Toeplitz operators and Carleson measures on parabolic Bergman spaces

Masaharu Nishio, Noriaki Suzuki and Masahiro Yamada

(Received June 13, 2006)

Abstract

Let $\boldsymbol{b}_{\alpha}^{p}$ be the parabolic Bergman space, which is the Banach space of all $L^{p_{-}}$ solutions of the parabolic equation $\left(\partial / \partial t+(-\Delta)^{\alpha}\right) u=0$ on the upper half space \boldsymbol{R}_{+}^{n+1} with $0<\alpha \leq 1$. We discuss the relation of Toeplitz operators to Carleson measures.

Key words: Carleson measure, Toeplitz operator, heat equation, parabolic operator of fractional order, Bergman space.

1. Introduction

Let \boldsymbol{R}_{+}^{n+1} be the upper half space of the ($n+1$)-dimensional Euclidean space $(n \geq 1)$. We denote by $X=(x, t)$ a point in $\boldsymbol{R}_{+}^{n+1}=\boldsymbol{R}^{n} \times(0, \infty)$, and by $L^{(\alpha)}$ the α-parabolic operator on \boldsymbol{R}_{+}^{n+1} :

$$
L^{(\alpha)}:=\frac{\partial}{\partial t}+(-\Delta)^{\alpha},
$$

where $\Delta:=\partial_{x_{1}}^{2}+\cdots+\partial_{x_{n}}^{2}$ is the Laplacian on the x-space \boldsymbol{R}^{n} and $0<\alpha \leq$ 1. For $0<p \leq \infty$, we denote by

$$
\begin{aligned}
& L^{p}(V):=\left\{f ; \text { Borel measurable on } \boldsymbol{R}_{+}^{n+1},\right. \\
& \left.\qquad\|f\|_{L^{p}(V)}:=\left(\int|f|^{p} d V\right)^{1 / p}<\infty\right\}
\end{aligned}
$$

the usual Lebesgue space, where V is the Lebesgue measure on \boldsymbol{R}_{+}^{n+1} and $\|\cdot\|_{L^{\infty}(V)}$ is considered as the essential supremum norm. We consider the parabolic Bergman space and the Bloch space on the upper half space:

$$
\begin{aligned}
b_{\alpha}^{p} & :=\left\{u \in C\left(\boldsymbol{R}_{+}^{n+1}\right) ; L^{(\alpha)} u=0,\|u\|_{L^{p}(V)}<\infty\right\}, \\
\mathcal{B}_{\alpha} & :=\left\{u \in C^{1}\left(\boldsymbol{R}_{+}^{n+1}\right) ; L^{(\alpha)} u=0,\|u\|_{\mathcal{B}_{\alpha}}<\infty\right\},
\end{aligned}
$$

[^0]where $0<p \leq \infty$, and
\[

$$
\begin{equation*}
\|u\|_{\mathcal{B}_{\alpha}}:=|u(0,1)|+\sup _{(x, t) \in \boldsymbol{R}_{+}^{n+1}}\left\{t^{1 /(2 \alpha)}\left|\nabla_{x} u(x, t)\right|+t\left|\partial_{t} u(x, t)\right|\right\} . \tag{1}
\end{equation*}
$$

\]

Here, " $L^{(\alpha)} u=0$ " means that u is $L^{(\alpha)}$-harmonic on \boldsymbol{R}_{+}^{n+1}, which is defined later (see also [2]). The orthogonal projection from $L^{2}(V)$ to $\boldsymbol{b}_{\alpha}^{2}$ is an integral operator by a kernel R_{α}, called the α-parabolic Bergman kernel (see [3]). Then for a positive measure μ on the upper half space \boldsymbol{R}_{+}^{n+1}, we can discuss the Toeplitz operator, defined by

$$
\begin{equation*}
\left(T_{\mu} u\right)(X):=\int R_{\alpha}(X, Y) u(Y) d \mu(Y) \tag{2}
\end{equation*}
$$

In [5], authors treat the case where μ is absolutely continuous with respect to the Lebesgue measure and discuss the condition that T_{μ} be bounded on $\boldsymbol{b}_{\alpha}^{2}$, relating with the condition that μ be a Carleson type measure. In this paper, we generalize this result to consider a condition that T_{μ} be a bounded operator from $\boldsymbol{b}_{\alpha}^{p}$ to $\boldsymbol{b}_{\alpha}^{q}$ and from $\boldsymbol{b}_{\alpha}^{p}$ to $\mathcal{B}_{\alpha} / \boldsymbol{R}$, where $1 \leq p \leq q<\infty$. Here we remark that $\mathcal{B}_{\alpha} / \boldsymbol{R}$ can be identified with the dual space of $\boldsymbol{b}_{\alpha}^{1}$ (see [3, Theorem 8.4]), which corresponds to the case $q=\infty$, where \boldsymbol{R} is the space of all constant functions, and then

$$
\begin{equation*}
\|u\|_{\mathcal{B}_{\alpha} / \boldsymbol{R}}=\sup _{(x, t) \in \boldsymbol{R}_{+}^{n+1}}\left\{t^{1 /(2 \alpha)}\left|\nabla_{x} u(x, t)\right|+t\left|\partial_{t} u(x, t)\right|\right\} \tag{3}
\end{equation*}
$$

In [1], B.R. Choe, H. Koo and H. Yi discuss the Toeplitz operators for the harmonic Bergman spaces on the upper half space, which corresponds to our case for $\alpha=1 / 2$ (see [3, Corollary 4.4] and [4, Section 3]).

Now we shall state the results with some definitions.
Definition 1 Let μ be a positive Borel measure on \boldsymbol{R}_{+}^{n+1} and τ be a positive number. We say that μ is a τ-Carleson measure (with respect to $\left.L^{(\alpha)}\right)$ if there exists a constant $C>0$ such that

$$
\begin{equation*}
\mu\left(Q^{(\alpha)}(X)\right) \leq C t^{(n /(2 \alpha)+1) \tau} \tag{4}
\end{equation*}
$$

holds for all $X=(x, t) \in \boldsymbol{R}_{+}^{n+1}=\boldsymbol{R}^{n} \times(0, \infty)$. Here $Q^{(\alpha)}(X)$ is an α-parabolic Carleson box, defined by

$$
\begin{aligned}
Q^{(\alpha)}(X):=\left\{\left(y_{1}, \ldots, y_{n}, s\right) ;\right. & t \leq s \leq 2 t \\
& \left.\left|y_{j}-x_{j}\right| \leq 2^{-1} t^{1 / 2 \alpha}, j=1, \ldots, n\right\}
\end{aligned}
$$

Our first result is the boundedness of the inclusion of $\boldsymbol{b}_{\alpha}^{p}$ into $L^{q}(\mu)$.
Theorem 1 Let $1 \leq p \leq q<\infty$ and $\mu \geq 0$ be a Borel measure on \boldsymbol{R}_{+}^{n+1}. Then μ is a q / p-Carleson measure with respect to $L^{(\alpha)}$ if and only if there exists a constant $C>0$ such that the inequality

$$
\begin{equation*}
\left(\int|u(X)|^{q} d \mu(X)\right)^{1 / q} \leq C\left(\int|u(X)|^{p} d V(X)\right)^{1 / p} \tag{5}
\end{equation*}
$$

i.e., $\|u\|_{L^{q}(\mu)} \leq C\|u\|_{L^{p}(V)}$ holds for all $u \in \boldsymbol{b}_{\alpha}^{p}$.

