Multiplication operators, integration operators and companion operators on weighted Bloch space

Rikio Yoneda
(Received January 7, 2003; Revised June 5, 2003)

Abstract

Let g be an analytic function on the open unit disk D in the complex plane \boldsymbol{C}. We will study the following operator $$
I_{g}(h)(z):=\int_{0}^{z} h^{\prime}(\zeta) g(\zeta) d \zeta, \quad J_{g}(h)(z):=\int_{0}^{z} h(\zeta) g^{\prime}(\zeta) d \zeta
$$ on the Bloch space. In this paper, we will study the boundedness and compactness of I_{g} on the α-Bloch space, and the boundedness and compactness of products of I_{g} and J_{g} defined on the α-Bloch space. And we will get the relationship of multiplication operator M_{g} and the operators I_{g}, J_{g} defined on the α-Bloch space.

Key words: multiplication operator, integration operator, Bloch space, boundedness, compactness.

1. Introduction

Let $D=\{z \in C:|z|<1\}$ denote the open unit disk in the complex plane \boldsymbol{C} and let $\partial D=\{z \in \boldsymbol{C}:|z|=1\}$ denote the unit circle. Let $H(D)$ denote the space of analytic functions on D. For $1 \leq p<+\infty$, the Lebesgue space $L^{p}(D, d A)$ is defined to be the Banach space of Lebesgue measurable functions on the open unit disk D with

$$
\|f\|_{L^{p}(d A)}:=\left(\int_{D}|f(z)|^{p} d A(z)\right)^{1 / p}<+\infty
$$

where $d A(z)$ is the normalized area measure on D. The Bergman space $L_{a}^{p}(D)$ is defined to be the subspace of $L^{p}(D, d A)$ consisting of analytic functions. For $0<p<+\infty$, the Hardy space H^{p} is defined to be the Banach space of analytic functions f on D with

$$
\|f\|_{p}:=\left(\sup _{0<r<1} \frac{1}{2 \pi} \int_{0}^{2 \pi}\left|f\left(r e^{i \theta}\right)\right|^{p} d \theta\right)^{1 / p}<+\infty
$$

The space of analytic functions on D of bounded mean oscillation,

[^0]denoted by BMOA, consists of functions f in H^{2} for which
$$
\|f\|_{B M O A}:=|f(0)|+\sup _{z \in D}\left\|f \circ \varphi_{z}-f(z)\right\|_{2}<+\infty
$$

Let $\alpha \geq 1$. Then the α-Bloch space B^{α} of D is defined to be the space of analytic functions f on D such that

$$
\|f\|_{B^{\alpha}}:=|f(0)|+\sup _{z \in D}\left(1-|z|^{2}\right)^{\alpha}\left|f^{\prime}(z)\right|<+\infty .
$$

And the little α-Bloch space of D, denoted B_{0}^{α}, is the closed subspace of B^{α} consisting of functions f with $\left(1-|z|^{2}\right)^{\alpha} f^{\prime}(z) \rightarrow 0\left(|z| \rightarrow 1^{-}\right)$.

Note that B^{1}, B_{0}^{1} are the Bloch space B, the little Bloch space B_{0}, respectively.

Let ω be analytic on $\{\zeta:|1-\zeta|<1\}$. Suppose that $\left|\omega\left(1-|z|^{2}\right)\right| \rightarrow 0$ as $z \in D$ and $|z| \rightarrow 1^{-}$. Then the weighted Bloch space B_{ω} of D is defined to be the space of analytic functions f on D such that

$$
\|f\|_{B_{\omega}}:=|f(0)|+\sup _{z \in D}\left|\omega\left(1-|z|^{2}\right)\right|\left|f^{\prime}(z)\right|<+\infty
$$

For g analytic on D, the operator J_{g} is defined by the following:

$$
J_{g}(h)(z):=\int_{0}^{z} h(\zeta) g^{\prime}(\zeta) d \zeta
$$

If $g(z)=z$, then J_{g} is the integration operator. If $g(z)=\log 1 /(1-z)$, then J_{g} is the Cesáro operator. And we also define the companion operator I_{g}, the multiplication operator M_{g} by the following:

$$
I_{g}(h)(z):=\int_{0}^{z} g(\zeta) h^{\prime}(\zeta) d \zeta, \quad M_{g}(h)(z):=g(z) h(z)
$$

Let X be a Banach space. For an analytic function g on D, g is a multiplier for X if $g X \subset X$, i.e. $f g \in X$ for all $f \in X$. By the closed-graph theorem, $g X \subset X$ if and only if the multiplication operator M_{g} is bounded on X. Let $S: X \rightarrow X$ be a linear operator. Then the operator S is said to be compact operator if for every bounded sequence $\left\{x_{n}\right\}$ in $X,\left\{S\left(x_{n}\right)\right\}$ has a convergent subsequence. On the other hand, the operator S is said to be weakly compact operator if for every bounded sequence $\left\{x_{n}\right\}$ in X, $\left\{S\left(x_{n}\right)\right\}$ has a weakly convergent subsequence. Then the operator S is weakly compact operator if and only if $S^{* *}\left(X^{* *}\right) \subset X$ where $S^{* *}$ be the second adjoint of S and X is identified with its image under the natural
embedding into its second dual $X^{* *}$.
In [5], Ch. Pommerenke showed that J_{g} is a bounded operator on Hardy space H^{2} if and only if g is in $B M O A$, and this result was extended to the other Hardy space $H^{p} 1 \leq p<+\infty$ in [1]. In [2], A. Aleman and A.G. Siskakis studied the operator J_{g} defined on the weighted (radial weight) Bergman space. Recently, in [7], A.G. Siskakis and R. Zhao studied the operator J_{g} defined on BMOA.

