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Abstract. The aim of this paper is to show numerical treatment of analytic continua-

tion by high-accurate discretization with multiple-precision arithmetic. We deal with the

Cauchy problem of the Laplace equation and an integral equation of the first kind with an

analytic kernel. We propose high-accurate discretization based on the spectral method,

and show some numerical examples with our proposed multiple-precision arithmetic.

Key words: analytic continuation, ill-posed problem, numerical instability, spectral dis-

cretization, multiple-precision arithmetic.

1. Introduction

We consider possibility of numerical treatments of analyticity of func-
tions on digital computers. Analyticity of functions is dependent on the
concept of the limit or the infinite, while numerical computations are pro-
cessed with finite resources. Hence numerical treatment of analyticity has
been considered almost impossible because of existence of the rounding er-
rors. Our proposed multiple-precision arithmetic makes them arbitrarily
small, and it gives us a clue to realize analytic continuation on digital com-
puters.

We deal with two kinds of analytic continuation from the view point
of inverse problems [9]; the one is an initial value problem of the Laplace
equation, which is a model of the electrical impedance tomography, and
the other is the Fredholm integral equation of the first kind with an ana-
lytic kernel, which comes from a model of the X-ray computed tomography.
These problems are derived from non-destructive tests in various fields, e.g.,
engineering, geophysics, and medical science, and they are computed with
some regularization methods, which avoid direct numerical treatment of
analyticity. On the contrary, with a powerful use of the multiple-precision
arithmetic, we dare to approach the problems without any regularization.

The initial value problem of the Laplace equation and an integral equa-
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tion of the first kind with an analytic kernel are typical ill-posed problems
in the sense of Hadamard. The ill-posedness is opposite concept to the
well-posedness, which means stability of solutions to functional equations
against perturbations in given data. Restricting ourselves to linear prob-
lems, we can construct their numerically stable schemes and thus reliable
numerical solutions, if they are well-posed in the sense of Hadamard. The
ill-posed problems are too sensitive to any error entering the problems for us
to construct stable numerical schemes. In mathematical analysis, we adopt
suitable norms to stabilize the problems: regularization is one of such con-
ventional ways to stabilize ill-posed problems, and numerical treatments of
the regularization methods enable us to construct stable numerical schemes.
The regularization method, however, contains a parameter, and the schemes
have both a discretization parameter and a regularization one. Hence, we
note that the choice and the balance of the parameters give another serious
difficulty in computations. We focus, in the present research, on the case
that we do not admit any errors in data, and we will discretize the prob-
lems directly without any regularization. Even under the assumptions, we
cannot deal with them with the standard double precision arithmetic, but
we can carry them out with our proposed multiple-precision arithmetic.

We will give a brief introduction of our proposed multiple-precision
arithmetic and show some numerical examples in the following sections.
We discuss, in section 3, the finite difference approach with the multiple-
precision arithmetic to an initial value problem of the Laplace equation.
We see advantage and difficulty in applications of the multiple-precision
arithmetic through examples of 100 digits and 120 digits cases. In sections
4 and 5, we deal with the Fredholm integral equation of the first kind and
propose a high-accurate numerical treatment with the spectral collocation
method and the multiple-precision arithmetic. We can see the property of
analytic continuation through numerical computations, although we do not
give a proof here.

2. Multiple-Precision Arithmetic

The multiple-precision environment “exflib” (extended precision float-
ing-point arithmetic library) has been designed and implemented by the
first author [4].

In standard numerical computations, the floating-point arithmetic is
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used to approximate real numbers and their calculations. The double pre-
cision arithmetic defined in IEEE754 [7] is commonly used in programming
languages and a double precision number has 53 bits precision in binary,
which is almost 15 decimal digits accuracy. Thus we can not avoid errors
between an exact value and a floating-point number in both representa-
tion and arithmetic, which are called the rounding errors. And growth of
the rounding errors is serious in the numerical computation of inverse and
ill-posed problems.

To reduce the rounding errors, we have proposed the use of the multiple-
precision arithmetic, in which we extend a fractional part of a floating-
point number as many as possible in order to approximate a real number
with arbitrary accuracy. In the number theory or cryptography, a multiple-
precision arithmetic has been used, and we propose effective use of ours in
scientific computations. Our target is effective process with one hundred up
to several thousands decimal digits accuracy for large scale computations
coming from numerical analysis of partial differential equations and integral
equations. To this end, one of the authors has designed and implemented a
new environment of multiple-precision arithmetic, called “exflib”, and the
environment enables us to deal with numerical computations of ill-posed
problems.

