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Real moduli in local classification of Goursat flags
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Abstract. Goursat distributions are subbundles (of codimension at least 2) in the tan-

gent bundles to manifolds having the flag of consecutive Lie squares of ranks not de-

pending on a point and growing — very slowly — always by 1. This defining condition is

rather strong, implying local polynomial pseudo-normal forms for them (proposed in 1981

by Kumpera and Ruiz) featuring only real parameters of à priori unknown status, many

of them reducible by further diffeomorphisms of the base manifold.

We show that in the local C∞ and Cω classifications of Goursat distributions genuine

continuous moduli appear already in codimension 2. First examples of such moduli were

given in codimension 3; in codimensions 0 and 1 the local classification is known and

discrete.

Key words: Goursat flag, singularity, local classification, module, geometric class, basic

geometry.

1. Geometric classes of germs of Goursat flags and Main
Theorem

Goursat flags are certain special nested sequences, say F , of variable
length r (2 ≤ r ≤ n − 2) of subbundles in the tangent bundle TM to
a smooth (C∞) or analytic (Cω) n-dimensional manifold M : Dr ⊂ Dr−1 ⊂
· · · ⊂ D1 ⊂ D0 = TM . Namely, one demands, for l = r, r − 1, . . . , 1 that
(a) cork Dl = l, and (b) the Lie square of Dl be Dl−1. Every member of F
save D1 is called Goursat distribution, r is called the length of F . They
naturally generalize the well-known Cartan’s distributions on the jet spaces
of functions R → R. The latter (the smallest flag’s member is then of
rank 2) satisfy (a)–(b), but display no singularities. While these conditions
do admit singularities, as it has been known since 1978 (Giaro-Kumpera-
Ruiz, see their Example 1).

This, very restricted, class of objects was being investigated (intermit-
tently) over the last 110 years, with important contributions by E. von
Weber [23] and E. Cartan [4]; the latter arriving at those systems in his
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analysis of the least underdetermined ODEs (see more on that below). They
proved independently that every corank r Goursat distribution Dr around
a generic point of M locally behaves in a unique way visualised by the
chained model — the germ at 0 ∈ Rn(x1, . . . , xr+2;xr+3, . . . , xn) of

(
∂n, . . . , ∂r+3; ∂r+2, ∂1 + x3∂2 + x4∂3 + · · ·+ xr+2∂r+1

)
(C)

(these are vector fields generators; effectively used are only first r + 2 co-
ordinates). In such a local expression one easily retrieves the Lie growth
assumed in the definition: the Lie square produces only one new and lin-
early independent generator ∂r+1, the next Lie square likewise produces
only ∂r, etc. Chained models can be viewed as the simplest instance of
a family of local writings (preliminary normal forms with real parameters
of, in general, unknown status) of Goursat distributions, obtained much
later by Kumpera and Ruiz in [10] and quoted in Theorem 1. We call
them KR pseudo-normal forms. As already told, Kumpera and Ruiz dis-
covered singularities hidden in flags, and pseudo-normal forms were merely
a byproduct. Those forms, however, have been an important step in the
(still open) problem of the local classification (C∞ or Cω) of flags; they
feature only numerical parameters, and no functional moduli.

Theorem 1 ([10]) For any Goursat flag of length r on a smooth (C∞ or
Cω) manifold M of dimension n ≥ r + 2, TM = D0 ⊃ D1 ⊃ D2 ⊃ · · · ⊃
Dr, around any point p ∈ M there exist local coordinates x1, x2, . . . , xr+2;
xr+3, . . . , xn centered at p, of the same class as M , such that in these coordi-
nates each Dj has around p a Pfaffian description ω1 = ω2 = · · · = ωj = 0,
j = 1, 2, . . . , r, where

ω1 = dxi1 − x3dxj1 , (i1, j1) = (2, 1)

ω2 = dxi2 − x4dxj2 , (i2, j2) = (3, j1) = (3, 1)

ω3 = dxi3 − x5dxj3 , (i3, j3) ∈ {(4, j2), (j2, 4)}
ω4 = dxi4 −X6dxj4 , (i4, j4) ∈ {(5, j3), (j3, 5)}

∗ ∗ ∗ ∗
ωr = dxir −Xr+2dxjr , (ir, jr) ∈ {(r + 1, jr−1), (jr−1, r + 1)}.

In this writing, for 6 ≤ l ≤ r + 2, X l = cl + xl excepting the cases of
inversions (il−2, jl−2) = (jl−3, l−1) when simply X l = xl. That is, each Dj

becomes in these coordinates the germ at 0 ∈ Rn of the indicated corank-j
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polynomial Pfaffian system. The c6, c7, . . . , cr+2 are real constants that are
not, in general, uniquely determined by the flag’ germ.

Moreover, when j3 = j4 = · · · = jl = 1 for certain 4 ≤ l ≤ r (i.e., when
there is no inversions of differentials in ω3, ω4, . . . , ωl), then, specifically,
c6, c7, . . . , cl+2 are zero.

Conversely, all pairs of sequences {il} and {jl} (l = 1, . . . , r) fulfilling
the conditions written above, and arbitrary real constants c6, c7, . . . , cr+2

(when applicable) are permitted and always give a Goursat flag.

We underline that in this theorem all members of the flag of Dr simul-
taneously get certain neat descriptions. The generic model (C) comes out
when there is no inversion of differentials in all 1-forms ω3, ω4, . . . , ωr.

Corollary 1 It follows automatically from Theorem 1 that Goursat dis-
tributions of arbitrary rank locally are the direct sums of integrable distribu-
tions (foliations) and of Goursat distributions of rank 2 invariant with re-
spect to those foliations. In Kumpera-Ruiz coordinates for any given Gour-
sat germ, that integrable direct summand gets a clear description dx1 =
dx2 = · · · = dxr+2 = 0.

At a first glance it is hardly perceptible how the constants reflect dif-
ferent geometric behaviours of flag’s members. Prior to more conclusive
Proposition 1, here are two statements aimed at showing that in pseudo-
normal forms certain constants are of key importance, while others are
simply irrelevant. For r = 5, in the family of KR pseudo-normal forms

(
dx2 − x3dx1, dx3 − x4dx1, dx1 − x5dx4,

dx5 − (c6 + x6)dx4, dx6 − (c7 + x7)dx4
)

(1)

around 0 ∈ R7, the objects with c6 = 0 are non-equivalent to those with
c6 6= 0. Among the former, the value of c7 can be reduced either to 0 or
to 1, and these two normalized values are non-equivalent. Among the latter,
c6 can be reduced to 1, and (quite unexpectedly; overlooked in [10], rectified
in [7] and [5]) c7 to 0. Thus the non-equivalent ‘model’ values of (c6, c7) are
just (1, 0), (0, 1) and (0, 0).

For r = 8, in the family
(
dx2 − x3dx1, dx3 − x4dx1, dx1 − x5dx4, (2)

dx5 − (c6 + x6)dx4, dx4 − x7dx6, dx7 − (c8 + x8)dx6,
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dx6 − x9dx8, dx9 − (c10 + x10)dx8
)

of germs at 0 ∈ R10 with, say, c6, c8 6= 0, the quantity
(
c6

)−1(
c8

)2
c10 turns

out to be an invariant (module) of the local classification of Goursat distri-
butions, see Remark 3 in [15]. Therefore, after normalizing the preceding
constants c6 and c8 to 1, the value of c10 is uniquely determined in such
a pseudo-normal form.

Attention. The germs of corank-r Goursat distributions are very rare — of
codimension ∞ — among all germs of corank-r distributions. The unique
and important exception is corank 2 in the ambient dimension 4; this is
the pioneering Engel situation [6] giving a huge open set in the space of all
germs. (The Engel local model appears in Theorem 1, as well as in (C): for
n = 4 and r = 2 one finds there dx2 − x3dx1 = dx3 − x4dx1 = 0.)

Although far from being generic, these distributions are important in
applications. For instance, they locally possess nilpotent bases and underlie
classical kinematic systems ‘car + [many] passive trailers’ (see more on that
in section 1.1); the absence of functional moduli is also a big advantage.

Moreover, as is proved in [13], modulo a splittable codimension two in-
tegrable subdistribution (see Corollary 1), Goursat distributions have a very
neat construction — are locally nothing more than series of quite elemen-
tary Cartan prolongations1 started from the tangent bundle to a [piece of]
2-surface. Also the resulting universal manifolds for flags of length r (called
sometimes Monster Goursat Manifolds) are explicitly described in [13].

Cartan used in [4] a prototype of the technique bearing nowadays his
name to answer what underdetermined systems of ODEs (degree of under-
determination 1) admit a parametrization of their generic solutions by one
free function of one variable. (Note parenthetically that that approach
of 1914 is currently being commented and extended to more deeply under-
determined systems of ODEs, [11], prompting the use of multiflags along
with Goursat flags (1-flags).)

1.1. Sandwich Diagram and the definition of geometric classes
An extended geometric clarification, summarized below in Proposi-

tion 1, is possible to the pseudo-normal forms of Kumpera & Ruiz. It
has been due mainly to Jean and Montgomery & Zhitomirskii. Upon closer

1as defined, in more general setting, in [3]
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inspection there emerges, [8, 13, 14], a stratification of germs of flags into
canonically defined geometric classes, with strata encoded by words (of
length equal to flag’s length) over the alphabet {G, S, T}: Generic, Singular,
Tangent, subject to certain restrictions. We want to recall that definition
and draw some natural corollaries.

