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Abstract. We show a correspondence between the set of all G-invariant projectively

flat connections on a homogeneous space M = G/K, and the one of all eG-invariant

flat connections on homogeneous spaces fM = eG/K, where eG is a central extension of

G (Theorem 3.3).
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1. Introduction and statement of results

Flat connections and projectively flat ones have been extensively studied
by many authors (for examples, [1], [2], [3], [6], [8], [9], [11], [13]). Even
though they are of course very different objects, but it seems that there
would exist deep unknown relations between them each other. In this paper,
we want to show some relation between the set of all G-invariant projectively
flat connections on a homogeneous space M = G/K, and the one of all G̃-
invariant flat connections on homogeneous spaces M̃ = G̃/K, where G̃ is a
central extension of G.

Indeed, let G̃ ⊃ G ⊃ K be three Lie groups with Lie algebras g̃ ⊃ g ⊃ k,
where g̃ = g⊕RE, and [E, g̃] = {0}. Let us consider two homogeneous (not
necessarily reductive) spaces M̃ = G̃/K and M = G/K, respectively. We
consider the two sets of all G̃-invariant flat affine connections on M̃ , and of
all G-invariant projectively flat affine connections on M , which correspond
to the sets F0(g̃, k) and PF0(g̃, k) of irreducible affine representations of g̃,
respectively (for more precise, see Section 3, Definitions 3.1, 3.2). Then,
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Theorem 1.1 (cf. Theorem 3.3) It holds that

F0(g̃, k) = PF0(g̃, k) ∪ FII
0 (g̃, k),

where FII
0 (g̃, k) is the set of all real irreducible affine representations (f̃ , q̃, Ṽ )

of g̃ satisfying that

(1) dim Ṽ = dim G/K + 1,
(2) Ṽ admits an f̃(g̃)-invariant complex structure J , and
(3) there exists a non-zero element v0 ∈ Ṽ satisfying that

f̃(k)v0 = {0}, and Ṽ = f̃(g)v0 ⊕ Rf̃(E)v0.

In particular, in the case that dimM = dim G/K is even, then,

F0(g̃, k) = PF0(g̃, k) and FII
0 (g̃, k) = ∅.

Thus, G/K admits a G-invariant projectively flat connection if and only if
G̃/K admits a G̃-invariant flat connection, in the case that G/K is of even
dimension, and both the G and G̃ are simply connected.

Let us recall a classification of real simple Lie groups admitting a pro-
jectively flat connection ([1], [13], [3]).

Theorem 1.2 Let G be a real semi-simple Lie group. Then, G admits a
left invariant projectively flat connection if and only if the Lie algebra g is
one of the following :

(1) sl(n + 1,R), n ≥ 1,
(2) su∗(2n), n ≥ 1,

where su∗(2n) is the Lie algebra given by

su∗(2n) =
{(

Z1 Z2

−Z2 Z1

)
; Z1, Z2 ∈ M(n,C), TrZ1 + TrZ1 = 0

}
.

Since Theorems 1.1 and 1.2 (and also Remark 1.6) except the case of
the real representation of G = SL(n + 1,R) on gl(n + 1,R) (cf. Theorem
4.3 in Chapter 3 in [9], see also [1]), we have

Corollary 1.3 Let G be a real semi-simple Lie group with Lie algebra g
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of even dimension, and let g̃ = g⊕RE, with [E, g̃] = {0}. Let G̃ be a simply
connected Lie group with Lie algebra g̃. Then, G̃ admits a left invariant flat
affine connection if and only if G admits a left invariant projectively flat
affine connection. In this case, g is sl(n + 1,R), where n ≥ 1 is even.

Let us recall a classification of irreducible Riemannian symmetric spaces
admitting invariant projectively flat connections ([1], [13]).

Theorem 1.4 Let M = G/K be an irreducible simply connected Rie-
mannian symmetric space. Then, M admits a G-invariant projectively flat
affine connection if and only if M = G/K is one of the following :

(1) Sn = SO(n + 1)/SO(n) n ≥ 2,
(2) SL(n + 1,R)/SO(n + 1) n ≥ 2,
(3) SU∗(2n)/Sp(n) n ≥ 3,
(4) SO0(n, 1)/SO(n) n ≥ 2,
(5) SL(n + 1,C)/SU(n + 1) n ≥ 1
(6) E6/F4 (of non-compact type EIV ).

