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The Lipschitz continuity of Neumann eigenvalues
on convex domains

Marty Ross
(Received July 17, 2002; Revised December 9, 2002)

Abstract. We consider the Neumann spectrum of the Laplacian on convex domains.
Radially parametrizing these domains, we show that each Neumann eigenvalue is Lipschitz
continuous with respect to the sup norm on the radial functions. We use this to prove
that each Neumann eigenvalue is maximized on the class of convex domains with fixed
volume.
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1. Introduction

Suppose  C R” is a (sufficiently regular) bounded domain, and let
{ur}32, be the Neumann spectrum for the Laplacian on 2 (see §2 for the
functional analytic characterization of u):

Av+pugv =0 on,
0 .
Ay on O9. (1.1)
on
Here, u1(2) = 0, corresponding to v = v; = 1. For k > 2, we are interested
in maximizing pr > 0 over classes of domains constrained to contain a

specific volume V:
Q] =V. (V)

(The example of long, thin rectangles shows that no minimizer of py exists).

Weinberger proved that amongst domains satisfying (V'), e is maxi-
mized by the ball of the appropriate radius ([W]-see also [SY, pp. 140-142],
[X, Th2]). For general k, one can easily prove that uj is bounded above by
k-and || (see §2). Therefore, it is reasonable to contemplate the existence
of - much more ambitiously, the identity of - a maximizer of p; amongst
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domains satisfying (V).

We investigate this problem by the direct method (see, for example,
[J]). So, we consider an extremizing sequence {2} of domains satisfying
(V) and we hope to show, after passing to a subsequence, the existence of
an extremal domain

Q —

The issue is to determine a suitable notion of domain convergence. First
of all, in order to obtain the existence of €2, one needs the class of domains
considered to be compact; secondly, for 2 to be the correct (extremal) limit,
one needs Volume and py to be continuous (or at least semicontinuous) with
respect to the chosen convergence.

There are difficulties with implementing this program in general.
Though there are many types of domain convergence which give compact-
ness, it is often difficult or impossible to prove the corresponding continuity
of geometric quantities. This is particularly true for uy, as even the dis-
creteness of the Neumann spectrum is problematic for general, non-Lipschitz
domains - see [F, §2.1] and [R]. And, unfortunately, such irregular domains
can conceivably arise in the limit.

In this paper, we simplify the problem by restricting our attention to
convex domains - this was the approach taken in [CR, §2] in the analysis of
Dirichlet eigenvalues. Translating any such domain €2 to include the origin,
we can introduce spherical coordinates (r, w) and write Q in terms of a
radial function f:S*"t — R*:

Q= =R"N{(r,w): 0<r < flw), we S

f will be estimably Lipschitz: if

B,(0) C Q (p)
and
Q C Br(0) (R)
then, by elementary geometry,
2 _ 2
Lip f < R—Rp—p. (1.2)

(02 will also be (strongly) Lipschitz in the sense of [EG, p. 127]; this can
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be shown, for instance, by introducing appropriately oriented spherical co-
ordinates and applying (1.2)).

Of course the class of convex domains satisfying (V') does not uniformly
satisfy such inradius and outradius constraints. However, from [Ch, §2]
together with the techniques of [D], ux(€2) can be bounded in terms of & and
diam €2; below, we provide a weaker but more direct estimate, Proposition
2.1 (including a bound of ug(€2) for a not necessarily convex domain § in
terms of k and |Q2|). It follows that for the purposes of maximizing py, we
need not consider long, thin domains, and thus the uniform Lipschitz bound
(1.2) holds for maximization candidates.

For any class of domains satisfying (p) and (R), the corresponding class
of radial functions will be equicontinuous in the sup norm. Therefore, by
the Arzela-Ascoli Theorem, we can obtain limiting radial functions, and the
corresponding limit domains will be non-trivial and convex. Furthermore,
since

1
Q| = E/Sn—l f (1.3)

the constraint (V') will obviously hold in the limit.

The critical question is the behaviour of the eigenvalues with respect
to this convergence. For Dirichlet eigenvalues, Ag, the answer follows easily
from domain monotonicity:

Q1 C Oy = )\k(Ql) > /\k(QQ) (14)

Using (1.4) and a simple scaling argument, one can show ([CR, Lemma
2.1]):
3k(B,)

[Ak(€27) — Ak(€2g)] < —p~l|f = 9lloo, (1.5)

under the assumption that Q; and Qg are starlike (not necessarily convex)
domains satisfying (p) with also ||f — g|leoc < p. Thus, for Dirichlet eigen-
values, one has the desired continuity, and the existence of extrema subject
to appropriate geometric constraints follows readily ([CR, Th 2.2,2.3]).

