01) := {(h, n, j, k, `,m); j ≤ 2, ` ≥ 3},
I(02) := {(h, n, j, k, `,m); j ≥ 3, ` ≤ 2},
I(03) := {(h, n, j, k, `,m); h = 0, j ≥ 3, ` ≥ 3},
I(1) := {(h, n, j, k, `,m); k ∨m ≤ n ≤ 8(h+ `),

j > `− 5− log2 d/2, j ≥ 3, ` ≥ 3, h ≥ 1},
I(2) := {(h, n, j, k, `,m); k ∨m > n, n ≤ 8(h+ `),

j ≥ 3, ` ≥ 3, h ≥ 1},
I(3) := {(h, n, j, k, `,m); k ∨m ≤ n ≤ 8(h+ `),

3 ≤ j ≤ `− 5− log2 d/2},
I(4) := {(h, n, j, k, `,m); n > 8(h+ `), j ≥ 3, ` ≥ 3, h ≥ 1},

(7.3)

and cd = (2π)−d/2. Then ‖fg‖
B

(ρ,−1/2)
2,1,P

≤ ∑3
i=0G0i +

∑4
i=1Gi.

Estimate of G00. By (4.4), it is easy to see that

G00 ≤ c
∑

I(00)

ρ(2h) 2(−n+k∧m)/2‖fjk,P ‖L2‖g`m,−P ‖L2

≤ c′‖f‖
B

(s,1/2)
2,(2,1),P

‖g‖
B

(s,1/2)
2,(2,1),−P

.

Estimate of G01 and G02. By (4.12) and Lemma 4.1 we have

G01 ≤ c

2∑

j=0

∑

`≥3

∑

k, m

`+2∑

h=`−2

∑
n

ρ(2h) 2(−n+k+m−h)/2

× ‖fjk,P ‖L2‖g`m,−P ‖L2

≤ c′
2∑

j=0

∑

`≥3

∑

k, m

ρ(2`) 2(k+m−`)/2‖fjk,P ‖L2‖g`m,−P ‖L2

≤ c′′‖f‖
B

(s,1/2)
2,(2,1),P

‖g‖
B

(s,1/2)
2,(2,1),−P

.
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In the same way we have G02 ≤ c‖f‖
B

(s,1/2)
2,(2,1),P

‖g‖
B

(s,1/2)
2,(2,1),−P

.

Estimate of G03. Since Nbl(H
[P,P,−P ]
hnjk`m ) = Nbl(H

[P,−P,P ]
hn`mjk ), it follows

from Lemma 4.1, (4.15) and (4.16) that

G03 ≤ c
∑

j≥3

∑

`≥3

∑

k, m

∑
n

2−n/2‖ϕ[P ]
0n f̂jk,P ∗ ĝ`m,−P ‖L2

≤ c′
∑

|j−`|≤2

∑

k, m

∑
n

2(k∧m−j∨`)/2‖fjk,P ‖L2‖g`m,−P ‖L2 .

Hence, by Lemma 7.1 we have

G03 ≤ c
∑

|j−`|≤2

∑

k∨m≤`+2

`+5∑

n=0

2(k∧m−j∨`)/2‖fjk,P ‖L2‖g`m,−P ‖L2

+ c
∑

|j−`|≤2

∑

k∨m>`+2

k∨m+3∑

n=0

2(k∧m−j∨`)/2‖fjk,P ‖L2‖g`m,−P ‖L2

≤ c′
∑

k, m

∑

|j−`|≤2

{
(`+ 6) 2(k∧m−j∨`)/2

+ (k ∨m+ 4) 2(k+m−j∨`−k∨m)/2
}‖fjk,P ‖L2‖g`m,−P ‖L2 .

Therefore we have G03 ≤ cmin{‖f‖
B

(s,1/2)
2,(2,1),P

‖g‖
B

(ρ,1/2)
2,(2,1),−P

, ‖f‖
B

(ρ,1/2)
2,(2,1),P

‖g‖
B

(s,1/2)
2,(2,1),−P

} when s = −1/4 and G03 ≤ c‖f‖
B

(s,1/2)
2,(2,1),P

‖g‖
B

(s,1/2)
2,(2,1),−P

when

s > −1/4.