Since Theorems 1.1 and 1.4 (and also Remark 1.6), we have

Corollary 1.5 Let M = G/K be an irreducible simply connected Rie-
mannian symmetric space of even dimension, g̃ = g⊕RE with [E, g̃] = {0},
and G̃, a Lie group with Lie algebra g̃ and M̃ is simply connected. Then,
M = G/K admits a G-invariant projectively flat affine connection if and
only if M̃ = G̃/K admits a G̃-invariant flat affine connection. In this case,
G/K is one of (1) ∼ (6) in Theorem 1.4 of even dimension.

Remark 1.6 In Corollaries 1.3, and 1.5, Agaoka ([1]) showed that, if G

(resp. M = G/K) admits a left invariant (resp. invariant) flat connection,
then G̃ (resp. M̃ = G̃/K) admits a left invariant (resp. G̃-invariant) flat
connection. In this, paper, we show the reverse of his results in Corollaries
1.3 and 1.5 in the case of even dimension.

2. Preliminaries

In this section, we prepare materials and several facts on invariant con-
nection on homogeneous spaces (cf. [5]) and also invariant flat connections
and projectively flat invariant connections on homogeneous spaces (cf. [10]).

Let us consider a C∞ affine connection D on a C∞ manifold M . In this
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paper, we assume that everything is C∞.

Definition 2.1 A connection D is to be flat if it has a vanishing curvature
tensor RD and a vanishing torsion tensor TD, where

RD(X, Y ) = DXDY −DY DX −D[X,Y ],

and

TD(X, Y ) = DXY −DY X − [X, Y ]

for all vector fields X, Y on M .

Let us recall also that the theory of invariant connections on homo-
geneous spaces (cf. [5, Vol. II, p. 188]). In case of affine connections, we
have

Theorem 2.2 Let M be a homogeneous space M = G/K. Then, there
exists a one-to-one correspondence between the set of G-invariant affine con-
nections on M = G/K and the set of linear mappings Λ : g → gl(To(G/K))
(o = {K}, the origin of G/K) such that

Λ(X) = λ(X) (X ∈ k), (2.1)

Λ(Ad(k)(X)) = Ad(λ(k))(Λ(X)) (k ∈ K,X ∈ g), (2.2)

where λ is the isotropy representation of K, i.e., for k ∈ K, λ(k) = k∗ :
To(G/K) → To(G/K) denotes the differential of k at o = {K}.

To each G-invariant connection D on M = G/K, there corresponds the
linear mapping Λ defined by

Λ(X) = −(A eX)o (X ∈ g). (2.3)

Here, each X ∈ g induces a tangent vector Xo ∈ ToM , and also a vector
field X̃ on M = G/K, naturally. For all vector field X̃ on M , A eX is the
tensor field of type (1,1) on M defined by

A eX = L eX −D eX , (2.4)

where L eX is Lie derivative by X̃.
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Assume that a homogeneous space M = G/K is reductive, i.e., the Lie
algebra g is decomposed into g = k⊕m, where k is the Lie algebra of K and
m is an Ad(K)-invariant subspace of g. Then, we have ([5, Vol. II, p. 191])

Theorem 2.3 Assume that M = G/K is a reductive homogeneous space
with decomposition g = k ⊕ m. Then, there is a one-to-one correspondence
between the set of G-invariant affine connections on M and the set of linear
mappings Λm : m → gl(To(G/K)) such that

Λm(Ad(k)(X)) = Ad(λ(k))(Λm(X)) (X ∈ m, k ∈ K), (2.5)

where λ(k) denotes the isotropy representation of K on G/K. The corre-
spondence is given by

Λ(X) =

{
λ(X) (X ∈ k),

Λm(X) (X ∈ m).
(2.6)

To each G-invariant connection D, the correspondence (2.6) is given by

Λm(X) = −(A eX)o (X ∈ m). (2.7)

The torsion tensor TD and the curvature tensor RD of a G-invariant
connection D can be expressed in terms of Λ as follows ([5, Vol. II, p. 189]).

