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On the local solvability

for a quasilinear cubic wave equation
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Abstract. This article is concerned with local solvability of the Cauchy problem for

a quasilinear cubic wave equation in dimension d = 3. Here, we improve the index of

regularity of the initial data compared to the one given by classical energy methods.
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1. Introduction

This paper is devoted to the construction of local (in time) solutions of
the Cauchy problem for a d-dimensional quasilinear wave equation of the
type

∂2
t u−∆u−G(∂u) · ∇2u = 0, (1.1)

where we set ∇u = (∂1u, ∂2u, . . . , ∂du), ∂u = (∇u, ∂tu) and

G · ∇2u =
∑

1≤j, k≤d

Gjk∂j∂ku.

Quasilinear wave equations appear frequently in general relativity such as
Einstein equations or relativistic elasticity, hydrodynamics, minimal sur-
faces etc. We consider the particular case where the d×d symmetric matrix
G satisfies the following elliptic equation

−∆Gjk = Qjk(∂u, ∂u) (1.2)

where the (Qjk)j,k are quadratic forms on R1+d. This is known as the
quasilinear cubic wave equation (see [3]). We assume that the initial data

(u, ∂tu)|t=0 = (u0, u1), (1.3)

is in the standard Sobolev space Hs ×Hs−1.
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Recall that using the energy method, one can prove the local well-
posedness for the system (1.1)–(1.3) when s > d/2 + 1/2. The crucial fact
is to estimate the first derivatives of the metric G in L1

T (L∞). In fact,
assuming that ∂u ∈ L∞T (Hs−1) with d/2 + 1/2 < s < d/2 + 1, then the
classical law for product shows that ∆−1(∂u)2 ∈ H2s−d/2, and thanks to
the Sobolev embedding we get ∂G ∈ L1

T (L∞). More precisely, we have the
following result.

Theorem 1.1 Let d ≥ 3, s > d/2 + 1/2 and (u0, u1) ∈ Hs ×Hs−1.
Assume that ‖(∇u0, u1)‖Ḣd/2−1 is small enough. Then, there exists a

positive time T and a unique solution u of the system (1.1)–(1.3) satisfying

u ∈ C([0, T ];Hd/2+1/2) ∩ C1([0, T ];Hd/2−1/2).

Moreover, a constant C exists (depending only on the initial data) such
that T ≥ C‖(∇u0, u1)‖−2

Ḣd/2−1
.

Here, Ḣs denotes the homogeneous Sobolev space endowed with the
semi-norm

‖u‖2
s :=

∫

Rd

|ξ|2s|Fu(ξ)|2dξ.

To improve upon the above existence result, one can use the smoothing
properties of equation (1.1). Notice that (1.1) is invariant with respect to
the dimensionless scaling u(t, x) → u(λt, λx). This scaling preserves the
Sobolev space of exponent sc = d/2, which is then (heuristically) a lower
bound for the range of permissible s. Hence, the above theorem seems to
require an extra 1/2 derivative. The goal of this paper is to try to go as
close as possible to the scaling invariant regularity.
Some results in this direction were obtained, in particular, for the equations
of the form

∂2
t u−∆u− g(u) · ∇2u = F (u)Q(∇u, ∇u), (1.4)

where

g · ∇2u =
∑

1≤j, k≤d

gjk∂j∂ku.

Q is a quadratic form on Rd, F ∈ D(R) and g is a given smooth function,
vanishing at 0 and with values in K such that Id+K is a convex subset of
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positive symmetric matrices.
Recall that in the case of equation (1.4), the energy method allows us

to prove the local well-posedness for initial data in Hs × Hs−1 with s >

(d + 1)/2 + 1/2. We point out that all improvement results are based on
Strichartz-type estimates for the wave operator with variable coefficients
(as well as on bilinear estimates). When the coefficients are rough, these
estimates present a loss of derivative compared to those obtained for the flat
wave operator. The first result in this direction was by H. Bahouri-J. Y-
Chemin [1] giving the well-posedness for s > (d+1)/2+1/4. Independently,
D. Tataru obtained in [14] the same result. Shortly afterward, other im-
provements were obtained in [2] and in [15]. Later, D. Tataru provided in
[16] and [17] a precise relationship between the smoothness of the metric
and the corresponding loss in the Strichartz estimates. He pushed down the
loss to (1/6)+. Moreover, in [12], H. Smith-D. Tataru showed that the 1/6
loss (in Strichartz estimates) is sharp in d = 3. In the case when the metric
g itself solves an equation of the type (1.4), an important improvement (on
the local well-posedness) over the 1/6 result was proved by S. Klainerman-
I. Rodnianski (see [9]).
Recently, in regards to equations of the form (1.4), S. Klainerman-I. Rod-
nianski proved local existence for s > 2 for the Einstein vacuum equation
in d = 3 (see [10]). Moreover, in [13], H. Smith-D. Tataru proved local
existence for general equations of the form (1.4) for s > 7/4 if d = 2, and
s > (d+ 1)/2 if d = 3, 4, 5.
In the case of equation (1.1), H. Bahouri-J. Y-Chemin proved in [3] the
following Theorem.

Theorem 1.2 Let d ≥ 4 and denote by sd = d/2 + 1/6. Assume that
(u0, u1) ∈ Hs×Hs−1(Rd) with s > sd and ‖(∇u0, u1)‖d/2−1 is small enough.
Then, there exist a positive time T and a unique solution u of (1.1)–(1.3)
such that, for any small positive real number α we have

T 1/6+α ≥ Cα‖(∇u0, u1)‖−1
d/2−5/6+α,

∂u ∈ C([0, T ];Hs−1) ∩ L2
T (Ḃd/4−1/2

4,2 ), if d ≥ 5,

and

∂u ∈ C([0, T ];Hs−1) ∩ L2
T (Ḃ1/6

6,2 ), and ∂G ∈ L1
T (L∞) if d = 4.

Ḃσ
p,q denotes the homogeneous Besov space (see Definition 2.1).
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Note that the proof of Theorem 1.2 strongly depends on the space
dimension; if d ≥ 5 then, by proving the Strichartz inequalities for solutions
of the “linearized equation”, the authors succeed in exhibiting a Banach
space B containing the solution u and having the property that, if a ∈ L2

T (B)
then ∂∆−1(a2) ∈ L1

T (L∞). In particular, this is crucial to get an energy
estimate. However, if d = 4 the use of Strichartz estimates is not sufficient.
To overcome this difficulty, they followed an idea of S. Klainerman and
D. Tataru, [11]. They proved microlocal bilinear estimates in the variable
coefficients case. Our goal is to show that, using an Lq(Lr) version of the
Strichartz inequalities, we can extend the Bahouri-Chemin result to the
case d = 3, obtaining a better index than that given by the energy method.
Before stating the result, we introduce the following notation. For all q ≥ 2,
we define the loss of derivative ρ by

ρ(q) =
1
2
− 2

3q
. (1.5)

We also set

sd(q) =
d

2
+ ρ(q) (1.6)

and for all real number r < d satisfying

2
q

= (d− 1)
(1

2
− 1
r

)
< 1, (1.7)

we define

σr =
d

r
− 1

2
. (1.8)

Our main result is the following.

Theorem 1.3 Let s > s3(6) = 3/2 + 7/18. There exists q > 6, r and
σr given by (1.7)–(1.8) such that: if the initial data (u0, u1) ∈ Hs(R3) ×
Hs−1(R3) and ‖(∇u0, u1)‖3/2−1 is small enough, then a non trivial time T
and a unique solution u of (1.1)–(1.3) exist and they satisfy

∂u ∈ C([0, T ];Hs−1(R3)) ∩ Lq
T (Ḃσr

r,2(R
3)).

Remark 1.4 In higher dimensions d ≥ 5, following the same proof given
here, we can show the local well-posedness for initial data (u0, u1) ∈ Hs ×
Hs−1(Rd) with s > sd(2) = d/2+1/6 and ‖(∇u0, u1)‖d/2−1 is small enough.
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This turns out to be the result of [3]. Meanwhile, if d = 4 then we obtain a
minimal loss of derivative ρ = 1/4 (which corresponds to the choice (q, r) =
(8/3, 4). This is of course not better than the Bahouri-Chemin result given
by Theorem 1.2. To get a better result, they proved and used bilinear
estimates in [3].