Estimate of G1 and G2. Put H [P,P,−P ]
hnjk`mν (ξ,τ,η,σ)=H [P,P,−P ]

hnjk`m (ξ,τ,η,σ)
ϕh+`−ν(ξ · (ξ−η)). Then we have

|ϕ[P ]
hn (ξ, τ)f̂jk,P ∗ ĝ`m,−P (ξ, τ)| ≤

h+∑̀

ν=−2

B(H [P,P,−P ]
hnjk`mν ; |f̂jk,P |, |ĝ`m,−P |),

(7.4)

which implies, with the aid of Lemma 7.1 and (4.30) that

G1 ≤ c

{ ∑

|j−`|≤2

j∨`−3∑

h=1

+
∑

j, `≥3

j∨`+2∑

h=j∨`−2

}
ρ(2h) 2(d−2)min(h,j,`)/2Jhj`,1,
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Jhj`,1 :=
∑

k, m

h+∑̀

ν=−2

∑

n≥h+`−ν−2

2{−n+k+m−ν}/2‖fjk,P ‖L2‖g`m,−P ‖L2

≤ c′
∑

k, m

(h+ `+ 3) 2(k+m−`−h)/2‖fjk,P ‖L2‖g`m,−P ‖L2 .

(Note that h ∧ ` ≤ min{h, j, `}+ 6 + log2 d/2)
Also, it follows from Lemma 7.1 and (4.37) that

G2 ≤ c

{ ∑

|j−`|≤2

j∨`−3∑

h=1

+
∑

j, `≥3

j∨`+2∑

h=j∨`−2

}
ρ(2h) 2(d−2)min(h,j,`)/2Jhj`,2,

Jhj`,2 :=
∑

n≤8(h+`)

h+∑̀

ν=−2

∑

k∨m≥h+`−ν−2

2(−n+n+k∧m−ν)/2

× ‖fjk,P ‖L2‖g`m,−P ‖L2

≤ c
∑

k, m

∑

ν≥h+`−k∨m−2

(8(h+ `) + 1) 2(−ν+k∧m)/2

× ‖fjk,P ‖L2‖g`m,−P ‖L2

≤ c′
∑

k, m

(8(h+ `) + 1) 2(k+m−h−`)/2‖fjk,P ‖L2‖g`m,−P ‖L2 .

Thus we have G1 +G2 ≤ c(H1 +H2), where

H1 :=
∑

|j−`|≤2

j∨`−3∑

h=1

∑

k,m

(`+ h+ 3)ρ(2h) 2{k+m+(d−2)min(h,j,`)−h−`}/2

×‖fjk,P ‖L2‖g`m,−P ‖L2

H2 :=
∑

j, `≥3

j∨`+2∑

h=j∨`−2

∑

k,m

(`+ h+ 3)ρ(2h) 2{k+m+(d−2)min(h,j,`)−h−`}/2

×‖fjk,P ‖L2‖g`m,−P ‖L2 .

The case d = 2. This gives G1 + G2 ≤ cmin{‖f‖
B

(s,1/2)
2,(2,1),P

‖g‖
B

(ρ,1/2)
2,(2,1),−P

,

‖f‖
B

(ρ,1/2)
2,(2,1),P

‖g‖
B

(s,1/2)
2,(2,1),−P

} when s = −1/4 and G1 + G2 ≤ c‖f‖
B

(s,1/2)
2,(2,1),P

‖g‖
B

(s,1/2)
2,(2,1),−P

when s > −1/4. In fact, if s < 1/2
∑j∨`−3

h=1 (` + h + 3)ρ(2h)