The first ingredient is the classical notion, for any distribution D, of the
module (or sheaf of modules) of Cauchy-characteristic vector fields v with
values in D that preserve D, [v, D] ⊂ D. And one of first observations is
that for D — Goursat, L(D) is a regular corank two subdistribution of D,
rkL(D) = rkD − 2, enjoying one additional (and key) property. Namely,
L([D, D]) ⊂ D.

Remark 1 L(D) is that integrable direct summand in D mentioned in
Corollary 1. Also the property L([D, D]) ⊂ D is clearly visible in the glasses
offered by Theorem 1 which supplies local forms simultaneously for D and
[D, D], and allows to compute L([D, D]) as well.

The second ingredient is putting this all together for a corank r Goursat
distribution Dr, first done in [13], p. 464 under the form of the Sandwich
Diagram.

D1 ⊃ D2 ⊃ D3 ⊃ · · · ⊃ Dr−1 ⊃ Dr

∪ ∪ ∪ ∪
L(D1) ⊃ L(D2) ⊃ · · · ⊃ L(Dr−2) ⊃ L(Dr−1) ⊃ L(Dr).

In view of the mentioned properties, all direct inclusions in this diagram
are of codimension one. One gets here r − 2 squares (indexed by the upper
right vertices) built of inclusions, and in each j-th square (j = 3, 4, . . . , r)
the distributions Dj and L(Dj−2) have the same rank. These spaces can be
perceived as certain fillings in a sandwich with covers Dj−1 and L(Dj−1) (of
not the same dimension). With this interpretation at hand, Montgomery &
Zhitomirskii say that Dj is at p in singular position when it coincides at p

with L(Dj−2) : Dj(p) = L(Dj−2)(p). That is, when the fillings in the j-th
sandwich coincide (coalesce) at p.

A straightforward check (Proposition 2 in [18]) shows that this happens
iff in any pseudo-normal form for Dj around p there occurs the inversion
of differentials in ωj . (The pioneers Kumpera and Ruiz were not aware
of this interpretation. Its first mention ever was made, in a slightly veiled
form, in [3], p. 4557–11.) As a consequence, D3, D4, . . . , Dr can be, at any
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fixed point, in singular positions one independently of the others, giving
rise to 2r−2 invariant classes of local flag’s geometries (behaviours), or of
flag’s germs. Now the unique generic behaviour of flags, best visible via (C),
becomes more comprehensible (cf. elegant Proposition 2.1 in [13]): a rather
dry absence of inversions is nothing but the geometric absence of singular
positions.

Let us encode the coalescences happening at p by a word of length r,
with a j-th letter (3 ≤ j ≤ r) being S iff Dj is in singular position at p, and
with all letters before (i.e., to the left from) the first appearing letter S (if
any) being G. This implies that the two first letters are always G — the
two biggest flag’s members D1 and D2 are never in singular positions. Note
that, at this stage, a code may well have many blank spaces. The only
codes without blank spaces now are the code of the generic behaviour (all
letters G) and the codes starting with a number of G’s followed uniquely by
a number of S’s, like, for inst., in GGGSSSS. Before going further, let us
watch more closely a simple case of this last type — the local geometry GGS.

Example 1 Let D3 be a corank 3 Goursat germ already in the [Giaro-
Kumpera-Ruiz] normal form

dx2 − x3dx1 = dx3 − x4dx1 = dx1 − x5dx4 = 0

(the inversion of differentials dx1 and dx4 in the last Pfaffian equation
ω3 = 0). Its flag’s member D1 is given by (cf. Theorem 1) dx2 − x3dx1 = 0
and the Cauchy characteristics L(D1) of that member are (∂4, ∂5). This
2-plane coincides with D3 at 0, and — more generally — at all points of the
hypersurface {x5 = 0}. Therefore, D3 is in singular position not at isolated
points, but in codimension 1. It is likewise with materializations in flags
of any single singularity S, see for inst. Lemma 1 in [18].

Heading towards geometric classes and labels over {G, S, T}, we have
to fill in strings of blank spaces standing behind, or past, letters S. In the
many justifications that are omitted in this long definition, consequently
used are pseudo-normal forms of Theorem 1, serving in the guise of ‘night
glasses’ in the Goursat world. Let now the j-th letter in the actual word
be S followed by one or several blank spaces. In the eventual label this S is
followed by T when Dj+1(p) is tangent to the locus H — always a regular
hypersurface in M — of the previous singularity ‘Dj in singular position’.
(Dj is never tangent to ‘its’ singularity locus H, but Dj+1 ⊂ Dj may, at
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some more singular points, be so.)

Attention. The only thing to be checked with this definition of T going
directly after an S is that such tangent space Dj+1(p) be not . . . the first
order singular position L(Dj−1)(p) (prohibited when the (j + 1)-th place in
the preliminary word has been assumed blank). And it is straightforward,
for in KR coordinates L(Dj−1) = (∂j+2, ∂j+3, . . . , ∂n) is nowhere tangent to
H = {xj+2 = 0}.

If Dj+1(p) is not tangent to H, we insert a sequence of G’s past that S
at the j-th place until meeting the next S in the word (or till the end if
there is no next S).

The alternative ST or SGG. . . is equally transparent on the level of
pseudo-normal forms. Since there is no letter S at the (j + 1)-th place,
one discusses the position of Dj+1 at 0 in the situation when the incoming
Pfaffian equation ωj+1 = 0 has no inversion of differentials, hence features
a constant cj+3. And ST means just cj+3 = 0, while SG means cj+3 6= 0, in
whatever taken Kumpera-Ruiz coordinates.

If the (j + 2)-th place is still blank, then one watches the locus, say N ,
of ‘Dj in singular position and Dj+1 in tangent position’ which is always
an embedded codimension-two submanifold, cf. Proposition 3 in [18]. As
could be expected, Dj+1 is never tangent to ‘its’ double singularity locus N ,
and the same applies to L(Dj), but Dj+2 may (at some still more singular
points) already be tangent. And fills in the (j + 2)-th place with a letter T
precisely when Dj+2(p) is tangent to N . (Checking, as a matter of record,
that such tangent space Dj+2(p) does not coincide with . . . the singular
position L(Dj)(p), prohibited when the (j + 2)-th place in the word has
been blank. Namely, in any KR glasses one sees immediately that L(Dj)(p)
is not tangent to N .)

Otherwise Montgomery & Zhitomirskii fill in with G’s the string of
remaining blank spaces until the next S in the word, or till the end.

Needless to say, this alternative also reflects itself on the pseudo-normal
level: no inversion of differentials in ωj+2 = 0, hence cj+4 pops up and STT
corresponds precisely to cj+4 = 0, while STGG. . . corresponds to cj+4 6= 0,
regardless of the Kumpera-Ruiz coordinates in use.

The construction of the label ‘geometric class at p’ carries on as long
as there remain blank spaces. The moment when a sequence of tangencies
breaks down is ear-marked by starting a string of G’s that goes until the
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next S standing already in the word (or, in default, till the end). On the
pseudo-normal level it is marked by the apparition of a non-zero constant
after a suite of constants zero tied to a suite of tangencies. Alternatively,
tangencies, accompanied by the zero values of the incoming Kumpera-Ruiz
constants, may last till the next letter S in the word, or, in default, till flag’s
end.

Example 2 The family of pseudo-normal forms (1) represents and visu-
alises the geometric classes GGSGG (when c6 6= 0), GGSTG (when c6 = 0,
c7 6= 0), GGSTT (when c6 = c7 = 0).

The family (2) represents the classes GGSGSGSG (when c10 6= 0) and
GGSGSGST (when c10 = 0).

Let us watch back what are the only restrictions the obtained codes
of geometric classes are subject to. They are just the two necessary G’s
in the beginning and that a letter T cannot go directly after a letter G.
Therefore, for length 2 there is but one class GG, for length 3 — only GGG
and GGS (the latter — historically the first singular class found — discussed
in Example 1), for length 4 — GGGG, GGSG, GGST, GGSS, GGGS.2

Making a point and recapitulating the construction of Montgomery &
Zhitomirskii,

Proposition 1 A geometric class C encoded as a word over the alpha-
bet ‘Generic, Singular, Tangent’ is represented by the pseudo-normal forms
(glasses for Goursat distributions) subject to the following limitations:
• the inversions of differentials occur precisely and only in the Pfaffian

equations corresponding to the letters S in C (that is, corresponding to
the flag members in singular positions at a reference point),

• if the j-th letter in C is T, then cj+2 = 0, whatever the pseudo-normal
form under consideration,

• if the j-th letter in C is G going directly after a letter T, then cj+2 6= 0,
whatever the pseudo-normal form.

Also conversely, any pseudo-normal form satisfying these conditions sits
in C.

These precisions are fundamental for the exposition that follows.

2A straightforward recurrence yields that there exist u2r−3 (Fibonacci number) geo-

metric classes of the germs of flags of length r.
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Lastly in this section, we want to underline that basically (although not
being explicitly spelled) the geometric classes, have been created already
in [8]. Jean considered a kinematic model of a car drawing a given num-
ber n of attached passive trailers, representing (as has been well-known
since the beginning of the 1990s) a rank 2 Goursat distribution, D, on the
configuration space Σ = R2 × (S1)n+1; the length of the flag of D was then
n + 1. He described (under certain obvious normalizing conditions on the
car systems) — in terms of the sequence of critical angles a1 = π/2, ai+1 =
arctan(sin ai) — a stratification of Σ into ‘regions’. As a matter of fact,
his strata can be encoded by the same words over {G, S, T} as introduced
above and are nothing but the geometric classes of the germs of D at differ-
ent points of Σ. In fact, when the trailers are indexed backwards (the last is
number 1, one before last is number 2, etc., the car itself is ‘number n+1’),
the right angle ±a1 between trailers number j − 1 and j (3 ≤ j ≤ n + 1)
exactly corresponds to the letter S at the j-th place. Then a very natural
computation (assuredly felt but not done by Jean) shows that consecutive
critical angles ±a2, ±a3, . . . appearing directly after (i.e., closer to the car!)
a ±a1 in an instantaneous configuration, mean precisely a string of consec-
utive tangencies: ST when the neighbouring angles are a1, a2 (omitting
a sign that should be, naturally from the kinematic point of view, one and
the same in the whole string); STT when the neighbouring angles are a1,
a2, a3, etc.