Theorem 2.4 In the above theorems, the torsion tensor TD and the cur-
vature tensor RD of a G-invariant connection D can be expressed as follows:

TD(X, Y )o = Λ(X)(Yo)− Λ(Y )(Xo)− [X, Y ]o (X, Y ∈ g), (2.8)

RD(X, Y )o = [Λ(X),Λ(Y )]− Λ([X, Y ]) (X, Y ∈ g). (2.9)

For G-invariant flat connections on M = G/K, due to the above theo-
rems, we have ([10])

Theorem 2.5 Assume that a homogeneous space M = G/K admits a
G-invariant flat connection on M = G/K. Then, there exists an affine
representation (f, q, V ) of g on V such that
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{
dimV = dim M,

q : g → V is surjective, and Ker(q) = k.
(2.10)

Conversely, if G is simply connected, and the Lie algebra g admits an
affine representation (f, q, V ) satisfying (2.10), then M = G/K admits a
G-invariant flat affine connection. Here, two linear mappings q : g → V ,
and f : g → gl(V ) are given by q(X) = Xo (X ∈ g), and f(X) = Λ(X)
(X ∈ g), where V = ToM . Then, that (f, q, V ) is an affine representation g

on V means that
{

[f(X), f(Y )] = f([X, Y ]) (X, Y ∈ g),

q([X, Y ]) = f(X)q(Y )− f(Y )q(X) (X, Y ∈ g).
(2.11)

Now, let us recall the notion of projectively flat connections.

Definition 2.6 D is to be projectively flat if the Ricci tensor

RicD(Y, Z) := Tr({TpM 3 X 7→ RD(X, Y )Z ∈ TpM})

(Y, Z ∈ TpM p ∈ M), is symmetric, i.e., RicD(Y, Z) = RicD(Z, Y ), and for
every p ∈ M , there exists a neighborhood U of p such that D is equivalent
to a flat connection D on U , i.e., there exists a closed 1-form ρ on U such
that

DXY = DXY + ρ(X)Y + ρ(Y )X, for all X, Y ∈ X(U).

A classical theorem says that

Theorem 2.7 Assume that D is an affine connection of which RicD is
symmetric and TD = 0. Then, D is projectively flat if and only if the Weyl
curvature tensor vanishes, i.e.,

RD(X, Y )Z =
1

n− 1
{RicD(Y, Z)X − RicD(X, Z)Y }

and the Codazzi equation holds, i.e.,

(DXRicD)(Y, Z) = (DY RicD)(X, Z)
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for all X, Y, Z ∈ X(M).

Let us consider a centro-affine immersion of an n-dimensional manifold
M into Rn+1, ϕ : M ↪→ Rn+1, that is,

Tϕ(p)Rn+1 = ϕ∗(TpM)⊕ R−−−→oϕ(p), (p ∈ M).

Then, the induced connection D on M from the standard flat connection
D0 on Rn+1 via ϕ, i.e.,

(D0
XY )p = ϕ∗(DXY )p + h(X, Y )(−−−−→oϕ(p)), (X, Y ∈ X(M), p ∈ M),

is projectively flat. Furthermore, it holds ([11]) that

Theorem 2.8 Let M = G/K be a simply connected homogeneous space.
Then, the following two conditions are equivalent :

(1) M = G/K admits a G-invariant projectively flat connection.
(2) M = G/K admits a G-equivariant centro-affine immersion.

Furthermore, Shima showed ([11], see also [10, p. 228]) that

Theorem 2.9 Let M = G/K be an arbitrary homogeneous space.

(1) Assume that M = G/K admits a G-invariant projectively flat con-
nection. Let g be the Lie algebra of G, and k the Lie subalgebra corre-
sponding to K, respectively. Let g̃ be the central extension of g, i.e.,
g̃ = g⊕RE, where [E, g̃] = {0}. Then, g̃ admits an affine representa-
tion (f̃ , q̃, Ṽ ) on a vector space Ṽ of dimension dimM + 1 satisfying
the following two conditions:
(i) q̃ : g̃ → Ṽ is surjective and Ker(q̃) is k,
(ii) f̃(E) is the identity map of Ṽ and q̃(E) 6= 0.

(2) Conversely, if g̃ admits an affine representation (f̃ , q̃, Ṽ ) on Ṽ of di-
mension dimM + 1 satisfying (i) and (ii), then, M = G/K admits
a G-invariant projectively flat affine connection if G is simply con-
nected.

3. Invariant projectively flat connections and flat connections

Let us begin the following example due to Shima ([10, Ch. 9, Exercise
9.1.1]):
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Example 3.1 Let G̃ = GL(n,R),

K :=
{(

Ir x
O y

)
; x ∈ M(r, n− r), y ∈ M(n− r, n− r)

}
.