Remark 1.5 From the proof of Theorem 1.3 we can derive a lower bound
of the time T ; writing sα := s3(6) + α = 3/2 + ρ(qα) + α/2 (with a small
positive real number α), then a constant Cα exists such that

T 1/18+α/4 ≥ Cα‖γ‖−1
sα−1.

To prove Theorem 1.3, we follow the method used in [3] based on a
construction of an inductive scheme. The crucial fact is the use of an Lq(Lr)
version of the microlocal Strichartz estimates for the linearized equation.
(Note that by microlocal estimates we mean estimates satisfied on time
intervals which depend on the size of the spatial frequency).

This paper is organized as follows. In Section 2, first we give a brief
review of the Littlewood-Paley theory and we introduce some notation.
Next, we explain the main idea of the result and point out the difficulty
we observe to control ‖∂G‖L1

T (L∞) even if u is the solution of the free wave
equation. Finally, we state the microlocal Strichartz inequalities we will
use (Theorem 2.7). Section 3 is devoted to study some of the properties of
the operator ∇∆−1(a · b). Then using paradifferential calculus, we localize
the equation at frequencies fixed in a ring and we derive good estimates
of the remainder terms. In Section 4 we prove Theorem 1.3. First, we
establish an a priori energy estimate for the solutions of (1.1). Then using
Tataru counting method, we deduce the local Strichartz estimates. These
estimates and the smallness of the interval [0, T ] can be used to close the
energy estimate. In Section 5, we outline the proof of Theorem 2.7.

2. Notations and preliminary results

2.1. Some basic facts in Littlewood-Paley theory
In the following, we give a brief review of the Littlewood-Paley theory.

We refer the reader to [4] for a thorough treatment. Denote by C0 the ring
defined by

C0 =
{
ξ ∈ Rd such that

3
4
< |ξ| < 8

3

}
,



388 J. E. Azzouz and S. Ibrahim

and choose two non-negative radially symmetric functions χ ∈ D(B(0, 4/3))
and ϕ ∈ D(C0) such that for all ξ ∈ Rd

ϕ(2−kξ)ϕ(2−k′ξ) = 0 when |k − k′| ≥ 2

χ(ξ)ϕ(2kξ) = 0,

and

χ(ξ) +
∑

k∈N
ϕ(2kξ) = 1.

Let C̃ = B(0, 2/3) + C0, then C̃ is a ring satisfying

2kC̃ ∩ 2k′ C̃ = ∅ when |k − k′| > 5.

Denote by

h = F−1ϕ and h̃ = F−1χ,

and define the operator ∆k by, for all u ∈ S ′(Rd),

∆ku = ϕ(2−kD)u = 2dk

∫

Rd

h(2ky)u(x− y)dy

Sku =
∑

j≤k−1

∆ju = χ(2−kD)u = 2dk

∫

Rd

h̃(2ky)u(x− y)dy.

2.2. Notations
The Littlewood-Paley decomposition can be used to define the Besov

spaces.

Definition 2.1 Let σ be a real number, and (p, q) in [1, ∞[2. Let us state

‖u‖Ḃσ
p,q(Rd) :=

(∑

k∈Z
2kqσ‖∆ku‖q

Lp

)1/q
.

If σ < d/p then the closure in S ′ of the compactly supported and smooth
functions with respect to this norm is a Banach space. Note that Ḃσ

2,2 is the
homogeneous Sobolev space Ḣσ. The above definition can be extended to
the case p = q = ∞ where Ḃσ∞,∞ is nothing but the homogeneous Hölder
space Ċσ with the semi-norm

‖u‖Ċσ = ‖u‖Ḃs∞,∞
:= sup

k
2kσ‖∆ku‖L∞ .



On the local solvability for a quasilinear cubic wave equation 389

In all what follows, C denotes a universal constant which may change
from line to line. We also make the convention that (ck(t))k denotes a
sequence which satisfies

∑

k∈Z
ck(t)2 ≤ 1.

Typically, we take ck(t) = (2ks‖∆ku(t, . )‖L2)/‖u(t, . )‖s. In the sequel, we
set

γ := ∂u|t=0 = (∇u0, u1).

For any real number 0 < α < 2/9, there exists qα > 6 such that ρ(qα) =
7/18 + α/2. We define

sα := s3(6) + α =
3
2

+ ρ(qα) +
α

2
,

Γα
T (γ) := T 1/(3qα)+α/2‖γ‖Hsα−1 = T 1/18+α/4‖γ‖Hsα−1

and

Nα
T (γ) := T 1−2/qαΓα

T (γ).

If B is a Banach space then we set ‖u‖Lq
T (B) = ‖u‖Lq([0, T ],B). In the

special case q = ∞ and B = Ḣs, we simply denote

‖u‖T,s := ‖u‖L∞([0, T ], Ḣs).

Definition 2.2 Let σ ∈ R. Denote by L̃q
T (Ḃσ

r,p(Rd)) the set of distribu-
tions defined on ]0, T [×Rd such that

‖u‖̃Lq
T (Ḃσ

r,p) =
∥∥(2kσ‖∆ku‖Lq

T (Lr))k∈Z
∥∥

lp

is finite.

Remark 2.3 The spaces L̃q
T (Ḃσ

r,p(Rd)) are adapted to the method we use.
First, we localize in frequency by applying the projector ∆k on the equation
and then we take the time norm before summing with respect to k.
In particular, in the case p = q = 2 and r = ∞, we simply denote by
‖u‖̃T,σ := ‖u‖L̃∞T (Ḃσ

2,2). Note that we have

‖u‖T,σ ≤ ‖u‖̃T,σ
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and

‖u‖Lq
T (Ḃσ

r,p) ≤ ‖u‖̃Lq
T (Ḃσ

r,p).

Fix a cut-off function θ ∈ D(] − 1, 1[) whose value is 1 near 0. For any
sufficiently smooth function v, we denote by Gv,T the truncated metric
given by Gv,T (t, x) = θ(t/T )G(∂v)(t, x).

2.3. Main idea of the result
Here we want to explain the choice of the parameters ρ, σ and q in any

space dimension. The basic fact in the proof of Theorem 1.3 is the energy
estimate. This requires the control of

∫ T

0
‖∂G(∂u)(t, . )‖L∞dt. (2.9)

First, we recall the following law of product in Ḃs
p,q(Rd).

Proposition 2.4 Let r ≥ 2 and d/(2r) < σ < d/r, then for all a ∈
Ḃσ

r,2(Rd), we have a2 ∈ Ḃ2σ−d/r
r,1 (Rd).

In the particular case where σ = d/r − 1/2 and r < d, the above
proposition implies that if ∂u ∈ Ḃd/r−1/2

r,2 (Rd), then ∇∆−1(∂u)2 ∈ L∞.

Usually, the space Ḃd/r−1/2
r,2 is determined using Strichartz inequalities.

In the constant coefficients case, they are given by the following proposition
(see [6]).

Proposition 2.5 Let C1 be an ring in Rd and u(t, x) be a function such
that, for a positive real number λ, the function Fxu(t) is supported in the
ring λC1.
Then, for any two positive real numbers q and r satisfying (1.7) we have the
following estimate

‖∂1+ju‖Lq
T (Lr) ≤ λµ+j

(‖∂u|t=0‖L2 + C‖2u‖L1
T (L2)

)
, (2.10)

with µ = d(1/2− 1/r)− 1/q and 2 = ∂2
t −∆.

Let us first explain the idea how one can have a control of
‖∂G(∂u)‖L1

T (L∞) in the simple case where u is the solution of the free wave
equation. We want to estimate

∫ T

0
‖∂∆−1(∂u · ∂u)(t, . )‖L∞dt.
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We have to estimate an expression of the type
∫ T

0
‖∆−1(∂2u · ∂u)(t, . )‖L∞dt.

Recall the Bony’s decomposition (see [5]).

a · b = Ta(b) + Tb(a) +R(a, b),

where

Ta(b) =
∑

j

Sj−1(a)∆jb

and the remainder term is

R(a, b) =
∑
j∈Z

−1≤l≤1

∆ja∆j−lb.

Using Hölder inequality and Bernstein’s Lemma, we have
∥∥∥∆−1

∑

k

Sk−1(∂2u)∆k∂u
∥∥∥

L1
T (L∞)

≤ CT 1−2/q
∑

k

2k(d/r−2)‖Sk−1(∂2u)‖Lq
T (L∞)‖∆k∂u‖Lq

T (Lr).