In order to characterize the boundedness of Toeplitz operators, we introduce some auxiliary functions.
Definition 2 Let μ be a positive Borel measure on \boldsymbol{R}_{+}^{n+1}. For $Y=$ $(y, s) \in \boldsymbol{R}_{+}^{n+1}$, we put

$$
\begin{aligned}
\hat{\mu}_{\alpha}(Y) & :=\frac{\mu\left(Q^{(\alpha)}(Y)\right)}{V\left(Q^{(\alpha)}(Y)\right)} \\
\tilde{\mu}_{\alpha}(Y) & :=\frac{\int R_{\alpha}(X, Y)^{2} d \mu(X)}{\int R_{\alpha}(X, Y)^{2} d V(X)}
\end{aligned}
$$

where R_{α} is the α-parabolic Bergman kernel (see $\S 2$). We call $\hat{\mu}_{\alpha}$ the averaging function of μ and call $\tilde{\mu}_{\alpha}$ the Berezin transformation of μ. Note that

$$
\begin{aligned}
& V\left(Q^{(\alpha)}(Y)\right)=s^{n /(2 \alpha)+1} \\
& \text { and } \\
& \qquad \int R_{\alpha}(X, Y)^{2} d V(X)=C s^{-(n /(2 \alpha)+1)}
\end{aligned}
$$

with some constant $C>0$ independent of $Y \in \boldsymbol{R}_{+}^{n+1}$.
We also use a modified kernel defined by

$$
R_{\alpha}^{m}(X, Y)=R_{\alpha}^{m}(x, t ; y, s):=c_{m} s^{m} \frac{\partial^{m}}{\partial s^{m}} R_{\alpha}(x, t ; y, s)
$$

Here m is an nonnegative integer and $c_{m}=(-2)^{m} / m!$. Note that $R_{\alpha}^{0}=R_{\alpha}$.
To state our main result, we use \mathcal{E}_{m}, the vector space generated by $\left\{R_{\alpha}^{m}(\cdot, Y) ; Y \in \boldsymbol{R}_{+}^{n+1}\right\}$. Remark that if $m \geq 1$ and $1 \leq p<\infty$, then \mathcal{E}_{m} is dense in $\boldsymbol{b}_{\alpha}^{p}$ (cf. [3, Lemma 8.2]).

Theorem 2 Let $1 \leq p<\infty$ and $1<q \leq \infty$ with $p \leq q$ and $1 / p-1 / q<1$. Assume that a positive Borel measure μ on \boldsymbol{R}_{+}^{n+1} satisfies

$$
\begin{equation*}
\int\left|R_{\alpha}^{m}(X, \cdot)\right| d \mu(X)<\infty, \quad V \text {-a.e. } \tag{6}
\end{equation*}
$$

for some integer $m \geq 1$. Then the following statements are equivalent:
(I) (a) When $1<q<\infty$, the Toeplitz operator $T_{\mu}: \boldsymbol{b}_{\alpha}^{p} \rightarrow \boldsymbol{b}_{\alpha}^{q}$ is bounded, i.e., for every $u \in \boldsymbol{b}_{\alpha}^{p}, \int\left|R_{\alpha}(\cdot, Y) u(Y)\right| d \mu(Y)<\infty$, V-a.e. and

$$
\left\|T_{\mu} u\right\|_{L^{q}(V)} \leq C_{1}\|u\|_{L^{p}(V)}
$$

with some constant $C_{1}>0$;
(b) When $q=\infty, T_{\mu}: \boldsymbol{b}_{\alpha}^{p} \rightarrow \mathcal{B}_{\alpha} / \boldsymbol{R}$ is bounded, which here means that there exists a constant C_{1} such that for every $u \in \mathcal{E}_{m}$

$$
\left\|T_{\mu} u\right\|_{\mathcal{B}_{\alpha} / \boldsymbol{R}} \leq C_{1}\|u\|_{L^{p}(V)}
$$

(II) μ is a τ-Carleson measure with respect to $L^{(\alpha)}$, where $\tau=1+1 / p-$ $1 / q$, i.e., there exists a constant $C_{2}>0$ such that for all $X=(x, t) \in$ \boldsymbol{R}_{+}^{n+1},

$$
\hat{\mu}_{\alpha}(X) \leq C_{2} t^{(n /(2 \alpha)+1)(1 / p-1 / q)}
$$

(III) There exists a constant $C_{3}>0$ such that for all $X=(x, t) \in \boldsymbol{R}_{+}^{n+1}$,

$$
\tilde{\mu}_{\alpha}(X) \leq C_{3} t^{(n /(2 \alpha)+1)(1 / p-1 / q)}
$$

Remark 1 If we replace $\tilde{\mu}_{\alpha}$ by a modified Berezin transformation $\tilde{\mu}_{\alpha, 1}$ in the statement (III), Theorem 2 remains true for the case $p=1$ and $q=\infty$. For the definition of $\tilde{\mu}_{\alpha, 1}(X)$, see Section 5 below.
Remark 2 In the above theorem, if $\mu \geq 0$ satisfies

$$
\int\left(1+t+|x|^{2 \alpha}\right)^{-\eta} d \mu(x, t)<\infty
$$

for some η, then (6) holds for $m \geq \eta+n /(2 \alpha)+1$ (see Lemma 2 below). The condition (6) is used only when we show (I) implies (II). In (b) of (I), since \mathcal{E}_{m} is dense in $\boldsymbol{b}_{\alpha}^{p}$, it can be considered that the Toeplitz operator T_{μ} is extended on $\boldsymbol{b}_{\alpha}^{p}$.

Throughout this paper, C will denote a positive constant whose value is not necessary the same at each occurrence; it may vary even within a
line.

2. Preliminaries

First, we give the definition of $L^{(\alpha)}$-harmonic functions. For an open set D in \boldsymbol{R}^{n+1}, let $C_{K}^{\infty}(D)$ denote the set of all infinitely differentiable functions with compact support on D. In order to define $L^{(\alpha)}$-harmonic functions, we shall recall how the adjoint operator $\tilde{L}^{(\alpha)}=-\partial / \partial t+(-\Delta)^{\alpha}$ acts on $C_{K}^{\infty}\left(\boldsymbol{R}^{n+1}\right)$. For $0<\alpha<1,(-\Delta)^{\alpha}$ is the convolution operator defined by $-c_{n, \alpha}$ p.f. $|x|^{-n-2 \alpha}$, where

$$
c_{n, \alpha}=-4^{\alpha} \pi^{-n / 2} \Gamma((n+2 \alpha) / 2) / \Gamma(-\alpha)>0
$$

and $|x|=\left(x_{1}^{2}+\cdots+x_{n}^{2}\right)^{1 / 2}$. Hence for $\varphi \in C_{K}^{\infty}\left(\boldsymbol{R}^{n+1}\right)$,

$$
\begin{aligned}
\tilde{L}^{(\alpha)} \varphi(x, t)= & -\frac{\partial}{\partial t} \varphi(x, t) \\
& -c_{n, \alpha} \lim _{\delta \downarrow 0} \int_{|y|>\delta}(\varphi(x+y, t)-\varphi(x, t))|y|^{-n-2 \alpha} d y
\end{aligned}
$$

It is easily seen that if $\operatorname{supp}(\varphi)$, the support of φ, is contained in $\{|x|<$ $\left.r, t_{1}<t<t_{2}\right\}$, then

$$
\begin{equation*}
\left|\tilde{L}^{(\alpha)} \varphi(x, t)\right| \leq 2^{n+2 \alpha} c_{n, \alpha}\left(\sup _{t_{1}<s<t_{2}} \int_{\boldsymbol{R}^{n}}|\varphi(y, s)| d y\right) \cdot|x|^{-n-2 \alpha} \tag{7}
\end{equation*}
$$

for (x, t) with $|x| \geq 2 r$. For an open set D in \boldsymbol{R}^{n+1}, we put

$$
s(D):=\left\{(x, t) \in \boldsymbol{R}^{n+1} ;(y, t) \in D \text { for some } y \in \boldsymbol{R}^{n}\right\}
$$

Since $\operatorname{supp}\left(\tilde{L}^{(\alpha)} \varphi\right)$ may lie in $s(D)$ even if $\operatorname{supp}(\varphi) \subset D$, we can define the $L^{(\alpha)}$-harmonicity on D only for functions defined on $s(D)$.