In [9], we showed the following result about the operator J_{g} defined on the Bloch space B.

Theorem A For g analytic on D, the operator J_{g} is bounded on B if and only if

$$
\sup _{z \in D}\left(1-|z|^{2}\right)\left(\log \frac{1}{1-|z|^{2}}\right)\left|g^{\prime}(z)\right|<+\infty
$$

and the operator J_{g} is compact on B if and only if

$$
\lim _{|z| \rightarrow 1^{-}}\left(1-|z|^{2}\right)\left(\log \frac{1}{1-|z|^{2}}\right)\left|g^{\prime}(z)\right|=0 .
$$

Let $\alpha>1$. Then the operator J_{g} is bounded on B^{α} if and only if $g \in B$, and the operator J_{g} is compact on B^{α} if and only if $g \in B_{0}$.

In this paper, we will study the boundedness and compactness of I_{f} defined on the α-Bloch space. And we will give the relationship between multiplication operator M_{g} and the operators I_{g}, J_{g}. In some cases, it is advantageous to think of I_{g} and J_{g} as distant cousins of Hankel and Toeplitz operators, respectively. In [8], K. Stroethoff and D. Zheng studied products of Hankel and Toeplitz operators. So we will also study the boundedness and compactness of products of I_{f} and J_{g}.

Throughout this paper, C will denote positive constant whose value is not necessary the same at each occurrence.

2. The operators I_{f} defined on the α-Bloch space

In this section, we study the boundedness and compactness of I_{f} on the α-Bloch space.

Lemma B Let $\alpha \geq 1$. Then there exist $h_{1}, h_{2} \in B^{\alpha}$ such that

$$
\left|h_{1}^{\prime}(z)\right|+\left|h_{2}^{\prime}(z)\right| \geq \frac{1}{(1-|z|)^{\alpha}} \quad(z \in D)
$$

Proof. See Proposition 5.4 in [6].
Theorem 2.1 Let $\alpha \geq 1$ and f be an analytic function on D. Then the operator I_{f} is bounded on B^{α} if and only if $\sup _{z \in D}|f(z)|<+\infty$.

Proof. Let $\alpha \geq 1$. Let f be an analytic function on D. If $f \in H^{\infty}$, it is trivial that I_{f} is bounded on B^{α}. To prove the converse, suppose that I_{f} is bounded on B^{α}. By Lemma B, there exist $h_{1}, h_{2} \in B^{\alpha}$ such that

$$
\left|h_{1}^{\prime}(z)\right|+\left|h_{2}^{\prime}(z)\right| \geq \frac{1}{(1-|z|)^{\alpha}}
$$

for all $z \in D$. So for any $z \in D$, we have

$$
\begin{aligned}
|f(z)| & \leq\left(1-|z|^{2}\right)^{\alpha}\left(\left|h_{1}^{\prime}(z)\right|+\left|h_{2}^{\prime}(z)\right|\right)|f(z)| \\
& \leq \sup _{z \in D}\left(1-|z|^{2}\right)^{\alpha}\left|h_{1}^{\prime}(z)\right||f(z)|+\sup _{z \in D}\left(1-|z|^{2}\right)^{\alpha}\left|h_{2}^{\prime}(z)\right||f(z)| \\
& =\left\|I_{f} h_{1}\right\|_{B^{\alpha}}+\left\|I_{f} h_{2}\right\|_{B^{\alpha}} \\
& \leq\left\|I_{f}\right\|\left\|h_{1}\right\|_{B^{\alpha}}+\left\|I_{f}\right\|\left\|h_{2}\right\|_{B^{\alpha}}<+\infty .
\end{aligned}
$$

Hence we have $\sup _{z \in D}|f(z)|<+\infty$.
Corollary 2.2 For g analytic on D, the following are equivalent:
(i) $g B \subset B$;
$(i)^{\prime} \quad g B_{0} \subset B_{0}$;
(ii) Both I_{g} and J_{g} are bounded operators on B.
$(i i)^{\prime} \quad$ Both I_{g} and J_{g} are bounded operators on B_{0}.
(iii) $g \in H^{\infty}, \sup _{z \in D}\left(1-|z|^{2}\right)\left(\log \frac{1}{1-|z|^{2}}\right)\left|g^{\prime}(z)\right|<+\infty$.

Let $\alpha>1$. For g analytic on D, the following are equivalent:
(i) $g B^{\alpha} \subset B^{\alpha}$;
$(i)^{\prime} \quad g B_{0}^{\alpha} \subset B_{0}^{\alpha}$;
(ii) I_{g} is bounded operator on B^{α};
(ii)' I_{g} is bounded operator on B_{0}^{α};
(iii) $g \in H^{\infty}$.