On the other hand, applying Bernstein’s Lemma and estimate (2.10) to the
first factor in the above sum, we have

‖Sk−1(∂2u)‖Lq
T (L∞)≤C

∑

k′≤k−2

2k′(d/r+1)‖∆k′∂u‖Lq
T (Lr)

≤C
∑

k′≤k−2

2k′(d/r+1)2k′(d/2−d/r−1/q)‖∆k′γ‖L2 .

Setting ρ0(q) = 1/2− 1/q and applying Young’s inequality we obtain

‖Sk−1(∂2u)‖Lq
T (L∞) ≤ C2(3k)/2‖γ‖d/2−1+ρ0(q).

Therefore ‖∆−1T∂2u∂u‖L1
T (L∞) ≤ CT 2ρ0(q)‖γ‖2

d/2−1+ρ0(q).
The symmetric term can be treated exactly along the same lines. For the
remainder term we have, for all r ≥ 2

∥∥∥∆p∆−1
∑

−1≤j≤1
k≥p−N0

∆k(∂2u)∆k−j∂u
∥∥∥

L1
T (L∞)
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≤ CT 2ρ0(q)
∑

k−p≥−N0

22p(d/r−1)‖∆k∂
2u‖Lq

T (Lr)‖∆k−j∂u‖Lq
T (Lr).

Thanks to Strichartz inequalities (2.10) we can rewrite the above inequality
as,

∥∥∥∆p∆−1
∑

−1≤j≤1
k≥p−N0

∆k(∂2u)∆k−j∂u
∥∥∥

L1
T (L∞)

≤ CT 2ρ0
∑

k−p≥−N0

22(p−k)(d/r−1)22k(d/2+ρ0(q)−1)‖∆kγ‖2
L2 .

Applying Young’s inequality (since moreover r < d), we obtain

‖∆−1R(∂2u, ∂u)‖L1
T (L∞) ≤ CT 2ρ0(q)‖γ‖2

d/2−1+ρ0(q).

Therefore,

‖∂G(∂u)(t, . )‖L1
T (L∞) ≤ CT 2ρ0(q)‖γ‖2

d/2−1+ρ0(q).

Remark 2.6 Observe that in the above setting, a loss of derivative ρ0 =
0 corresponds to the choice q = 2. If d = 3, the pair (q, r) = (2, ∞) is
not admissible and therefore it seems hard to reduce the regularity index
to that given by scaling arguments using only Strichartz estimates. In our
work, we prove an Lq(Lr) version of local Strichartz estimates. The loss of
derivative ρ(q) that we obtain is ρ(q) = ρ0(q) + 1/3q, where 1/3q is the loss
due to the summation of the microlocal Strichartz estimates.

2.4. Strichartz inequalities
Let G = (GΛ)Λ≥Λo>0 be a family of smooth, matrix-valued functions

defined on IΛ × Rd where IΛ is a time interval containing 0. Denote by

‖G‖0 := sup
Λ≥Λ0

‖∂GΛ‖L1
IΛ

(L∞) + |IΛ|‖∇2GΛ‖L1
IΛ

(L∞) (2.11)

and

‖G‖l := sup
Λ≥Λ0

|IΛ|Λl‖∇l+2GΛ‖L1
IΛ

(L∞) for l ≥ 1, (2.12)

and assume that ‖GΛ‖L∞ is small enough. Let PΛ be the operator

PΛv := ∂2
t v −∆v −

∑

k,l

Gk,l
Λ ∂k∂lv. (2.13)
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The Strichartz estimates that we will use are the following

Theorem 2.7 Let ε0 be a positive real number and C be a fixed ring in
Rd. Fix (q, r) ∈ [2, ∞[2 such that 2/q = (d − 1)(1/2 − 1/r) with q 6= 2 if
d = 3, and consider a family G as above and such that for any l, ‖G‖l is
finite and ‖G‖0 is small enough i.e. ‖G‖0 ≤ δ. Then, for any positive real
number ε ≤ ε0, a constant C exists such that if vΛ is the solution of

(EΛ)
{
PΛvΛ = f

∂vΛ|τ=0
= γ,

on an interval IΛ satisfying

|IΛ| ≤ Λ2−ε,

and where f ∈ L1(IΛ, L2) and γ ∈ L2 are two functions for which the
Fourier transform is included in C then vΛ satisfies the following estimate

‖∂vΛ‖Lq(IΛ, Lr) ≤ C(‖γ‖L2 + ‖f‖L1(IΛ, L2)). (2.14)

This estimate is established by Bahouri-Chemin in [1]. The proof is
based on a dispersive estimate satisfied by an approximate solution to (1.1).
We shall outline the proof of Theorem 2.7 in Section 5.

3. Paradifferential calculus

In all what follows, we take d = 3. Along this work, we shall deal with
quantities of the form ∆−1(a.b). In the sequel, we summarize some of their
properties.

Lemma 3.1 Assume σ > 3/2, then a constant C exists such that

‖∆−1(a · b)‖Ḣσ+1/2 ≤ C

× (‖a‖Ḣσ−1‖b‖Ċ−1/2 + ‖b‖Ḣσ−1‖a‖Ċ−1/2

)
. (3.15)

Moreover, if σ > 3/2− 3/r with r ≥ 1 then,

‖∆−1(a · b)‖Ḣσ+1/2 ≤ C

× (‖a‖Ḣσ−1‖b‖Ḃ3/r−1/2
r,2

+ ‖b‖Ḣσ−1‖a‖Ḃ3/r−1/2
r,2

)
. (3.16)

A constant C exists such that

‖∆−1(a · b)‖Ḃ3/2
2,1

≤ C‖a‖Ḣ3/2−1‖b‖Ḣ3/2−1 . (3.17)
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Moreover, if 1 ≤ r < 3, then a constant C exists such that

‖∇∆−1(a · b)‖Ḃ3/r
r,1

≤ C‖a‖Ḃ3/r−1/2
r,2

‖b‖Ḃ3/r−1/2
r,2

. (3.18)

Proof. The proof of this lemma is an easy application of the paradifferential
calculus. We refer the reader to [4] for the proof of (3.15) and (3.17). For
the sake of completeness we shall prove (3.18) and (3.16).
We apply Bony’s decomposition

a · b = Ta(b) + Tb(a) +R(a, b).

We begin by proving the following

‖a · b‖Ḃ3/r−1
r,1

≤ C‖a‖Ḃ3/r−1/2
r,2

‖b‖Ḃ3/r−1/2
r,2

,

which clearly proves (3.18). Using Bernstein’s lemma and the fact that
R(a, b) has a Fourier transform supported in a ball, an integer N0 ∈ N
exists such that for all k ∈ Z,

‖∆kR(a.b)‖Lr ≤
∑

j≥k−N0
−1≤l≤1

‖∆ja‖L∞‖∆j−lb‖Lr

≤
∑

j≥k−N0
−1≤l≤1

2j(3/r)‖∆ja‖Lr‖∆j−lb‖Lr .

Hence,

2k(3/r−1)‖∆kR(a.b)‖Lr

≤
∑

j≥k−N0

2(k−j)(3/r−1)2j(3/r−1/2)‖∆ja‖Lr2j(3/r−1/2)‖∆jb‖Lr .

Using Young’s inequality for sequences and the fact that r < 3, we obtain
∑

k∈Z
2k(3/r−1)‖∆k(R(a.b))‖Lr ≤ C‖a‖Ḃ3/r−1/2

r,2

‖b‖Ḃ3/r−1/2
r,2

.

To conclude the proof of (3.18), it suffices to estimate the term ‖∆kTa(b)‖Lr

and do the same for the symmetric term Tb(a).
Note that the Fourier transform of the function Sj−1(a)∆jb is included in
a ring of the type 2j C̃. So

∑

j∈Z
∆k(Sj−1(a)∆jb) =

∑

|k−j|≤5

∆k(Sj−1a∆jb).
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Moreover, applying Bernstein’s Lemma and Young’s inequality, there exists
a sequence (dj) satisfying

∑
d2

j = 1 and such that
∑

l≤j−2

‖∆la‖L∞ ≤ 2j/2dj‖a‖Ḃ3/r−1/2
r,2

.

Therefore,

2k(3/r−1)‖∆kTa(b)‖Lr

≤ ‖a‖Ḃ3/r−1/2
r,2

∑

|k−j|≤5

2(k−j)(3/r−1)
(
dj2j(3/r−1/2)‖∆jb‖Lr

)
.