In [5], chapter 6, Jean’s strata were encoded by words over {1, 2, 3}
subject to the same limitations as the words of Montgomery & Zhitomirskii.
The ‘GST’ code is obtained from an admissible word over {1, 2, 3} via the
translation 1→ T, 2→ G, 3→ S, and adding two G’s on the left (they are
written, as the reader may recall, just to keep track of the fact that flag’s
members D1 and D2 are never in singular positions).

We note also that another way of constructing the higher order singu-
larities of Goursat flags has been proposed by Pasillas & Respondek in [22].
That way turns out, despite much different language being used, equivalent
to the above-outlined canonical definition based on consecutive tangencies.
Geometric classes are called in [22] singularity types and are encoded by
strings of: a0 and the letters a1, a2, . . . (recalling, these letters have meant
in [8] the consecutive critical values of angles in the configurations of trailers.
Just giving an example, a Jean stratum defined by angles ∗∗a1a2a3∗∗ a1a2 ∗
has the singularity type a0a0a1a2a3a0a0a1a2a0, while it is the geometric
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class GGSTTGGSTG.)
Often, instead of ‘belongs to a class C’, we will (all the time after [14])

say ‘has the basic geometry C’.
Returning to Proposition 1, it also helps to make sure that, in any fixed

length r, all u2r−3 ‘GST’ labels are geometrically realizable (in the language
of [14]: all theoretically possible basic geometries of flags do materialize).
As regards their materializations for concrete flags, and codimensions of
appearing singularity loci, there holds a handy

Proposition 2 For any flag F on M , the locus of points at which F
belongs to a fixed geometric class C is an embedded submanifold of M of
codimension equal to the number of S’s and T’s in the code of C.

Therefore, only the locus of points materializing the class GG . . .G is
open, and also dense, in M ; these are the generic points around which F
can be brought to the relevant chained model (C).

This general and important statement can be quickly proved (locally)
in any chosen KR glasses offered by Theorem 1, just as it has been the case
during the construction of geometric classes. In particular we note that
Proposition 2 holds for any flag, not only for flags being ‘generic among
flags’. The explanation is that Goursat condition appears to be so stringent
as to materialize only transversally to stratifications by geometric classes
that are discussed in more detail in the next section. (The loci addressed in
Proposition 2 are shadows, or counterimages, of those strata.) Surprisingly,
then, all flags are generic in certain sense.

1.2. Geometric classes form a stratification
Needless to say, in any length, the geometric classes are pairwise disjoint

and invariant under the action of local diffeomorphisms between manifolds.
As a matter of fact, the geometric classes having codes of length r are de-
fined in the space Hr of the r-jets of corank-r Goursat distributions. It is so
because such Goursat germs are r-determined3 ([13]) and, reiterating, these
classes are invariant w.r.t. diffeomorphisms. They do form a stratification
of Hr in Thom’s sense — are embedded submanifolds of codimensions equal
to the codimensions of their materializations for concrete distributions (and
hence equal to the total numbers of letters S, T in their codes), and are

3what is cardinal in this result is that they are r-determined only within the Goursat

world
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adjacent only to classes of smaller codimensions. (A disjoint from a sub-
manifold A submanifold B is adjacent to A, B −→ A, when B ⊂ A.)

Indeed, all counterimages by sections, or: counterimages by r-jets’ pro-
longations of genuine Goursat distributions (materializations of geometric
classes) are such submanifolds by Proposition 2, while the adjacencies in
jets can be read off from the shadows of adjacencies visible in sections.

We want to be precise on this last statement. Focusing on a given class C
and on a representative D in pseudo-normal form of its arbitrary member,
Proposition 1 allows to see explicitly what other classes materialize at points
arbitrarily close to 0 (the reference point for D). Putting it the other way
round, to what other classes are objects in C arbitrarily close (adjacent).

If C is generic then it is adjacent to no other classes, because C is open.
If C is of positive codimension, then at points close to 0 there is no room
for other than those marked in C flag’s members to be in singular positions,
as well as no room for longer strings of consecutive tangencies than those
marked in C. Those strings may only get shorter (and complementary to
them strings of G’s — longer) or disappear. Independently of that, also
the singular positions S present in C may get perturbed, hence disappear
and so become G positions, and that together with their strings of possible
tangencies! Some concrete instances of this are given in Example 3. More
precisely (using explicitly the Kumpera-Ruiz glasses), even if it were an S
position directly after another S, or directly after a string of T’s, then in the
vicinity of 0 that S could not jump to a T position: it could only shift to
a non-singular position with a Kumpera-Ruiz constant in a neghbourhood
of ∞ (∞ corresponds to the original singular position), while the tangency
would mean the constant zero.

Summing up, any geometric class to which C is adjacent has smaller
than C the total number of letters S, T in its code. Hence is of smaller
codimension, as required in stratifications.

1.3. The overview of Goursat singularities of small codimensions
and main result

In the sequel, when speaking about singularities of Goursat distribu-
tions of a given codimension c, one may simply think about all geometric
classes of codimension c. That is, on technical level, about all admissible
words having in total c letters S, T. Prior to that we only need recall two
general concepts.
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One of the most important notions related to singularities in general is
modality, as well as simplicity which means the modality zero. Modality can
be defined for points of any manifold X having a Lie group G acting on it,
and is equal to m for a point x ∈ X when a sufficiently small neighbourhood
of x is covered by a finite number of m-parameter families of orbits of G,
while m− 1 does not have this property. Such, invariant for G, parameters
are called moduli. A point x is simple when its modality is zero, that is
when x possesses a neighbourhood covered by finitely many orbits of G. In
other words, x is simple when the moduli of the action of G do not show
up in the vicinity of x; cf. [2] for all that framework.

In the context of singularity theory, when one deals with whatever ob-
jects (functions, vector fields, distributions, . . . ) that happen to be finitely
determined, then modality, and in particular simplicity, can be defined for
them, too.

In particular, in view of the facts evoked in the previous section, modal-
ity can be attached to every germ of Goursat distributions; for corank-r
objects it suffices to work on the manifold of r-jets of them, cf. Theorem 2
in [13]. Reiterating, then, a corank-r Goursat germ D is simple when in the
vicinity of the r-jet of D there occur only finitely many orbits of the r-jets
of Goursat distributions. Unimodal corank-r Goursat germs are those that
are not simple and possess a neighbourhood in the r-jets covered by a finite
number of 1-parameter families of orbits (viewed, without loss of generality,
on the r-jets level).

Example 3 (a) The Goursat germs (1) representing, after Example 2, the
classes GGSTT, GGSTG, GGSGG, are all simple because the only existing
adjacencies of these classes can be read off from the diagram

GGSTT −→ GGSTG −→ GGSGG −→ GGGGG.

Thus, the first listed class is adjacent only to GGSTG, GGSGG, GGGGG;
the second — only to GGSGG and GGGGG; the third only to GGGGG.
And all four classes appearing in this example are (modulo integrable fac-
tors, or: in a fixed dimension of the underlying manifold, see Corollary 1)
single orbits.

(b) Whereas the germs in (2) representing, we recall, the classes
GGSGSGST and C = GGSGSGSG, are all unimodal. Indeed, GGSGSGST
is a single orbit and is adjacent to: C, whose orbits are parametrized by
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exactly one invariant parameter visible in (2), and to all strata that are ad-
jacent to C, that is: GGSGSGGG, GGSGGGSG, GGGGSGSG (one letter S
in C perturbed to G), GGSGGGGG, GGGGSGGG, GGGGGGSG (two S’s
in C perturbed to G), and GGGGGGGG (all three S’s in C perturbed to G);
cf. the general explication in section 1.2. By a variety of arguments, includ-
ing [15, 18] and the last statement in Theorem 2 below, all these seven
neighbouring strata are, always modulo integrable factors, single orbits; the
main Theorem 2 is needed (only in its easy part k = 3) for the first listed
GGSGSGGG.

(c) This unimodal example extends naturally to a family of (conjec-
turally) modality-l examples, l ≥ 1. In fact, it is rigorously shown in [15],
p. 111 that, for the germs in the geometric class Cl = GGSGSG . . .SG
with l + 2 identical groups ‘SG’ going one after the other, their pseudo-
normal forms with two first constants c6, c8 normalized to 1 exactly
parametrize — by the non-zero (cf. Proposition 1) values of the con-
stants c10, c12, . . . , c2l+8 — the orbits of the local classification sitting in Cl.
That is, there are exactly l independent moduli in that class, while in the
strata to which Cl is adjacent there is, with all probability, less moduli.
Unfortunately, this point is rigorously shown, in (b) above, only for l = 1.

Notation. In the present paper, in the context of words (codes, labels) a sub-
script will mean the number of repetitions of a letter in a word. Moreover,
from now on, in the dotted places within the ‘GST’ codes there will only
stand letters G; observe that it was not yet the case in Example 3 (c).

What is known about the local classification of Goursat distributions
beyond the generic strata Gr, dealt with in [23, 4], that are single orbits
and display no singularities at all?