Such a simple argument cannot be applied here, however, as domain
monotonicity is fundamentally false for Neumann eigenvalues; for example,
if B is a ball and R C B is a thin rectangle approximating a diameter of B
then ua(B) > ua(R). (Note, though, [X, Th3]).
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As an alternative to the monotonicity argument, one can consider do-
mains close in the C! sense, in which case [CH, ThI.VI.10] or [D, Th3]
establishes the continuity of Neumann eigenvalues. However, though such
arguments extend readily to the Lipschitz setting, the class of convezr do-
mains is not compact in any C'-like sense, and thus the results and tech-
niques of [D] are not of help here. This lack of compactness can be readily
seen by considering domains with corners, for example a sequence of do-
mains with two exterior angles § converging in the C° sense to a domain
with one exterior angle 26.

In §4, we prove the desired result on Neumann continuity, Theorem
4.2, and the consequent Maximization Theorem 4.3. The proof is similar in
spirit to that for Dirichlet continuity: we are in effect establishing a form of
local monotonicity, using the eigenfunctions of one domain as test functions
for the other. The result obtained is similar to (1.5), but the constant is
less explicit and more difficult to obtain.

The key estimate needed to establish this monotonicity result is a sup
bound on the kth Neumann eigenfunction, Proposition 3.1 (a result which
can be obtained in weaker form [D, Cor 5]). Such a bound holds for any
Lipschitz domain, and in particular for starlike domains satisfying (p) and
(1.2). Consequently, Neumann continuity (as well as the existence of ex-
tremizers over appropriate classes of domains) holds in this more general
setting. (We believe that Neumann continuity should hold in general for
starlike domains, without the Lipschitz assumption, but this appears to be
considerably more difficult to prove).

2. Upper bounds on Neumann eigenvalues

For  C R" a bounded domain, let W = WhH2(Q2) be the Sobolev
space of L2 functions on Q with L? weak derivatives. We assume that 6§
is regular enough for the embedding W — L?(Q) to be compact, noting
that 0Q being Lipschitz is sufficient for this ([EG, §4.6]). The Neumann
spectrum on  is then discrete ([GT, §8.12], [CH, SSVI.2,3]), and we can
characterize the kth Neumann eigenvalue by the Poincaré Principle ([P1,

§1]):

) fQ|Dw|2
Q) = L 2.1
He(S) VrkncHVl\JweI\rfia—}s{o} Jo w? (2.1)
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Here, Vi is an arbitrary k-dimensional subspace of W; of course the min-
imum in (2.1) is attained by choosing Vx = (v1, ..., vg), the subspace
spanned by the first &k eigenfunctions. (As is standard, we make the con-
vention that if y; = p; for ¢ # j then v; and v; are chosen to be orthogonal
in L?).

As a simple consequence of (2.1), we note that if (wy, ..., wg) C W is
an orthonormal set then

pe(Q) < max/ |Dw;|* wy, ..., wy orthonormal. (2.2)
J Q

Lemma 2.1 Suppose that Q is a bounded domain of R™, and write |Q] =
V. Suppose there are constants 0 < a < B < 1, v > 0 and suppose that 0,
oo, Qg are pairwise disjoint subdomains of Q such that, for j =1, ..., k,

19| = BV
and

’Qj N {x: dist(z, 002; N Q) < 7V1/”} < aV.

Then
L S
V2B~ a)Vm

Proof. For j=1, ..., k, define

pr(€2) <

min (dist(z, 0, N Q), 7V1/”) x € 2y,
wj(z) = .
0 otherwise.
The hypotheses ensure
/ |ij|2 S aV
Q

and
/wa- > V(B — a)V.

The result is then immediate from (2.2). O
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Proposition 2.1 ([K], [Ch]) (a) Suppose Q C R™ is a bounded domain
and suppose k € Z+. Then

C
K (Q) < ﬁ;/_n ¢ = ci(n, k). (2.3)

(b) If Q is convez then
C2

m Cy = CQ(TL, k) (2.4)

() <

Remark (a) The deeper argument in [K, Cor 2] proves (2.3) with ¢; =
ck.2/n

(b) The proof below gives ¢z = en?k? in (2.4), as follows from [Ch, Th 2.1]
and the techniques of [D], though the estimate on ¢ there is sharper.