Definition 3 A function u is said to be $L^{(\alpha)}$-harmonic on an open set D, if u is defined on $s(D)$ and satisfies the following conditions:
(a) u is a Borel measurable function on $s(D)$,
(b) u is continuous on D,
(c) for every $\varphi \in C_{K}^{\infty}(D), \iint_{s(D)}\left|u \tilde{L}^{(\alpha)} \varphi\right| d x d t<\infty$ and $\iint_{s(D)} u \tilde{L}^{(\alpha)} \varphi d x d t$ $=0$.

Remark 3 When $0<\alpha<1$, the inequality (7) implies that the integrability condition in (c) of Definition 3 is equivalent to the following: for any
closed strip $\left[t_{1}, t_{2}\right] \times \boldsymbol{R}^{n} \subset s(D)$

$$
\int_{t_{1}}^{t_{2}} \int_{\boldsymbol{R}^{n}}|u(x, t)|(1+|x|)^{-n-2 \alpha} d x d t<\infty
$$

Next, we introduce the fundamental solution $W^{(\alpha)}$ of $L^{(\alpha)}$, defined by

$$
W^{(\alpha)}(x, t)= \begin{cases}(2 \pi)^{-n} \int_{\boldsymbol{R}^{n}} \exp \left(-t|\xi|^{2 \alpha}+\sqrt{-1} x \cdot \xi\right) d \xi & t>0 \\ 0 & t \leq 0\end{cases}
$$

and give some properties and estimates necessary for our discussions. When $\alpha=1$ or $\alpha=1 / 2$, we know the explicit form. In fact, for $t>0$,

$$
W^{(1)}(x, t)=(4 \pi t)^{-n / 2} e^{-|x|^{2} /(4 t)}
$$

and

$$
W^{(1 / 2)}(x, t)=a_{n} \frac{t}{\left(t^{2}+|x|^{2}\right)^{(n+1) / 2}}
$$

where $a_{n}=\Gamma((n+1) / 2) / \pi^{(n+1) / 2}$. The following homogeneity of $W^{(\alpha)}$ is useful:

$$
\begin{equation*}
\partial_{x}^{\beta} \partial_{t}^{k} W^{(\alpha)}(x, t)=t^{-((n+|\beta|) /(2 \alpha)+k)}\left(\partial_{x}^{\beta} \partial_{t}^{k} W^{(\alpha)}\right)\left(t^{-1 /(2 \alpha)} x, 1\right) \tag{8}
\end{equation*}
$$

where $\beta=\left(\beta_{1}, \ldots, \beta_{n}\right)$ be a multi-index and $k \geq 0$ be an integer.
Lemma 1 Let $\beta=\left(\beta_{1}, \ldots, \beta_{n}\right)$ be a multi-index of nonnegative integers and $k \geq 0$ be an integer. Then there exists a constant $C>0$ such that

$$
\left|\partial_{x}^{\beta} \partial_{t}^{k} W^{(\alpha)}(x, t)\right| \leq C\left(t+|x|^{2 \alpha}\right)^{-(n+|\beta|) /(2 \alpha)-k}
$$

for all $(x, t) \in \boldsymbol{R}_{+}^{n+1}$.
Proof. Quite the same argument as in the proof of [3, Lemma 3.1] gives us an estimate

$$
\left|\partial_{x}^{\beta} \partial_{t}^{k} W^{(\alpha)}(x, 1)\right| \leq C|x|^{-n-|\beta|-2 \alpha k}
$$

instead of (3.5) in [3]. Then by the homogeneity property (8) of $W^{(\alpha)}$, when $t \leq|x|^{2 \alpha}$,

$$
\begin{aligned}
\left|\partial_{x}^{\beta} \partial_{t}^{k} W^{(\alpha)}(x, t)\right| & =t^{-((n+|\beta|) /(2 \alpha)+k)}\left|\left(\partial_{x}^{\beta} \partial_{t}^{k} W^{(\alpha)}\right)\left(t^{-1 /(2 \alpha)} x, 1\right)\right| \\
& \leq C t^{-((n+|\beta|) /(2 \alpha)+k)} t^{((n+|\beta|) /(2 \alpha)+k)}|x|^{-n-|\beta|-2 \alpha k}
\end{aligned}
$$

$$
\leq C\left(t+|x|^{2 \alpha}\right)^{-((n+|\beta|) /(2 \alpha)+k)}
$$

and when $|x|^{2 \alpha} \leq t$,

$$
\begin{aligned}
\left|\partial_{x}^{\beta} \partial_{t}^{k} W^{(\alpha)}(x, t)\right| & =t^{-((n+|\beta|) /(2 \alpha)+k)}\left|\left(\partial_{x}^{\beta} \partial_{t}^{k} W^{(\alpha)}\right)\left(t^{-1 /(2 \alpha)} x, 1\right)\right| \\
& \leq C t^{-((n+|\beta|) /(2 \alpha)+k)} \\
& \leq C\left(t+|x|^{2 \alpha}\right)^{-((n+|\beta|) /(2 \alpha)+k)},
\end{aligned}
$$

which give the lemma.
We recall some properties of a modified α-parabolic Bergman kernel R_{α}^{m}, which is given by

$$
R_{\alpha}^{m}(x, t ; y, s)=\frac{(-2)^{m+1}}{m!} s^{m} \partial_{t}^{m+1} W^{(\alpha)}(x-y, t+s) .
$$

This kernel has the reproducing property, i.e., for $m \geq 0, p \geq 1$ and for every $u \in \boldsymbol{b}_{\alpha}^{p}$,

$$
\begin{equation*}
R_{\alpha}^{m} u:=\int R_{\alpha}^{m}(\cdot, Y) u(Y) d V(Y)=u \tag{9}
\end{equation*}
$$

(see [3] for $n \geq 2$ and [4] for $n=1$). Lemma 1 gives the following estimate for R_{α}^{m}.

Lemma 2 For an integer $m \geq 0$, there exists a constant $C>0$ such that

$$
\left|R_{\alpha}^{m}(x, t ; y, s)\right| \leq C s^{m}\left(t+s+|x-y|^{2 \alpha}\right)^{-(n /(2 \alpha)+1)-m} .
$$

Later, we also use the following estimates.
Lemma 3 Let $0<p \leq \infty$. If $m>(n /(2 \alpha)+1)(1 / p-1)$, then we have

$$
\left\|R_{\alpha}^{m}(\cdot, Y)\right\|_{L^{p}(V)}=C s^{(n /(2 \alpha)+1)(1 / p-1)}
$$

with some constant $C>0$ independent of $Y=(y, s) \in \boldsymbol{R}_{+}^{n+1}$.
Proof. This follows from [3, Lemma 3.2], where the condition $p \geq 1$ is assumed but it is not necessary.

Lemma 4 ([5, Corollary 1]) Let $m \geq 0$ be an integer. Then there exist constants $C>0$ and $\rho>0$ such that

$$
\left|R_{\alpha}^{m}(X, Y)\right| \geq C s^{-(n /(2 \alpha)+1)}=C V\left(Q^{(\alpha)}\left(Y_{\rho}\right)\right)^{-1}
$$

for all $Y=(y, s) \in \boldsymbol{R}_{+}^{n+1}$ and all $X \in Q^{(\alpha)}\left(Y_{\rho}\right)$, where $Y_{\rho}:=(y, \rho s)$.

Lemma 5 Let $\gamma, \eta \in \boldsymbol{R}$. If $0<1+\gamma<-\eta-n /(2 \alpha)$, then

$$
\int t^{\gamma}\left(t+s+|x-y|^{2 \alpha}\right)^{\eta} d V(x, t)=C s^{\gamma+\eta+n /(2 \alpha)+1}
$$

with some constant $C>0$ independent of $(y, s) \in \boldsymbol{R}_{+}^{n+1}$.