Proof. The above equivalences of $(i),(i)^{\prime},(i i i)$ were proved by [3] and [12].

The other equivalences are immediate consequences of Theorem 2.1 and Theorem 1 in [3].

Theorem 2.3 Let $\alpha \geq 1$. Let f be an analytic function on D. Then the operator I_{f} is compact on B^{α} if and only if $f \equiv 0 \quad \cdots(*)$.

Proof. Let $\alpha=1$. Let f be an analytic function on D. Since $|h(z)| \leq$ $C\|h\|_{B} \log \left(1 /\left(1-|z|^{2}\right)\right)$ for $h \in B$, the unit ball of B is a normal family of analytic functions. By normal family arguments, I_{f} is compact operator on B if and only if every sequence $\left\{h_{n}\right\}$ in B with $\left\|h_{n}\right\|_{B} \leq 1$ and $h_{n} \rightarrow 0$ $(n \rightarrow+\infty)$ uniformly on compact subsets of D has a subsequence $\left\{h_{n_{k}}\right\}$ in B such that $\left\|I_{f} h_{n_{k}}\right\|_{B} \rightarrow 0(k \rightarrow+\infty)$.

We show that every sequence which goes to zero has a subsequence such that the condition $(*)$ holds when the limit is taken over that sequence. This implies that the condition $(*)$ holds.

Suppose that the operator I_{f} is compact on B. Let $a_{n} \rightarrow a \in \partial D$ and consider the test functions $h_{n}(z):=\log \left(1 /\left(1-\overline{a_{n}} z\right)\right), h(z):=\log (1 /(1-\bar{a} z))$. Then $h_{n} \rightarrow h$ uniformly on compact subsets of D. Using the fact $|c+d|^{2} \leq$ $2|c|^{2}+2|d|^{2}$ and the subharmonicity of $|f(z)|$,

$$
\sup _{a \in D} \int_{D(a, r)} \frac{d A(z)}{\left(1-|z|^{2}\right)^{2}}<\infty
$$

we have

$$
\begin{aligned}
& \left|a_{n}\right|^{2}\left|f\left(a_{n}\right)\right|^{2} \\
& \quad \leq C \frac{\left|a_{n}\right|^{2}}{\left(1-\left|a_{n}\right|^{2}\right)^{2}} \int_{D\left(a_{n}, r\right)}|f(z)|^{2} d A(z) \\
& \quad \leq C K \int_{D\left(a_{n}, r\right)}\left|\left(\log \frac{1}{1-\overline{a_{n}} z}\right)^{\prime}\right|^{2}|f(z)|^{2} d A(z) \\
& \quad=C K \int_{D\left(a_{n}, r\right)}\left(1-|z|^{2}\right)^{2}\left|\left(\log \frac{1}{1-\overline{a_{n}} z}\right)^{\prime}\right|^{2}|f(z)|^{2} \frac{d A(z)}{\left(1-|z|^{2}\right)^{2}} \\
& \quad \leq C K \sup _{z \in D\left(a_{n}, r\right)}\left(1-|z|^{2}\right)^{2}\left|\left(\log \frac{1}{1-\overline{a_{n}} z}\right)^{\prime}\right|^{2}|f(z)|^{2} \\
& \quad \times \int_{D\left(a_{n}, r\right)} \frac{d A(z)}{\left(1-|z|^{2}\right)^{2}}
\end{aligned}
$$

$$
\begin{aligned}
\leq & 2 C K \int_{D\left(a_{n}, r\right)} \frac{d A(z)}{\left(1-|z|^{2}\right)^{2}} \\
& \times \sup _{z \in D\left(a_{n}, r\right)}\left|\left(\log \frac{1}{1-\overline{a_{n}} z}\right)^{\prime}-\left(\log \frac{1}{1-\bar{a} z}\right)^{\prime}\right|^{2}|f(z)|^{2}\left(1-|z|^{2}\right)^{2} \\
& +2 C K \int_{D\left(a_{n}, r\right)} \frac{d A(z)}{\left.(1-\mid z)^{2}\right)^{2}} \\
& \times \sup _{z \in D\left(a_{n}, r\right)}\left|\left(\log \frac{1}{1-\bar{a} z}\right)^{\prime}\right|^{2}|f(z)|^{2}\left(1-|z|^{2}\right)^{2} \\
\leq & 2 C K \int_{D\left(a_{n}, r\right)} \frac{d A(z)}{\left(1-|z|^{2}\right)^{2}}\left\|I_{f}\left(h_{n}-h\right)\right\|_{B}^{2} \\
& +2 C K \int_{D\left(a_{n}, r\right)} \frac{d A(z)}{\left(1-|z|^{2}\right)^{2}} \\
& \times \sup _{z \in D\left(a_{n}, r\right)}\left|\log \left(\frac{1}{1-\bar{a} z}\right)^{\prime}\right|^{2}|f(z)|^{2}\left(1-|z|^{2}\right)^{2} \\
= & M_{1}+M_{2} .
\end{aligned}
$$