2(−h−`)/2 ≤ c(2(j ∨ `) + 1) 2−`/2, and if s ≥ 1/2
∑j∨`−3

h=1 (` + h + 3)
ρ(2h) 2(−h−`)/2 ≤ c(j ∨ `+ 1)3 2s`−`.
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Also, we have
∑j∨`+2

h=j∨`−2(` + h + 3)ρ(2h) 2(−h−`)/2 ≤ c(j ∨ ` + 2)2

2(s−1/2)(j∨`)−`/2 ≤ c′ 2s(j+`)−|j−`|/4.
For the case d = 3 this also gives the same estimate of G1 +G2. In fact,

we have
j∨`−3∑

h=1

(`+ h+ 3)ρ(2h) 2{−h−`+min(h,j,`)}/2

≤ c

j∨`−3∑

h=1

(`+ h+ 3)ρ(2h) 2−`/2

≤ c′
{

(2(j ∨ `) + 4) 2−`/2 if s < 0,

(j ∨ `+ 1)3 2−(j∨`)/4+s(j+`) if s ≥ 0,
and

j∨`+2∑

h=j∨`−2

(`+ h+ 3)ρ(2h) 2{−h−`+j∧`)}/2

≤ c(j ∨ `+ 2)ρ(2j∨`) 2−(j∨`)/2

≤ c′ 2s(j+`)−|j−`|/4.

The case d ≥ 4. Since

j∨`−3∑

h=1

(`+ h+ 3)ρ(2h) 2{−h−`+(d−2)min(h,j,`)}/2

≤ c(j ∨ `+ 1)ρ(2j∨`) 2{−`+(d−3)(j∨`)}/2,

we have

H1 ≤ c
∑

|j−`|≤2

∑

k, m

(j + 1)2 2(s+d/2−2)j+(k+m)/2‖fjk,P ‖L2‖g`m,−P ‖L2 ,

which gives

H1 ≤ c




‖f‖

B
(ρ,1/2)
2,(2,1),P

‖g‖
B

(ρ,1/2)
2,(2,1),−P

when s = d/2− 2,

‖f‖
B

(s,1/2)
2,(2,1),P

‖g‖
B

(s,1/2)
2,(2,1),−P

when s > d/2− 2.

Also from
j∨`+2∑

h=j∨`−2

(`+ h+ 3)ρ(2h) 2{−h−`+(d−2)min(h,j,`)}/2
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≤ c(j ∨ `+ 1)ρ(2j∨`) 2(d/2−1)(j∧`)−(j∨`)/2−`/2,

it follows that

H2 ≤ c
∑

j, `

∑

k, m

(j ∨ `+ 1)2 2s(j+`)+(d/2−2−s)(j∧`)−|j−`|/2+(k+m)/2

× ‖fjk,P ‖L2‖g`m,−P ‖L2 .

Therefore H2 can be estimated in the same way as F2 in §5.

Estimate of G3. Note first that |` − h| ≤ 2 if j ≤ ` − 5 − log2 d/2.
Lemma 7.1 and (4.11) give

G3 ≤ c
∑

j, `

∑

k, m

`+2∑

h=`−2

∑

n≥2h−4

ρ(2h) 2{−n+k+m−`+(d−1)j}/2

× ‖fjk,P ‖L2‖g`m,−P ‖L2

≤ c′
∑

j, `

∑

k, m

(`+ 1) 2s`+(d/2−2)j−3|`−j|/2+(k+m)/2

× ‖fjk,P ‖L2‖g`m,−P ‖L2

≤ c′′
∑

j, `

∑

k, m

(j + 1) 2s`+(d/2−2)j−|`−j|+(k+m)/2

× ‖fjk,P ‖L2‖g`m,−P ‖L2 ,

which gives

G3 ≤ c





min{‖f‖
B

(ρ,1/2)
2,(2,1),P

‖g‖
B

(s,1/2)
2,(2,1),−P

, ‖f‖
B

(s,1/2)
2,(2,1),P

‖g‖
B

(ρ,1/2)
2,(2,1),−P

}
when s = d/2− 2,

‖f‖
B

(s,1/2)
2,(2,1),P

‖g‖
B

(s,1/2)
2,(2,1),−P

when s > d/2− 2.

