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Verified numerical computation of solutions

for the stationary Navier-Stokes equation
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Abstract. We propose a method to enclose solutions for the stationary Navier-Stokes

equation in nonconvex polygonal domains. Our method is based on an infinite dimen-

sional Newton-type formulation by using the finite element method with constructive

error estimates and fixed point theorems. Numerical examples related to the step flow

problems in L-shape domain are presented.
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1. Introduction

In the present paper, we consider a numerical method to verify the
existence and the local uniqueness of solutions for the following stationary
Navier-Stokes equations:

−νΔu + (u · ∇)u + ∇p =0 in Ω,

div u =0 in Ω,

u = g on ∂Ω,

(1.1)

where u and p are the velocity vector and the pressure, respectively. Assume
that Ω is a nonconvex polygonal domain in R2. In addition, g is a given
boundary vector function and ν > 0 is a viscosity coefficient.

1.1. Motivation
The problem (1.1) is considered in [1]. For L-shaped domains, the

equation (1.1) is known as a mathematical model for the step flow prob-
lems. From the theoretical point of view on the reliability of numerical
computations, it is important to give a mathematically rigorous a posteri-
ori error analysis for the approximate solutions of the flow. However, the
equation (1.1) is also known as the difficult problem because of the singu-
larity which is influenced by the reentrant corner. Thus, our purpose in this
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paper is to find an exact solution of (1.1) and clarify its behavior using a
computer-asisted proof and some mathematical techniques.

In [11], there already exists a similar work for the convex domain in
which the error estimates are more easily given. They use a method, so-
called Nakao’s method (see, e.g., [3], [4], [10] for more details), that consists
of two kinds of iterative process; one is a finite dimensional Newton-like
iterations, the other is the successive computations of the error caused by
the gap between the finite and infinite dimension in each iterative procedure
(see, e.g., [3], [4], [10] for more details). However, in the original Nakao’s
method, it has been recently observed ([6]), that for the second order prob-
lem having a first order derivative ∇u, the computational process of verifi-
cation is not necessary efficient but sometimes diverges due to the property
of interval computations. In order to overcome such a difficulty, in [6], some
improvements are considered by using a technique with estimation of the
norm for the inverse of a matrix corresponding to the linearlized operator,
instead of direct solving an interval system of equations. Moreover, in [5],
some further extended techniques are considered to develop a verification
method by using an infinite dimensional Newton-like method for the second
order elliptic problems.

In this paper, according to the analogous arguments to that in [5],
which is a modified version of one of the authors’ method (cf. [3] [4] etc.),
we present a guaranteed estimates of the inverse of linearized operator for
the Navier-Stokes equation (1.1) to get a verification condition based on
the infinite dimensional Newton-like procedure. On the other hand, Plum’s
method which is also well known to verify the solutions for nonlinear elliptic
boundary value problems [8] [9], would also be applicable, if it is possible
to bound the eigenvalues for linearlized operator corresponding to (1.1).
However, this eigenvalue bounding process for the present case seems to be
quite complicated.

In order to apply the method in [5], in general to use Nakao’s method,
it is necessary to obtain the constructive a priori error estimate between
a function and its appropriate projections. Namely, for example, when we
denote the H1

0 -projection as Ph, it is necessary to determine the constant
C numerically in the a priori error estimate of the form:

‖v − Phv‖H1
0
≤ C‖Δv‖L2 ,

where C depends on the mesh size h of the finite element space such that
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C → 0 as h → 0. This constant is naturally dependent on the regularity of
solutions for the Poisson equation with homogeneous boundary conditions.
For example, it implies that C = O(h), if Ω is a convex domain. However,
the order of magnitude decreases for nonconvex polygonal domains, that is,
C ≈ O(h2/3), if Ω is the L-shaped domain. When we apply our method,
it is essential and important to determine the above constant as small as
possible. However, for nonconvex polygons, this task is usually not so easy
but very hard by only theoretical considerations. As one of the computa-
tional approaches by some guaranteed numerical computations, Yamamoto
and one of authors presented a computational method to get the explicit
constant [12], which will be used in Section 4 in this paper.