By the compactness of I_{f}, we have $M_{1} \rightarrow 0(n \rightarrow \infty)$. Since B_{0} is a subspace of B and they share the same norm, the compactness of I_{f} on B implies its compactness on B_{0}. Hence we see that I_{f} is weakly compact on B_{0}. Since $\left(B_{0}\right)^{* *}=B$ and $I_{f}^{* *}=I_{f}$, by using the fact of the introduction, we have $I_{f}(B) \subset B_{0}$. Thus we have $I_{f}(h) \in B_{0}$. Thus we have

$$
\begin{aligned}
M_{2} & =\sup _{z \in D\left(a_{n}, r\right)}\left|\left(\log \frac{1}{1-\bar{a} z}\right)^{\prime}\right|^{2}|f(z)|^{2}\left(1-|z|^{2}\right)^{2} \\
& =\sup _{z \in D\left(a_{n}, r\right)}\left(\left(1-|z|^{2}\right)\left|\left(I_{f}(h)\right)^{\prime}(z)\right|\right)^{2} \\
& =\sup _{z \in D}\left(\chi_{D\left(a_{n}, r\right)}(z)\left(1-|z|^{2}\right)\left|\left(I_{f}(h)\right)^{\prime}(z)\right|\right)^{2} .
\end{aligned}
$$

Hence we have $M_{2} \rightarrow 0(n \rightarrow+\infty)$. So we have $\lim _{\left|a_{n}\right| \rightarrow 1^{-}}\left|f\left(a_{n}\right)\right|=0$. Since $f \in H^{\infty}$, thus we see $f \equiv 0$. The proof of the converse is trivial.

Let $\alpha>1$. Let f be an analytic function on D. Since $|h(z)| \leq$ $C\|h\|_{B^{\alpha}}\left(1-|z|^{2}\right)^{1-\alpha}$ for $h \in B^{\alpha}$, the unit ball of B^{α} is a normal family of analytic functions. By normal family arguments, I_{f} is a compact operator on B^{α} if and only if every sequence $\left\{h_{n}\right\}$ in B^{α} with $\left\|h_{n}\right\|_{B^{\alpha}} \leq 1$ and $h_{n} \rightarrow 0(n \rightarrow+\infty)$ uniformly on compact subsets of D has a subse-
quence $\left\{h_{n_{k}}\right\}$ in B^{α} such that $\left\|I_{f} h_{n_{k}}\right\|_{B^{\alpha}} \rightarrow 0(k \rightarrow+\infty)$.
We show that every sequence which goes to zero has a subsequence such that the condition $(*)$ holds when the limit is taken over that sequence. This implies that the condition $(*)$ holds.

Suppose that the operator I_{f} is compact on B^{α}. Let $a_{n} \rightarrow a \in \partial D$ and consider the test functions $h_{a_{n}}(z):=\left(1-\overline{a_{n}} z\right)^{1-\alpha}, h_{a}(z):=(1-\bar{a} z)^{1-\alpha}$. Then $h_{a_{n}}(z) \rightarrow h_{a}(z)$ uniformly on compact subsets of D. Then we have by using $\sup _{a \in D} \int_{D(a, r)} d A(z) /\left(1-|z|^{2}\right)^{2}<\infty$

$$
\begin{aligned}
&\left|a_{n}\right|^{2}\left|f\left(a_{n}\right)\right|^{2} \\
& \leq C \int_{D\left(a_{n}, r\right)} \frac{d A(z)}{\left(1-|z|^{2}\right)^{2}} \sup _{z \in D\left(a_{n}, r\right)}\left(1-|z|^{2}\right)^{2 \alpha}\left|h_{a_{n}}^{\prime}(z)\right|^{2}|f(z)|^{2} \\
& \leq 2 C \int_{D\left(a_{n}, r\right)} \frac{d A(z)}{\left(1-|z|^{2}\right)^{2}} \\
& \times \sup _{z \in D\left(a_{n}, r\right)}\left(1-|z|^{2}\right)^{2 \alpha}\left|h_{a_{n}}^{\prime}(z)-h_{a}^{\prime}(z)\right|^{2}|f(z)|^{2} \\
&+2 C \int_{D\left(a_{n}, r\right)} \frac{d A(z)}{\left(1-|z|^{2}\right)^{2}} \sup _{z \in D\left(a_{n}, r\right)}\left(1-|z|^{2}\right)^{2 \alpha}\left|h_{a}^{\prime}(z)\right|^{2}|f(z)|^{2} \\
& \leq 2 C \int_{D\left(a_{n}, r\right)} \frac{d A(z)}{\left(1-|z|^{2}\right)^{2}}\left\|I_{f}\left(h_{a_{n}}-h_{a}\right)\right\|_{B^{\alpha}}^{2} \\
&+2 C \int_{D\left(a_{n}, r\right)} \frac{d A(z)}{\left(1-|z|^{2}\right)^{2}} \sup _{z \in D\left(a_{n}, r\right)}\left(1-|z|^{2}\right)^{2 \alpha}\left|h_{a}^{\prime}(z)\right|^{2}|f(z)|^{2} \\
&= N_{1}+N_{2} .
\end{aligned}
$$

