Solvable graphs and Fermat primes

Nobuo IIYORI

(Received March 18, 2009)

Abstract

A solvable graph of a finite group is one of generalized prime graphs of groups which are introduced as generalizations of a prime graph of a finite group in [1]. In this paper we will characterize a Fermat prime by a solvable graph of a finite group.

Key words: finite simple group.

1. Introduction

Let G be a finite group. The solvable graph $\Gamma_{\text {sol }}(G)$ of G is a graph whose vertex set $\pi(G)$ is the totality of primes which divide the order of G and a pair $(p, q) \in \pi(G) \times \pi(G)$ is an edge of $\Gamma_{\text {sol }}(G)$ if and only if $p \neq q$ and there exists a solvable group H of G whose order is divisible by $p q$. For example let G be the alternating group A_{5} of degree 5 . Then the solvable graph of A_{5} is the following.

This graph was defined in [1] as generalizations of a prime graph of a finite group and some of elementary properties were shown. The following is one of them.

Theorem A solvable graph of a finite group is connected.
When we use solvable graphs to analyze the structure of a finite group G, it is obviously important to determine the set $\{q \in \pi(G) \mid p$ and q are joined directly $\}$ for each $p \in \pi(G)$, that is, to determine the set of edges of $\Gamma_{\text {sol }}(G)$. For example, in [3] simple groups in whose solvable group any two odd primes are joined directly are classified and a condition of p-solvability for a finite group was given. In this paper we will consider when two primes p and q are joined directly in the solvable graph $\Gamma_{\text {sol }}(G)$ and the following theorem is the main theorem of this paper.

[^0]Theorem 1 A prime p is a Fermat prime if and only if p is joined to 2 directly in the solvable graphs of any finite groups whose order are divisible by $2 p$.

Our notation is standard (see [6]). We also use the following notations. For a non zero rational integer $n \in \mathbf{Z}-\{0\}$ and a prime p, n_{p} denotes the highest power of p which divides n. For a positive integer $n, \phi_{n}(q)$ is the n-th cyclotomic polynomial.

2. The Proof of Theorem 1

Proposition 1 ([1, Theorem 3]) Let G be a finite group and $p, q \in \pi(G)$. p and q are not joined directly in $\Gamma_{\text {sol }}(G)$ if and only if there exists a series of normal subgroups of G

$$
G \unrhd N \unrhd M \unrhd 1,
$$

such that G / N and M are $\{p, q\}^{\prime}$ - group and N / M is a non abelian simple group such that p and q are not joined in $\Gamma_{\text {sol }}(N / M)$.

Lemma 1 Let q be a power of a prime and let r be a prime such that $(q, r)=1$. If n is the minimal integer of the set $\left\{m \in \mathbf{Z}_{>0} \mid r\right.$ divides $\left.\phi_{m}(q)\right\}$, then n is a divisor of $r-1$.

Proof. Straightforward from Fermat's Theorem.
Lemma 2 Let p be a prime such that $p=2^{2^{m}}+1$ for a non-negative integer m. If the order of a finite group G is divisible by $2 p$, then 2 and p are joined in the solvable graph of G.

Proof. Let G be a counter example for Lemma 2 of the smallest order, that is, 2 and a Fermat prime p are not joined directly in the solvable graph of G. Then G should be a non-abelian simple group by Proposition 1. We will verify that G is not isomorphic to any non-abelian simple group by the classification of finite simple groups.

Case $G \simeq A_{n}(n \geq 5)$.
It is easy to see the order of the normalizer of a cyclic subgroup of order p is even. Therefore 2 and p are joined directly. This contradicts our assumption.

Case $G \simeq \operatorname{PSL}_{n}(q)(n \geq 2)$.
Suppose $G \simeq \mathrm{PSL}_{2}(q)$. Since $\{(q \pm 1) /(q \pm 1,2)\}: 2$ and $q:\{(q-1) /(q-$ $1,2)\}$ are contained in $\operatorname{PSL}_{2}(q), 2$ is joined to p directly. We may assume that $n \geq 3$. It is evident that $G \nsucceq \mathrm{PSL}_{3}(2)$ and $G \nsucceq \mathrm{PSL}_{3}(3) . G$ has a subgroup H which is isomorphic to $\left(q^{n-1}: \mathrm{GL}_{n-1}(q)\right) / \epsilon$, where $\epsilon \mid(q-1, n)$. By Lemma 1, we have $(q, p)=1$. If p divides the order of H, then p divides the order of subgroup K of H which is isomorphic to $\mathrm{SL}_{n-1}(q)$. By the choice of $G, 2$ and p are joined directly in the solvable graph of G. It holds that p divides $\phi_{n}(q)$. By Lemma $1, n$ is a power of 2 . This implies that 2 and p are joined directly in the solvable graph of G. This is a contradiction. It yields $G \nsucceq \mathrm{PSL}_{n}(q)$.