The singularities of codimension 1 (geometric classes with just one
letter S in the codes) have been classified, for all lengths r, in [18].
On manifolds of fixed dimension, the germs in each class Gk−1SGr−k,
3 ≤ k ≤ r, are all mutually equivalent. (The fact was used, for instance,
in Example 3 (a)–(b).) This together with the fact that each Gk−1SGr−k is
adjacent only to Gr, imply that the Goursat germs in classes of codimen-
sion 1 are all simple. In other words, the modality in the classes GGS. . . ,
GGGS. . . , GGGGS. . . , . . . is zero.

Singularities of codimension 2, or geometric classes with codes having
two letters different from G, are more involved. These letters can be S,
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S (possibly separated by a number of G’s) or S, T. The classes with the
sequence ST in the code have been the subject of [20]. It is shown there
that: a) they are simple in pure codimension 2 (i.e., modulo other singularity
loci of codimension 3; there is no module in their local classification and
these ‘ST’ classes are only adjacent to codimension one and zero classes,
well known to be single orbits); b) the first in this family class GGST. . . is
simple without any excision.

Much less is known about classes having two letters S in their codes.
The work on classes having the sequence SS in the code is not yet finished,
and it keeps being plausible that the classification of these classes is discrete
in any length.

In the present paper we show continuous invariants of the local classi-
fication in all classes, excepting a somehow simpler GGSGS. . . , having the
sequence SGS in the code. The result is stated precisely below. Codimen-
sion 2 is, therefore, of a threshold nature, and is the codimension of the
onset of moduli in the Goursat world.

For historical accuracy, first examples (1997, without the geometric
classes language yet) of continuous invariants among germs of Goursat dis-
tributions were found in classes of codimension 3: GGGSTTGGG ([22])
and — [15] — in the family (2) discussed already in Examples 2–3. It is
perhaps noteworthy that those examples, as well as the ones produced in
Theorem 2 below, all realize the pattern 3 from an important systemati-
zation, of all thinkable one-step prolongations of Goursat germs, proposed
in [13] (see also Remark 2 below). Whereas in [19] were given (in classes of
codimension 4, the classes GGSTTT. . . among them) examples of moduli
arising from a more involved pattern 2c.

Theorem 2 (Main Theorem) Fix k ≥ 4. Any germ Dk+5 of a Gour-
sat distribution of corank k + 5, on an n-dimensional C∞ or Cω manifold,
having the basic geometry Gk−1SGSGGG (that is, having in singular posi-
tions only its flag members of coranks k and k + 2, and having no tangen-
cies) is locally equivalent to precisely one member in the family of germs at
0 ∈ Rn(x1, . . . , xk+7;xk+8, . . . , xn) of distributions described by the Pfaffian
equations

dx2 − x3dx1 = 0,

dx3 − x4dx1 = 0,

∗ ∗
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dxk − xk+1dx1 = 0,

dx1 − xk+2dxk+1 = 0,

dxk+2 − (1 + xk+3)dxk+1 = 0, (Mc)

dxk+1 − xk+4dxk+3 = 0,

dxk+4 − (1 + xk+5)dxk+3 = 0,

dxk+5 − xk+6dxk+3 = 0,

dxk+6 − (c + xk+7)dxk+3 = 0,

where c ∈ R. All distributions (Mc) have at 0 the basic geometry
Gk−1SGSGGG, and (Mc), (Mc̃) are not equivalent when c 6= c̃.

When k = 3, all normal forms (Mc) are equivalent to (M0): there is no
module of the local classification in the geometric class GGSGSGGG.

Remark 2 The assertions of Theorem 2 can be equivalently stated in
terms of the mentioned systematization of prolongations of Goursat germs
from [13]. In the language of that reference work these reformulations go as
follows.

For any k ≥ 4 and any germ, at a point p, of a Goursat flag Dk+5 ⊂
Dk+4 ⊂ Dk+3 ⊂ · · · sitting in the class Gk−1SGSGGG, firstly, the pro-
longation pattern of the germ of Dk+3 at p is 1: there is only one fixed
point L(Dk+2)(p)/L(Dk+3)(p) on the circle S1(Dk+3)(p), and only two or-
bits in it: this fixed point and all the remaining of the circle; the prolonged
germ Dk+4 sits in that second orbit. And secondly — the key property
being established in the present paper — the prolongation pattern of the
germ at p of Dk+4 is 3: all points on the circle S1(Dk+4)(p) are fixed, thus
giving rise to a module in the local classification of the one-step prolonga-
tions of Dk+4. The values of c in Theorem 2 parametrize all points of this
circle except the vertical position point L(Dk+3)(p)/L(Dk+4)(p) (for which
one would have, naturally, a different Kumpera-Ruiz normal form with an
inversion in the bottommost Pfaffian equation).

The proof of Theorem 2 occupies most of the remaining of the paper. In
separate Chapter 2 given is an overview of the proof: a sketch of our reducing
and refining the relevant Kumpera-Ruiz pseudo-normal forms, computing
infinitesimal symmetries of them, as well as a resulting (fundamental) reason
for a module already in codimension two.

Then, starting the proper proof, one preliminary reduction of pseudo-
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normal forms is explained in detail in Chapter 3. In turn, the invariant
character, when k ≥ 4, of the parameter c that remains after that simplifi-
cation is justified in Chapter 4. The reduction is precisely aimed at making
that (main) part of the proof as transparent as possible: to have to compare
just two values of a single parameter in the relevant pseudo-normal form.
One can note post factum (upon analyzing the entire proof) that prior to
the reduction, a somehow obstruse combination (14) of parameters entering
a more raw pseudo-normal form is an invariant of the local classification —
see Corollary 3 below.

In the concluding part of the proof (section 4.2) we treat separately the
exceptional case k = 3, explicitly driving then the parameter c to 0.

2. Overview of the proof

For certain time we work with any k ≥ 3. To the germ Dk+5 we apply
Theorem 1, obtaining a KR pseudo-normal form for it with inversions of
differentials only in k-th and (k + 2)-th Pfaffian equations (Proposition 1).
Within the range of the first k − 1 Pfaffian equations we can assume, with
no loss of generality, all constants to be zero (cf. the remark before Corol-
lary 1). Dk+5 becomes thus the germ at 0 ∈ Rn(x1, . . . , xk+7;xk+8, . . . , xn)
of (ω1, ω2, . . . , ωk+4, ωk+5) =

(
dx2 − x3dx1, dx3 − x4dx1, . . . , dxk − xk+1dx1, dx1 − xk+2dxk+1,

dxk+2 − (ck+3 + xk+3)dxk+1, dxk+1 − xk+4dxk+3,

dxk+4 − (ck+5 + xk+5)dxk+3, dxk+5 − (ck+6 + xk+6)dxk+3,

dxk+6 − (ck+7 + xk+7)dxk+3
)

(3)

with certain real constants ck+3 6= 0, ck+5 6= 0 (again Proposition 1),
ck+6, ck+7. For the remaining of the proof, without loss of generality we
can assume that n = k + 7. (When n > k + 7, the Cauchy characteristic
direct summand L(Dk+5) = (∂k+8, . . . , ∂n) in Dk+5 has no impact on the
proof; for n = k + 7, rkDk+5 = 2 and L(Dk+5) = 0.)

The task is now to simplify as far as possible the constants in (3). To
begin with, ck+3 and ck+5 can be normalized to 1, at the expense of changing
the values of ck+6, ck+7. Indeed, to normalize ck+3 is straightforward; in
doing so the remaining constants in (3) are changed. The normalization
of ck+5 preserving ck+3 = 1 (and changing again ck+6 and ck+7) is simple:
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xl = ck+5x̄l for l = k + 5, k + 4, k + 1, k + 2, x1 =
(
ck+5

)2
x̄1, xk−l =(

ck+5
)2l+3

x̄k−l for l = 0, 1, . . . , k − 2.
Then comes ck+6 (wherever it causes no misunderstanding, after rescal-

ings we tend to use the same letters). Because it is related to a letter G that
is not first (but second) in a string following an S, Proposition 1 specifies
nothing of it. At the same time the special case k = 3 discussed in [15], see
Lemma [32321] there, suggests that ck+6 is, possibly, reducible to 0. And
indeed it is, even preserving ck+3 = ck+5 = 1; simultaneously ck+7 changes
again to certain new value, say c. At this moment Dk+5 assumes the model
form (Mc) from Theorem 2 and there ‘only’ remains to justify that: for
k = 3 all those (Mc) are equivalent, and for k > 3 they are always pairwise
nonequivalent.

In the annihilation of ck+6 (that is not immediate) used are infinites-
imal symmetries of Goursat distributions. We will briefly recapitulate on
them right now, because they furnish also, if indirect (or: rough), argument
that — when k > 3 — the (Mc)’s are different.

Suppose a Goursat distribution D be already given in a pseudo-normal
form of Theorem 1. Then it is basically visible that D is a sequence of certain
‘projective’ extensions of the differential system (a contact structure) ω1 =
dx2 − x3dx1 = 0 on R3. (In fact, those are local, coordinate manifestations
of Cartan prolongations capable of locally producing any Goursat object,
as has been recalled early in Chapter 1.) The infinitesimal symmetries
of ω1 = 0 are generated by all C∞ (or analytic, depending on the chosen
category) functions f(x1, x2, x3) — a deep and basic thing observed long
time ago by S. Lie. In modern expositions like [1, 12], those generating
functions are called contact hamiltonians.

In view of the mentioned stepwise extensions yielding D, the i. s.’s of D

turn out to be sequences of relatively simple prolongations of the i. s.’s of
that Darboux structure. Consequently, they inherit the property of being
locally 1–1 parametrized by C∞ or Cω functions in three variables. As
regards chronology, in small dimensions the relevant parametrization was
used in [7] (with imprecisions, though), then in [9]; slightly later in [16] it
was given explicit recurrence formulas with proofs.