By the compactness of I_{f}, we have $N_{1} \rightarrow 0(n \rightarrow \infty)$. Since B_{0}^{α} is a subspace of B^{α} and they share the same norm, the compactness of I_{f} on B^{α} implies its compactness on B_{0}^{α}. Hence we see that I_{f} is weakly compact on B_{0}^{α}. Since $\left(B_{0}^{\alpha}\right)^{* *}=B^{\alpha}$ (see [12]) and $I_{f}^{* *}=I_{f}$, by using the fact of the introduction, we have $I_{f}\left(B^{\alpha}\right) \subset B_{0}^{\alpha}$. Thus we have $I_{f}\left(h_{a}\right) \in B_{0}^{\alpha}$. Thus we have

$$
\begin{aligned}
N_{2} & =\sup _{z \in D\left(a_{n}, r\right)}\left(1-|z|^{2}\right)^{2 \alpha}\left|h_{a}^{\prime}(z)\right|^{2}|f(z)|^{2} \\
& =\sup _{z \in D\left(a_{n}, r\right)}\left(\left(1-|z|^{2}\right)^{\alpha}\left|\left(I_{f}\left(h_{a}\right)\right)^{\prime}(z)\right|\right)^{2} \\
& =\sup _{z \in D}\left(\chi_{D\left(a_{n}, r\right)}(z)\left(1-|z|^{2}\right)^{\alpha}\left|\left(I_{f}\left(h_{a}\right)\right)^{\prime}(z)\right|\right)^{2} .
\end{aligned}
$$

Hence we have $N_{2} \rightarrow 0(n \rightarrow+\infty)$. So we have $\lim _{\left|a_{n}\right| \rightarrow 1^{-}}\left|f\left(a_{n}\right)\right|=0$. Since $f \in H^{\infty}$, thus we see $f \equiv 0$. The proof of the converse is trivial.

3. The operators I_{f} defined on the weighted Bloch space

In this section, we study the boundedness of I_{f} on the weighted Bloch space B_{ω}. And we will give the relationship between multiplication operator M_{g} and the operators I_{g}, J_{g} defined on the weighted Bloch space B_{ω}. The examples of the weighted Bloch space B_{ω} are the α-Bloch space and $\left\{f \in H(D): \sup _{z \in D}\left(1-|z|^{2}\right)\left(\log \left(1 /\left(1-|z|^{2}\right)\right)\right)\left|f^{\prime}(z)\right|<\infty\right\}$, and so on.

Theorem 3.1 Let $0<r<+\infty$. Let ω be analytic on D and non-vanishing on $\{\zeta:|1-\zeta|<1\}$. Suppose that $\sup _{z, a \in D}\left|\omega\left(1-|z|^{2}\right)\right| /|\omega(1-\bar{a} z)|<\infty$, and that for any $a \in D$ there is a constant $C>0$ (independent of a) such that $|\omega(1-\bar{a} z)| /\left|\omega\left(1-|z|^{2}\right)\right| \leq C$ for all $z \in D(a, r)$. Let f be an analytic function on D. Then the operator I_{f} is bounded on B_{ω} if and only if

$$
\sup _{z \in D}|f(z)|<+\infty
$$

Proof. Let f be an analytic function on D. Suppose that $\|f\|_{\infty}=$ $\sup _{z \in D}|f(z)|<+\infty$. Then

$$
\left\|I_{f}(g)\right\|_{B_{\omega}}=\sup _{z \in D}\left|\omega\left(1-|z|^{2}\right)\right|\left|g^{\prime}(z) f(z)\right| \leq\|f\|_{\infty}\|g\|_{B_{\omega}} .
$$

Hence we see that I_{f} is bounded on B_{ω}.
Next, we prove the converse. Suppose that I_{f} is bounded on B_{ω}. Put $h_{a}(z):=\int_{0}^{z} 1 / \omega(1-\bar{a} \eta) d \eta$. Then it is clear that $h_{a} \in B_{\omega}$ for all $a \in D$ because of the assumption $\sup _{z, a \in D}\left|\omega\left(1-|z|^{2}\right)\right| /|\omega(1-\bar{a} z)|<+\infty$. Since

$$
\sup _{a \in D} \int_{D(a, r)} \frac{d A(z)}{\left(1-|z|^{2}\right)^{2}}<+\infty \quad \text { and } \quad \frac{1}{\left|\omega\left(1-|z|^{2}\right)\right|} \leq \frac{C}{|\omega(1-\bar{a} z)|}
$$

for all $z \in D(a, r)$, for any $a \in D$

$$
\begin{aligned}
& |f(a)|^{2} \\
& \quad \leq K \int_{D(a, r)} \frac{1}{\left|\omega\left(1-|z|^{2}\right)\right|^{2}}\left|\omega\left(1-|z|^{2}\right)\right|^{2}|f(z)|^{2} \frac{d A(z)}{\left(1-|z|^{2}\right)^{2}} \\
& \quad \leq K C^{2} \int_{D(a, r)} \frac{1}{|\omega(1-\bar{a} z)|^{2}}\left|\omega\left(1-|z|^{2}\right)\right|^{2}|f(z)|^{2} \frac{d A(z)}{\left(1-|z|^{2}\right)^{2}}
\end{aligned}
$$