In the following section, we define the Stokes projection and describe
its constructive error estimates. The invertibility conditions of linearized
operator and the norm estimation procedure for its inverse are considered
in Section 3, which play an essential role in the verification by the infinite
dimensional Newton-like method. In Section 4, we mention about the actual
verification procedure for solutions of the nonlinear Navier-Stokes problem
(1.1). Some verification examples of the step flow problem are presented in
the last section.

1.2. Notations
We denote the usual k-th order Sobolev space on Ω by Hk(Ω) and define

( · , · )0 as the L2 inner product. We also define the following Sobolev spaces
as usual:

H1
0 (Ω) ≡ {v ∈ H1(Ω) ; v = 0 on ∂Ω},

L2
0(Ω) ≡ {q ∈ L2(Ω) ; (q, 1)0 = 0},

and set X ≡
(
H1

0 (Ω)
)2, Y ≡ L2

0(Ω), X(Δ) ≡ {v ∈ X ; Δv ∈
(
L2(Ω)

)2}.
Moreover, we denote that

V0 = {v ∈ X ; div v = 0},
V⊥ = {v⊥ ∈ X ; (∇v⊥, ∇v)0 = 0, ∀v ∈ V0}.

Here, we used the same notation ( · , · )0 as the natural extension to L2

inner product on vector functions. Then, we have X = V0 ⊕ V⊥, where the
orthogonality means in H1

0 sense.
For v ∈ (H1

0 (Ω))2, we also define the H1
0 -norm by ‖v‖H1

0
≡ (∇v, ∇v)1/2

0 .
Then, the norm on X will be straightforward. And, 〈 · , · 〉 denotes the
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duality pairing between X and X ′ which is the dual space of X. Moreover,
Xh ⊂ X and Yh ⊂ Y denote finite element subspaces which depend on the
mesh size h.

2. The constructive a priori and a posteriori error estimations

In this section, we show the constructive a priori and a posteriori error
estimations for the Stokes equation. These estimates are essentially pre-
sented in [7]. But, for our current purpose, we need some modification for
the basic error estimates of the H1

0 -projection due to the nonconvexity of
the domain, as well as it is necessary to get addtional estimates, e.g., in
H−1 sense.

For each v ∈ X, we define the H1
0 -projection Phv ∈ Xh by

(∇(v − Phv), ∇φh)0 = 0, ∀φh ∈ Xh, (2.1)

Further, we assume the following a priori error estimates.

Assumption 1 For an arbitrary v ∈ X(Δ), there exists a constant C(h)
depending on h such that

‖v − Phv‖H1
0
≤ C(h)‖Δv‖L2 .

Here, C(h) has to be numerically determined.

Notice that Assumption 1 is equivalent to the following inequality:

‖v − Phv‖L2 ≤ C(h)‖v − Phv‖H1
0
.

We first refer the following well known result.

Lemma 2 (Babus̃ka-Aziz [2]) For all q ∈ Y , there exists a unique v⊥ ∈
V⊥ such that

div v⊥ = q, ‖v⊥‖H1
0
≤ β‖q‖L2 ,

where β > 0 is a constant depending on Ω.

Now, we define the following functionals.

X (u, p) ≡ sup
v∈X

ν(∇u, ∇v)0 − (p, div v)0
‖v‖H1

0

,

Y(u) ≡ sup
q∈Y

(q, div u)0
‖q‖L2

.

(2.2)
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Then, we have the following result.

Theorem 3 For an arbitrary (u, p) ∈ X × Y , it implies that

‖u‖H1
0
≤ 1

ν

[(
X (u, p)

)2 +
(
νβY(u)

)2]1/2
,

‖p‖L2 ≤ βX (u, p) + νβ2Y(u).

Proof. First, for an arbitrary u ∈ X, we decompose it as u = u0 ⊕ u⊥ ∈
V0 ⊕ V⊥. Then, we have

X (u, p)≥ sup
v∈V0

ν(∇u, ∇v)0 − (p, div v)0
‖v‖H1

0

= sup
v∈V0

ν(∇u0, ∇v)0
‖v‖H1

0

= ν‖u0‖H1
0
.

Also by Lemma 2, we have

Y(u) ≥ 1
β
‖u⊥‖H1

0
.