Then, the quotient space M̃ = G̃/K admits a G̃-invariant flat connection.
Here, Ir is the identity matrix of degree r, and O is the (n − r) × r zero
matrix where r = 1, . . . , n− 1. Then, g̃ = gl(n,R),

k :=
{(

O X
O Y

)
; X ∈ M(r, n− r), Y ∈ M(n− r, n− r)

}
,

and T0M̃ is isomorphic to V where

V =
{(

X ′ O
Y ′ O

)
; X ′ ∈ M(r, r), Y ′ ∈ M(n− r, r)

}
.

Then, g̃ = k ⊕ V , and for every X ∈ g̃, f(X) ∈ gl(V ) and q(X) ∈ V are
defined by

f(X)v = Xv ∈ V, q(X) = XV ∈ V, (X ∈ g̃, v ∈ V ),

where Xv is the matrix multiplication of X and v, and XV ∈ V is the V -
component of X ∈ g̃ corresponding to the decomposition of g̃ = k⊕V . Then,
(f, q, V ) is an affine representation of g̃ on V which induces the G̃-invariant
flat connection on M̃ . But, M̃ = G̃/K is not a reductive homogeneous space
since there is no ad(k)-invariant decomposition of g̃ (see also [5, Vol. II, p. 199,
Example 2.1]). The action of ad(g̃) on V is irreducible if and only if r = 1.

Example 3.2 GL(n,R), GL(n,C), the upper triangular nilpotent Lie
group N1:

N1 =








1 ∗
1

. . .
O 1


 ; ∗ is arbitrary





,
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the (2n+1)-dimensional Heisenberg nilpotent Lie group N2, and the solvable
Lie group S:

S =








eθ1 ∗
eθ2

. . .
O eθn


 ; θ1, θ2, . . . , θn ∈ R, ∗ is arbitrary





admit left invariant flat connections.
But, SU(2) admits no left invariant flat connection.

In this section, we do not assume that every homogeneous space is re-
ductive. Our setting is as follows. Let G̃ ⊃ G ⊃ K be three Lie groups with
Lie algebras g̃ ⊃ g ⊃ k, respectively. Let us consider two quotient spaces
M̃ = G̃/K, and M = G/K, respectively. Assume that the Lie algebra g̃ is
a central extension of g given by g̃ = g ⊕ RE, where [E, g̃] = {0}. Then,
dim M̃ = dim M + 1.

Definition 3.1 Let us denote by F eG(M̃) the set of all G̃-invariant flat
affine connections on M̃ , and PFG(M), the set of all G-invariant projec-
tively flat affine connections on M . Let us define F(g̃, k), the set of all affine
representations (f̃ , q̃, Ṽ ) of g̃ on Ṽ satisfying that

(1) dim Ṽ = dim M̃ ,
(2) q̃ : g̃ → Ṽ is a surjection, and Ker(q̃) = k,

and also PF(g̃, k), the set of all affine representations (f̃ , q̃, Ṽ ) of g̃ on Ṽ

satisfying that

(1) dim Ṽ = dim M + 1,
(2) q̃ : g̃ → Ṽ is a surjection, Ker(q̃) = k,
(3) f̃(E) is a non-zero constant multiple of the identity transformation of

Ṽ , and q̃(E) 6= 0,

respectively.

Remark here that in the original definition of PF(g̃, k) in [10] corre-
sponding to the above definition (3) was that:

(3′) f̃(E) is the identity transformation of Ṽ , and q̃(E) 6= 0.
But, if we replace E into a constant multiple of E, then we have (3′) from
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(3), so that our PF(g̃, k) corresponds bijectively to PFG(M).

If G̃ is simply connected, there exists a one-to-one correspondence be-
tween F eG(M̃) and F(g̃, k), and also if G is simply connected, there exists a
one-to-one correspondence between PFG(M) and PF(g̃, k) ([10]). By defi-
nition, PF(g̃, k) ⊂ F(g̃, k), so that PFG(M) ⊂ F eG(M̃).

To analyze them further, let us define

Definition 3.2

F0(g̃, k) =
{
(f̃ , q̃, Ṽ ) ∈ F(g̃, k); (f̃ , q̃, Ṽ ) is irreducible under g̃

}
,

and also

PF0(g̃, k) =
{
(f̃ , q̃, Ṽ ) ∈ PF(g̃, k); (f̃ , q̃, Ṽ ) is irreducible under g̃

}
,

respectively. Then, PF0(g̃, k) ⊂ F0(g̃, k) by definition.