$$
\begin{aligned}
& =K C^{2} \int_{D(a, r)}\left|\left(h_{a}(z)\right)^{\prime}\right|^{2}\left|\omega\left(1-|z|^{2}\right)\right|^{2}|f(z)|^{2} \frac{d A(z)}{\left(1-|z|^{2}\right)^{2}} \\
& \leq K C^{2} \int_{D(a, r)} \frac{d A(z)}{\left(1-|z|^{2}\right)^{2}} \sup _{z \in D(a, r)}\left|\left(h_{a}(z)\right)^{\prime}\right|^{2}\left|\omega\left(1-|z|^{2}\right)\right|^{2}|f(z)|^{2} \\
& \leq K C^{2} \int_{D(a, r)} \frac{d A(z)}{\left(1-|z|^{2}\right)^{2}}\left\|I_{f} h_{a}\right\|_{B_{\omega}}^{2} \\
& \leq K C^{2} \int_{D(a, r)} \frac{d A(z)}{\left(1-|z|^{2}\right)^{2}}\left\|I_{f}\right\|^{2}\left\|h_{a}\right\|_{B_{\omega}}^{2} \\
& \leq K C^{2} \int_{D(a, r)} \frac{d A(z)}{\left(1-|z|^{2}\right)^{2}}\left\|I_{f}\right\|^{2} \sup _{a \in D}\left\|h_{a}\right\|_{B_{\omega}}^{2}<+\infty
\end{aligned}
$$

Hence we see $\sup _{z \in D}|f(z)|<+\infty$.
We proved the following proposition in [9].
Proposition 3.2 Let $0<r<+\infty$. Let ω be analytic and non-vanishing on $\{\zeta:|1-\zeta|<1\}$. Suppose that $\sup _{z \in D}\left|\omega\left(1-|z|^{2}\right)\right| \int_{0}^{|z|} \frac{d s}{\left|\omega\left(1-s^{2}\right)\right|}<+\infty$ and $\sup _{z, a \in D} \frac{\left|\omega\left(1-|z|^{2}\right)\right|}{|\omega(1-\bar{a} z)|}<+\infty$, and $\int_{0}^{|z|} \frac{d s}{\left|\omega\left(1-s^{2}\right)\right|}<+\infty$ for any $z \in D$ and $\int_{0}^{|z|} \frac{d s}{\left|\omega\left(1-s^{2}\right)\right|} \rightarrow \infty\left(|z| \rightarrow 1^{-}\right)$, and that for any $a \in D$ there is a constant $C>0$ (independent of a) such that $\left|\frac{\omega(1-\bar{a} z)}{\omega\left(1-|z|^{2}\right)}\right| \leq C$ for all $z \in D(a, r)$, and that there is a constant $K>0$ (independent of z) such that $\int_{0}^{|z|} \frac{d s}{\left|\omega\left(1-s^{2}\right)\right|} \leq$ $K\left|\int_{0}^{z} \frac{1}{\omega(1-\bar{z} \eta)} d \eta\right|$ for all $z \in D$. Then the operator J_{g} is bounded on B_{ω} if and only if

$$
\|g\|_{W}:=\sup _{z \in D}\left|\omega\left(1-|z|^{2}\right)\right| \int_{0}^{|z|} \frac{d s}{\left|\omega\left(1-s^{2}\right)\right|}\left|g^{\prime}(z)\right|<+\infty
$$

Proof. See [9].
Corollary 3.3 Let $0<r<+\infty$. Let ω be as Proposition 3.2. Then for g analytic on D, the following are equivalent:
(i) $g B_{\omega} \subset B_{\omega}$;
(ii) Both I_{g} and J_{g} are bounded operators on B_{ω};
(iii) $g \in H^{\infty}, \sup _{z \in D} \omega\left(1-|z|^{2}\right) \int_{0}^{|z|} \frac{d s}{\left|\omega\left(1-s^{2}\right)\right|}\left|g^{\prime}(z)\right|<+\infty$.

Proof. The equivalence of (ii) and (iii) is an immediate consequence of Theorem 3.1 and Proposition 3.2. If (ii) holds, it is trivial that (i) holds.

So it suffices to prove that (i) implies (ii). In fact, suppose that $g B_{\omega} \subset B_{\omega}$. For arbitrary $a \in D$, let $h_{a}(z):=\int_{0}^{z} \frac{1}{\omega(1-\bar{a} \eta)} d \eta$. And let $k_{a}(z):=$ $h_{a}(z)-h_{a}(a)$. Then we see that $k_{a}^{\prime}(z)=\frac{1}{\omega(1-\bar{a} z)}, k_{a}(a)=0$ and $k_{a} \in$ B_{ω} because of $\sup _{z, a \in D} \frac{\left|\omega\left(1-|z|^{2}\right)\right|}{|\omega(1-\bar{a} z)|}<+\infty$. So for g analytic on D, we have $\left(g k_{a}\right)^{\prime}(a)=g(a) \frac{1}{\omega\left(1-|a|^{2}\right)}$. By using the boundedness of M_{g} on B_{ω} and the subharmonic property of $|\omega(1-\bar{a} z)|\left|\left(g k_{a}\right)^{\prime}(z)\right|$ and the assumption that for any $a \in D$ there is a constant $C>0$ (independent of a) such that $\frac{|\omega(1-\bar{a} z)|}{\left|\omega\left(1-|z|^{2}\right)\right|} \leq C$ for all $z \in D(a, r)$,