3. A characterization of Carleson measures

Carleson measures are characterized by some norm inequalities.
Proposition 1 Let μ be a positive Borel measure on \boldsymbol{R}_{+}^{n+1} and let $0<$ $p, q<\infty$. For an nonnegative integer m with $m>(n /(2 \alpha)+1)(1 / p-1)$, there exists $C>0$ such that

$$
\begin{equation*}
\left(\int\left|R_{\alpha}^{m}(X, Y)\right|^{q} d \mu(X)\right)^{1 / q} \leq C\left(\int\left|R_{\alpha}^{m}(X, Y)\right|^{p} d V(X)\right)^{1 / p} \tag{10}
\end{equation*}
$$

for all $Y \in \boldsymbol{R}_{+}^{n+1}$. Then μ is a q / p-Carleson measure.
Proof. For every $Y=(y, s) \in \boldsymbol{R}_{+}^{n+1}$, by Lemmas 3 and 4, we have

$$
\begin{aligned}
s^{(n /(2 \alpha)+1)(1 / p-1) q} & =C\left(\int\left|R_{\alpha}^{m}(X, Y)\right|^{p} d V(X)\right)^{q / p} \\
& \geq C \int\left|R_{\alpha}^{m}(X, Y)\right|^{q} d \mu(X) \\
& \geq C \int_{Q^{(\alpha)}\left(Y_{\rho}\right)}\left|R_{\alpha}^{m}(X, Y)\right|^{q} d \mu(X) \\
& \geq C \int_{Q^{(\alpha)}\left(Y_{\rho}\right)} s^{-(n /(2 \alpha)+1) q} d \mu(X) \\
& =C s^{-(n /(2 \alpha)+1) q} \mu\left(Q^{(\alpha)}\left(Y_{\rho}\right)\right)
\end{aligned}
$$

Hence

$$
\mu\left(Q^{(\alpha)}(Y)\right) \leq C\left(\frac{s}{\rho}\right)^{(n /(2 \alpha)+1)(q / p)}
$$

which implies that μ is a q / p-Carleson measure.
As for the converse assertion, we see the following proposition.

Proposition 2 Let $0<p, q<\infty$ with $q / p>n /(n+2 \alpha)$ and let m be a nonnegative integer such that $m>(n /(2 \alpha)+1)(1 / p-1)$. Assume that μ is a q / p-Carleson measure on \boldsymbol{R}_{+}^{n+1}, i.e.,

$$
\begin{equation*}
\mu\left(Q^{(\alpha)}(X)\right) \leq C t^{(n /(2 \alpha)+1)(q / p-1)} V\left(Q^{(\alpha)}(X)\right) \tag{11}
\end{equation*}
$$

for all $X=(x, t) \in \boldsymbol{R}_{+}^{n+1}$ with some constant $C>0$. Then there exists another constant $C>0$ such that

$$
\left(\int\left|R_{\alpha}^{m}(X, Y)\right|^{q} d \mu(X)\right)^{1 / q} \leq C\left(\int\left|R_{\alpha}^{m}(X, Y)\right|^{p} d V(X)\right)^{1 / p}
$$

for all $Y \in \boldsymbol{R}_{+}^{n+1}$.
Proof. We use a Whitney type decomposition. For $Y=(y, s)$ $=\left(y_{1}, \ldots, y_{n}, s\right) \in \boldsymbol{R}_{+}^{n+1}$ and $\nu=(\beta, k)=\left(\beta_{1}, \ldots, \beta_{n}, k\right) \in \boldsymbol{Z}^{n+1}$, we put

$$
t_{\nu}:=2^{k} s, \quad x_{\nu}:=y+\left(2^{k} s\right)^{1 /(2 \alpha)}\left(\frac{2 \beta_{1}+1}{2}, \ldots, \frac{2 \beta_{n}+1}{2}\right)
$$

and

$$
\begin{aligned}
Q_{\nu}:= & Q^{(\alpha)}\left(x_{\nu}, t_{\nu}\right) \\
=\left\{(x, t) ; \beta_{j}\left(2^{k} s\right)^{1 /(2 \alpha)} \leq\right. & x_{j}-y_{j} \leq\left(\beta_{j}+1\right)\left(2^{k} s\right)^{1 /(2 \alpha)} \\
& \left.\quad(j=1, \ldots, n), 2^{k} s \leq t \leq 2^{k+1} s\right\}
\end{aligned}
$$

Then there exists a constant $C>1$, independent of $Y=(y, s)$ and ν, such that

$$
\begin{aligned}
C^{-1}\left(t+s+|x-y|^{2 \alpha}\right) & \leq\left(t_{\nu}+s+\left|x_{\nu}-y\right|^{2 \alpha}\right) \\
& \leq C\left(t+s+|x-y|^{2 \alpha}\right)
\end{aligned}
$$

for every $(x, t) \in Q_{\nu}$. Hence by Lemmas 2, 3, and 5, and (11), we have

$$
\begin{aligned}
& \int\left|R_{\alpha}^{m}(X, Y)\right|^{q} d \mu(X) \\
& \leq C s^{q m} \sum_{\nu \in \boldsymbol{Z}^{n+1}} \int_{Q_{\nu}}\left(t+s+|x-y|^{2 \alpha}\right)^{-(n /(2 \alpha)+1+m) q} d \mu(x, t) \\
& \leq C s^{q m} \sum_{\nu \in \boldsymbol{Z}^{n+1}}\left(t_{\nu}+s+\left|x_{\nu}-y\right|^{2 \alpha}\right)^{-(n /(2 \alpha)+1+m) q} \mu\left(Q_{\nu}\right) \\
& \leq C s^{q m} \sum_{\nu \in \boldsymbol{Z}^{n+1}}\left(t_{\nu}+s+\left|x_{\nu}-y\right|^{2 \alpha}\right)^{-(n /(2 \alpha)+1+m) q}
\end{aligned}
$$

$$
\begin{aligned}
& \quad \times t_{\nu}^{(n /(2 \alpha)+1)(q / p-1)} V\left(Q_{\nu}\right) \\
& \leq C s^{q m} \int t^{(n /(2 \alpha)+1)(q / p-1)} \\
& \times\left(t+s+|x-y|^{2 \alpha}\right)^{-(n /(2 \alpha)+1+m) q} d V(x, t) \\
& =C s^{(n /(2 \alpha)+1)(1 / p-1) q} \\
& =C\left(\int\left|R_{\alpha}^{m}(X, Y)\right|^{p} d V(X)\right)^{q / p} .
\end{aligned}
$$

4. Proof of Theorem 1

In this section, we complete the proof of Theorem 1.
Proof of Theorem 1. Let $1 \leq p \leq q<\infty$ and take an integer m with $m>$ $(n /(2 \alpha)+1)(1 / p-1)$. Since $R_{\alpha}^{m}(\cdot, Y) \in \boldsymbol{b}_{\alpha}^{p},(5)$ gives (10), and hence the "if" part follows from Proposition 1.

To prove the "only if" part, we denote by p^{\prime} the exponent conjugate to p. Then, by the Hölder inequality and [3, Lemma 6.2],

$$
\begin{aligned}
|u(X)|= & \left|\int s^{-1 /\left(p^{\prime} q\right)} s^{1 /\left(p^{\prime} q\right)} u(Y) R_{\alpha}^{m}(X, Y) d V(Y)\right| \\
\leq & \left(\int s^{-1 / q}\left|R_{\alpha}^{m}(X, Y)\right| d V(Y)\right)^{1 / p^{\prime}} \\
& \times\left(\int s^{p /\left(p^{\prime} q\right)}|u(Y)|^{p}\left|R_{\alpha}^{m}(X, Y)\right| d V(Y)\right)^{1 / p} \\
= & C t^{-1 /\left(p^{\prime} q\right)}\left(\int s^{p /\left(p^{\prime} q\right)}|u(Y)|^{p}\left|R_{\alpha}^{m}(X, Y)\right| d V(Y)\right)^{1 / p}
\end{aligned}
$$

Here we use the convention " $a^{1 / \infty}=1$ ". Since $q / p \geq 1$, the Minkowski inequality yields

$$
\begin{aligned}
& \left(\int|u(X)|^{q} d \mu(X)\right)^{p / q} \\
& \leq C\left[\int\left(\int s^{p /\left(p^{\prime} q\right)}|u(Y)|^{p}\left|R_{\alpha}^{m}(X, Y)\right| d V(Y)\right)^{q / p} t^{-1 / p^{\prime}} d \mu(X)\right]^{p / q}
\end{aligned}
$$

$$
\leq C \int s^{p /\left(p^{\prime} q\right)}|u(Y)|^{p}\left[\int\left|R_{\alpha}^{m}(X, Y)\right|^{q / p} t^{-1 / p^{\prime}} d \mu(X)\right]^{p / q} d V(Y)
$$