Case $G \simeq \operatorname{PSp}_{n}(q)$.
We may assume that $n \geq 4$. Then there exists a subgroup H such that $H \simeq\left(\operatorname{Sp}_{n-2}(q) \times \mathrm{SL}_{2}(q)\right) /(q-1,2)$. Since any odd prime in $\pi(H)$ joins to 2 directly in the solvable graph of $G, p \mid \phi_{n}(q) \cdot \phi_{n / 2}(q)$ holds. G contains a subgroup which is isomorphic to $\mathrm{GL}_{n / 2}(q) /(q-1,2)$. By the case $G \simeq \operatorname{PSL}_{n}(q)(n \geq 2)$, we have $p \nmid \phi_{n / 2}(q)$, which implies $p \mid \phi_{n}(q)$. There exists a cyclic subgroup of order $\phi_{n}(q)$ of G and the order of its normalizer is $n \phi_{n}(q)$. By Lemma $1, n$ is a power of 2 , we have a contradiction and it follows that $G \not \neq \operatorname{PSp}_{n}(q)$.

Case $G \simeq \operatorname{PSU}_{n}(q)$.
We may assume that $n \geq 3$ and $p \geq 5$. Since $p \nmid q^{2}-q+1 /(q+1,3)$ by Burnside's transfer theorem, G is not isomorphic to $\operatorname{PSU}_{3}(q) . G$ has a subgroup L which is isomorphic to $\mathrm{SU}_{n-1}(q)$. If p divides the order of L, then 2 and p are joined directly by the choice of G. It follows that $p \mid a$ where $a=\phi_{n}(q) /(q+1, n)$ if n is even and $a=\phi_{2 n}(q) /(q+1, n)$ if n is odd. There exists a cyclic subgroup A of G whose order is a and A contains exactly one Sylow p-subgroup P of G. By Burnside's transfer theorem, 2 and p are joined directly in the solvable graph of G.

Case $G \simeq \mathrm{P} \Omega_{2 n+1}(q)$.
We may assume that $n \geq 3$. By the choice of G, p should divide $\phi_{2 n}(q)$. By the same manner in the case $G \simeq \operatorname{PSU}_{n}(q)$, we have $G \nsucceq \mathrm{P} \Omega_{2 n+1}(q)$.

Case $G \simeq \mathrm{P} \Omega_{2 n}^{+}(q)$.
We may assume that $n \geq 4$. By the case $G \simeq \mathrm{P} \Omega_{2 n+1}(q), p$ should
divide $\phi_{n}(q)$. This implies that n is a power of 2 and that p is joined to 2 directly. Hence we have $G \nsucceq \mathrm{P} \Omega_{2 n}^{+}(q)$.

Case $G \simeq \mathrm{P} \Omega_{2 n}^{-}(q)$.
We may asumme that $n \geq 4$. By the case of $G \simeq \mathrm{P} \Omega_{2 n+1}(q), p$ should divide $\phi_{2 n}(q)$. By the same manner in the case $G \simeq \operatorname{PSU}_{n}(q)$, we have $G \not 千 \mathrm{P} \Omega_{2 n}^{-}(q)$.

Case G is a exceptional simple group of Lie type.

If G is isomorphic to ${ }^{2} B_{2}(q)$ or ${ }^{3} D_{4}(q)$, then 2 is joined to every primes in $\pi(G)$ (See [1]), which implies that G is isomorphic to neither ${ }^{2} B_{2}(q)$ nor ${ }^{3} D_{4}(q)$. If G is isomorphic to $E_{6}(q)$, then p divides $\phi_{9}(q)$ [1]. This implies that $p \mid q-1$ and that p is joined to 2 directly. G is not isomorphic to $E_{6}(q)$. If G is isomorphic to ${ }^{2} E_{6}(q)$, then p divides $\phi_{18}(q)[1]$. This implies $p \mid q^{2}-1$ and p is joined to 2 directly. G is not isomorphic to ${ }^{2} E_{6}(q)$ For other simple groups, we can see that p is joined to 2 directly by the tables in Abe-Iiyori [3], Iiyori-Yamaki [4] and Williams [5].