Proof. (a) We prove the result for k = 2: the same argument can be used
inductively to prove the general case.
Forr=1, ..., n, choose Z, such that

v
QN{z: z, <Z -} = 7

For v to be chosen, let
Ho(y) = {x: 2y — %] < 27V1/"} .

Then

M IANH@)| < ((n-1) +4™™) V.
r=1

Setting v = 227t/ there exists an r such that [Q N H,(y)] < ((2n —
1)/(2n))V. and thus the volume of £ in one or another half of H,(v) is at
most ((2n—1)/(4n))V. We can then apply Lemma 2.1 with a = (2n—1)/4n
and 8 —a=1/(4n).

(b) Let d = diam Q. Slicing Q by k& — 1 hyperplanes orthogonal to a
diameter, we can split 2 into k slabs of equal volume. By the convexity of
Q, the (n — 1)-volume of any slice orthogonal to the diameter is at most
nV/d, and thus the width of each slab is at least d/(kn). We can therefore
apply Lemma 2.1 with 8 = 1/k, vV¥/" = d/(4kn) and o = 1/2k, giving
(2.4) with cp = (4kn)?. O
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3. A sup bound for Neumann eigenfunctions.

In this section we assume that 2 C R"™ is a Lipschitz domain and we
take v € W to be a Neumann eigenfunction on 2 with eigenvalue u. The
weak, variational characterization of v is:

/D’U-Dw:u/vw for all weW. (3.1)
Q Q

We emphasize that (3.1) is true by definition in the variational proof of the
existence of Neumann eigenvalues; one then establishes the interior regu-
larity of v, and one deduces that the (natural) boundary condition of (1.1)
holds on suitably regular (e.g. C*=1)/2) pieces of dQ ([GT, Corollary 8.11],
[Ag, pp. 32, 129, 142]).

The estimate we want is a sup bound on v in terms of u and ||v]2. We
shall obtain this by the iteration technique of [Lil, Th 10] (see also [Ch,
Th IV.8]), though the lack of regularity will necessitate a weak form of the
argument, as displayed in [GT, Th 8.15).

The key ingredient in such an argument is a Sobolev inequality ([Ad,
Lemma 5.14]):

lwllp < es(llwlly + 1Dwlly)  w e W(Q), (3.2)

where c3 = ¢3(2) and

2n
n>2,
p=p(n)=4 n—2 (3.3)
4 n = 2.

(Note that p(2) can be set as large as desired).
With this we can prove

Proposition 3.1 Suppose Q) is a Lipschitz domain and suppose v € W(2)
satisfies (3.1). Then

ol < ca((L +v/R)es)" vl (3-4)

where c3 is from (3.2), ca = c4(n), and

r=r(n) = 25 (3.5)
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Remarks (a) The existence of an inequality such as (3.2) depends upon
) satisfying a uniform interior cone condition ([Ad, §4.3]), and then the
constant cs depends only upon the defining cone.. Any convex domain for
which (p) and (R) hold satisfies this condition with cone of semi-vertex
angle arcsin(p/R) and altitude p/2. Consequently, for our purposes, we can
take

cs = c3(p, R, n). (3.6)

Similarly, (3.6) holds for starlike domains satisfying (p) and (1.2).
(b) Since p(2) in (3.3) is arbitrary, 7(2) > 1 is also arbitrary, where cs
then also depends upon 7.

Proof of Proposition 3.1. For 8> 1 and N > 0, set

w = (sgnv) (min(|v|, N))*1.
By the chain rule ([EG, §4.2.2]),

Dw = (20 — 1)XQ(N)|Ul2ﬁ_2Dv,
where

QN)=0n{z: |v(z)| < N}

In particular, w € W, and thus w can be used as a test function in (3.1).
After some simple manipulation, this gives

By|2 _ s . 26 ar26-1
/Q(N)‘D(M )‘ =251 len(|v| , N ]v|)

Letting N — oo, we find

L1p(ee) = 225 [ (o) B2t
As a consequence, and applying (3.2), we have the chain of implication
WP e 1?2 = [v|P e W = |v|f € IP.
Specifically, we obtain the estimate
117, < s (1 + VuB) 10l
= llellys < (a1 + V)7 (81 vl
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We now iterate this estimate, choosing

5=5k=(§)k k=0,1,2, ...