As in the proof of Proposition 2, we also obtain

$$
\begin{aligned}
& \int\left|R_{\alpha}^{m}(X, Y)\right|^{q / p} t^{-1 / p^{\prime}} d \mu(X) \\
& \leq C s^{q m / p} \sum_{\nu \in \boldsymbol{Z}^{n+1}} \int_{Q_{\nu}} t^{-1 / p^{\prime}} \\
& \times\left(t+s+|x-y|^{2 \alpha}\right)^{-(n /(2 \alpha)+1+m)(q / p)} d \mu(x, t) \\
& \leq C s^{q m / p} \sum_{\nu \in \boldsymbol{Z}^{n+1}} t_{\nu}^{-1 / p^{\prime}} \\
& \times\left(t_{\nu}+s+\left|x_{\nu}-y\right|^{2 \alpha}\right)^{-(n /(2 \alpha)+1+m)(q / p)} \mu\left(Q_{\nu}\right) \\
& \leq C s^{q m / p} \sum_{\nu \in \boldsymbol{Z}^{n+1}} t^{-1 / p^{\prime}}\left(t_{\nu}+s+\left|x_{\nu}-y\right|^{2 \alpha}\right)^{-(n /(2 \alpha)+1+m)(q / p)} \\
& \times t_{\nu}^{(n /(2 \alpha)+1)(q / p-1)} V\left(Q_{\nu}\right) \\
& \leq C s^{q m / p} \int t^{-1 / p^{\prime}+(n /(2 \alpha)+1)(q / p-1)} \\
& \times\left(t+s+|x-y|^{2 \alpha}\right)^{-(n /(2 \alpha)+1+m)(q / p)} d V(x, t) \\
& =C s^{-1 / p^{\prime}},
\end{aligned}
$$

where the last equality follows from Lemma 5 . Hence we have

$$
\begin{aligned}
\left(\int|u(X)|^{q} d \mu(X)\right)^{p / q} & \leq C \int s^{p /\left(p^{\prime} q\right)}|u(Y)|^{p} s^{-p /\left(p^{\prime} q\right)} d V(Y) \\
& =\|u\|_{L^{p}(V)}^{p}
\end{aligned}
$$

We note two remarks, which follow from the proof of Theorem 1.
Remark 4 Assume that μ is a q / p-Carleson measure. If $1<p \leq q<\infty$, then

$$
\|v\|_{L^{q}(\mu)} \leq C\|f\|_{L^{p}(V)},
$$

where we put $v(X):=\int\left|f(Y) R_{\alpha}(X, Y)\right| d V(Y)$ for $f \in L^{p}(V)$.

Remark 5 The norm of the inclusion $\iota_{\mu}: \boldsymbol{b}_{\alpha}^{p} \rightarrow L^{q}(\mu)$ is estimated by a weighted supremum norm of the averaging function $\hat{\mu}_{\alpha}$, i.e., there exists a constant $C \geq 1$ such that for every $\mu \geq 0$

$$
\frac{1}{C}\left\|\hat{\mu}_{\alpha}\right\|_{\tau} \leq\left\|\iota_{\mu}\right\|_{p, q}^{q} \leq C\left\|\hat{\mu}_{\alpha}\right\|_{\tau}
$$

where $\tau=q / p$ and

$$
\begin{aligned}
\left\|\iota_{\mu}\right\|_{p, q}:= & \sup _{u \in b_{\alpha}^{p}} \frac{\|u\|_{L^{q}(\mu)}}{\|u\|_{L^{p}(V)}} \text { and } \\
& \left\|\hat{\mu}_{\alpha}\right\|_{\tau}:
\end{aligned}
$$

5. An estimate of Toeplitz operators

In this section we consider the relation between Carleson measures and bounded Toeplitz operators. We begin with the following proposition.

Proposition 3 Let $0<p<\infty, 1<q \leq \infty$ and let μ be a positive Borel measure on \boldsymbol{R}_{+}^{n+1}. Put $\tau=1+1 / p-1 / q$. If μ is a τ-Carleson measure with respect to $L^{(\alpha)}$, then for every nonnegative integer $m>(n /(2 \alpha)+1)(1 / p-$ 1), there exists a constant $C>0$ such that the following assertions hold.
(a) If $0<p<1+2 \alpha / n$ and $1<q \leq \infty$, then $\left\|T_{\mu} R_{\alpha}^{m}(\cdot, Y)\right\|_{L^{q}(V)} \leq$ $C\left\|R_{\alpha}^{m}(\cdot, Y)\right\|_{L^{p}(V)}$ for every $Y \in \boldsymbol{R}_{+}^{n+1}$.
(b) If $1 \leq p<\infty, 1<q<\infty$ and $p \leq q$, then for every $u \in b_{\alpha}^{p}$ and every $X \in \boldsymbol{R}_{+}^{n+1}, \int\left|R_{\alpha}(X, Y) u(Y)\right| d \mu(Y)<\infty$ and $\left\|T_{\mu} u\right\|_{L^{q}(V)} \leq$ $C\|u\|_{L^{p}(V)}$. In particular, $\left\|T_{\mu} R_{\alpha}^{m}(\cdot, Y)\right\|_{L^{q}(V)} \leq C\left\|R_{\alpha}^{m}(\cdot, Y)\right\|_{L^{p}(V)}$ for every $Y \in \boldsymbol{R}_{+}^{n+1}$.
(c) If $1 \leq p<\infty$ and $q=\infty$, then for every $u \in \mathcal{E}_{m}$ and every $X \in$ $\boldsymbol{R}_{+}^{n+1}, \int\left|R_{\alpha}(X, Y) u(Y)\right| d \mu(Y)<\infty$ and $\left\|T_{\mu} u\right\|_{\mathcal{B}_{\alpha} / \boldsymbol{R}} \leq C\|u\|_{L^{p}(V)}$. In particular, $\left\|T_{\mu} R_{\alpha}^{m}(\cdot, Y)\right\|_{\mathcal{B}_{\alpha} / \boldsymbol{R}} \leq C\left\|R_{\alpha}^{m}(\cdot, Y)\right\|_{L^{p}(V)}$ for every $Y \in$ \boldsymbol{R}_{+}^{n+1}.

Proof. We write $X=(x, t), Y=(y, s)$ and $Z=(z, r)$. By assumption, there exists a constant $C>0$ such that for all $(x, t) \in \boldsymbol{R}_{+}^{n+1}$,

$$
\hat{\mu}_{\alpha}(x, t) \leq C t^{(n /(2 \alpha)+1)(1 / p-1 / q)} .
$$

Case (a): The assertion follows from a direct calculation. In fact, in the similar manner as in the proof of Proposition 2, by the Minkowski inequality
and Lemmas 3 and 5, we have