Taking the sum in l1(Z), we deduce (3.18).
To prove (3.16), we choose β > 1 such that 1/β = 1/2 + 1/r. Applying
Bernstein’s lemma and Hölder inequality we obtain

2k(σ−3/2)‖∆kR(a, b)‖L2 ≤
∑

j≥k−N0
−1≤l≤1

2k(σ−3/2)23k/r‖∆ja∆j−lb‖Lβ

≤
∑

j≥k−N0

2(k−j)(σ−3/2+3/r)2j(3/r−1/2)

× ‖∆ja‖Lr2j(σ−1)‖∆j−lb‖L2 .

The fact that σ > 3/2− 3/r completes the proof. ¤

To establish an Hs energy estimate for the solutions of (1.1) and for non
integer values of s, we also use the paradifferential calculus. The problem
is then to study the commutator between a multiplication and the pseudo-
differential operator ∆k.

3.1. Paralinearization of the equation

Lemma 3.2 Let s > 3/2−3/r. A constant C exists such that, if u, v and
F are three functions satisfying:
∂u and ∂v are in L∞T (Ḣs−1)∩Lq

T (Ḃ3/r−1/2
r,2 ), Gv,T ∈ L1

T (L∞), F ∈ L1
T (Ḣs−1)

and

∂2
t u−∆u−Gv,T · ∇2u = F,

then, uk := ∆ku is the solution of

∂2
t uk −∆uk − Sk−1(Gv,T ) · ∇2uk = Fk +Rk(∇u, ∂v),



396 J. E. Azzouz and S. Ibrahim

where Fk = ∆kF and the remainder term Rk(∇u, ∂v) satisfies the following
estimate

‖Rk(∇u, ∂v)(t, · )‖L2

≤ Cck(t)2−k(s−1)‖∇Gv,T (t, · )‖L∞‖∇u(t, . )‖s−1

+Cck(t)2−k(s−1)‖∂v(t, · )‖s−1‖∂v(t, . )‖Ḃ3/r−1/2
r,2

‖∂u(t, . )‖Ḃ3/r−1/2
r,2

.

Proof. The proof goes along the same lines as that of Theorem 2.1 in [3].
We split the product Gv,T∇2u into the two following terms.

Gv,T∇2u=
∑

j

Sj−1(Gv,T ) · ∇2uj +
∑

j

Sj+2(∇2u)∆jGv,T

=R1 +R2.

As previously done, the first term

R1 :=
∑

j∈Z
Sj−1(Gv,T )∇2uj

is easy to estimate since the Fourier transform of Sj−1(Gv,T )∇2uj is sup-
ported in the ring 2j C̃. Hence, we have

∆kR1 =Sk−1(Gv,T ) · ∇2uk

+
∑

j

(
Sj−1(Gv,T )− Sk−1(Gv,T )

) ·∆k(∇2uj)

+
∑

|k−j|≤5

[
∆k, Sj−1(Gv,T )

]∇2uj .

Using the following estimate on the commutator (for more details see [4] or
Lemma 8.2 in [9]),

∥∥[∆k, a]b
∥∥

L2 ≤ C2−k‖∇a‖L∞‖b‖L2 ,

we get
∑

|k−j|≤5

∥∥[
∆k, Sj−1(Gv,T )

]∇2uj

∥∥
L2

≤ C
∑

|k−j|≤5

2−k‖∇Sj−1(Gv,T )‖L∞‖∇2uj‖L2
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≤ C‖∇Gv,T ‖L∞‖∇u‖s−12−k(s−1)
∑

|k−j|≤5

2(k−j)(s−1)cj(t)

≤ Cck(t)‖∇Gv,T ‖L∞‖∇u‖s−12−k(s−1).

Hence,
∑

|k−j|≤5

∥∥[
∆k, Sj−1(Gv,T )

]∇2uj

∥∥
L2

≤ Cck(t)2−k(s−1)‖∇Gv,T ‖L∞‖∇u‖s−1.

Similarly, applying Cauchy-Schwartz’s inequality and using Bernstein’s
lemma we have

∥∥(
Sj−1(Gv,T )− Sk−1(Gv,T )

) · ∇2uj

∥∥
L2

≤
∑

l∈[j−2,k−2]

2−l‖∇Gv,T ‖L∞2j‖∇uj‖L2 .

Therefore,
∥∥∥

∑

|k−j|≤5

(
Sj−1(Gv,T )− Sk−1(Gv,T )

) · ∇2uj

∥∥∥
L2

≤ ‖∇Gv,T ‖L∞‖∇u‖s−1

∑
|k−j|≤5

l∈[j−2,k−2]

2j−l2−j(s−1)cj .

Note that since the number of l, l ∈ [j − 2, k − 2] such that |k − j| ≤ 5 is
finite, then

∥∥∥
∑

|k−j|≤5

(
Sj−1(Gv,T )− Sk−1(Gv,T )

) · ∇2uj

∥∥∥
L2

≤ C‖∇Gv,T ‖L∞‖∇u‖s−1

∑

|k−j|≤5

2−j(s−1)cj .

Using Young’s inequality, we get
∥∥∥

∑

j,|k−j|≤5

(
Sj−1(Gv,T )− Sk−1(Gv,T )

) · ∇2uj

∥∥∥
L2

≤ C‖∇Gv,T ‖L∞‖∇u‖s−12−k(s−1)ck(t).

Now we estimate the term R2. The Fourier transform of Sj+2(∇2u)∆jGv,T
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is included in a ball of the form B(0, C2j) then

∆kR2 =
∑

j≥k−N1

∆k

(
Sj+2(∇2u)∆jGv,T

)
.

Moreover, the following estimate

‖Sj+1(∇2u)‖L∞ ≤ 2j(3/2)‖∇u‖Ċ−1/2 ,

together with the fact that the space Ḃ3/r−1/2
r,2 is continuously embedded in

Ċ−1/2 give

‖Sj+1(∇2u)‖L∞ ≤ 2j(3/2)‖∇u‖Ḃ3/r−1/2
r,2

.

The above estimate and Lemma 3.1 show that

‖∆j(Gv,T )(t)‖L2 ≤ Ccj(t)2−j(s+1/2)‖∂v(t)‖Ḃ3/r−1/2
r,2

‖∂v(t)‖s−1.

Using Young’s inequality for sequences, the proof of Lemma 3.2 is complete.
¤

In the proof of Theorem 2.7, we need to localize equation (1.1) in a
way that the frequencies of the metric are much smaller than those of the
solution. In fact, the pseudo-differential operator defined above does not
have any symbolic calculus and therefore they do not allow the construction
of a parametrix for the operator (2.13) in the spirit of Hadamard’s method.
In the following corollary, we prove a precise paralinearization.

Corollary 3.3 Let s > 3/2 − 3/r. A constant C exists such that, if u, v
and F are three functions satisfying:
∂u and ∂v are in L∞T (Ḣs−1)∩Lq

T (Ḃ3/r−1/2
r,2 ), Gv,T ∈ L1

T (L∞), F ∈ L1
T (Ḣs−1)

and such that

∂2
t u−∆u−Gv,T · ∇2u = F,

then for any δ ∈ [0, 1] , we have

∂2
t uk −∆uk − Sδ

k(Gv,T ) · ∇2uk = Fk +Rδ
k(∇u, ∂v),

where

Sδ
kb = Skδ−(1−δ) ln2 T−N0

b
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and

‖Rδ
k(∇u, ∂v)(t, · )‖L1

T (L2)

≤ Cck2−k(s−1)(1 + (2kT )1−δ)
[
‖∇Gv,T ‖L1

T (L∞)‖∇u‖T,s−1

+ T 1−2/q‖∂v‖T,s−1‖∂v‖Lq
T (Ḃσr

r,2)‖∂u‖Lq
T (Ḃσr

r,2)

]
.

Proof. Using Lemma 3.2 we can write

Rδ
k(∇u, ∂v) = Rk(∇u, ∂v) + (Sδ

k − Sk−1)(Gv,T ) · ∇2uk.

Hence it suffices to handle (Sδ
k − Sk−1)Gv,T · ∇2uk.

Note that

‖(Sδ
k − Sk−1)Gv,T · ∇2uk‖L1

T (L2)

≤ ‖(Sδ
k − Sk−1)Gv,T ‖L1

T (L∞)‖∇2uk‖L∞T (L2).