Case G is isomorphic to one of 26 sporadic simple groups.

In this case it is sufficient to consider about primes 3,5 and 17 . So we can easily verify that p is joined to 2 directly in G by [2]. It is easy to know orders of centralizers of involutions in G and p is joined to 2 directly if p divides the order. If the order is prime to p, then we can easily see that p is joined to 2 directly from the following argument. If the number of conjugacy classes of elements of order p in G is less than $p-1$, then the order of the normalizer of a cyclic subgroup of order p is not coprime to $p-1$. In our case we assume $p=2^{2^{n}}+1$ for a positive integer n. Therefore if G satisfies this condition, then p is joined to 2 directly. For example suppose that a Sylow 17 -subgroup of G is cyclic of order 17 (We note that $|G|_{17}=17$ if $17 \in \pi(G)$). If G has a 16 conjugacy classes of elements of order 17, then Burnside's transfer theorem leads that G has a normal 17'complement, which is a contradiction. Hence 17 is joined to 2 directly. If $p=3$ or 5 , then we can see that p is joined to 2 directly by the same manner. This completes the proof of the lemma.

Lemma 3 Let p be a prime such that $p \neq 2^{2^{n}}+1$ for any non-negative integer n. Then there exists a non abelian simple group G in whose solvable graph 2 and p are not joined directly.

Proof. By our hypothesis, there exist non-negative integers a, b such that $p-1=2^{a} \cdot b, b \equiv 1(2)$ and $b \geq 3$. Choose a prime c which divides b. Since $c \mid p-1$, there exists a positive integer r such that $r<p$ and the order of \bar{r} in the unit group of the ring $\mathbf{Z} / p \mathbf{Z}$ is c. We choose r the smallest number among such integers. There exists a non-negative integer m such that $s=$ $r+m p$ is a prime by Dirichlet's theorem. Then we have $p \mid\left(s^{c}-1\right)$ and $p \nmid s-1$. This implies that the order of the normalizer of a Hall cyclic subgroup M of order $\phi_{c}(s) /(s-1, c)$ of $\mathrm{PSL}_{c}(s)$ divides $c \cdot\left(s^{c}-1\right) /(s-1)(s-1, c)$. Since this subgroup M is a TI-set, no subgroup of order 2 of $\mathrm{PSL}_{c}(s)$ normalizes a non trivial p-subgroup of $\mathrm{PSL}_{c}(s)$. If $s=2$, then we can see directly that the order of any 2-local subgroup of $\mathrm{PSL}_{c}(2)$ is not divisible by p. If $s \neq 2$, then Maschke's theorem implies that an elementary 2-subgroup of $\operatorname{PSL}_{c}(s)$ is conjugate to a subgroup of the diagonal subgroup of $\mathrm{PSL}_{c}(s)$. It yields that no non trivial p-subgroup of $\operatorname{PSL}_{c}(s)$ normalizes no non trivial elementary 2 -subgroup of it. 2 and p are not joined directly.

A Proof of Theorem 1. Theorem 1 follows from Lemma 2 and Lemma 3.

References

[1] Abe S. and Iiyori N., A gengeraization of prime graphs of finite groups. Hokkaido. Math. J. 29 (2000), 391-407.
[2] Conway J. H. et al, "Atlas of Finite Groups", Oxford Univ. Press (Cleandon), London/New York 1985.
[3] Iiyori N., p-Solvability and a generalization of prime graphs of finite groups. Comm. Algebra 304 (2002), 1679-1692.
[4] Iiyori N. and Yamaki H., Prime graph components of the simple group of Lie type over the field of even characteristic. J. Algebra 155 (1993), 335-343.
[5] Williams J. S., Prime graph components of finite groups. J. Algebra 69 (1981), 487-513.
[6] Suzuki M., "Group Theory I, II". Springer, Berlin-Heidelberg- New York, 1982.

Faculty of Education
Yamaguchi University
Yamaguchi, 753-8512 Japan
E-mail: iiyori@yamaguchi-u.ac.jp

[^0]: 2000 Mathematics Subject Classification : 20E32.