However, the parametrization depends sensitively on the distribution
of inversions of differentials in the pseudo-normal form for D (i.e., recalling,
depends on which members of the flag of D are in singular positions at the
reference point). Therefore, one has to deal in general with a long binary
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tree of different parametrizations. This is a disadvantage, yet for D in
a concrete pseudo-normal form one can advance rather far.

Having a D of corank r in a pseudo-normal form in the underlying
dimension r + 2, one denotes by Yf its infinitesimal symmetry induced by
a function f(x1, x2, x3) and deliberately puts in relief in Yf the first three
components,

Yf = A∂1 + B∂2 + C∂3 +
r+2∑

l=4

F l∂l (4)

— because the vector field A∂1 + B∂2 + C∂3 is an i. s. of dx2 − x3dx1 = 0.
Hence the classical expressions of Lie and his successors: A = −f3,
B = f − x3f3, C = f1 + x3f2 (the signs are different than in Appendix 4
of [1], because there the contact structure is written with the plus sign as
dx2 + x3dx1 = 0).

Continuing the overview, we consider now only k ≥ 4, D = (Mc) with
n = k + 7, and write uniquely the results of recursive computations of the
components of (4) for the object (Mc), all of them evaluated at 0 ∈ Rk+7:

Yf | 0 = −f3∂1 + f∂2 +
k−1∑

j=1

f1j∂j+2 −
(
2f2 + (2k − 1)f13

)
∂k+3 (5)

+
(
5f2 + (5k − 3)f13

)
∂k+5 + 9f1k

∂k+6

+
(
63f1k

+ 9cf2 + (9k − 5)cf13

)
∂k+7 | 0

(remember that this expression comes already much simplified due to the
absence of ck+6 in (Mc), and due to the evaluation at 0 only).

Now explore the possibility of changing only the last constant c in the
pseudo-normal form, keeping previously secured simplifications; because of
that we assume that all but the last components of Yf | 0 vanish.

Observe now the last component of Yf . Can it be non-zero, creating
some room for the values of c in (Mc)? It is visible that not, because
the couples of coefficients standing by f2 and f13 in the ∂k+3 and ∂k+5

components in (5) are independent,
∣∣∣∣∣
−2 −(2k − 1)

5 5k − 3

∣∣∣∣∣ = 1. (6)

Hence the vanishing of these components implies f2 | 0 = f13 | 0 = 0. When
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additionally the component on ∂k+6 is zero, also f1k
| 0 = 0. Then all terms

in the component on ∂k+7 in (5) are zero. Therefore, when the description of
the preceding part of the flag is frozen, it is impossible to perturb the value
of c in (Mc) by means of the embeddable symmetries of (Mc) understood as
a finite object.

This, thinking about possible symmetries not embeddable in flows, is
a weaker statement than that in Theorem 2. Yet it gives at least an inter-
pretation of the main result of the paper.

3. A simplifying reduction

We are going to reduce to 0 the constant ck+6 in the pseudo-normal
form Dk+5, changing also — this is inevitable — the value of ck+7, but
preserving the (elementary) normalizations made in Chapter 2. The value
of ck+6 will be moved to 0 gradually, using a flow of symmetries of the
distribution Dk+5 understood as an object defined on Rk+7 by the same
equations (3), with ck+3 and ck+5 now normalized to 1.

For transparency reasons it is useful to work with a ‘universal’ distri-
bution, D, that displays no constants shifting the last two variables, but
keeps displaying the previously standardized constants, D =

(
dx2 − x3dx1, dx3 − x4dx1, . . . , dxk − xk+1dx1, dx1 − xk+2dxk+1,

dxk+2 −Xk+3dxk+1, dxk+1 − xk+4dxk+3, dxk+4 −Xk+5dxk+3,

dxk+5 − xk+6dxk+3, dxk+6 − xk+7dxk+3
)
, (7)

Xk+3 = 1 + xk+3, Xk+5 = 1 + xk+5. The reason for that is that the
symmetries under consideration will keep all but the last two components
of 0 ∈ Rk+7, while the two last ones will be moved. Prior to write the
infinitesimal symmetries of D, using the formulas issuing from [16], we need
the following three vector fields

y = ∂1 + x3∂2 + x4∂3 + · · ·+ xk+1∂k,

Y = xk+2y + ∂k+1 + Xk+3∂k+2,

Ŷ = xk+4Y + ∂k+3 + Xk+5∂k+4 + xk+6∂k+5 + xk+7∂k+6. (8)

With these notations, the first group of components of Yf contains, apart
from functions A, B, C,

F 4 = yC − x4yA, F l = yF l−1 − xlyA for 5 ≤ l ≤ k + 1. (9)



20 P. Mormul

In the second group of components,

F k+2 = xk+2
(
yA− Y F k+1

)
, F k+3 = Y F k+2 −Xk+3Y F k+1;

(10)

F k+4 = xk+4
(
Y F k+1 − Ŷ F k+3

)
, F k+5 = Ŷ F k+4 −Xk+5Ŷ F k+3;

(11)

F k+6 = Ŷ F k+5 − xk+6Ŷ F k+3, F k+7 = Ŷ F k+6 − xk+7Ŷ F k+3.

(12)

Note parenthetically that (9)–(12) imply that, for 4 ≤ l ≤ k + 7, the
function F l depends only on x1, x2, x3, . . . , xl (in this respect, cf. a general
Proposition 1 in [17]). These formulas will be used for a concrete contact
hamiltonian prompted, reiterating, by the work [15].

Lemma 1 For any fixed k ≥ 3 and f =
(
x1

)k, the associated infinites-
imal symmetry Yf of D has all but the last two components vanishing at
0 ∈ Rk+7. Moreover, F k+6(0, . . . , 0, xk+6) = 9 k!.

Note that k = 3 is allowed in this lemma. The particularity of k = 3
resides in that, then, not only

(
x1

)3 works. Also the contact hamiltonian(
x3

)2 generates then a symmetry with similar properties, see section 4.2.

Proof. For f =
(
x1

)k a lot of calculations simplifies. Indeed, A ≡ 0, B = f ,
C = k

(
x1

)k−1and, using many times (9), F l = k(k−1) · · · (k−l+3)
(
x1

)k−l+2

for l = 4, . . . , k + 1. In particular, F k+1 = k!x1. Then, by (10), F k+2 =
−xk+2Y F k+1 = −k!

(
xk+2

)2. All these functions vanish at 0. The next
component of Yf ,

F k+3 = Y F k+2 −Xk+3Y F k+1 = Y
(−k!

(
xk+2

)2)−Xk+3Y (k!x1)

= −2 k!xk+2Xk+3 −Xk+3k!xk+2 = −3 k!xk+2Xk+3,

also vanishes at 0, as well as F k+4 (the latter by its very expression (11)).
We pass now to F k+5 | 0 =

Ŷ F k+4 −Xk+5Ŷ F k+3 | 0
= Ŷ

(
xk+4

(
Y F k+1 − Ŷ F k+3

))−Xk+5Ŷ F k+3 | 0
= Xk+5(Y F k+1 − 2Ŷ F k+3) | 0
= Xk+5(k!xk+2 + 2Ŷ

(
3 k!xk+2Xk+3

)
) | 0 = 0
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because Ŷ xk+2 =Xk+3xk+4. It remains to justify the ‘moreover’ part of
the lemma. In the line of computation that follows we use the facts
Ŷ F k+3 |0=−3k!

((
Xk+3

)2
xk+4 +xk+2

) |0=0, Ŷ Y F k+1 |0=0, Ŷ 2F k+3 |0=
−3k! Ŷ

((
Xk+3

)2
xk+4 + xk+2

) |0 =−3k!
(
3Xk+3xk+4 +

(
Xk+3

)2
Xk+5

) |0 =
−3k!. Therefore,

F k+6(0, . . . , 0, xk+6) =
(
Ŷ F k+5

)
(0, . . . , 0, xk+6)− xk+6

(
Ŷ F k+3

)
(0)

=
(
Ŷ 2F k+4

)
(0, . . . , 0, xk+6)− (

Ŷ 2F k+3
)
(0)

= 2
(
Ŷ Y F k+1

)
(0)− 3

(
Ŷ 2F k+3

)
(0)

= −3(−3 k!) = 9 k!.

Lemma 1 is proved. ¤

Lemma 2 For the same distribution D and contact hamiltonian
(
x1

)k

there holds additionally F k+7(0, . . . , 0, xk+6, xk+7) = 63 k! + 30 k!xk+6.

Proof. On top of the auxiliary computations used in the proof of Lemma 1,
we will need also

(
Ŷ 2Y F k+1

)
(0) = Ŷ 2

(
k!xk+2

)
(0) = k! Ŷ

(
Xk+3xk+4

)
(0)

= k!
(
xk+4 + Xk+3Xk+5

)
(0) = k!

and
(
Ŷ 3F k+3

)
(0, . . . , 0, xk+6)

= −3 k! Ŷ
(
3Xk+3xk+4 +

(
Xk+3

)2
Xk+5

)
(0, . . . , 0, xk+6)

= −3 k!
(
3xk+4 + 5Xk+3Xk+5 +

(
Xk+3

)2
xk+6

)
(0, . . . , 0, xk+6)

= −3 k! (5 + xk+6).