The library “exflib” is optimized in some 64-bit computer architectures.
It works in FORTRAN90 and in the programming language C++ with
seamless interfaces as built-in types for arithmetic expressions, which lead
portable and readable codes. It requires less memory than other multiple-
precision libraries, and is aimed for large scale and parallel scientific com-
putations. Since the number of fractional digits is variable in exflib, it has
a great advantage that we can make the rounding errors arbitrarily small
to attain so-called infinitely accuracy virtually. It can be downloaded via
the Internet [2].

3. Numerical treatment of analytic continuation

Let U(z) be a holomorphic function on the upper half plane {z ∈
C; Re(z) ≥ 0}, and it satisfies the Cauchy-Riemann equation ∂U/∂z̄ = 0.
We consider a problem to determine U(z) when its value along the real axis
is given. If we write the function U(z) in the form U(x, y) = u1(x, y) +
iu2(x, y) for z = x + iy, the problem is reduced to the Cauchy problem of
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∂

∂x

(
u1(x, y)
u2(x, y)

)
=

(
0 1
−1 0

)
∂

∂y

(
u1(x, y)
u2(x, y)

)

with the initial values u1(x, 0) and u2(x, 0), which are given as U(x, 0). It
is well known that the problem is equivalent to that for a harmonic function

�u(x, y) = 0, (x, y) ∈ {x ∈ R, y > 0}, (3.1a)

u(x, 0) = f(x), x ∈ R, (3.1b)
∂

∂y
u(x, 0) = g(x), x ∈ R, (3.1c)

where f(x) and g(x) are given real analytic functions. As Hadamard’s
example shows[10], the harmonic continuation problem (3.1) is ill-posed in
Sobolev space Hs of any order s ∈ R.

We apply the finite difference method (FDM) to seek a numerical so-
lution to (3.1) for g(x) = 0. Let Δx and Δy be mesh sizes along x and y

axes respectively, and we obtain a finite difference approximation to (3.1)
as follows:

ui+1,j − 2ui,j + ui−1,j

Δx2
+

ui,j+1 − 2ui,j + ui,j−1

Δy2
= 0, i ∈ Z, j ≥ 1,

(3.2a)

ui,0 = f(iΔx), i ∈ Z, (3.2b)

ui,1 − ui,0 = 0. (3.2c)

Since the problem (3.1) is ill-posed, the finite difference approximation (3.2)
is ill-conditioned and very much sensitive to the rounding errors. Precisely
speaking, the finite difference scheme (3.2) is unstable with any Sobolev
norm. We should remark that we have a result on convergence of finite
difference schemes in the class of analytic functions [6]. For g(x) = 0, there
exists a unique analytic function u(x, y) in some neighborhood of the origin,
if f(x) is analytic near x = 0, and thus the finite difference solution obtained
from (3.2) converges uniformly to the exact one in some neighborhood of
the origin as Δx → 0 when Δy/Δx is fixed [6]. The finite difference scheme
(3.2) is convergent in the class of analytic functions, although the scheme
is unstable with respect to Sobolev norms.

We try to compute the finite difference scheme (3.2) on digital comput-
ers for f(x) = x2. The unique solution to (3.1) for f(x) = x2 and g(x) = 0 is
u(x, y) = x2 − y2, which is a harmonic polynomial. We should remark that
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Fig. 1. Numerical solutions to (3.1): u(x, y) at y = 0.44 for Δx = Δy = 0.02

there occurs no truncation error in the finite difference approximation (3.2)
to (3.1) for the case, and the problem of instability is reduced to existence
of the rounding errors.

We show some numerical results carried out by the standard double
precision arithmetic and the multiple-precision arithmetic. Fig. 1 shows
numerical solution at y = 0.44 by FDM (3.2) for Δx = Δy = 0.02. Solid
curves represent the exact solutions and diamonds (�) stand for computed
values. Fig. 1(a) computed with the standard double precision shows that
the numerical computation clearly fails due to increase of the rounding
errors. On the other hand, for the same discretization parameters, we
obtain accurate numerical solution shown in Fig. 1(b) in 100 digits with
the multiple-precision arithmetic. The figures indicate that the multiple-
precision arithmetic enables us to construct numerical solutions which suf-
ficiently approximate the exact solution.