On the other hand, thanks to Bernstein’s lemma we have

‖(Sδ
k − Sk−1)Gv,T ‖L1

T (L∞)

≤ C
∑

p≥kδ−(1−δ) ln2 T−N0

2−p‖∆p(∇Gv,T )‖L1
T (L∞)

≤ C‖∇Gv,T )‖L1
T (L∞)

∑

p≥kδ−(1−δ) ln2 T−N0

2−p

≤ C2−kδ+(1−δ)ln2T ‖∇Gv,T ‖L1
T (L∞).

Noticing that 2−kδ+(1−δ)ln2T = 2−k(2kT )1−δ, we obtain the desired estimate
on the reminder term. ¤

4. Proof of the main result

Recall that

sα := s3(6) + α =
3
2

+ ρ(qα) +
α

2
,

Γα
T (γ) := T 1/18+α/4‖γ‖Hsα−1 and Nα

T (γ) := T 1−2/qΓα
T (γ). (4.19)

To solve (1.1) with initial data (u0, u1) ∈ Hsα ×Hsα−1 with a small α > 0,
we define the following iterative scheme. First, let u(0) be the solution of
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the free wave equation
{
∂2

t u
(0) −∆u(0) = 0

(u(0), ∂tu
(0))|t=0 = (S0u0, S0u1),

and inductively for n = 0, 1, 2, . . . define u(n+1) by
{
∂2

t u
(n+1) −∆u(n+1) −Gu(n), T · ∇2u(n+1) = 0

(u(n+1), ∂tu
(n+1))|t=0 = (Sn+1u0, Sn+1u1).

For simplicity, we shall define Gn,T := Gu(n),T . Then, all we need is to show
that if T is small enough, the sequence (u(n)) is bounded and is a Cauchy
sequence in the space C([0, T ]; Ḣs−1). To do so, we introduce the following
assertions which we prove by induction.





‖∂u(n)‖Lq
T (Ḃσr

r,2) ≤ C0Γα
T (γ)

‖∂u(n)‖T,s−1 ≤ e3‖γ‖s−1

for any s ∈
[3
2
− 3
r

+ α,
3
2

+ ρ(qα) + α
]
.

(Pn)

To prove Theorem 1.3 we show that if ‖γ‖d/2−1 +Nα
T (γ).Γα

T (γ) is small
enough, then (P1) is satisfied and (Pn) implies (Pn+1). First, we point out
that under the inductive hypothesis, we have the following a priori control
of the metric.

Lemma 4.1 Assume that (Pn) holds, then we have

‖Gn,T ‖L∞ ≤ C‖γ‖2
3/2−1 (4.20)

and

‖∂Gn,T ‖L1
T (L∞) ≤ C‖γ‖2

3/2−1 + C0

(
T 7/18+α‖γ‖sα−1

)2
. (4.21)

Proof. This result is an immediate consequence of Lemma 3.1. In fact,
(3.17) and (3.18) together with (Pn) imply (4.20) and (4.21) in the case
where ∂ is a space derivative. However, the proof of (4.21) with ∂ = ∂t is
quite different. In fact, noticing that

∂tGn,T =
1
T

(∂tθ)
( ·
T

)
G(∂u(n)) + θ

( ·
T

)
∂tG(∂u(n)),

and using the equation satisfied by u(n), the term ∂tG(∂tu
(n)) could be

developed as a sum of terms of the type ∆−1(∆u(n−1) · ∂u(n−1)) and
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∆−1(Gn−1∇2u(n−1) · ∂u(n−1)). Obviously, ∆−1(∆u(n−1) · ∂u(n−1)) can be
estimated as in (3.18). On the other hand, using the following law of product

‖a · b‖Ḃ3/r−1/2
r,2

≤ C‖a‖Ḃ3/2
2,1

‖b‖Ḃ3/r−1/2
r,2

, (4.22)

we deduce that Gn−1∂u
(n) ∈ Ḃ3/r−1/2

r,2 , and again applying (3.18), we get
(4.21). The proof of Lemma 4.1 is then complete. ¤

4.1. Energy estimate
The energy estimate satisfied by u(n+1) is the following.

Proposition 4.2 Assume that (Pn) is satisfied then, for all real number
s ∈]3/2 − 3/r, 3/2 + ρ(qα) + α], a constant C exists such that for all t ∈
[0, T ], we have

‖∂u(n+1)‖T,s−1 ≤ e2‖γ‖s−1

×
(
1 + CC0N

α
T (γ)‖∂u(n+1)‖

Lqα
T (Ḃ3/r−1/2

r,2 )

)
. (4.23)

Proof. Recall that according to Lemma 3.2, the sequence u(n+1)
k :=∆ku

(n+1)

satisfies the equation

∂2
t u

(n+1)
k −∆u(n+1)

k − Sk−1(Gu(n), T ) · ∇2u
(n+1)
k

= Rk(∇u(n+1), ∂u(n)), (4.24)

with the following estimate

‖Rk(∇u(n+1), ∂u(n))(t, · )‖L2

≤ Cck(t)2−k(s−1)‖∇Gu(n),T ‖L∞‖∇u(n+1)(t, . )‖s−1

+ Cck(t)2−k(s−1)‖∂u(n)(t, · )‖s−1

× ‖∂u(n)(t, . )‖Ḃ3/r−1/2
r,2

‖∂u(n+1)(t, . )‖Ḃ3/r−1/2
r,2

.

Multiplying (4.24) by ∂tu
(n+1)
k and integrating on R3, we obtain

1
2
d

dt

[‖∂u(n+1)
k ‖2

L2(t) + 〈Sk−1(Gn,T ) · ∇u(n+1)
k , ∇u(n+1)

k 〉L2

]
(t)

=
1
2
〈Sk−1(∂t′Gn,T ) · ∇u(n+1)

k , ∇u(n+1)
k 〉L2(t) + 〈Rk, ∂tu

(n+1)
k 〉L2(t)

−
∑

1≤j,l≤d

〈Sk−1(∂jG
jl
n,T ) · ∂lu

(n+1)
k , ∂tu

(n+1)
k 〉L2(t).
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The above estimate on Rk(∇u(n+1), ∂u(n)) yields,

1
2
d

dt

[‖∂u(n+1)
k ‖2

L2 + 〈Sk−1(Gn,T ) · ∇u(n+1)
k , ∇u(n+1)

k 〉L2(t)
]

≤ C‖∂Gn,T (t, . )‖L∞‖∂u(n+1)
k (t, . )‖2

L2

+ C2−k(s−1)ck(t)‖∂u(n+1)
k (t, . )‖L2

× ‖∇(Gn,T )(t, . )‖L∞‖∇u(n+1)(t, . )‖s−1

+ C2−k(s−1)ck(t)‖∂u(n)(t, . )‖s−1‖∂u(n)(t, . )‖Ḃ3/r−1/2
r,2

× ‖∂u(n+1)(t, . )‖Ḃ3/r−1/2
r,2

‖∂u(n+1)
k (t, . )‖L2 .

Multiplying by 22k(s−1), summing and using (Pn) we obtain

1
2
d

dt

[‖∂u(n+1)‖2
s−1 + hn(t)

]
(t)

≤ C‖∂(Gn,T )(t, . )‖L∞‖∂u(n+1)(t, · )‖2
s−1

+ C‖γ‖s−1‖∂u(n)(t, . )‖Ċ−1/2

× ‖∂u(n+1)(t, . )‖Ċ−1/2‖∂u(n+1)(t, · )‖s−1,

where we set

hn(t) =
∑

k∈Z
22k(s−1)〈Sk−1(Gn,T ) · ∇u(n+1)

k , ∇u(n+1)
k 〉L2(t).

Now, choosing ‖γ‖d/2−1 small enough such that for a constant 0 < c < 1,
the following holds

‖∂u(n+1)(t, · )‖2
s−1 + hn(t) ≤ c−1‖∂u(n+1)(t, · )‖2

s−1.