Then, we obtain

Theorem 3.3 It holds that

F0(g̃, k) = PF0(g̃, k) ∪ FII
0 (g̃, k),

where the set FII
0 (g̃, k) is a subset of F0(g̃, k), and coincides with the one of

all real irreducible affine representations (f̃ , q̃, Ṽ ) of g̃ satisfying that

(1) dim Ṽ = dim G/K + 1,
(2) Ṽ admits an f̃(g̃)-invariant complex structure J , and
(3) there exists a non-zero element v0 ∈ Ṽ satisfying that

f̃(k)v0 = {0}, and Ṽ = f̃(g)v0 ⊕ Rf̃(E)v0.

In particular, in the case that dimM = dim G/K is even, then,

F0(g̃, k) = PF0(g̃, k) and FII
0 (g̃, k) = ∅.

Proof. Let (f̃ , q̃, Ṽ ) ∈ F0(g̃, k). Then, the affine representation (f̃ , q̃, Ṽ )
satisfies that

(1) (f̃ , q̃, Ṽ ) is an irreducible representation of g̃,
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(2) dim Ṽ = dim M̃ = dim M + 1,
(3) q̃ : g̃ → Ṽ is a surjection, and Ker(q̃) = k.

By (1), f̃(E) is a semi-simple linear transformation of Ṽ because
(f̃ , q̃, Ṽ ) is a completely reducible representation of g (see, for example,
[12, p. 28, Theorem 2.9]). Then, Ṽ is decomposed into

Ṽ = V1 ⊕ · · · ⊕ Vs ⊕ Vs+1 ⊕ · · · ⊕ Vr,

where

( i ) each Vi is f̃(E)-invariant and the only f̃(E)-invariant subspaces of Vi

are Vi itself or {0}, and
( ii ) for the complex extension f̃(E)C of f̃(E) to Vi

C, there exist linearly
independent vectors {vi

j}di
j=1 in the complexification Vi

C of Vi and
some complex number λi

j such that

f̃(E)Cvi
j = λi

jv
i
j (j = 1, . . . , di). (3.1)

Notice here that dim Vi
C = 1, and di = 1 in this case due to (i).

(iii) For each i = 1, . . . , s, λi
j = ai is a real number, and Vi itself is the

eigenspace of f̃(E), and {vi
j}di

j=1 is a basis of Vi
C.

(iv) For each i = s + 1, . . . , r, λi
j = ai

j +
√−1bi

j where ai
j and bi

j are
real numbers with bi

j 6= 0, and vi
j = ui

j +
√−1wi

j (ui
j , w

i
j ∈ Vi; j =

1, . . . , di) such that

{
f̃(E)ui

j = ai
ju

i
j − bi

jw
i
j

f̃(E)wi
j = bi

ju
i
j + ai

jw
i
j .

(3.2)

Then, by (i), it holds that dimVi
C = 2, di = 1, and for j = 1,

{
f̃(E)Cvi

1 = λi
1 vi

1,

Vi
C = C vi

1 ⊕ Cvi
1,

(3.3)

where {vi
1, v

i
1} is a basis of Vi

C.

Then we have two cases: V1 ⊕ · · · ⊕ Vs is {0} or not.
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Case (a): V1 ⊕ · · · ⊕ Vs 6= {0}.
In this case, V1⊕· · ·⊕Vs is a non-zero f̃(g̃)-invariant subspace. Indeed,

for each v ∈ Vi and X̃ ∈ g̃, since [E, g̃] = {0} and f̃ is a Lie algebra
homomorphism, we have

f̃(E)(f̃(X̃)v) = f̃(X̃)(f̃(E)v) = aif̃(X̃)v,

which implies f̃(X̃)v belongs to V1 ⊕ · · · ⊕ Vs. Thus, Ṽ = V1 ⊕ · · · ⊕ Vs and
f̃(E) has a unique real eigenvalue, say, a ∈ R, since (f̃ , Ṽ ) is an irreducible
representation of g̃.