$$
\begin{align*}
& \left\|T_{\mu} R_{\alpha}^{m}(\cdot, Y)\right\|_{L^{q}(V)} \\
& \leq\left\|\int\left|R_{\alpha}(\cdot, Z) R_{\alpha}^{m}(Z, Y)\right| d \mu(Z)\right\|_{L^{q}(V)} \tag{12}\\
& \leq \int\left\|R_{\alpha}(\cdot, Z)\right\|_{L^{q}(V)}\left|R_{\alpha}^{m}(Z, Y)\right| d \mu(Z) \\
& =C \int r^{(n /(2 \alpha)+1)(1 / q-1)}\left|R_{\alpha}^{m}(Z, Y)\right| d \mu(Z) \\
& \leq C \sum_{\nu \in \boldsymbol{Z}^{n+1}} \int_{Q_{\nu}} r^{(n /(2 \alpha)+1)(1 / q-1)} s^{m} \\
& \times\left(s+r+|z-y|^{2 \alpha}\right)^{-(n /(2 \alpha)+1)-m} d \mu(Z) \\
& \leq C \sum_{\nu \in \boldsymbol{Z}^{n+1}} r_{\nu}^{(n /(2 \alpha)+1)(1 / q-1)} s^{m} \\
& \times\left(s+r_{\nu}+\left|z_{\nu}-y\right|^{2 \alpha}\right)^{-(n /(2 \alpha)+1)-m} \mu\left(Q_{\nu}^{(\alpha)}\right) \\
& \leq C \sum_{\nu \in \boldsymbol{Z}^{n+1}} r_{\nu}^{(n /(2 \alpha)+1)(1 / q-1)} s^{m}\left(s+r_{\nu}+\left|z_{\nu}-y\right|^{2 \alpha}\right)^{-(n /(2 \alpha)+1)-m} \\
& \times r_{\nu}^{(n /(2 \alpha)+1)(1 / p-1 / q)} V\left(Q_{\nu}^{(\alpha)}\right) \\
& \leq C s^{m} \int r^{(n /(2 \alpha)+1)(1 / p-1)}\left(s+r+|y-z|^{2 \alpha}\right)^{-(n /(2 \alpha)+1)-m} d V(Z) \\
& =C s^{(n /(2 \alpha)+1)(1 / p-1)} \\
& =C\left\|R_{\alpha}^{m}(\cdot, Y)\right\|_{L^{p}(V)} .
\end{align*}
$$

Case (b): Denote by q^{\prime} the exponent conjugate to q and take $u \in \boldsymbol{b}_{\alpha}^{p}, u_{1} \in$ $\boldsymbol{b}_{\alpha}^{q^{\prime}}$ arbitrarily. Then

$$
\frac{1}{p \tau}+\frac{1}{q^{\prime} \tau}=1
$$

Since $\tau=(p \tau) / p$ and $\tau=\left(q^{\prime} \tau\right) / q^{\prime}$, Theorem 1 and Remark 5 give that

$$
\begin{equation*}
\|u\|_{L^{p \tau}(\mu)} \leq C\|u\|_{L^{p}(V)} \quad \text { and } \quad\|v\|_{L^{q^{\prime} \tau}(\mu)} \leq C\left\|u_{1}\right\|_{L^{q^{\prime}}(V)} \tag{13}
\end{equation*}
$$

where

$$
v:=\int\left|u_{1}(X) R_{\alpha}(X, \cdot)\right| d V(X)
$$

These inequalities assure the following integrability:

$$
\begin{gathered}
\iint\left|u_{1}(X) R_{\alpha}(X, W) u(W)\right| d V(X) d \mu(W)=\int v(W)|u(W)| d \mu(W) \\
\leq\|v\|_{L^{q^{\prime} \tau}(\mu)}\|u\|_{L^{p \tau}(\mu)} \leq C\left\|u_{1}\right\|_{L^{q^{\prime}}(V)}\|u\|_{L^{p}(V)}<\infty
\end{gathered}
$$

Therefore the Fubini theorem shows that

$$
\begin{equation*}
\int T_{\mu} u(X) u_{1}(X) d V(X)=\int u(W) u_{1}(W) d \mu(W) \tag{14}
\end{equation*}
$$

and hence (13) gives

$$
\begin{aligned}
\left|\int T_{\mu} u \cdot u_{1} d V\right| & =\left|\int u u_{1} d \mu\right| \leq\|u\|_{L^{p \tau}(\mu)}\left\|u_{1}\right\|_{L^{q^{\prime}}(\mu)} \\
& \leq C\|u\|_{L^{p}(V)}\left\|u_{1}\right\|_{L^{q^{\prime}}(V)} .
\end{aligned}
$$

This implies that there exists $w \in \boldsymbol{b}_{\alpha}^{q}$ with $\|w\|_{L^{q}(V)} \leq C\|u\|_{L^{p}(V)}$ such that

$$
\int T_{\mu} u(X) u_{1}(X) d V(X)=\int w(X) u_{1}(X) d V(X)
$$

for all $u_{1} \in \boldsymbol{b}_{\alpha}^{q^{\prime}}$, because of the duality $\left(\boldsymbol{b}_{\alpha}^{q^{\prime}}\right)^{\prime} \simeq \boldsymbol{b}_{\alpha}^{q}$. For each $X \in \boldsymbol{R}_{+}^{n+1}$, taking $u_{1}:=R_{\alpha}(\cdot, X) \in \boldsymbol{b}_{\alpha}^{q^{\prime}}$, we have

$$
\begin{align*}
T_{\mu} u(X) & =\int u(W) R_{\alpha}(X, W) d \mu(W) \\
& =\int T_{\mu} u \cdot u_{1} d V=\int w \cdot u_{1} d V=w(X) \tag{15}
\end{align*}
$$

by (14) and the reproducing property (9). This shows

$$
\left\|T_{\mu} u\right\|_{L^{q}(V)} \leq C\|u\|_{L^{p}(V)}
$$

Case (c): If $p \geq 1+(2 \alpha / n)$, then we can choose $1<p_{1}<1+(2 \alpha / n)$ and $1<q_{1} \leq \infty$ such that

$$
\begin{equation*}
\frac{1}{p_{1} \tau}+\frac{1}{q_{1}^{\prime} \tau}=1 \tag{16}
\end{equation*}
$$

where q_{1}^{\prime} denotes the exponent conjugate to q_{1}. If $1 \leq p<1+(2 \alpha / n)$, we put $p_{1}:=p$ and $q_{1}:=q$. Then (16) also holds. We take $u \in \mathcal{E}_{m}$ and $v \in \mathcal{E}_{1}$ arbitrarily. Then for each $Y \in \boldsymbol{R}_{+}^{n+1}$, by (12) in the proof of Case (a) above,
we have

$$
\begin{align*}
\left\|T_{\mu} R_{\alpha}^{m}(\cdot, Y)\right\|_{L^{q_{1}}(V)} & \leq\left\|\int\left|R_{\alpha}(\cdot, W) R_{\alpha}^{m}(W, Y)\right| d \mu(W)\right\|_{L^{q_{1}}(V)} \\
& \leq C\left\|R_{\alpha}^{m}(\cdot, Y)\right\|_{L^{p_{1}}(V)}<\infty, \tag{17}
\end{align*}
$$

which implies $T_{\mu} u \in \boldsymbol{b}_{\alpha}^{q_{1}}$ and

$$
\begin{aligned}
& \iint\left|v(X) R_{\alpha}(X, W) u(W)\right| d \mu(W) d V(X) \\
& \quad \leq\left\|\int\left|R_{\alpha}(\cdot, W) u(W)\right| d \mu(W)\right\|_{L^{q_{1}}(V)}\|v\|_{L^{q_{1}^{\prime}}(V)}<\infty .
\end{aligned}
$$

Since $\tau=p \tau / p, \tau=\tau / 1$ and $(p \tau)^{-1}+\tau^{-1}=1$, the Fubini theorem and Theorem 1 show that

$$
\begin{aligned}
\left|\int T_{\mu} u(X) v(X) d V(X)\right| & =\left|\int u(Y) v(Y) d \mu(Y)\right| \\
& \leq\|u\|_{L^{p \tau}(\mu)}\|v\|_{L^{\tau}(\mu)} \leq C\|u\|_{L^{p}(V)}\|v\|_{L^{1}(V)} .
\end{aligned}
$$

Since \mathcal{E}_{1} is dense in $\boldsymbol{b}_{\alpha}^{1}$ and $\left(\boldsymbol{b}_{\alpha}^{1}\right)^{\prime} \simeq \mathcal{B}_{\alpha} / \boldsymbol{R}$, there exists $w \in \mathcal{B}_{\alpha}$ with $\|w\|_{\mathcal{B}_{\alpha} / \boldsymbol{R}} \leq C\|u\|_{L^{p}(V)}$ such that

$$
\begin{equation*}
\int T_{\mu} u(X) R_{\alpha}^{1}(X, Z) d V(X)=\int w(X) R_{\alpha}^{1}(X, Z) d V(X) \tag{18}
\end{equation*}
$$

for all $Z \in \boldsymbol{R}_{+}^{n+1}$ by [3, Lemma 8.3 and Theorem 8.4], where

$$
\|w\|_{\mathcal{B}_{\alpha} / \boldsymbol{R}}=\sup _{(x, t) \in \boldsymbol{R}_{+}^{n+1}}\left\{t^{1 /(2 \alpha)}\left|\nabla_{x} w(x, t)\right|+t\left|\partial_{t} w(x, t)\right|\right\} .
$$