Therefore, using Gronwall’s lemma and the embedding Ḃσr
r,2(R3)↪→Ċ−1/2(R3)

we deduce that

‖∂u(n+1)(t, · )‖s−1 ≤ exp
(
C

∫ t

0
‖(∂Gn,T )(t′, . )‖L∞

)
‖γ‖s−1

· [1 + CC0N
α
T (γ)‖∂u(n+1)(t, . )‖

Lqα
T (Ḃ3/r−1/2

r,2 )

]
. (4.25)

The choice C‖γ‖2
3/2−1 +CC0N

α
T (γ)‖γ‖sα−1 ≤ 2 completes the proof. ¤

The following result enables us to obtain an a priori control of the
remainder term for the precise paralinearization.
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Lemma 4.3 A constant C exists such that under the hypothesis (Pn) we
have for any δ in the interval [0, 1]

{
∂2

t u
n+1
k −∆un+1

k − Sδ
k(Gn,T )∇2un+1

k = Rδ
k(n)

∂ukn+1
|t=0

= γn+1
k

with Sδ
kb = Skδ−(1−δ) ln2 T−N0

b and

‖Rδ
k(n)‖L1

T (L2) ≤ Cck2−k(1−1/qα)(2kT )−1/18−α/4Γα
T (γ)

× (1 + (2kT )1−δ)(1 + CC0NT (γ)‖∂un+1‖Lqα
T (Ḃσr

r,2)).

Proof. Applying Corollary (3.3) with ∂u = ∂u(n+1), ∂v = ∂v(n) and s =
sα, we have

‖Rδ
k(n)‖L1

T (L2) ≤ Cck2−k(sα−1)(1 + (2kT )1−δ)

× (‖∇Gn‖L1
T (L∞)‖∇u(n+1)‖T,sα−1

+ T 1−2/qα‖∂u(n)‖T,sα−1‖∂u(n)‖Lqα
T (Ḃσr

r,2)‖∂u(n+1)‖Lqα
T (Ḃσr

r,2)).

Using (Pn), (4.20), (4.21) together with the energy estimate (4.23) we obtain

‖Rδ
k(n)‖L1

T (L2) ≤ Cck2−k(1−1/qα)(2kT )−1/(3qα)−α/2Γα
T (γ)

× (1 + (2kT )1−δ)
(
1 + CC0N

α
T (γ)‖∂u(n+1)‖

Lqα
T (Ḃ3/r−1/2

r,2 )

)
.

Thanks to (4.19), the proof is complete. ¤

Now, we are going to estimate ‖∂u(n+1)‖
Lqα

T (Ḃ3/r−1/2
r,2 )

. We split this

study into the two cases of low and high frequencies. The following result
deals with the low frequencies.

Corollary 4.4 Assume that (2kT )(2/(3qα)−α/2) ≤ C then, there exists a
constant C such that under the hypothesis (Pn), we have

‖∂Sku
(n+1)‖L̃qα

T (Ḃσr
r,2) ≤ CT 2/(3qα)−α/2Γα

T (γ)

× (
1 + CC0N

α
T (γ)‖∂u(n+1)‖

Lqα
T (Ḃ3/r−1/2

r,2 )

)
.

Proof. Using Bernstein’s inequality, we have

22kσr‖∂u(n+1)
k (t, · )‖2

Lr ≤ C22k(2/(3qα)−α/2)‖∂u(n+1)(t, · )‖2
T,sα−1.
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Moreover, thanks to the energy estimate (4.23), we have

22kσr‖∂u(n+1)
k ‖2

Lqα
T (Lr) ≤ CT 4/qα−α(2kT )2(2/(3qα)−α/2)Γα

T (γ)2

× (
1 + CC0N

α
T (γ)‖∂u(n+1)‖

Lqα
T (Ḃd/r−1/2

r,2 )

)2
.

Choosing α small enough, summing and noticing that 2/(3qα)−α/2 = 1/9−
α the proof of the corollary is complete. ¤

4.2. Strichartz estimates and the end of the proof of Theorem 1.3
From the microlocal result (2.14) given in Theorem 2.7, we deduce the

following local statement.

Lemma 4.5 Let ε be a positive real number and G be a metric such that
for a sufficiently small constant c0, we have

‖∂G‖L1
T (L∞) ≤ c0.

Fix q > 2 and r such that 1/q = 1/2− 1/r. A constant Cε exists such that
if we set Ḡk := S

2/3
k G and assume that the Fourier transform of γk, fk(t, · )

and uk(t, · ) are supported in the ring 2kC, then the solution uk of

(Ek)
{
∂2

t uk −∆uk − Ḡk∇2uk = fk on ]0, T [×R3

∂uk |t=0 = γk

satisfies

‖∂uk‖Lq
T (Lr) ≤ Cε2k[3(1/2−1/r)−1/q](2kT )1/(3q)+ε

× (‖∂uk‖L∞T (L2) + (2kT )−1/3‖fk‖L1
T (L2)). (4.26)

Proof. Fix k big enough (this corresponds to the high frequencies case).
Suppose that we can construct a finite partition of the interval [0, T ];

[0, T ] = ∪l=N(k)
l=0 Ik,l

where Ik,l = [tk,l, tk,l+1] and assume that, for every l = 0, 1, . . . , N(k)
(except probably for l = N(k)), the following property holds

|Ik,l|
T (2kT )−1/3−ε

+
‖fk‖L1(Ik,l,L2)

(2kT )−1/3‖fk‖L1
T (L2)

+
|Ik,l|
T

(2kT )2/3‖∇Ḡk‖L1(Ik,l,L∞) = δ. (4.27)
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Recall that δ is small enough and it is given by Theorem 2.7. Then we have
the following consequences:

• A constant Cδ exists such that the number N(k) of the sub-intervals
Ik,l is estimated by

N(k) ≤ Cδ(2kT )1/3+ε. (4.28)

In fact, denote by σ(j)(k) the set of all the l’s such that the jth term in
(4.27) is the biggest, and decompose N(k) = N1(k)+N2(k)+N3(k), where
Nj(k) counts all the l’s in σ(j)(k). For every l ∈ σ(j)(k), the jth term in
(4.27) has to be greater than or equal to δ/3. Therefore we have

|Ik,l|
T (2kT )−1/3−ε

≥ δ

3
for all l ∈ σ(1)(k), (4.29)

‖fk‖L1(Ik,l,L2)

(2kT )−1/3‖fk‖L1
T (L2)

≥ δ

3
for all l ∈ σ(2)(k), (4.30)

and

|Ik,l|
T

(2kT )2/3‖∇Ḡk‖L1(Ik,l,L∞) ≥
δ

3
for all l ∈ σ(3)(k). (4.31)

Now after l summation in (4.29) and (4.30), we obtain

N1(k)≤ 3(2kT )1/3+ε

Tδ
Σl∈σ(1)(k)|Ik,l|

≤ 3(2kT )1/3+ε

δ
, (4.32)

and

N2(k)≤ 3(2kT )1/3

‖fk‖L1
T (L2)δ

Σl∈σ(2)(k)‖fk‖L1(Ik,l,L2)

≤ 3(2kT )1/3

δ
(4.33)

respectively. On the other hand, from (4.31), we deduce that
( 3

2δ
(2kT )1/3 |Ik,l|

T
+ (2kT )1/3‖∇Ḡk‖L1(Ik,l,L∞)

)2
≥ 1. (4.34)

Taking the square root of the above inequality and summing over the set
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σ(3)(k) we obtain

N3(k) ≤ 3
2δ

(2kT )1/3 + (2kT )1/3‖∇Ḡk‖L1
T (L∞). (4.35)

From (4.32), (4.33), (4.35) together with the hypothesis on the metric G,
we deduce the desired estimate (4.28) on N(k).

• On each sub-interval Ik,l, the solution uk satisfies the following mi-
crolocal estimate

‖∂uk‖Lq(Ik,l,Lr) ≤ 2k[3(1/2−1/r)−1/q]

× (‖∂uk(tk,l)‖L2 + ‖fk‖L1(Ik,l,L2)). (4.36)

In fact, rescaling uk(t, x) = vk(2kt, 2kx), it is clear that vk satisfies

∂2
t vk −∆vk −Hk∇2vk = gk

where Hk(t, x) = Ḡk(2−kt, 2−kx) and gk(t, x) = 22kfk(2kt, 2kx). Let us
verify that the hypothesis of Theorem 2.7 are satisfied by vk on the mi-
crolocal interval Jk,l := 2kIk,l.
First note that choosing Λ = (2kT )1/3, we have

|Jk,l| ≤ (2kT )2/3−ε ≤ Λ2−3ε.