Thus the first part of the theorem is obtained.
Next, for (u, p) ∈ X × Y , from Lemma 2, there exists v⊥ ∈ V⊥ sat-

isfying div v⊥ = −p. Setting q ∈ Y as q = K · div u⊥, where K =
ν(∇u⊥, ∇v⊥)0/‖div u⊥‖2

L2 , it implies that

‖p‖2
L2 = ν(∇u⊥, ∇v⊥)0 + ‖p‖2

L2 − (q, div u⊥)0

= ‖v⊥‖H1
0

ν(∇u⊥, ∇v⊥)0 − (p, div v⊥)0
‖v⊥‖H1

0

− ‖q‖L2

(q, div u⊥)0
‖q‖L2

≤‖v⊥‖H1
0
X (u, p) + ‖q‖L2Y(u).

Moreover, we have

‖q‖L2 = K‖div u⊥‖L2 =
ν(∇u⊥, ∇v⊥)0
‖div u⊥‖L2

≤
ν‖u⊥‖H1

0
‖v⊥‖H1

0

‖div u⊥‖L2

≤ νβ2‖p‖L2 .

From ‖v⊥‖H1
0
≤ β‖div v⊥‖L2 , we obtain the second result. Therefore, this

proof is completed. �
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Now, let define the map B : X × Y −→ X ′ × Y by

B(u, p) ≡
(
S(u, p), −div u

)
, (2.3)

where S(u, p) ≡ −νΔu + ∇p for (u, p) ∈ X × Y . Then, for an arbitrary
(u, p) ∈ X ×Y , we define the Qh-projection Qh(u, p) ≡ (uh, ph) ∈ Xh ×Yh

by

ν(∇(u − uh), ∇vh)0 − (p − ph, div vh)0 = 0, ∀vh ∈ Xh,

−(div(u − uh), qh)0 = 0, ∀qh ∈ Yh.
(2.4)

Then, we have the following main result of this section.

Theorem 4 Let (u, p) ∈ V0 × Y and let (uh, ph) ∈ Xh × Yh be the Qh-
projection of (u, p). We assume that S(u, p) ∈

(
L2(Ω)

)2 and that there
exist constants η and σ independent of (u, p) satisfying

‖∇ph‖L2 ≤ η‖S(u, p)‖L2 ,

‖div uh‖L2 ≤σ‖S(u, p)‖L2 .

Then, we have the following a priori error estimations.

‖u − uh‖H1
0
≤ ν−1Eu(h)‖S(u, p)‖L2 ,

‖p − ph‖L2 ≤ Ep(h)‖S(u, p)‖L2 ,

where Eu(h) :=
[(

C(h)(1 + η)
)2 + (νβσ)2

]1/2 and Ep(h) := C(h)(1 + η)β +
νβ2σ. Here, the constant β is defined in Lemma 2.
Moreover, define as in [7], ∇uh ∈ (Xh)2 and Δuh ≡ ∇ ·∇uh, where ∇uh is
determined by

(∇uh, vh)0 = (∇uh, vh)0, for all vh ∈ (Xh)2.

Then, we have the following a posteriori error estimations.

‖u − uh‖H1
0
≤ 1

ν

[(
C(h)K1 + νK2

)2 + (νβK3)2
]1/2

,

‖p − ph‖L2 ≤ β
(
C(h)K1 + νK2

)
+ νβ2K3,

and

‖u − uh‖L2 ≤ E(h)‖u − uh‖H1
0

+ σ‖p − ph‖L2 , (2.5)

where E(h) := Eu(h) + Ep(h) and the constants Ki, (1 ≤ i ≤ 3) are defined
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as

K1 ≡ ‖S(u, p) + νΔuh −∇ph‖L2 , K2 ≡ ‖∇uh −∇uh‖H1
0
,

K3 ≡ ‖div uh‖L2 .

Proof. First, by the definition of X and the property of the Qh-projection,
i.e., ν(∇(u − uh), ∇vh)0 − (p − ph, div vh)0 = 0 for all vh ∈ Xh, it implies
that

X (u − uh, p − ph)

= sup
v∈X

ν(∇(u − uh), ∇(v − Phv))0 − (p − ph, div(v − Phv))0
‖v‖H1

0

= sup
v∈X

(−νΔu + ∇p −∇ph, v − Phv)0
‖v‖H1

0

≤ C(h)‖S(u, p) −∇ph‖L2 , (2.6)

where we have used the fact ‖v−Phv‖L2 ≤ C(h)‖v−Phv‖H1
0
≤ C(h)‖v‖H1

0
.