Then by [3, Theorem 7.9] we have

$$
w(X)=w\left(X_{0}\right)-2 \int\left(R_{\alpha}(X, Z)-R_{\alpha}\left(X_{0}, Z\right)\right) r \partial_{r} w(z, r) d V(Z),
$$

where $X_{0}=(0,1)$ and $Z=(z, r)$, so that

$$
\begin{aligned}
\partial_{t} w(X) & =-2 \frac{\partial}{\partial t}\left(\int\left(R_{\alpha}(X, Z)-R_{\alpha}\left(X_{0}, Z\right)\right) r \partial_{r} w(z, r) d V(Z)\right) \\
& =-2 \int r \partial_{r} w(z, r) \partial_{t} R_{\alpha}(X, Z) d V(Z) \\
& =-\frac{2}{t} \int r \partial_{r} w(z, r) R_{\alpha}^{1}(Z, X) d V(Z)
\end{aligned}
$$

$$
\begin{aligned}
& =\frac{1}{t} \int w(Z) R_{\alpha}^{1}(Z, X) d V(Z) \\
& =\frac{1}{t} \int T_{\mu} u(Z) R_{\alpha}^{1}(Z, X) d V(Z) \\
& =\frac{\partial}{\partial t} \int T_{\mu} u(Z) R_{\alpha}(X, Z) d V(Z) \\
& =\partial_{t} T_{\mu} u(X)
\end{aligned}
$$

by [3, Lemma 8.3] and (18). Therefore the $L^{(\alpha)}$-harmonic function

$$
\tilde{w}(x, t):=w(x, t)-T_{\mu} u(x, t)
$$

is independent of t. Now remarking that

$$
\begin{aligned}
\left|\frac{\partial w}{\partial x_{i}}(x, t)\right| \leq & \|w\|_{\mathcal{B}_{\alpha}} t^{-1 /(2 \alpha)} \quad \text { and } \\
& \left|\frac{\partial T_{\mu} u}{\partial x_{i}}(x, t)\right| \leq\left\|T_{\mu} u\right\|_{L^{q_{1}}(V)} t^{-1 /(2 \alpha)-(n /(2 \alpha)+1)\left(1 / q_{1}\right)}
\end{aligned}
$$

by the definition of the parabolic Bloch norm (1) and [3, Theorem 5.4], where $1 \leq i \leq n$, we have

$$
\frac{\partial \tilde{w}}{\partial x_{i}}(x, t)=\lim _{t \rightarrow+\infty}\left(\frac{\partial w}{\partial x_{i}}(x, t)-\frac{\partial T_{\mu} u}{\partial x_{i}}(x, t)\right)=0
$$

Hence \tilde{w} is constant, which means $w=T_{\mu} u$ in $\mathcal{B}_{\alpha} / \boldsymbol{R}$, so that $\left\|T_{\mu} u\right\|_{\mathcal{B}_{\alpha} / \boldsymbol{R}}=$ $\|w\|_{\mathcal{B}_{\alpha} / \boldsymbol{R}}$.

To discuss the converse assertion, we use a modified Berezin transformation of a measure $\mu \geq 0$. For an integer $m \geq 0$, we put

$$
\tilde{\mu}_{\alpha, m}(Y):=\frac{\int R_{\alpha}^{m}(X, Y)^{2} d \mu(X)}{\int R_{\alpha}^{m}(X, Y)^{2} d V(X)}
$$

Note that $\tilde{\mu}_{\alpha, 0}=\tilde{\mu}_{\alpha}$. The averaging function and modified Berezin transformations are comparable to each other in the following sense.

Lemma 6 Let $m \geq 0$ be an integer, $-1<\eta<n /(2 \alpha)+1+2 m$, and $\mu \geq 0$ be a Borel measure on \boldsymbol{R}_{+}^{n+1}. Then we have the following estimates.
(i) $\hat{\mu}_{\alpha}(y, \rho s) \leq C \tilde{\mu}_{\alpha, m}(y, s)$ on \boldsymbol{R}_{+}^{n+1} for some constant $C>0$, where $\rho>0$ is a constant in Lemma 4.
(ii) $\hat{\mu}_{\alpha}(y, s) \leq C s^{\eta}$ on \boldsymbol{R}_{+}^{n+1} for some constant $C>0$ if and only if $\tilde{\mu}_{\alpha, m}(y, s) \leq C s^{\eta}$ on \boldsymbol{R}_{+}^{n+1} for some constant $C>0$.

Proof. To show (i), take $Y=(y, s) \in \boldsymbol{R}_{+}^{n+1}$ arbitrarily. From Lemmas 3 and 4, it follows that

$$
\begin{aligned}
\tilde{\mu}_{\alpha, m}(Y) & =C s^{n /(2 \alpha)+1} \int R_{\alpha}^{m}(X, Y)^{2} d \mu(X) \\
& \geq C V\left(Q^{(\alpha)}\left(Y_{\rho}\right)\right) \int_{Q^{(\alpha)}\left(Y_{\rho}\right)} R_{\alpha}^{m}(X, Y)^{2} d \mu(X) \\
& \geq C V\left(Q^{(\alpha)}\left(Y_{\rho}\right)\right)^{-1} \mu\left(Q^{(\alpha)}\left(Y_{\rho}\right)\right) \\
& =C \hat{\mu}_{\alpha}\left(Y_{\rho}\right) .
\end{aligned}
$$

For (ii), the "if" part follows from (i). Conversely, as in the proof of Proposition 2, by the aide of Whitney type decomposition, the first inequality in (ii) gives

$$
\int R_{\alpha}^{m}(X, Y)^{2} d \mu(X) \leq C s^{\eta-(n /(2 \alpha)+1)}
$$

and hence the "only if" part follows.
The main result of this section is the following proposition.
Proposition 4 Let $0<p<\infty, 1 \leq q \leq \infty$ and let μ be a positive Borel measure on \boldsymbol{R}_{+}^{n+1} satisfying

$$
\int\left|R_{\alpha}^{m}(X, \cdot)\right| d \mu(X)<\infty, \quad V \text {-a.e. }
$$

for some integer $m \geq 1$. Assume further that $m>(n /(2 \alpha)+1)(1 / p-1)$ and there exists a constant $C>0$ such that for every $Y \in \boldsymbol{R}_{+}^{n+1}$,

$$
\left\{\begin{array}{l}
\left\|T_{\mu} R_{\alpha}^{m}(\cdot, Y)\right\|_{L^{q}(V)} \leq C\left\|R_{\alpha}^{m}(\cdot, Y)\right\|_{L^{p}(V)} \quad \text { when } 1 \leq q<\infty \\
\left\|T_{\mu} R_{\alpha}^{m}(\cdot, Y)\right\|_{\mathcal{B}_{\alpha} / \boldsymbol{R}} \leq C\left\|R_{\alpha}^{m}(\cdot, Y)\right\|_{L^{p}(V)} \quad \text { when } \quad q=\infty
\end{array}\right.
$$