Second, it is clear that

‖∂Hk‖L1(Jk,l, L∞) = 2−k

∫ 2ktk,l+1

2ktk,l

‖∂Ḡk(2−kt, . )‖L∞

= ‖∂Ḡk‖L1(Ik,l, L∞)

≤‖∂G‖L1([0, T ], L∞). (4.37)

In the last inequality we used the fact that Ḡk := S
2/3
k G and the bound-

edness of S2/3
k in L∞. The smallness of ‖∂G‖L1([0, T ], L∞) implies then the

smallness of the left hand side of (4.37). Similarly we have

‖∇2Hk‖L1(Jk,l, L∞) = 2−2k

∫ 2ktk,l+1

2ktk,l

‖∇2Ḡk(2−kt, . )‖L∞

= 2−k‖∇2Ḡk‖L1(Ik,l, L∞).
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Applying Bernstein’s lemma we obtain

‖∇2Ḡk‖L∞ ≤ C
(2kT )2/3

T
‖∇Ḡk‖L∞ .

Integrating with respect to time we deduce that

‖∇2Ḡk‖L1(Ik,l, L∞) ≤ C
(2kT )2/3

T
‖∇Ḡk, ‖L1(Ik,l, L∞).

Therefore,

|Jk,l|‖∇2Hk‖L1(Jk,l, L∞)=|Ik,l|‖∇2Ḡk‖L1(Ik,l, L∞)

≤C|Ik,l|(2
kT )2/3

T
‖∇Ḡk‖L1(Ik,l, L∞)

≤Cδ. (4.38)

For the last estimate, we have used (4.27). This shows the smallness of
‖(Hk)‖0. Applying Theorem 2.7 and using the fact that

‖∂vk‖Lq(Jk,l, Lr) = 2k(3/r+1/q−1)‖∂uk‖Lq(Ik,l, Lr)

and

‖gk‖L1(Jk,l, L2) = 2k(3/2−1)‖fk‖L1(Ik,l, L2),

we obtain

‖∂uk‖Lq(Ik,l, Lr) ≤ 2k[3(1/2−1/r)−1/q]
(‖∂uk(tk,l)‖L2 + ‖fk‖L1(Ik,l, L2)

)
,

as desired.
• Estimate (4.26) is deduced from (4.36) by summation. Precisely,

‖∂uk‖q
Lq

T (Lr)
=

N(k)∑

l=1

‖∂uk‖q
Lq(Ik,l, Lr)

≤N(k)2qk[3(1/2−1/r)−1/q]

× (‖∂uk‖L∞T (L2) + (2kT )−1/3‖fk‖L1
T (L2)

)q
.

Using the estimate (4.28) on the number of the sub-intervals we obtain

‖∂uk‖Lq
T (Lr) ≤ C2k[3(1/2−1/r)−1/q](2kT )1/3q+ε

× (‖∂uk‖L∞T (L2) + (2kT )−1/3‖fk‖L1
T (L2)

)
.
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Now to achieve the proof of Lemma 4.5, it remains to show that such
a finite decomposition exists. This is done by induction.
Assume that there exists an increasing sequence (tj)0≤j≤p of points of [0, T ]
such that tp < T and, for any 0 ≤ j ≤ p− 1

tj+1 − tj

T (2kT )−1/3−ε
+

(2kT )1/3

‖fk‖L1
T (L2)

∫ tj+1

tj

‖fk(t, · )‖L2dt

+
tj+1 − tj

T
(2kT )2/3

∫ tj+1

tj

‖∇Ḡk(t, · )‖L∞dt = δ.

As the function

Fp(t) =
t− tp

T (2kT )−1/3−ε
+

(2kT )1/3

‖fk‖L1
T (L2)

∫ t

tp

‖fk(τ)‖L2dτ

+
t− tp
T

(2kT )2/3

∫ t

tp

‖∇Ḡk(τ)‖L∞dτ

is increasing on the interval [tp, T ] then, either the interval [tp, T ] satisfies
the condition (4.27) (but with an inequality < δ instead), then tp+1 does
not exist. Note that this does not affect the order of the number N(k). Or,
a unique tp+1 exists in the interval ]tp, T [ such that Fp(tp+1) = δ. This is a
finite procedure because of the compactness of [0, T ]. ¤

As a consequence of Theorem 2.7, we have the following corollary

Corollary 4.6 If T 7/18+α‖γ‖sα−1 is small and the constant C0 is large
enough then, assertion (Pn) implies assertion (Pn+1).

Proof. For 2kT ≥ C, we use the Strichartz estimates (4.26). We have

2k(3/r−1/2)‖∂u(n+1)
k ‖Lqα

T (Lr) ≤ Cε2k(1−1/qα)(2kT )1/(3qα)+ε

× [‖∂u(n+1)
k ‖L∞T (L2) + (2kT )−1/3‖Rδ

k(n)‖L1
T (L2)

]
.

Observe that taking δ = 2/3 in Lemma 4.3, we have the following estimate
on the remainder term

‖R2/3
k (n)‖L1

T (L2) ≤ C2−k(1−1/qα)(2kT )−1/(3qα)−α/2Γα
T (γ)

× (1 + (2kT )1/3)(1 + CC0NT (γ)‖∂un+1‖Lqα
T (Ḃσr

r,2)).

Now, combining the energy estimate (4.23) and the inductive hypothesis
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(Pn) to the above estimate we obtain

2k(3/r−1/2)‖∂u(n+1)
k ‖

Lqα
T (Lr)

≤ Cε(2kT )ε−α/2Γα
T (γ)

× (1 + CC0N
α
T (γ)‖∂u(n+1)(t, . )‖

Lqα
T (Ḃ3/r−1/2

r,2 )
).

On the other hand if 2kT ≤ C, then Corollary 4.4 claims that
∑

k∈Z:2kT≤C

2k(3/r−1/2)‖∂u(n+1)
k ‖Lqα

T (Lr)

≤ CεΓα
T (γ)(1 + CC0N

α
T (γ)‖∂un+1(t, . )‖Lqα

T (Ḃ3/r−1/2)).

Finally, observe that T 2(7/18+α)‖γ‖2
sα−1 = Γα

T (γ)Nα
T (γ) and if

T 7/18+α‖γ‖sα−1 is small enough then

‖∂u(n+1)‖Lqα
T (Ḃ3/r−1/2) ≤ C0Γα

T (γ)

and

‖∂un+1‖T,s−1 ≤ e2‖γ‖s−1(1 + CΓα
T (γ)Nα

T (γ)).

This completes the proof of (Pn+1). ¤

5. Sketch of the proof of Theorem 2.7

Let’s recall the following fundamental result due to H. Bahouri-J-Y.
Chemin (see [3] and [1]).

Theorem 5.1 Let PΛ be the operator given by (2.13) and denote by
(vΛ)Λ≥Λ0 the family of solutions of

PΛvΛ = 0

(vΛ, ∂vΛ)|t=0 = (γ0, γ1).

For any integer N , there exist two functions I±Λ (γ) defined on IΛ×R3 with

|IΛ| ≤ Λ2−ε,

and satisfying

‖∂(vΛ − I+
Λ (γ)− I−Λ (γ))‖L∞IΛ (L2) ≤ CΛ−N‖γ‖L2 (5.39)
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and

‖I±Λ (γ)(τ, · )‖L∞ ≤ C

τ
‖γ‖L1 . (5.40)

Remark 5.2 The above result stays true if vΛ solves the wave equation
with “conservative Laplacian” i.e.

P̃ΛvΛ := ∂2
t vΛ − ∂j(G̃

jk
Λ ∂kvΛ) = 0. (5.41)

where, we set G̃jk
Λ = Gjk

Λ + δjk. Therefore, in the sequel we assume that
vΛ solves (5.41).

Proof. Note that since the Fourier transform of vΛ is included in C, then
Bernstein lemma together with (5.39) and (5.40) show the dispersive esti-
mate

‖vΛ(τ, · )‖L∞ ≤ C

τ
‖γ‖L1 .

Interpolating the above inequality with the energy estimate we obtain,

‖vΛ(τ)‖Lr ≤ C

τγ(r)
‖γ‖Lr̄ (5.42)

where q, r ∈]2, ∞[ such that 1/q = 1/2− 1/r and

γ(r) = 2
(1

2
− 1
r

)
and

1
r

+
1
r̄

= 1.