Next, we have

Y(u − uh) = sup
q∈Y

(q, div uh)0
‖q‖L2

≤‖div uh‖L2 . (2.7)

Hence, using assumptions of this theorem, we have the following estima-
tions.

X (u − uh, p − ph)≤C(h)(1 + η)‖S(u, p)‖L2 ,

Y(u − uh)≤ σ‖S(u, p)‖L2 .

Combining these inequalities with Theorem 3, we obtain the desired a priori
estimates.

Now, using the second equality of (2.6), from the fact that (∇uh, ∇(v−
Phv))0 = 0 and (∇uh, ∇φ)0 = (−Δuh, φ)0 for φ ∈ X, we have

X (u−uh, p−ph)

=sup
v∈X

(−νΔu+∇p−∇ph, v−Phv)0−ν(∇uh,∇(v−Phv))0
‖v‖H1

0

=sup
v∈X

(S(u,p)+νΔuh−∇ph,v−Phv)0+ν(∇uh−∇uh,∇(v−Phv))0
‖v‖H1

0

≤C(h)‖S(u, p)+νΔuh−∇ph‖L2 +ν‖∇uh−∇uh‖H1
0
. (2.8)
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Thus, we obtain the a posteriori error estimates for the Qh-projection by
(2.7) and (2.8).

We now finally present the L2-estimation of u − uh.
For (u − uh, 0) ∈ X × L2(Ω), we consider the following Stokes equation.

Find (v, q) ∈ X × Y such that B(v, q) = (u − uh, 0) in Ω.

From the property of the Qh-projection, setting (vh, qh) := Qh(v, q), we
have

‖u − uh‖2
L2 = (u − uh, u − uh)0

= (−νΔv + ∇q, u − uh)0
= ν(∇v, ∇(u − uh))0 − (q, div(u − uh))0
= ν(∇(v − vh), ∇(u − uh))0 + (p − ph, div vh)0

− (q − qh, div(u − uh))0
≤ ν‖v − vh‖H1

0
‖u − uh‖H1

0
+ ‖p − ph‖L2‖div vh‖L2

+ ‖q − qh‖L2‖div(u − uh)‖L2 .

Therefore, using the a priori error estimation and the assumption of this
theorem, this proof is completed from the former part of the theorem and
the fact that ‖div(u − uh)‖L2 ≤ ‖u − uh‖H1

0
. �

If S(u, p) does not belong to L2 space, then we have the following esti-
mates, which is readily seen by the similar arguments in the above theorem.

Corollary 5 Let (u, p) ∈ V0 × Y and let (uh, ph) ∈ Xh × Yh be Qh-
projection of (u, p). We assume that S(u, p) ∈ X ′ and there exist constants
η̂ and σ̂ satisfying

‖∇ph‖L2 ≤ η̂‖S(u, p)‖H−1 ,

‖div uh‖L2 ≤ σ̂‖S(u, p)‖H−1 .

Then, we have the following estimations.

‖u − uh‖H1
0
≤ ν−1eu‖S(u, p)‖H−1 ,

‖p − ph‖L2 ≤ ep‖S(u, p)‖H−1 ,

where eu =
[(

1 + C(h)η̂
)2 + (νβσ̂)2

]1/2 and ep =
(
1 + C(h)η̂

)
β + νβ2σ̂.

Here, we define the H−1-norm by
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‖S(u, p)‖H−1 ≡ sup
φ∈X

〈S(u, p), φ〉
‖φ‖H1

0

.

Notice that by some simple calculations, in Corollary 5, it is always
taken as eu = 2, because of ‖u‖H1

0
≤ ν−1‖S(u, p)‖H−1 and ‖uh‖H1

0
≤

ν−1‖S(u, p)‖H−1 if (u, p) ∈ V0 × Y .

3. Computable verification method for the inverse of the lin-
earized operator

In this section, we describe a numerical method to prove the invertibility
of the following linear operator and estimate the norm of the inverse.

The linearized Navier-Stokes equation with homogeneous Dirichlet
boundary conditions can be written as

Find (u, p) ∈ X × Y such that

L(u, p) ≡ B(u, p) + Ψ(u, p) = (f, 0) in Ω, (3.1)

where (f, 0) ∈ X ′ × L2(Ω) and the linear map Ψ is defined as

Ψ(u, p) := (Φu, 0) for each (u, p) ∈ X × Y (3.2)

with Φu := (c · ∇)u + (u · ∇)c.