While the multiple-precision arithmetic is quite effective for numerical
computations of unstable schemes, it does not essentially remove instability.
We compute a numerical solution at y = 0.515 by FDM (3.2) for another
parameter Δx = Δy = 0.005 in 100 digits, and we show its results in
Fig. 2(a). We observe an oscillation due to increase of the rounding errors
in Fig. 2(a), and it implies that 100 digits computation is not sufficient for
the case. On the other hand, we can obtain a good result in Fig. 2(b) by
120 digits computation.

Analytic continuation is one of the typical ill-posed problems, and we
have believed that its direct computation on digital computers should be
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Fig. 2. Numerical solutions for Δx = Δy = 0.005, u(x, y) at y = 0.515

impossible. The above numerical examples, however, show possibility of
numerical analytic continuation, if we use the multiple-precision arithmetic.
We remark that necessary number of digits in computation depends on
problems, and our multiple-precision arithmetic “exflib”[2] has an advantage
that we can easily control accuracy.

4. Integral equations of the first kind and high-accurate dis-
cretization

We consider the Fredholm integral equation of the first kind with an
analytic kernel on a finite interval I:∫

I
k(x, y)u(y)dy = f(x), x ∈ I. (4.1)

Some inverse problems, e.g., the computed tomography and inverse acoustic
scattering problems, are often described with integral equations of the first
kind with analytic kernels k(x, y), and their numerical analyses are impor-
tant from the view point of applied inverse problems. Because of analyticity
of k(x, y), an integral operator defined by

Ku(x) :=
∫

I
k(x, y)u(y)dy. (4.2)

is compact on any Sobolev space Hs(I) and does not have a bounded inverse:
the problem (4.1) is ill-posed in the sense of Hadamard.

Discretization by the simple collocation method, in which the unknown
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function u is approximated by a piecewise linear function, does not give
us good numerical results because of discretization errors, even if we use
the multiple-precision arithmetic to reduce the rounding errors. In order to
control discretization errors in exponential order, we propose an application
of the spectral method [1, 5], and we remark that discretization of the whole
integrand k(x, y)u(y) by the method [8] is more effective than that by the
collocation method through numerical examples. Although the method is
simple and does not require additional numerical integration, we do not
see spectral convergence but polynomial order convergence in numerical
experiments in [8]. Hence, to improve convergence order, we will propose
another type of application of the spectral method to attain the spectral
convergence. Without loss of generality, we take I = [−1, 1] in the following
discussion.

Our proposed discretization is based on approximation with the Cheby-
shev polynomials. Let N be an integer and we approximate the unknown
function u(x) by

uN (x) =
N∑

j=0

ujTj(x),

where Tj(x) is the Chebyshev polynomial of order j. We choose {xi}N
i=0 ⊂ I

as the collocation points and we approximate (4.1) such as∫ 1

−1
k(xi, y)uN (y)dy = f(xi), i = 0, 1, . . . , N.

Introducing

Kj(x) :=
∫ 1

−1
k(x, y)Tj(y)dy, kij := Kj(xi), KN := (kij),

we obtain a system of linear equations

KN

(
ui

)
i↓ =

(
f(xi)

)
i↓.

We note that the coefficients {kij} are not obtained exactly in computations,
and we need some numerical integration to compute kij . To this end, we
use the following high-accurate numerical integration rule proposed in [3]:

∫ 1

−1
g(x)dx ≈ π

M

M∑
j=0

g(cos θj)
wN (cos θj)

tj
, (4.3)
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Fig. 3. Numerical solutions by the simple collocation method

where M is an integer and

θj =
π

M
j, wM (cos θj) =

2
π

(
1 +

M∑
k=2

k:even

2
1 − k2

cos
jkπ

M

)
.

The discretization error in the formula (4.3) decays exponentially with re-
spect to M , if the integrand g(x) is analytic on the interval [−1, 1].