The proof of Theorem 2.7 can be achieved using a variation of the so called
TT ∗ method (described in [6]), for non autonomous equations. In the sequel,
we follow the idea of Klainerman [8] and Klainerman-Rodnianski [9].
Let P denotes the projection onto functions whose Fourier transform is
supported in C. Let H := Ḣ1 × L2, X = Lq

T (Lr), X ′ = Lq̄
T (Lr̄). For two

real valued vector functions u := (u0, u1) and v := (v0, v1) in H we define

〈u, v〉 :=
∫

R3

u1v1 + G̃jk
Λ (t = 0)∂ju0∂kv0,

where we set G̃jk
Λ = Gjk

Λ + δjk.
For a space-time function Ψ(t, x), we denote by Ψ[0] := (Ψ(0), ∂tΨ(0)).
Given u ∈ H, t and s two real numbers, denote by

Φ(t, s, u) = (φ, ∂tφ),
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where the function φ (uniquely) solves (5.41) with (φ(s, s, u), ∂tφ(s, s, u))
= u.
First we prove (2.14) for ∂tvΛ. Set φ = vΛ, and define the operator A by

Au = −P∂tΦ(t, 0, u).

The goal is to show that A : H −→ X is bounded operator with an operator
norm ‖A‖H→X = M . It is clear that (2.14) can be derived from (5.42)
with a large constant depending on Λ. Using this as a bootstrap assumption
we have to establish a uniform bound with respect to Λ. To do so, it is
sufficient to exhibit the expression of AA∗, prove that

AA∗ : X ′ −→ X

is bounded and establish the relation between the norm operations

‖AA∗‖X′→X = M2.

By definition of A∗ we have

〈A∗f, u〉 := (f, Au)L2 = −
∫ T

0

∫

R3

∂tφPf.

Let Ψ solve P̃ΛΨ = Pf with (Ψ, ∂tΨ)t=T = 0. Integrating by parts (in
time), we obtain

〈A∗f, u〉 = 〈u, Ψ[0] +R(f)〉,
with R(f) : X ′ −→ H given by

〈u, R(f)〉 = −
∫ T

0

∫

R3

ψP̃Λ∂tφdxdt.

Therefor,

AA∗f = Aψ[0] +AR(f).

Using the definition of A and Duhamel’s formula, we can write

AΨ[0] = P

∫ T

0
∂tΦ(t, s, (0, Pf(s)))ds,

with F (s) = (0, Pf(s)). Applying the dispersive inequality (5.42), we ob-
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tain

‖P∂tΦ(t, s, (0, Pf(s)))‖Lr ≤ C

|t− s|γ(r)
‖Pf(s)‖Lr̄ .

The Hardy-Littlewood-Sobolev inequality implies that

‖AΨ[0]‖Lq(Lr) = ‖P∂tΦ(t, s, F (s)))‖Lq(Lr) ≤ C‖f‖Lq̄(Lr̄) (5.43)

as desired. Note that C is Λ independent constant.
Now we estimate the term AR(f). According to the bootstrap assumption,
we have

‖AR(f)‖Lq(Lr) ≤M‖R(f)‖H.
On th other hand, using the definition of 〈u, R(f)〉, we have

‖R(f)‖H : = sup
‖u‖H≤1

〈u, R(f)〉

= sup
‖u‖H≤1

−
∫ T

0

∫

R3

ψP̃Λ∂tφdxdt.

Now observe that P̃Λ∂tφ = ∂tP̃Λφ+∂j

(
∂tG̃

jk
Λ ∂kφ

)
, and since φ solves (5.41)

then

P̃Λ∂tφ = ∂j

(
∂tG̃

jk
Λ ∂kφ

)
.

Therefore, after (a space) integration by part

‖R(f)‖H = sup
‖u‖H≤1

∫ T

0

∫

R3

∂jψ∂tG̃
jk
Λ ∂kφ

≤‖∂tG̃
jk
Λ ‖L1(L∞)‖∂ψ‖L∞(L2)‖∂φ‖L∞(L2).

Thanks to the energy estimate applied to φ, the L1(L∞) bound on the
metric G̃Λ and the fact that ‖u‖H ≤ 1, we deduce that

‖AR(f)‖Lq(Lr) ≤
M

4
‖∂ψ‖L∞(L2). (5.44)

The following Lemma enables us to estimate ‖∂ψ‖L∞(L2).

Lemma 5.3 Let ψ be the solution to P̃Λψ = Pf with ψ(T ) = ∂tψ(T ) = 0.
Then,

‖∂ψ‖L∞(L2) ≤ 2M‖f‖Lq̄(Lr̄).
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Note that the above Lemma together with (5.43) and (5.44) imply the
following bound

M2 = ‖AA∗‖X′→X ≤ C +
M2

2

and therefore, M2 ≤ 2C2 as desired.
To prove Lemma 5.3, we consider a time t ∈ [0, T ) and define φ to be the
solution to P̃Λφ = 0 with initial data φ(t) = u0, ∂tφ(t) = u1, and ‖u‖H ≤
1. Recall that ψ solves P̃Λψ = Pf with zero initial data at time t = T .
Multiplying P̃Λφ by ∂tψ and P̃Λψ by ∂tφ and we integrate in [t, T ]×R3 to
get the identity

∫

R3

(
∂tψ∂tφ+ G̃jk

Λ ∂jψ∂kφ
)
(t)dx

= −
∫ T

0

∫

R3

(
∂tφPf + ∂tG̃

jk
Λ ∂jψ∂kφ

)
dxdt

Hence,

‖∂ψ‖L∞(L2) ≤ ‖P∂tφ‖Lq(Lr)‖f‖Lq̄(Lr̄)

+ C‖∂G̃jk
Λ ‖L1(L∞)‖∂ψ‖L∞(L2)‖∂φ‖L∞(L2).

From the bootstrap assumption, we know that ‖P∂tφ‖Lq([t,T ], Lr) ≤M‖u‖H
≤ M . Moreover, using the energy estimate ‖∂φ‖L∞(L2) ≤ 2‖u‖H ≤ 2, and
therefore,

‖∂ψ‖L∞(L2) ≤M‖f‖Lq̄(Lr̄) + C‖∂G̃jk
Λ ‖L1(L∞)‖∂ψ‖L∞(L2).

Since ‖∂G̃jk
Λ ‖L1(L∞) is small enough, then

‖∂ψ‖L∞(L2) ≤ 2M‖f‖Lq̄(Lr̄)

as desired.
Now we use the above result to prove (2.14) for a space derivative ∂jφ. Let
f be a function in Lq̄(Lr̄). As before, we estimate

I :=
∫ T

0

∫

R3

P∂lφfdxdt

by introducing the function ψ solution to P̃Λψ = Pf with data ψ(T ) =
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∂tψ(T ) = 0. Hence integrating by parts,

I =
∫ T

0

∫

R3

ψP̃Λ∂lφdxdt+
∫

R3

∂lφ(0)∂tψ(0) + ∂lψ(0)∂tφ(0)dx.

Commuting P̃Λ and ∂l as before we obtain
∣∣∣
∫ T

0

∫

R3

ψP̃Λ∂lφdxdt
∣∣∣ ≤ ‖∂Gjk

Λ ‖L1(L∞)‖∂φ‖L∞(L2)‖∂ψ‖L∞(L2).

Also,
∫

R3

∂lφ(0)∂tψ(0) + ∂lψ(0)∂tφ(0)dx ≤ ‖∂φ(0)‖L2‖∂ψ‖L∞(L2).

Applying the energy estimate we obtain

‖∂φ‖L∞(L2) ≤ 2‖∂φ(0)‖L2 .

Moreover, Lemma 5.3 implies

‖∂ψ‖L∞(L2) ≤ 2M‖f‖Lq̄(Lr̄)

with the bound M obtained in the previous step. In particular M does not
depend on Λ. Therefore, thanks to the bound ‖∂G̃jk

Λ ‖L1(L∞), we deduce

I ≤ CM‖∂φ(0)‖L2‖f‖Lq̄(Lr̄)

which proves that

‖P∂lφ‖Lq(Lr) ≤ CM‖∂φ(0)‖L2

as desired. The case of inhomogeneous equation can be deduced from the
above result by a standard technique. We refer to [8] for more details. ¤
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Institut Préparatoire aux Études

d’Ingenieurs de Tunis

Tunis, Tunisie

E-mail: Jameleddine.Azzouz@issatso.rnu.tn

S. Ibrahim

Department of Mathematics & Statistics

Arizona State University

Arizona, USA

E-mail: ibrahim@math.asu.edu