Here, c ∈
(
W 1∞(Ω)

)2, the coefficient vector function.

3.1. The invertibility condition of the operator L
First, note that the invertibility of a linear operator L defined in (3.1)

is equivalent to the unique solvability of the fixed point equation:

z =Az (3.3)

≡B−1Ψz,

where z = (u, p) and A a compact operator on X × Y .
Now, according to the verification principle presented in [5], we formu-

late a sufficient invertibility condition in numerically. As the preliminary,
we define the several matrices as follows:
Namely, N ×N matrices F = (Fi,j), A = (Ai,j), M ×N matrix B = (Bi,j)
and M × M matrix C = (Ci,j) are defined by
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Fi,j = ν(∇φj , ∇φi)0 + (Φφj , φi)0 for 1 ≤ i, j ≤ N,

Ai,j = (∇φj , ∇φi)0 for 1 ≤ i, j ≤ N,

Bi,j =−(div φj , ψi)0 for 1 ≤ i ≤ M, 1 ≤ j ≤ N,

Ci,j = (ψj , ψi)0 for 1 ≤ i, j ≤ M,

where {φk}N
k=1 and {ψk}M

k=1 are basis of Xh and Yh, respectively.
Next, supposing that N ≥ M , we define the N + M square matrix G by:

G =
[

F BT

B 0

]
, (3.4)

Notice that if G is nonsingular then it implies that F and S := BF−1BT

are also nonsingular and we can write an inverse matrix by
[

F BT

B 0

]−1

=
[

F−1 − F−1BTS−1BF−1 F−1BTS−1

S−1BF−1 −S−1

]

=:
[

G1 G3

G2 G4

]
.

Let L and M be lower triangular matrices satisfying the Cholesky de-
compositions:

A = LLT and C = MMT , (3.5)

respectively. And, we denote the matrix norm induced from the Euclidean
2-norm by | · |E . Also, we define the following constants:

Kc :=
∥∥|c|E∥∥

L∞ , Kdiv c :=
∥∥div c

∥∥
L∞ ,

K∇c :=
∥∥|∇c|E

∥∥
L∞ , K∂c :=

(∥∥∂ic · ∂jc
∥∥2

L2

)1/4

F
,

where
∥∥|∇c|E

∥∥
L∞ and matrix ‖∂ic · ∂jc‖L2 mean that

∥∥(∑
i |∇ci|2E

)1/2∥∥
L∞

and ‖∂c/∂xi · ∂c/∂xj‖L2 , respectively. Here, ‖ · ‖L∞ and ( · )F denote the
L∞-norm on Ω and the matrix Frobenius norm, respectively.
By some simple calculations, we have the following lemma.

Lemma 6 For u, v, w ∈ X, it implies that

‖(u · ∇)v‖L2 ≤
∥∥|u|E∥∥

L∞‖v‖H1
0

if u ∈ Xh,

‖(u · ∇)v‖L2 ≤‖u‖L2

∥∥|∇v|E
∥∥

L∞ if v ∈ Xh,

‖(u · ∇)v‖L2 ≤CL4‖u‖H1
0

(
‖∂iv · ∂jv‖2

L2

)1/4

F
if v ∈ Xh.
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Moreover, we have

((u · ∇)v, w)0
≤

(∥∥|u|E∥∥
L∞‖w‖H1

0
+ ‖div u‖L∞‖w‖L2

)
‖v‖L2 if u ∈ Xh,

((u · ∇)v, w)0
≤

(
‖u‖H1

0
‖w‖L2 + ‖u‖L2‖w‖H1

0

)∥∥|v|E∥∥
L∞ if v ∈ Xh,

〈(u · ∇)v, w〉 ≤ C2
L4‖u‖H1

0
‖v‖H1

0
‖w‖H1

0
,

where CL4 is a constant such that ‖φ‖L4 ≤ CL4‖φ‖H1
0

for all φ ∈ H1
0 (Ω).

We now have the following main result of this paper.