Thus prepared, compute now

F k+7(0, . . . , 0, xk+6, xk+7)

=
(
Ŷ F k+6

)
(0, . . . , 0, xk+6, xk+7)− xk+7

(
Ŷ F k+3

)
(0)

=
(
Ŷ 2F k+5

)
(0, . . . , 0, xk+6, xk+7)− xk+6

(
Ŷ 2F k+3

)
(0)

= Ŷ 3
[
xk+4

(
Y F k+1 − Ŷ F k+3

)]
(0, . . . , 0, xk+6, xk+7)

− 3xk+6
(
Ŷ 2F k+3

)
(0)− (

Xk+5Ŷ 3F k+3
)
(0, . . . , 0, xk+6)

= 3
(
Xk+5Ŷ 2Y F k+1

)
(0)− 6xk+6

(
Ŷ 2F k+3

)
(0)
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− 4
(
Xk+5Ŷ 3F k+3

)
(0, . . . , 0, xk+6)

= 3 k!− 6xk+6(−3 k!)− 4
(−3 k! (5 + xk+6)

)

= 63 k! + 30 k!xk+6. ¤

Recalling, Dk+5 is the germ of D at p = (0, . . . , 0, ck+6, ck+7) ∈ Rk+7.
So it may be instrumental to trace down the trajectory of Y(x1)k passing
by p at, say, t = 0. In view of Lemma 1, that integral curve has non-zero
only its two last coordinates: xk+6(t) = ck+6 + 9 k! t and xk+7(t), that can
be explicitly computed as well.

Indeed, xk+7(0) = ck+7 and, once xk+6(t) known, a simple differential
equation for xk+7(t) is furnished by Lemma 2:

dxk+7

dt
(t) = 63 k! + 30 k!

(
ck+6 + 9 k! t

)
.

Therefore, and immediately,

xk+7(t) = ck+7 +
(
63 k! + 30 k! ck+6

)
t + 135(k!)2t2. (13)

Corollary 2 The integral curve of Y(x1)k through p is defined for all
times t. Therefore, for any fixed time t, the time t flow of Y(x1)k is well
defined in a small (depending on t) neighbourhood of p.

In our approach the time −ck+6/9 k! flow is needed, because it annihi-
lates the xk+6 coordinate on the curve under consideration. Let us compute
the corresponding value of xk+7 on that curve. Substituting to (13),

xk+7

(
−ck+6

9 k!

)
= ck+7 − 7ck+6 − 30

9
(
ck+6

)2 +
135
81

(
ck+6

)2

= ck+7 − 7ck+6 − 5
3
(
ck+6

)2
.

Denoting

c = ck+7 − 7ck+6 − 5
3
(
ck+6

)2
, (14)

we know, then, that an integral curve of an i. s. of D (given by the equa-
tions (7)) joins the point p and the point q = (0, . . . , 0, 0, c). Thus the germs
of D at p (i.e., Dk+5) and at q are equivalent, and the latter one is (Mc).
The simplification announced in the present chapter is achieved.
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Corollary 3 When Goursat germs in the class Gk−1SGSG3, k ≥ 4, are
given in the pseudo-normal form

(
dx2 − x3dx1, dx3 − x4dx1, . . . , dxk − xk+1dx1, dx1 − xk+2dxk+1,

dxk+2 − (1 + xk+3)dxk+1, dxk+1 − xk+4dxk+3,

dxk+4 − (1 + xk+5)dxk+3, dxk+5 − (ck+6 + xk+6)dxk+3,

dxk+6 − (ck+7 + xk+7)dxk+3
)

(i.e., after normalizations of Chapter 2, but before the annihilation of ck+6

carried out in the present chapter), then the module evidenced in Theorem 2
assumes the form ck+7 − 7ck+6 − 5

3

(
ck+6

)2.

4. Proof of Theorem 2

4.1. For k ≥ 4 the germs (Mc) are all nonequivalent
In this section k ≥ 4. We will show that if (Mc) and (Mc̃) are equivalent

as germs at 0 ∈ Rk+7 then c = c̃.
Let us introduce a particular vector field generator that is related

to (Mc), Yc = Ŷ + c ∂k+6, with the vector field Ŷ defined much earlier
by (8).

In what follows we prove Theorem 2 in detail for k = 4. The proof,
re-read after a purely formal change of indices 5 → k + 1, 6 → k + 2, . . . ,
11→ k +7 (x1 remains x1, the block of variables x2, . . . , xk is irrelevant for
the proof) is valid for general k ≥ 4.

Suppose that a local diffeomorphism g = (g1, g2, . . . , g11) : (R11, 0) ←↩

sends Dc = (∂11,Yc) to Dc̃ = (∂11,Yc̃). Notations and limitations are
similar to those in [19]; for instance, g1, . . . , g10 do not depend on x11. In
fact, for 4 ≤ l ≤ 10, gl does not depend on xl+1, . . . , x11; g1, g2, g3 depend
only on x1, x2, x3. Moreover, two of these coordinate functions must be of
more special form,

g6(x) = x6G6(x1, . . . , x6), g8(x) = x8G8(x1, . . . , x8),

because g preserves the loci (identical for Dc and Dc̃) {x6 = 0} and {x8 = 0}
where the flags of Dc and Dc̃ have members of coranks 4 and 6 in singu-
lar positions, S. There is much more limitations, in fact. The conjugacy
g∗Dc = Dc̃ implies immediately a basic set of relations

[
Dg(x)

]10

1
Yc(x) = f(x)Yc̃(g(x)) (15)
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(where
[
Dg(x)

]l

1
always means the upper-left submatrix l × l of the 11× 11

matrix Dg(x)) holding for certain function f , f | 0 6= 0 (because g sends
(∂11) to itself). An auxiliary, also important, set of relations reads

[
Dg(x)

]6

1
Y (x) = (fG8)(x) Y (g(x)); (16)

this system of equations is the first reduction of the system (15) in the
terminology of [15], Chapter 5. Because there are two letters S in the code
(GGGSGSGGG) that we deal with in the proof, the second reduction of (15)
(or: the first of (16)) exists, and holds, as well:

[
Dg(x)

]4

1
y(x) = (fG8G6)(x) y(g(x)). (17)

These three sets of equations form together a very powerful tool, reflecting
certain rigidity of the flags of Dc and Dc̃; rigidity so high that c = c̃ will turn
out inevitable. As in [19], we start to derive a long list of consequences of
the three sets of relations, writing in “ ” the number of the actually evoked
equation from a given set. To begin with,

g7
7 | 0 = f | 0 (18)

by (15)-“7”, and

g6
6 | 0 = fG8 | 0 (19)

from (16)-“6”. In fact, from (16)-“6” there follows more:

g7 = −1 + (fG8)−1
(
(∗)x6 + g6

6(1 + x7)
)
, (20)

implying

g7
7 | 0 = (fG8)−1g6

6 | 0 = 1 (21)

by (19), because fG8 does not depend on x7. In fact, as this function plays
a key role in the sequel, here is its defining equation (16)-“5”:

fG8 = x6g5
1 + x3x6g5

2 + x4x6g5
3 + x5x6g5

4 + g5
5. (22)

Now, by (18) and (21),

f | 0 = 1. (23)

Knowing this, by (19), G6 | 0 = g6
6 | 0 = G8 | 0. Simultaneously, from

(15)-“8”, g8
7 +g8

8 | 0 = f(1+ g9) | 0 = 1, and the first summand on the LHS
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vanishes, while the second is equal to G8 | 0. Together there follows

G6 | 0 = G8 | 0 = 1. (24)

Let us note now some consequences of the simplifying reduction done in
Chapter 3, the first of them implied by (15)-“9”:

g9
7 + g9

8 | 0 = 0. (25)

Because f = g7
7 + (∗)x8 by (15)-“7”, and g7 is affine in x7 (cf. (20)), there

follows

f7 | 0 = g7
77 | 0 = 0, (26)

and, further,

0 = (fG8)7 | 0 = f7G
8 + fG8

7 | 0 = G8
7 | 0 (27)

by (23) and (26). This and again (26) imply, after expressing g9 from
(15)-“8”, that g9

7 | 0 = 0. Thus (25) gets reduced to 0 = g9
8 | 0 = −f8 +

2G8
8 | 0 (we have differentiated (15)-“8” sidewise w.r.t. x8 and used (23)

and (27)). But, similarly, 0 = (fG8)8 | 0 = f8+G8
8 | 0, and, jointly, f8 | 0 = 0.

This last equality we write in terms of g7, knowing by (15)-“7” that f = Ŷ g7:

g7
5 + g7

6 | 0 = 0. (28)

There is a far-reaching analogy of (28) and (25), with (16) now to be used
instead of (15). (This is precisely a result of two letters S in the geometric
class’ code under consideration, and the source of certain, sufficient for the
onset of moduli, rigidity binding the coordinate functions of all considered
diffeomorphisms g.) The first summand on the LHS of (28) vanishes exactly
as g9

7 | 0 has vanished there.
Indeed, g5 issuing from (17)-“4” is affine in x5, just as is g7 in x7:

g5 =
g4

1 + x3g4
2 + x4g4

3 + x5g4
4

f G8 G6
=

g4
1 + x3g4

2 + x4g4
3 + x5g4

4

g1
1 + x3g1

2 + x4g1
3

.

Therefore, using also (22),

(fG8)5 | 0 = g5
55 | 0 = 0, (29)

which is the analogue of (26). The information (29), coupled with

0 =
(
g1

1 + x3g1
2 + x4g1

3

)
5
| 0 = (fG8 ·G6)5 | 0
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given by (17)-“1”, implies

G6
5 | 0 = 0 (30)

which is the analogue of (27). Differentiating now (20) sidewise w.r.t. x5

and using (29)–(30), the quantity fG8 · g7
5 | 0, hence also g7

5 | 0, vanishes as
announced.

In consequence, (28), upon differentiating (20) sidewise w.r.t. x6, be-
comes

0 = g7
6 | 0 = −(fG8)6 + 2G6

6 | 0.