$$
\begin{aligned}
|g(a)| & =\left|\omega\left(1-|a|^{2}\right)\right|\left|\left(g k_{a}\right)^{\prime}(a)\right| \\
& \leq K \int_{D(a, r)}|\omega(1-\bar{a} z)|\left|\left(g k_{a}\right)^{\prime}(z)\right| \frac{d A(z)}{\left(1-|z|^{2}\right)^{2}} \\
& \leq K C \int_{D(a, r)}\left|\omega\left(1-|z|^{2}\right)\right|\left|\left(g k_{a}\right)^{\prime}(z)\right| \frac{d A(z)}{\left(1-|z|^{2}\right)^{2}} \\
& \leq K C \int_{D(a, r)} \frac{d A(z)}{\left(1-|z|^{2}\right)^{2}}\left\|M_{g} k_{a}\right\|_{B_{\omega}} \\
& \leq K C \int_{D(a, r)} \frac{d A(z)}{\left(1-|z|^{2}\right)^{2}}\left\|M_{g}\right\|\left\|k_{a}\right\|_{B_{\omega}} \\
& \leq K C \sup _{a \in D} \int_{D(a, r)} \frac{d A(z)}{\left(1-|z|^{2}\right)^{2}}\left\|M_{g}\right\| \sup _{a \in D}\left\|k_{a}\right\|_{B_{\omega}}<+\infty
\end{aligned}
$$

Hence we have $g \in H^{\infty}$. By Theorem 3.1, $g \in H^{\infty}$ if and only if I_{g} is bounded on B_{ω}. So by the boundedness of I_{g} and M_{g} on B_{ω}, we see that J_{g} is bounded on B_{ω}.

Remark Carefully examining the proof of the above corollary, we see that the equivalence of (i) and (ii) can be proved by using the assumption of ω in Theorem 3.1 only.

Based on Corollary 3.3, we furthermore make the following conjecture.
Conjecture Let $0<r<+\infty$. Let ω be as Proposition 3.2. And suppose that $\frac{\left|\omega\left(1-|z|^{2}\right)\right|}{1-|z|^{2}} \rightarrow 0\left(|z| \rightarrow 1^{-}\right)$. Then for g analytic on D, the following are equivalent:
(i) $g B_{\omega} \subset B_{\omega}$;
(ii) I_{g} is a bounded operator on B_{ω};
(iii) $g \in H^{\infty}$.

Supposing the assumption that there is a constant $C>0$ (independent of z) such that $\left|\omega\left(1-|z|^{2}\right)\right| \int_{0}^{|z|} \frac{d s}{\left|\omega\left(1-s^{2}\right)\right|} \leq C\left(1-|z|^{2}\right)$ for all $z \in D$ which is stronger than the assumption $\frac{\left|\omega\left(1-|z|^{2}\right)\right|}{1-|z|^{2}} \rightarrow 0\left(|z| \rightarrow 1^{-}\right)$, we see that the above conjecture holds.

4. The product of the operators I_{f} and J_{g} defined on the α-Bloch space

In this section, we study the boundedness and compactness of products of I_{f} and J_{g} defined on the α-Bloch space.
Theorem 4.1 Let f be an analytic function on D and g be an analytic function on D. Suppose that $\sup _{z \in D}|f(z)|<+\infty$. Then the operator $I_{f} J_{g}$ is bounded on B if and only if

$$
\sup _{z \in D}\left(1-|z|^{2}\right)\left(\log \frac{1}{1-|z|^{2}}\right)\left|g^{\prime}(z)\right||f(z)|<+\infty .
$$

Let $\alpha>1$. Then the operator $I_{f} J_{g}$ is bounded on B^{α} if and only if

$$
\sup _{z \in D}\left(1-|z|^{2}\right)\left|g^{\prime}(z)\right||f(z)|<+\infty .
$$

Proof. Let $\alpha=1$. Let f be a function on D. First, suppose that

$$
\sup _{z \in D}\left(1-|z|^{2}\right)\left(\log \frac{1}{1-|z|^{2}}\right)\left|g^{\prime}(z)\right||f(z)|<+\infty .
$$

Then we see

$$
I_{f} J_{g} h(z)=\int_{0}^{z} h(\zeta) g^{\prime}(\zeta) f(\zeta) d \zeta
$$

Since $|h(z)| \leq C\|h\|_{B} \log \frac{1}{1-|z|^{2}}$ for $h \in B$, we have

$$
\begin{aligned}
(1 & \left.-|z|^{2}\right)\left|\left(I_{f} J_{g} h\right)^{\prime}(z)\right| \\
& =\left(1-|z|^{2}\right)\left|h(z) g^{\prime}(z) f(z)\right| \\
& \leq \sup _{z \in D}\left(1-|z|^{2}\right)\left(\log \frac{1}{1-|z|^{2}}\right)\left|g^{\prime}(z)\right||f(z)|\|h\|_{B} .
\end{aligned}
$$