Since ||v||, = [|v]l, s ¢ — oo, this gives

100 < (ca(1 + /) > /" (H (ﬁk)l/zﬂk> V]l

k=0

In this expression, it is easy to show that the sum ) 1/8; = r, and that
the product (= ¢4) is finite. O

Suppose now that = ¢ is a convex domain satisfying (p) and (R).
As a consequence of the above Proposition, an estimably small proportion
of v lies in a thin boundary strip of Q. For 0 < a < p, set

Q=Qs_o =R"N{(r,w): 0<7 < flw) —a, wESn_l}, (3.7)
Se=0 — 0%, (3.8)

Corollary 3.2 Suppose 2 = Qf C R™ is a convezx domain satisfying (p)
and (R), and suppose v € W satisfies (3.1). Then

[ 1o < esalul, (3.9

where cs = cz(p, R, n, ).

Proof. This follows immediately from Proposition 3.1, together with (1.3)
and (3.6). O

Remarks (a) This strip estimate will also hold for starlike domains as
long as we hypothesize a Lipschitz estimate of the form (1.2).
(b) Without the hypothesis (3.1), one can obtain a bound

/S W[ < ev/a | Do

on Lipschitz domains for arbitrary v € W, where here S“ refers to the set
of points in Q within distance a of 9Q ([S]).
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4. Continuity of Neumann Eigenvalues

The proof of Neumann continuity involves the uses of the eigenfunctions
on one domain as test functions on the other. In order to do this, we need
the following simple extension of (2.2):

Lemma 4.1 Suppose Q) C R"™, and suppose that u > 0 and wy, ..., wg €
W satisfy

Hwinz =1 )
i=1,..., k.
[ Dwill, < /it
Let

i#]

0 = max /wiwj .
Q

Then there are constants §1 = 01(k) and cg = cg(k) such that
<o = () <1 +ced)p. (4.1)

Proof.  'We want to apply the Gram-Schmidt process to (wy, ..., wg), there-
by obtaining an orthonormal sequence of functions @; to which (2.2) can
be applied. By an obvious inductive argument, we find that if ¢ is small
enough then this will be possible (i.e. the w; will be linearly independent),
and we obtain estimates of the form

/Q|D@-12 < (1+0@)

We can now prove:

Theorem 4.2 Suppose that Q; and Qg are conver domains in R™ satis-
fying (p) and (R). Then

le(€25) = pi(Qg)| < 7 [If = 9llos » (4.2)
where ¢7 = c7(p, R, n, k).

In combination with Proposition 2.1(b), this result immediately gives
our maximization theorem:
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Theorem 4.3 For any V >0 and k € Z* there is a domain mazimizing
g amongst all conver domains in R™ satisfying (V).

Proof of Theorem 4.2. Set

a=|f-9gle

and note that it is enough to prove (4.2) for small @ = a(p, R, n, k).
Special case.

First suppose that f —a < g < f. Then W(Qf) C W(Qy), and so we
can use the first k eigenfunctions vy, ..., vg of 5 to estimate pz(€2y).

By Corollary 3.2,

/Q|vi|22/ > >1—csa i=1,...,k
Qf—q

g
/ Y / Ui U;
Qg Qr~Qy

We also clearly have

| 1Dl < uel@y) =1k

g

and

<csa 1 F#J

Thus, by Lemma, 4.1, for small o we have
Q
o 1+ 5 ) )

1—csa/ 1—csa’
which is a one-sided estimate of the form we want.
General case.
Given arbitrary f and g, set

g
l+a/p

g=

Then, by (p),

Thus we can apply the special case above to give

—2
@) = (142) " al0s) < (14 credyn() (43)
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for small o, and then ¢7 can be adjusted to take care of large a.
Interchanging the roles of f and g, we obtain the desired result. O

Remarks (a) A similar estimate holds for more general Lipschitz do-
mains, and in particular for Qy and Qg starlike domains satisfying (p) and
(1.2).

(b) Notice that (4.3), giving an upper bound for ug(£y) in terms of
pi(Q2¢), only uses the regularity of 4: the result holds for an (essentially)
arbitrary domain {24 close to {2 in a reasonable sense.
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