Finally, by Lemma 5.3 we have G4 ≤ c‖f‖
B

(s,1/2)
2,(2,1),P

‖g‖
B

(s,1/2)
2,(2,1),−P

. In fact,

if h < j ∨ `− 2, then |j − `| ≤ 2, hence 8(h+ `) ≥ 8` ≥ 4(j + `)− 8, and if
h ≥ j ∨ `− 2, then 8(h+ `) ≥ 4(j + `)− 8. ¤

8. Outline of proof of Main Results

Main results follow from Theorem 1 and Theorem 2 by making use
of the method employed in [5]. However, for the sake of completeness we
write here outline of their proof. Consider the case where d = 2, N(u, ū) =
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c1u
2 + c2ū

2. Let

B(f, g) :=
∫ t

0
W (t− t′){c1f(x, t′)g(x, t′) + c2f(x, t′)g(x, t′)}dt′,

(8.1)

where W (t) is defined by {W (t)f}(x, t) := F−1
x eitP (ξ)Fxf(x, t). Then, by

Theorem 1 we have

‖B(f, g)‖
B

(ρ,1/2)
2,1,P (Rd×I)

≤ C‖f‖
B

(ρ,1/2)
2,(2,1),P

(Rd×I)
‖g‖

B
(s,1/2)
2,(2,1),P

(Rd×I)

(8.2)

holds for any f ∈ B(ρ,1/2)
2,(2,1),P (Rd × I), g ∈ B(s,1/2)

2,(2,1),P (Rd × I), and

‖B(f, g)‖
B

(ρ,1/2)
2,1,P (Rd×I)

≤ C
{‖f‖

B
(s,b)
2,(2,1),P

(Rd×I)
‖g‖

B
(s,1/2)
2,(2,1),P

(Rd×I)

+ ‖f‖
B

(s,1/2)
2,(2,1),P

(Rd×I)
‖g‖

B
(s,b)
2,(2,1),P

(Rd×I)

}
(8.3)

holds for any f, g ∈ B(s,b)
2,(2,1),P (Rd× I) if b > 1/2. (see [5]) Here I = (−a, a),

0 < a ≤ 1, P (ξ) = ±|ξ|2, s = −3/4, ρ(z) = zs log(2+z), and C is a constant
independent of a, f and g. With the aid of the fixed point theorem, the
existence of solutions to the integral equation

u(x) = W (t)u0(x) +
∫ t

0
W (t− t′)N(u, ū)(x, t′)dt′, (8.4)

follows from (8.2) for u0 ∈ Hρ(R2). But, putting u(x, t) = W (t)u0(x) +
v(x, t), we have

v = B(W (t)u0(x),W (t)u0(x)) +B(W (t)u0(x), v)

+B(v,W (t)u0(x)) +B(v, v).

Hence, by using (8.2) and (8.3), we can solve this equation for u0 ∈
H−3/4(R2) with small norm. To remove the smallness assumption on the ini-
tial data, we employ the scaling method, that is, we put v(x, t) = u(δx, δ2t)
and solve the equation for v.

Note that we could not remove the smallness assumption by the scaling
method when d = 3, s = −1/2. But when s > −1/2 by Theorem 1 for any
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f, g ∈ B(s,1/2)
2,(2,1),P (Rd × I) we have

‖B(f, g)‖
B

(s,1/2)
2,(2,1),P

(Rd×I)
≤ C‖f‖

B
(s,1/2)
2,(2,1),P

(Rd×I)
‖g‖

B
(s,1/2)
2,(2,1),P

(Rd×I)
,

(8.5)

and we can use the scaling method to obtain local well-posedness of the
Cauchy problem (1.1) in Hs(R3).

Finally, we mention that our proof of the uniqueness needs the following
facts (see [5]):

Let b≥ 1/2, and I = (−a, a), a > 0. Then, for any f ∈B(ρ,b)
2,(2,1),P (Rd× I)

with f(x, 0) = 0, ‖f |Rd×(−δ,δ)‖B
(ρ,b)
2,(2,1),P

(Rd×(−δ,δ))
→ 0 as δ→+0.
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