Hence

$$
\left\|I_{f} J_{g} h\right\|_{B} \leq \sup _{z \in D}\left(1-|z|^{2}\right)\left(\log \frac{1}{1-|z|^{2}}\right)\left|g^{\prime}(z)\right||f(z)|\|h\|_{B} .
$$

To prove the converse, we suppose that $I_{f} J_{g}$ is bounded on B. For $a \in D$, it is clear that the test function $h(z):=\log (1-\bar{a} z) \in B$. Since $I_{f} J_{g}$ is bounded on B, for any $z \in D$

$$
\begin{aligned}
& \left(1-|z|^{2}\right)|\log (1-\bar{a} z)|\left|g^{\prime}(z)\right||f(z)| \\
& \quad=\left(1-|z|^{2}\right)|h(z)|\left|g^{\prime}(z)\right||f(z)| \\
& \quad \leq\left\|I_{f} J_{g} h\right\|_{B} \leq\left\|I_{f} J_{g}\right\|\|h\|_{B} \leq K<+\infty
\end{aligned}
$$

Applying $z=a$, we have

$$
\left(1-|a|^{2}\right)\left(\log \frac{1}{1-|a|^{2}}\right)\left|g^{\prime}(a)\right||f(a)| \leq K,
$$

for any $a \in D$. Hence we have

$$
\sup _{z \in D}\left(1-|z|^{2}\right)\left(\log \frac{1}{1-|z|^{2}}\right)\left|g^{\prime}(z)\right||f(z)|<+\infty
$$

In the case of $\alpha>1$, we can prove it as well. So we omit it.
Theorem 4.2 Let f be function on D and g be an analytic function on D. Suppose that $\sup _{z \in D}|f(z)|<+\infty$. Then the operator $I_{f} J_{g}$ is compact on B if and only if

$$
\lim _{|z| \rightarrow 1^{-}}\left(1-|z|^{2}\right)\left(\log \frac{1}{1-|z|^{2}}\right)\left|g^{\prime}(z)\right||f(z)|=0 .
$$

Let $\alpha>1$. Then the operator $I_{f} J_{g}$ is compact on B^{α} if and only if

$$
\lim _{|z| \rightarrow 1^{-}}\left(1-|z|^{2}\right)\left|g^{\prime}(z)\right||f(z)|=0
$$

Proof. Let $\alpha=1$. Then we have

$$
\begin{aligned}
\left\|I_{f} J_{g} h\right\|_{B} & \leq \sup _{z \in D}\left(1-|z|^{2}\right)\left(\log \frac{1}{1-|z|^{2}}\right)\left|g^{\prime}(z)\right||f(z)|\|h\|_{B} \\
& \leq \sup _{z \in D}|f(z)| \sup _{z \in D}\left(1-|z|^{2}\right)\left(\log \frac{1}{1-|z|^{2}}\right)\left|g^{\prime}(z)\right|\|h\|_{B} .
\end{aligned}
$$

By using the fact that $A_{1} A_{2}$ is compact operator on B for any bounded operator A_{1} on B and compact operator A_{2} on B and the fact $\left(I_{f} J_{g}\right)^{* *}=$ $I_{f} J_{g}$, we can prove this theorem as well as the proof of Theorem 2.3. In the case of $\alpha>1$, we can prove it as well.

References

[1] Aleman A. and Siskakis A.G., An integral operator on H^{p}. Complex Variables, 28 (1995), 149-158.
[2] Aleman A. and Siskakis A.G., Integration operators on Bergman spaces. Indiana Univ. Math. J. 46 (1997), 337-356.
[3] Brown L. and Shields A.L., Multiplier and cyclic vectors in the Bloch space. Michigan Math. J. 38 (1991), 141-146.
[4] Duren P.L., Romberg B.W. and Schilds A.L., Linear functionals on H^{p} spaces with $0<p<1$. J. Reine Angew. Math. 238 (1969), 32-60.
[5] Pommerenke Ch., Schlichte Funktionen und analytische Functionen von beschrankter mittlerer Oszillation. Comment. Math. Helv. 52 (1977), 591-602.
[6] Ramey W. and Ullrich D., Bounded mean oscillation of Bloch Pull-backs. Math. Ann. 291 (1991), 591-606.
[7] Siskakis A.G. and Zhao R., A Volterra type operator on spaces of analytic functions. Contemporary Mathematics. 232 (1999), 299-311.
[8] Stroethoff K. and Zheng D., Products of Hankel and Toeplitz operators on the Bergman space. J. Funct. Anal. 169 (1999), 289-313.
[9] Yoneda R., Integration operators on weighted Bloch space. Nihonkai Math. J. 12 No. 2 (2001), 123-133.
[10] Zhu K., Operator Theory in Function Spaces. Marcel Dekker, New York 1990.
[11] Zhu K., Analytic Besov Spaces. J. Math. Anal. Appl. 157 (1991), 318-336.
[12] Zhu K., Bloch type spaces of analytic functions. Rocky Mout. J. Math. 23 (1993), 1143-1177.

Aichi University of Education
Igaya-cho, Kariya-shi
Aichi, 448-8542 Japan
E-mail: ryoneda@auecc.aichi-edu.ac.jp

[^0]: 2000 Mathematics Subject Classification : 30D55.