Then there exists a constant $C>0$ such that for all $Y=(y, s) \in \boldsymbol{R}_{+}^{n+1}$,

$$
\tilde{\mu}_{\alpha, m}(Y) \leq C s^{(n /(2 \alpha)+1)(1 / p-1 / q)}
$$

In particular μ is a τ-Carleson measure with $\tau=1+1 / p-1 / q$.
Proof. Let $Y=(y, s) \in \boldsymbol{R}_{+}^{n+1}$ be fixed such that $R_{\alpha}^{m}(\cdot, Y) \in L^{1}(\mu)$. Write $u:=R_{\alpha}^{m}(\cdot, Y)$ and $u_{\delta}(x, t):=u(x, t+\delta)$ for $\delta>0$. Then we remark that
u is $L^{(\alpha)}$-harmonic and

$$
u \in L^{p}(V) \cap L^{1}(V) \cap L^{\infty}(V)
$$

Since, writing $Z=(z, r)$, by Lemma 3 we have

$$
\begin{aligned}
& \int\left(\int\left|u_{\delta}(X) R_{\alpha}(X,(z, r+\delta))\right| d V(X)\right)|u(Z)| d \mu(Z) \\
& \leq \int\left\|u_{\delta}\right\|_{L^{2}(V)}\left\|R_{\alpha}(\cdot,(z, r+\delta))\right\|_{L^{2}(V)}|u(Z)| d \mu(Z) \\
& \leq C(s \delta)^{(-1 / 2)(n /(2 \alpha)+1)} \int|u| d \mu<\infty,
\end{aligned}
$$

the Fubini theorem implies

$$
\begin{aligned}
& \int\left(\int u_{\delta}(X) R_{\alpha}(X,(z, r+\delta)) d V(X)\right) u(Z) d \mu(Z) \\
& \quad=\int u_{\delta}(X)\left(\int R_{\alpha}((x, t+\delta), Z) u(Z) d \mu(Z)\right) d V(X) .
\end{aligned}
$$

Hence

$$
\int u_{\delta}(z, r+\delta) u(Z) d \mu(Z)=\int u(x, t+\delta) T_{\mu} u(x, t+\delta) d V(x, t)
$$

the right hand side of which converges to $\int u T_{\mu} u d V$ as δ tends to 0 . In fact, when $1 \leq q<\infty$,

$$
\begin{align*}
\int\left|u T_{\mu} u\right| d V \leq\|u\|_{L^{q^{\prime}}(V)}\left\|T_{\mu} u\right\|_{L^{q}(V)} & \\
& \leq C\|u\|_{L^{q^{\prime}}(V)}\|u\|_{L^{p}(V)}<\infty . \tag{19}
\end{align*}
$$

For $q=\infty$, since $m \geq 1$, we also see $\int\left|u T_{\mu} u\right| d V<\infty$ by [3, Proposition 7.2] and Lemma 2. Hence [3, Lemma 8.3] shows

$$
\begin{equation*}
\left|\int u T_{\mu} u d V\right| \leq 2\|u\|_{L^{1}(V)}\left\|T_{\mu} u\right\|_{\mathcal{B}_{\alpha} / \boldsymbol{R}} \leq C\|u\|_{L^{1}(V)}\|u\|_{L^{p}(V)} \tag{20}
\end{equation*}
$$

Moreover, since

$$
\left|u_{\delta}(z, r+\delta) u(Z)\right| \leq C|u(Z)|,
$$

which is in $L^{1}(\mu)$, the Lebesgue dominated convergence theorem gives

$$
\int u T_{\mu} u d V=\lim _{\delta \rightarrow 0} \int u_{\delta}(z, r+\delta) u(Z) d \mu(Z)=\int u^{2} d \mu
$$

Therefore by (19), (20) and Lemma reflem3

$$
\begin{aligned}
\int R_{\alpha}^{m}(Z, Y)^{2} d \mu(Z) & =\int u^{2} d \mu=\int u T_{\mu} u d V \\
& \leq C s^{(n /(2 \alpha)+1)(1 / p-1 / q-1)}
\end{aligned}
$$

Since $\int R_{\alpha}^{m}(Z, Y)^{2} d V(Z)=C s^{-(n /(2 \alpha)+1)}$, we have

$$
\tilde{\mu}_{\alpha, m}(Y) \leq C s^{(n /(2 \alpha)+1)(1 / p-1 / q)}
$$

for V-a.e. $\quad Y$. By the Fatou lemma, this inequality holds everywhere. Lemma 6 (i) shows that $\hat{\mu}_{\alpha}$ satisfies the same inequality, so that μ is a τ-Carleson measure.

6. Proof of Theorem 2

In this section, we complete the proof of Theorem 2.
Proof of Theroem 2. Proposition 4 shows (I) implies (II). By Lemma 6, (II) and (III) are equivalent. The implication (II) \Rightarrow (I) follows from (b) or
(c) in Proposition 3 according as $1<q<\infty$ or $q=\infty$.

Finally, we give two remarks concerning Theorem 2.
Remark 6 In (a) of (I) where $1<q<\infty$, as a result, for every $u \in \boldsymbol{b}_{\alpha}^{p}$, $T_{\mu} u(X)$ can be well-defined by the integral (2) for all $X \in \boldsymbol{R}_{+}^{n+1}$, and hence $T_{\mu} u \in \boldsymbol{b}_{\alpha}^{q}$. This follows from the proof of Case (b) in Proposition 3.

Remark 7 The constants C_{1}, C_{2} and C_{3} in Theorem 2 are comparable to each other. In particular, the operator norm of the Toeplitz operator T_{μ} is controlled by a weighted supremum norm of $\tilde{\mu}_{\alpha}$, i.e., there exists a constant $C>0$ independent of μ such that

$$
\frac{1}{C}\left\|\tilde{\mu}_{\alpha}\right\|_{\tau} \leq\left\|T_{\mu}\right\|_{p, q} \leq C\left\|\tilde{\mu}_{\alpha}\right\|_{\tau}
$$

where $\tau=1+1 / p-1 / q$,

$$
\begin{aligned}
&\left\|T_{\mu}\right\|_{p, q}:=\sup _{u \in \boldsymbol{b}_{\alpha}^{p}} \frac{\left\|T_{\mu} u\right\|_{L^{q}(V)}}{\|u\|_{L^{p}(V)}}(1<q<\infty) \text { and } \\
&\left\|T_{\mu}\right\|_{p, \infty}:=\sup _{u \in \boldsymbol{b}_{\alpha}^{p}} \frac{\left\|T_{\mu} u\right\|_{\mathcal{B}_{\alpha} / \boldsymbol{R}}}{\|u\|_{L^{p}(V)}}
\end{aligned}
$$

and where

$$
\left\|\tilde{\mu}_{\alpha}\right\|_{\tau}:=\sup _{X=(x, t) \in \boldsymbol{R}_{+}^{n+1}} \tilde{\mu}_{\alpha}(X) t^{(n /(2 \alpha)+1)(1-\tau)}
$$

References

[1] Choe B.R., Koo H. and Yi H., Positive Toeplitz operators between the harmonic Bergman spaces. Potential Analysis 17 (2002), 307-335.
[2] Nishio M. and Suzuki N., A characterization of strip domains by a mean value property for the parabolic operator of order α. New Zealand J. Math. 29 (2000), 47-54.
[3] Nishio M., Shimomura K. and Suzuki N., α-parabolic Bergman spaces. Osaka J. Math. 42 (2005), 133-162.
[4] Nishio M., Shimomura K. and Suzuki N., L ${ }^{p}$-boundedness of Bergman projections for α-parabolic operators. Advanced Studies in Pure Mathematics 44, 305-318, Math. Soc. of Japan, Tokyo, 2006.
[5] Nishio M. and Yamada M., Carleson type measures on parabolic Bergman spaces. J. Math Soc. Japan 58 (2006), 83-96.

M. Nishio
Department of Mathematics
Osaka City University
Sugimoto, Sumiyoshi
Osaka 558-8585, Japan
nishio@sci.osaka-cu.ac.jp
N. Suzuki
Graduate School of Mathematics
Nagoya University
Chikusa-ku, Nagoya 464-8602, Japan
nsuzuki@math.nagoya-u.ac.jp
M. Yamada
Department of Mathematics
Faculty of Education
Gifu University
Yanagido 1-1
Gifu 501-1193, Japan
yamada33@cc.gifu-u.ac.jp

[^0]: 2000 Mathematics Subject Classification : Primary 35K05; Secondary 26D10, 31B10.