Furthermore, a 6= 0. Because if we assume that a = 0, then, f̃(E) = 0.
Then, for each X̃ ∈ g̃, we have

f̃(X̃)(q̃(E)) = f̃(E)(q̃(X̃)) = 0, (3.4)

which implies that q̃(E) = 0. Because if we assume q̃(E) 6= 0, then, {0} 6=
R q̃(E) ( 6= Ṽ ) is f̃(g̃)-invariant by means of (3.4). This contradicts the
irreducibility of (f̃ , q̃, Ṽ ). So we have q̃(E) = 0. However, that q̃(E) = 0
contradicts the assumption that Ker(q̃) = k. So, we have a 6= 0.

Notice here that, if we put E′ = 1
a E, then, we have also g̃ = g ⊕ RE′,

and [E′, g̃] = {0}. Furthermore, the affine representation (f̃ , q̃, Ṽ ) of g̃ still
satisfies all the conditions (1), (2) and (3) for the set PF(g̃, k) in Definition
3.1. Because, for (1), (2) they are the same, and for (3), we have that
f̃(E′) = 1

a f̃(E) = I, and q̃(E′) = 1
a q̃(E) 6= 0. Thus, (f̃ , q̃, Ṽ ) ∈ PF0(g̃, k).

Case (b): V1 ⊕ · · · ⊕ Vs = {0}.
In this case, let λ be any non-zero λi

j in (ii), and consider a non-zero
complex subspace

W :=
∑

λk
` =λ

(
Cvk

` ⊕ Cvk
`

)

of
∑r

j=s+1 Vj
C, where λk

` run over the set of all complex eigenvalues of f̃(E)C

in (3.1) which are equal to λ. Then,

W ∩ Ṽ =
∑

λk
` =λ

(
Ruk

` ⊕ Rwk
`

)
, (3.5)
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where we denote vk
` = uk

` +
√−1wk

` , uk
` , wk

` ∈ Ṽ .
Then, for each X̃ ∈ g̃,

f̃(E)Cf̃(X̃)Cvk
` = f̃(X̃)Cf̃(E)Cvk

` = λ f̃(X̃)Cvk
` ,

which implies that f̃(X̃)Cvk
` belongs to W . Furthermore, we have for each

X̃ ∈ g̃,

f̃(X̃)(W ∩ Ṽ ) ⊂ W ∩ Ṽ .

Because, since it holds that

f̃(X̃)uk
` +

√−1f̃(X̃)wk
` = f̃(X̃)Cvk

` =
∑

λp
q=λ

(
αpqv

p
q + βpqv

p
q

)
,

for some complex numbers αpq, and βpq, we have

f̃(X̃)uk
` =

∑

λp
q=λ

{<e(αpq + βpq) up
q + =m(−αpq + βpq) wp

q

} ∈ W ∩ Ṽ ,

f̃(X̃)wk
` =

∑

λp
q=λ

{=m(αpq + βpq) up
q + <e(αpq − βpq)wp

q

} ∈ W ∩ Ṽ .

Thus, together with (3.5), we have f̃(X̃)(W ∩ Ṽ ) ⊂ W ∩ Ṽ .
Since (f̃ , q̃, Ṽ ) is an irreducible representation of g̃, we have

Ṽ = W ∩ Ṽ =
∑

λk
` =λ

(
Ruk

` + Rwk
`

)
,

which means that Vs+1
C ⊕ · · · ⊕ Vr

C is the sum of the two eigenspaces of
f̃(E)C with the eigenvalues λ and λ for some complex number λ = a+

√−1b

(a, b ∈ R) with b 6= 0.
By means of (3.2), f̃(E) can be written as

f̃(E) = a I + b J, (3.6)

where I is the identity transformation of Ṽ , and J is the transformation of
Ṽ of the form:
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J(uj) = −wj , J(wj) = uj (j = 1, . . . , d), (3.7)

where {u1, . . . , ud, w1, . . . , wd} is a basis of Ṽ (dim Ṽ = 2d). Then, J is a
complex structure of Ṽ , i.e., J2 = −I.

The complex structure J of Ṽ is f̃(g̃)-invariant, i.e.,

J f̃(X̃) = f̃(X̃) J (∀ X̃ ∈ g̃). (3.8)

Because, since E is central in g̃, we have, for each X̃ ∈ g̃,

f̃(E)f̃(X̃) = f̃(X̃)f̃(E). (3.9)

The left hand side of (3.9) coincides with

(a I + b J) f̃(X̃) = a f̃(X̃) + b J f̃(X̃).