Because, additionally, 0 = (fG8 · G6)6 | 0 = (fG8)6 + G6
6 | 0, there follow

two statements. The first is of key importance, the other is just a formal
equality:

0 = (fG8)6 | 0 = g5
1 | 0 (31)

(using (22) in the computation of (fG8)6 | 0),

g7
6 | 0 = −3(fG8)6 | 0 = −3g5

1 | 0 (32)

(in view of (31) all three parts have value 0). Remembering that f does not
depend on x9, x10 and expressing first g10 from (15)-“9”, then g9 from
(15)-“8”, there holds g10

10 | 0 = f−1g9
9 | 0 = f−2g8

8 | 0 = f−2G8 | 0 = 1
by (23) and (24). Therefore, the evaluation at 0 of (15)-“10” reads

c + g10
7 + g10

8 | 0 = c̃. (33)

Lemma 3 g10
7 + g10

8 | 0 = 0.

Proof of lemma. We use for calculations (15)-“9”, taking into account (23),
(26), and the important equality f8 | 0 = 0 — cf. (28), and get g10

7 | 0 = g9
77+

g9
78 | 0, g10

8 | 0 = g9
78 + g9

88 + g9
5 + g9

6 | 0. This yields

g10
7 + g10

8 | 0 = g9
5 + g9

6 + g9
77 + 2g9

78 + g9
88 | 0. (34)

Now we use (15)-“8”, then “7”, taking into account (23), (24), (29), (31),
and the easy facts f88 | 0 = G8

88 | 0 = 0

g9
5 | 0 = −f5 + G8

5 | 0 = −2f5 | 0 = −2g7
57 | 0;

g9
6 | 0 = −f6 + G8

6 | 0 = −f6 + g5
1 − f6 | 0 = g5

1 − 2g7
57 | 0;

g9
77 | 0 = G8

77 | 0 = −f77 | 0 = 0;
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g9
78 | 0 = −f78 + G8

77 + 2G8
78 | 0 = −f78 − 2f78 | 0

= −3
(
g7

6 + g7
57 + g7

67

) | 0;

g9
88 | 0 = 2G8

5 + 2G8
6 + 2G8

78 + 3G8
88 | 0

= 2
(−g7

57 + g5
1 − g7

67 − f78

) | 0
= 2

(
g5

1 − g7
6 − 2g7

57 − 2g7
67

) | 0.

After summing this up, a new form of (34) is

g10
7 + g10

8 | 0 = 3g5
1 − 8g7

6 − 12g7
57 − 12g7

67 | 0
= 27g5

1 − 12g7
57 − 12g7

67 | 0, (35)

where (32) has been used in the end. It remains to compute in (35) the two
second order derivatives of g7 (g7 is obtained, we recall, from (16)-“6”). We
have (29) and know that fG8 does not depend on x7. Hence

g7
57 | 0 =

(
(fG8)−1(G6 + x6G6

6)
)
5
| 0

= (G6 + x6G6
6)5 | 0 = G6

5 | 0 = 0

by (30). We have also (23), (24), (31) and remember that G6
6 | 0 =

−(fG8)6 | 0, so g7
67 | 0 =

(
(fG8)−1(G6 + x6G6

6)
)
6
| 0 = −(fG8)6 + 2G6

6 | 0
= −3(fG8)6 | 0 = −3g5

1 | 0.

Equality (35) is now transformed into

g10
7 + g10

8 | 0 = 63 g5
1 | 0. (36)

This quantity vanishes by (31). Lemma 3 is proved. ¤

Now (33), by Lemma 3, implies c = c̃. Theorem 2 is proved for k = 4.
What differences occur in the proof above when k > 4? Constantly used

are the sets of: k + 6, k+2, k equations becoming, resp., (15), (16), and (17)
when k = 4. They give the means of transforming expressions involving
higher coordinates of a conjugating diffeo g to expressions involving lower
coordinate functions of g. Changing the indices 11→ k+7, 10→ k+6, . . . ,
5→ k +1 and always making relevant reference to, instead of equation “l”,
equation “k + l − 4” of the respective set, the proof remains valid word for
word (the index 1 remains unchanged; the ranges of indices: 2 through 4
for k = 4, and 2 through k in general, are irrelevant for the proof). The key
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quantity bound to be 0 by the preservation of ck+6 = 0 is gk+1
1 | 0 (cf. (31)),

and the analogue of (36) is gk+6
k+3 + gk+6

k+4 | 0 = 63 gk+1
1 | 0 = 0. Therefore,

Theorem 2 is proved in its part concerning k ≥ 4.

4.2. The annihilation of c in the geometric class GGSGSGGG
We will show that in this class (k is now equal to 3) all (Mc) are equiva-

lent to (M0). Namely, at the expense of a more tricky contact hamiltonian,
useful at the steps No k + 6 and k + 7 only for k = 3, one is able to proceed
with c as with ck+6 in the simplifying reduction of Chapter 3.

As we know from that chapter, the hamiltonian
(
x1

)3 generates the i. s.
of (M0) (understood on R10) having at all points of the x10-axis the con-
stant value 54 ∂9 + 378 ∂10 (Lemmata 1 and 2). At the same time, direct
calculi using the formulas (9)–(12) show that the hamiltonian

(
x3

)2 gener-
ates the i. s. of (M0) having at all points of the x10-axis a constant value
48 ∂9+180 ∂10. Therefore, a mixed hamiltonian 48

(
x1

)3−54
(
x3

)2 generates
the i. s. of (M0) having on that axis the constant value

(48 · 54− 54 · 48)∂9 + (48 · 378− 54 · 180)∂10 = 8424 ∂10.

Hence, in the pseudo-normal forms in question one can change the value
of the last constant preserving all the remaining descriptions. And, thus,
transform (M0) into (Mc) for any value of c (in a very small, possibly de-
pending on c, neighbourhood of 0 ∈ R10). The geometric class GGSGSGGG
is now classified, and Theorem 2 fully proved. ¤

Remark 3 The peculiarity of k = 3 can be explained as follows. Pre-
serving c9 = 0 is a condition of different kind than gk+1

1 | 0 = 0, responsible
for keeping ck+6 = 0 when k ≥ 4. A separate computation gives this new
condition explicitly:

3(g4
1 + g4

44)− 2 g1
3 | 0 = 0. (37)

In the course of obtaining it there is no direct analogue of (29), because g4 is
only rational in x4, not affine. Another complication is that (fG7G5)4 = g1

3

does not vanish automatically, in contrast to (fGk+4Gk+2)k+1, k ≥ 4. The
main question is whether the expression g9

6 + g9
7 | 0 that is now responsible

for hypothetical moves of c10, is proportional to the LHS of (37). The
answer is no. A sequel of that new computation gives it in the form

g9
6 + g9

7 | 0 = 63 g4
1 + 35 g4

44 − 20 g1
3 | 0



Real moduli in local classification of Goursat flags 29

= 33 g4
1 + 5 g4

44 | 0 mod
[
3(g4

1 + g4
44)− 2 g1

3 | 0
]
.

So in this case, restrictions to which the conjugating diffeomorphisms are
subject, leave some freedom. This freedom is exploited in the construction
of a pertinent i. s. given above.

5. Second independent module in Gk−1SGSG7 for k ≥ 5

The module c present in (Mc) in Theorem 2 (or the same module in
more raw form (14) before reducing ck+6 to 0), is not the only module
hidden in the geometric classes

Gk−1SGS . . . , (38)

where now . . . stand for several, not just three, letters G. There is an entire
eventail of moduli in these classes, and we know that modality of (38) is at
least k − 3 (for k ≥ 4 one module has already been shown in Theorem 2).4

In this chapter we will justify the existence of a second module, only
when k ≥ 5, in precise members

Gk−1SGSG7 (39)

of the classes (38), as well as outline the conjectural ‘triangle’ distribution
of further moduli: a third one in (38) for k ≥ 6, fourth for k ≥ 7, and so on.

Coming back to Chapter 2, when dealing there with infinitesimal sym-
metries of each fixed model (Mc), understood not as a germ but as a finite
object, precise computations leading to the important formula (5) were
made according to the recursive rules for the components of i. s.’s. And
the outcome has been that the parameter c that sits, recalling, in the flag’s
member Dk+5 must have either been a module or belonged to a discrete
orbit of values (keeping the description of the preceding member Dk+4).

Indeed, thinking about conjugating its two different values by a symme-
try: a) embeddable in the flow of an i. s. of Dk+5, and b) preserving the KR
description of Dk+4, one has been seeking in vain a generating function f

rendering all components that precede the component F k+7 — vanishing
at 0, and F k+7 not zero at 0.

Now we are going to likewise compute further components of

4Conjecturally, these estimations are sharp, giving precise modalities, but our methods

give only the estimation from below.
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infinitesimal symmetries of farther members of the flags from classes (38),
obtaining at least strong hints as to the distribution of successive moduli in
these classes.

5.1. Algebraic patterns in infinitesimal symmetries of Dk+9

For further use in the present section, we assume k ≥ 5. By Theorem 2,
the member Dk+9 of a flag from the geometric class (39) is locally described,
for a unique c ∈ R, by the Pfaffian equations defining (Mc) in Theorem 2,
and by four new equations with four unknown constants:

dxk+7 − (ck+8 + xk+8)dxk+3 = 0,

dxk+8 − (ck+9 + xk+9)dxk+3 = 0,

dxk+9 − (ck+10 + xk+10)dxk+3 = 0, (40)

dxk+10 − (ck+11 + xk+11)dxk+3 = 0.