Theorem 7 For the constants defined above, if G is nonsingular and

κ ≡ 1
ν

Eu(h)
(
MuC1C2 + C2

)
< 1

holds then the operator L defined in (3.1) is invertible.
Here, Mu ≡ ‖LTG1L‖E and Eu(h) is the a priori constant in Theorem 4.
And, the constants C1 and C2 are given by

C1 = 3CL2Kc, C2 = Kc + CL4K∂c,

where CL2 is a Poincaré constant such that ‖φ‖L2 ≤ CL2‖φ‖H1
0

for all φ ∈
H1

0 (Ω).

Proof. First, as in [3], [4], [10] etc., we decompose the equation u = Au

into two parts as follows:

Qhz =QhAz

(I −Qh)z = (I −Qh)Az

where I implies the identity map on X × Y .
Next, according to the similar formulation to that in [5], we define two
operators by

Nhz ≡ Qhz − [I −A]−1
h Qh(I −A)z

and

T z ≡ Nhz + (I −Qh)Az,

respectively, where [I −A]−1
h means the inverse of Qh(I −A)|Xh×Yh

: Xh ×
Yh −→ Xh × Yh.
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Now, for two dimensional positive vectors α = (αu, αp) and γ = (γu, γp),
we define the candidate set Z = Zh ⊕ Z∗ ⊂ X × Y which possibly encloses
the solution of (3.3). Here, Zh and Z∗ are taken as

Zh :=
{
zh ∈ Xh × Yh ; [‖zh‖] ≤ γ

}
,

Z∗ :=
{
z∗ ∈ (Xh × Yh)⊥ ; [‖z∗‖] ≤ α

}
,

where ( )⊥ means the orthogonal complement in the sense of Qh-projection,
that is z∗ ∈ Z∗ ⇒ Qhz∗ = 0. Also denote [‖z‖] ≡ (‖u‖H1

0
, ‖p‖L2) for z =

(u, p) ∈ X × Y and the inequality stands for elementwise.
Then, by the fact that z = Az is equivalent to z = T z. In order to

prove the unique existence of a solution to (3.3) in the set Z, it suffices to
show |||T ||| < 1 for any kind of norm ||| · ||| in X × Y . This fact follows by
Banach’s fixed point theorem from the linearity of the equation.

Further notice that a sufficient condition can be written as

[‖NhZ‖] ≡ sup
z∈Z

[‖Nhz‖] < γ (3.6)

and

[‖(I −Qh)AZ‖] ≡ sup
z∈Z

[‖(I −Qh)Au‖] < α. (3.7)

Therefore, by using constants defined above, we try to estimate norms
[‖Nhz‖] and [‖(I −Qh)Az‖] in (3.6) and (3.7), respectively.

First, for an arbitrary z = zh + z∗ ∈ Zh + Z∗, we have

Nhz = zh − [I −A]−1
h Qh(I −A)(zh + z∗)

= [I −A]−1
h QhAz∗. (3.8)

We now set (wu
h, wp

h) := Nhz, which means

ν(∇wu
h, ∇vh)0 + (Φwu

h, vh)0 − (wp
h, div vh)0 = (−Φu∗, vh)0,

−(div wu
h, qh)0 = 0,

(3.9)

for all vh ∈ Xh, qh ∈ Yh. Here, we choose w := Δ−1Φu∗ ∈ X. Since the
right-hand side of (3.9) satisfies

(−Φu∗, vh)0 = (∇w, ∇vh)0 = (∇Phw, ∇vh)0,
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we can obtain the following matrix linear equation:[
F BT

B 0

] [
wu

h

wp
h

]
=

[
A 0
0 0

] [
wh

0

]
,

where wu
h = (wu

1 , wu
2 , . . . , wu

N )T , wp
h = (wp

1, wp
2, . . . , wp

M )T and wh =
(w1, w2, . . . , wN )T are coefficient vectors of wu

h, wp
h and wh ≡ Phw, re-

spectively, which are set as

wu
h :=

N∑
i=1

wu
i φi, wp

h :=
M∑
i=1

wp
i ψi, wh :=

N∑
i=1

wiφi.

Therefore, it implies that[
‖wu

h‖H1
0

‖wp
h‖L2

]
=

[ ‖LT wu
h‖E

‖MT wp
h‖E

]
=

[
‖(LT G1L)(LT wh)‖E

‖(MTG2L)(LT wh)‖E

]

≤
[

‖LT G1L‖E‖LT wh‖E

‖MTG2L‖E‖LT wh‖E

]

=
[

‖LT G1L‖E‖wh‖H1
0

‖MTG2L‖E‖wh‖H1
0

]
.