We apply the proposed method to an example∫ 1

0
exyu(y)dy =

xex sin 10 − 10ex cos 10 + 10
x2 + 100

, (4.4)

where the exact solution is u(x) = sin(10x).
Fig. 3 shows numerical solutions by the simple collocation for N = 20 in

the standard double precision and in 100 digits with the multiple-precision
arithmetic respectively. We observe that numerical solutions oscillate and
the computations fail. Fig. 4 shows the maximum errors for the previous
method proposed in [8]. Fig. 4 (a) is for the case of the Chebyshev-Gauss-
Lobatto (CGL) collocation points cos(j/N)π, j = 0, 1, . . . , N , and fig. 4
(b) is for that of the equi-spaced points. The horizontal axis stands for
the discretization number N , and the vertical one stands for the maximum
error E := max0≤j≤N |u(xj)−uN (xj)|, where {xj} is a set of CGL sampling
points. We see that the numerical solution converges with polynomial order
O(N−2).
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Fig. 4. Maximum error E by the previous method in [8]
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Fig. 5. Maximum error E by the proposed method

Fig. 5 shows the maximum error by the present method in which we
take M = 400 for the numerical integration rule (4.3). We observe the
convergence of O(0.1N ) and we note that the spectral accuracy is attained.
Hence we conclude that the proposed method is more accurate than the
previous one.

5. Numerical analytic continuation for integral equations with
analytic kernels

The method shown in the previous section gives spectral convergence
with respect to N for both the CGL collocation case and the equi-spaced
collocation one. The results are thought to be derived from analyticity and
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we give other numerical examples, in the present section, to ensure the fact.
Since we have the identity theorem for analytic functions, all the in-

formation about a function can be derived from its values on sub-interval
for an analytic function. We apply the proposed method with the equi-
spaced collocation points, but we allocate them only in a sub-interval Jm =
[1/2 − 10−m, 1/2 + 10−m]. Fig. 6 shows the maximum errors in numerical
experiments, where the horizontal axis stands for m. For the case m =
15, although the interval Jm is quite small, we see that the numerical so-
lution coincides well with the exact one by 1200 digits computation, and
we succeed in reconstruction of an analytic function u(x) from data on a
sub-interval.

The numerical results suggest realization of the identity theorem on a
digital computer with a combination of the multiple-precision arithmetic
and the proposed high-accurate spectral discretization. We recall that our
multiple-precision arithmetic has “infinitely” accuracy, since we can make
the rounding error arbitrarily small by the change of number of the frac-
tional digits. We should remark that we cannot see the same kind of results
by the standard floating-point arithmetic.

6. Concluding Remarks

Analytic continuation related to the Cauchy problem of the Laplace
equation and the Fredholm integral equation of the first kind are successfully
realized on digital computers by the combination of the multiple-precision
arithmetic and the spectral method. The multiple-precision arithmetic en-
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ables numerical realization of the Hayakawa’s theorem [6] and of the identity
theorem for analytic functions through computations, and it gives us a new
clue to deal with inverse and ill-posed problems.

Acknowledgment The research was supported by Grant-in-Aid for Sci-
entific Research (No. 17740057, 16340024, 17654023) from Japan Society
for the Promotion of Science.

References

[ 1 ] Canuto C., Hussaini M., Quarteroni A. and Zang T., Spectral Methods in Fluid

Dynamics. Springer-Verlag, 1988.

[ 2 ] http://www-an.acs.i.kyoto-u.ac.jp/~fujiwara/exflib.

[ 3 ] Fujiwara H., Numerical method for integral equation of the first kind under multiple-

precision arithmetic. Theoretical and Applied Mechanics Japan 52 (2003), 192–203.

[ 4 ] Fujiwara H. and Iso Y., Application of multiple-precision arithmetic to direct nu-

merical computation of inverse acoustic scattering. to appear in “Some Journal”.

[ 5 ] Gottlieb D., Hussaini M.Y. and Orszag S.A., Theory and applications of spectral

methods. Spectral Methods for Partial Differential Equations, SIAM (1984), 1–54.

[ 6 ] Hayakawa K., Convergence of finite difference scheme and analytic data. Publ. Res.

Inst. Math. Sci. 24 (1988), 759–764.

[ 7 ] IEEE standard for binary floating-point arithmetic: ANSI/IEEE std 754–1985

(1985). Reprinted in SIGPLAN 22 (1987), 9–25.

[ 8 ] Imai H. and Takeuchi T., Some advanced applications of the spectral collocation

method. GAKUTO Internat. Ser. Math. Sci. Appl. 17 (2002), 323–335.

[ 9 ] Lavrent’ev M.M., Romanov V.G. and Shishat·skǐi S.P., Ill-Posed Problems of Math-
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