We simplify first, as in Chapter 3. It is possible to get rid of ck+8, ck+9,
and ck+10 changing under way the value of ck+11. In fact, a long computa-
tion shows that

F k+8 | 0 =
(
120k + 60

)
f12 +

(
120

(
k

2

)
+ 60k − 15

)
f113 | 0

mod
(
f2, f13, f1k

) | 0. (41)

This and the previously gathered knowledge on lower components of Yf

yield that F k+8 | 0 6= 0 is possible (and so even with the same value on the
whole xk+8-axis) simultaneously with all lower components vanishing at 0.
Standard techniques make now possible to conjugate the values ck+8 and
zero keeping the description (Mc) of Dk+5. After that the values of ck+9,
ck+10, ck+11 are new, with no relation to the previous values. Then further
lengthy calculi lead to the expression

F k+9 | 0 =
(
1170k + 531

)
f12 +

(
1170

(
k

2

)
+ 531k − 153

)
f113 | 0

mod
(
f2, f13, f1k

) | 0. (42)

Is this time possible to have F k+9 | 0 6= 0 and all lower components, includ-
ing (41), zero? Yes, because the coefficients in (41) and (42) are indepen-
dent,
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∣∣∣∣∣
120k + 60 120

(
k
2

)
+ 60k − 15

1170k + 531 1170
(
k
2

)
+ 531k − 153

∣∣∣∣∣ = −3240
(
k +

3
4

)(
k +

1
2

)
,

(43)

evidently non-zero for k we are now interested in. (This should be first
compared with (6), and is just one of many surprising regularities in the
Goursat world, others being, for inst., those underlying the proofs in [20],
see section 5.2 for more on that.) Therefore, in order to drive to 0 the con-
stant ck+9 while not affecting the preceding simplifications, it suffices to take
the contact hamiltonian f = (4k2−1)x1x2−(4k−2)

(
x1

)2
x3 (for which (41)

vanishes, hence (42) does not). After this step the constants ck+10, ck+11 are
again new. Continuing computations under now crucial condition k ≥ 5,

F k+10 | 0 = 1575f1k+1
mod

(
f2, f13, f1k

, f12, f113

) | 0. (44)

Attention. When k = 4, in F 14 | 0 along with f15 | 0 there appears also a new
partial f33 | 0, very much similarly to the situation for k = 3 and F k+6,
discussed in section 4.2. This is a general pattern in the classes (38),
cf. section 5.2.

So again F k+10 | 0 6= 0 can occur together with the vanishing of all lower
components of certain i. s. at 0. This time the partial f1k+1

| 0, appearing
for the first time, allows — by standard techniques — to reduce ck+10 to 0
without affecting the preceding part of the normal form. This again brings
in a completely new value e = ck+11. We intend now to keep (Mc) and the
achieved simple form

dxk+7 − xk+8dxk+3 = 0,

dxk+8 − xk+9dxk+3 = 0,

dxk+9 − xk+10dxk+3 = 0, (45)

dxk+10 − (e + xk+11)dxk+3 = 0

of (40). (The set of these equations is a KR pseudo-normal form for
our Dk+9 involving only two parameters: the module c and parameter e.)
Any further simplification would now mean changing the value of e, in the
first place by flows of pertinent infinitesimal symmetries. Is it possible
at all?
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5.2. Second module in Dk+9

Preserving all but the last equation means that we demand for the i. s.’s
of Dk+9 to have all starting components up to F k+10 vanishing at 0. In view
of (5) and formulas (41)–(44), this implies, among others, the vanishing of
partials

f2, f13, f1k
, f12, f113, f1k+1

| 0, (46)

where f , as always, parametrizes the i. s.’s. However, one last line of com-
putations shows that for k ≥ 5 (and not for 3 or 4) the component F k+11 | 0
is a real combination of the values (46). Hence

Proposition 3 Fix any k ≥ 5. For any Goursat germ Dk+9 in the geo-
metric class (39), let us choose and fix local KR coordinates in which Dk+9 is
normalized as above. Then for any i. s. Y of Dk+9, the vanishing at 0 of
the components of Y lower than F k+11 automatically forces F k+11 | 0 = 0.

Corollary 4 The value of e in (45) cannot be moved by those embed-
dable in flows symmetries of Dk+9 which preserve the KR description of
the square Dk+8 of Dk+9.

Thus the value of e is important in the classification of such Dk+9 that
are one-step prolongations of a fixed Dk+8 from Gk−1SGSG6. In fact,
Corollary 4 implies that restricted in this sense orbits of equivalent values
of Dk+9(0) are discrete. Looking now at the systematization of local prolon-
gations proposed in [13] and recalled already in Remark 2 (Chapter 1), one
observes that, out of five generally possible (and mutually exclusive) pat-
terns 1, 2a, 2b, 2c, 3, the restricted orbits are discrete only in cases 2c and 3.
So the prolongation Dk+8 −→ Dk+9 is governed by either the pattern 2c
or 3.

Then, on simply inspecting the cardinality of restricted orbits in 2c
and 3, it follows that either e or |e| is a new module in the class (39), located
four steps past the first module c.5 We underline that the information
issuing from the present work concerning that parameter e is not complete;
in general it is not possible to tell the pattern 2c from 3 by the infinitesimal
methods alone.

With the same degree of imprecision, we can indicate a conjectural dis-
tribution of moduli in each class of the type (38). Underlying this prediction,

5cf. a similar situation (in codimension 3) in [21], Corollary 1, (ii)
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as well as the above findings concerning the second module, is a series of
arithmetic constructions in which we attach: multiplicities to KR variables
(not to be confused with nonholonomic orders of variables as functions)
and abstract weights to the components F l of the infinitesimal symmetries.
These tools were already proposed and used in [16], then in [20, 21].

For k ≥ 6, a third module should appear in Dk+13, provided the co-
efficients at f112 | 0 and f1113 | 0 that appear for the first time in the i. s.’s
of Dk+10 and Dk+11 are linearly independent, allowing similar reductions
of KR constants as done in section 5.1. On the basis of surprisingly nice
formulas for other determinants that show up in the basic geometry ‘ST’
and underlie the work [20]6, we extrapolate the expressions for determinants
(6) and (43) and suppose this new determinant of coefficients to be

const
(
k +

7
4

)(
k +

3
2

)(
k +

3
4

)(
k +

1
2

)
,

and, as such, clearly not vanish for the k’s in question. Then the pro-
longation Dk+11 −→ Dk+12 is served by f1k+2

alone (while for k = 5 by
f1k+2

= f17 and f33. This steady, only linearly retarded in function of k,
appearance of f33 | 0 in the derivation of infinitesimal formulas at 0 is re-
sponsible for the triangle pattern of moduli we sketch.) After these sim-
plifications, in order to respect them by the flows of i. s.’s, all partials (46)
and f112 | 0, f1113 | 0, f1k+2

| 0 are to be frozen to 0, and for the next pro-
longation Dk+12 −→ Dk+13 there is no new partials available. Implying
(as above) case 2c or 3 of [13] and discrete restricted orbits, hence a new
module closely related with the geometric position of Dk+13(0) in Dk+12(0).

This pattern should repeat itself periodically, only with linearly growing
starting values of k: a fourth module sitting in the member Dk+17 for k ≥ 7,
and so on. Summing up this conjectural mode: all classes of the type
GGSGS. . . are, supposedly, simple. For any k ≥ 4, in the classes of the
type (38) the moduli appear in the following k − 3 flag’s members (if only
the dimension of the underlying manifold allows for such flags’ existence)

Dk+5, Dk+9, Dk+13, . . . , D5k−11.

Only the first of them — we know it after the present work (see Remark 2) —
is of Montgomery-Zhitomirskii’ type 3. The remaining are either of type 2c

6they are given with detailed proofs in author’s preprint having No 39 at http://www.

mimuw.edu.pl/english/research/reports/tr-imat/
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or 3. An integral part of these conjectural statements would consist in
computing involved coefficients, similar if worse than those in (41)–(42), in
order to show that there is no module in the intermediate members of the
flags in question.

Added in revision. When working on the revised version of the paper,
we have obtained some generalizations of Theorem 2. They concern the
geometric classes Gk−1SGjSG3 for k ≥ 4 and j ≥ 2 (Theorem 2 deals with
k ≥ 4 and j = 1) and indicate that all these classes are unimodal, too.
Therefore, a vast majority of geometric classes of codimension 2 appear to
be not simple, whereas the ‘ST’ classes dealt with in [20] belong to the
remaining minority. A proof of these generalizations will appear in author’s
subsequent paper.
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et sur certaines familles de courbes. Bull. Soc. Math. France XLII (1914), 12–48.

[ 5 ] Cheaito M. and Mormul P., Rank-2 distributions satisfying the Goursat condition:

all their local models in dimension 7 and 8. ESAIM: Control, Optimisation and

Calculus of Variations (http://www.edpsciences.org/cocv/) 4 (1999), 137–158.

[ 6 ] Engel F., Zur Invariantentheorie der Systeme von Pfaff’schen Gleichungen. Berichte

Ges. Leipzig, Math-Phys. Classe XLI (1889), 157–176.

[ 7 ] Gaspar M., Sobre la clasificacion de sistemas de Pfaff en bandera. Proceedings of

10th Spanish-Portuguese Conference on Math., University of Murcia, 1985, 67–74

(in Spanish).

[ 8 ] Jean F., The car with N trailers: characterisation of the singular configurations.

ESAIM: Control, Optimisation and Calculus of Variations

(http://www.edpsciences/cocv/) 1 (1996), 241–266.

[ 9 ] Kumpera A., Toulouse Lectures. Handwritten notes, Toulouse, 1998.

[10] Kumpera A. and Ruiz C., Sur l’équivalence locale des systèmes de Pfaff en drapeau.
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