The right hand side of (3.9) is equal to

f̃(X̃)(a I + b J) = a f̃(X̃) + b f̃(X̃) J.

Since b 6= 0, we have (3.8).
Notice that q̃(E) 6= 0 since Ker(q̃) = k. Since

q̃
(
[X̃, Ỹ ]

)
= f̃(X̃)

(
q̃(Ỹ )

)− f̃(Ỹ )
(
q̃(X̃)

)
(X̃, Ỹ ∈ g̃),

we have

f̃(Ỹ )(q̃(E)) = f̃(E)
(
q̃(Ỹ )

)
= (a I + b J)

(
q̃(Ỹ )

)
. (3.10)

Then, we have, for all Ỹ ∈ g̃,

q̃(Ỹ ) =
1

a2 + b2
(a I − b J)

(
f̃(Ỹ )(q̃(E))

)

= f̃(Ỹ )
(

1
a2 + b2

(a I − b J)(q̃(E))
)

= f̃(Ỹ )v0 (3.11)
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where

0 6= v0 :=
1

a2 + b2
(a I − b J)(q̃(E)) ∈ Ṽ . (3.12)

By (3.11), f̃(k)v0 = {0} since Ker(q̃) = k. Since q̃ : g̃ → Ṽ is a surjection
and g̃ = g⊕ RE, and (3.11), we also have

Ṽ = f̃(g)v0 ⊕ R f̃(E)v0. (3.13)

Thus, we have (f̃ , q̃, Ṽ ) ∈ FII
0 (g̃, k). ¤

Remark 3.4
(1) The set PF0(g̃, k) corresponds ([13, Theorem 1.3]) to the set of all

real irreducible representations (f, Ṽ ) of g of dimension dimM + 1
which admits a nonzero vector v0 ∈ Ṽ such that f(k)v0 = {0} and
Ṽ = f(g)v0 ⊕ Rv0. Each (f, Ṽ ) induces a G-equivariant centro-affine
immersion ϕ : M = G/K → Ṽ by ϕ(xK) = f(xK)v0 (xK ∈ G/K)
with transversal vector field ξxK = −−−−−−→oϕ(xK) (xK ∈ G/K) ([9]).
Our Theorem 3.3 suggests that the set FII

0 (g̃, k) would correspond
to the set of all G-equivariant affine immersions given by ϕ′(xK) =
f̃(xK)v0 (xK ∈ G/K) with the transversal vector field ξ′xK =−−−−−−−−−−−−−−→
ϕ′(xK) f̃(E)ϕ′(xK) (xK ∈ G/K). Then, M = G/K would admit
a G-invariant affine connection via the immersion ϕ′ (cf. [9]).

(2) There is an example belonging to FII
0 (g̃, k). Indeed, let us recall Exam-

ple 11.1 in the book of Takeuchi [12, p. 119], and let g = su(2), k = {0},
g̃ = g ⊕ RE, with E = I2. Let V = C2 =

{(
z
w

)
; z, w ∈ C}

, and Ṽ ,
the real 4-dimensional space V restricted to the field R, and g acts on
Ṽ by the matrix multiplications f̃(X)v = Xv ∈ Ṽ , (X ∈ g, v ∈ Ṽ ),
and f̃(E)v = I2v = v (v ∈ Ṽ ). Then, Ṽ admits the complex structure
J defined by

Jv =
(

0 −1
1 0

)
v, v ∈ Ṽ ,

which satisfies J(Xv) = XJv, (X ∈ g, v ∈ Ṽ ). The linear mapping
q̃ : g̃ → Ṽ is given by q̃

((
iθ α
−α −iθ

)
+ ξE

)
=

(
iθ
−α

)
+ ξ

(
1
0

)
, and satisfies
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q̃
(
[X̃, Ỹ ]

)
= f̃(X̃)q̃(Ỹ )− f̃(Ỹ )q̃(X̃), (X̃, Ỹ ∈ g̃).

Then, it turns out that (f̃ , q̃, Ṽ ) ∈ FII
0 (g̃, k).

(3) The real representations in FII
0 (g̃, k) in the case k = {0} were treated,

called the representations of g̃ of class II, in the book of Takeuchi
([12, pp. 85–92]).

(4) The union in the right hand side for F0(g̃, k) in Theorem 3.3 seems to
be a disjoint union.
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