So, we can obtain the following estimations.

‖wu
h‖H1

0
≤ Mu‖wh‖H1

0
, ‖wp

h‖L2 ≤ Mp‖wh‖H1
0
, (3.10)

where Mu = ‖LTG1L‖E and Mp = ‖MTG2L‖E .
From the property of the H1

0 -projection, we have

‖wh‖H1
0
≡ ‖Phw‖H1

0
≤‖w‖H1

0
= ‖Δ−1Φu∗‖H1

0

≤‖Δ−1(c · ∇)u∗‖H1
0

+ ‖Δ−1(u∗ · ∇)c‖H1
0
.

Hence, we now estimate the H1
0 -norm of w1 := Δ−1(c · ∇)u∗ and w2 :=

Δ−1(u∗ · ∇)c.
For the estimation of ‖w1‖H1

0
, some simple calculations yields from

Lemma 6 that

‖w1‖2
H1

0
= (∇w1, ∇w1)0 = (−Δw1, w1)0

= (−(c · ∇)u∗, w1)0
≤CL2

∥∥|c|E∥∥
L∞‖u∗‖H1

0
‖w1‖H1

0
.

(3.11)

Furthermore, for the estimation of ‖w2‖H1
0
, by applying the similar argu-
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ment to the above and using Lemma 6, we have

‖w2‖H1
0
≤ 2CL2

∥∥|c|E∥∥
L∞‖u∗‖H1

0
. (3.12)

Thus, by (3.10)–(3.12), we obtain the following estimate for the finite di-
mensional part

[‖NhZ‖] ≤
[

Mu

Mp

]
C1αu, (3.13)

where C1 ≡ 3CL2Kc.
For z ∈ Z, from Theorem 4 and Lemma 6, it implies that

[‖(I −Qh)Az‖] ≤
[

ν−1Eu(h)
Ep(h)

]
C2(γu + αu),

where C2 ≡ Kc + CL4K∂c.
Therefore, the invertibility condition follows:

MuC1αu < γu,

MpC1αu < γp,

ν−1Eu(h)C2(γu + αu) < αu,

Ep(h)C2(γu + αu) < αp.

Here, the second and fourth conditions of the above can always be valid
provided that γp and αp are suitable chosen. Therefore, we only consider
the condition:

MuC1αu < γu,

ν−1Eu(h)C2(γu + αu) < αu.

And, it is readily seen that this inequality is equivalent to

1
ν

Eu(h)C2(MuC1C2 + C2) < 1.

Thus, the proof is completed. �

3.2. The norm estimation
In this subsection, we show the a priori estimates for the solution of the

linear equation (3.1).

Theorem 8 Under the same assumptions in Theorem 7, provided that
κ < 1 and let z = (u, p) ∈ X × Y be a unique solution for the linear
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equation (3.1), that is, Lz = (f, 0) for (f, 0) ∈ X ′ ×L2(Ω). Then, we have
the following estimations:

‖u‖H1
0
≤M∗

u‖f‖H−1 ,

‖p‖L2 ≤M∗
p‖f‖H−1 ,

where M∗
u ≡ τ∗

1 + τ∗
2 , M∗

p ≡ τ∗
3 + τ∗

4 and the constants τ∗
i (1 ≤ i ≤ 4) are

given by

τ∗
1 =

1
ν

MuEu(h)C2 + eu

1 − κ
, τ∗

2 = Mu(C1τ
∗
1 + 1),

τ∗
3 = Mp(C1τ

∗
1 + 1), τ∗

4 = Ep(h)C2(τ∗
1 + τ∗

2 ) + ep.

Moreover, if f ∈
(
L2(Ω)

)2, then

‖u‖H1
0
≤Mu‖f‖L2 ,

‖p‖L2 ≤Mp‖f‖L2 ,

where Mu ≡ τ1 + τ2, Mp ≡ τ3 + τ4 and the constants τi (1 ≤ i ≤ 4) are
given by

τ1 =
1
ν

Eu(h)(MuC2CL2 + 1)
1 − κ

, τ2 = Mu(C1τ1 + CL2),

τ3 =Mp(C1τ1 + CL2), τ4 = Ep(h)
(
C2(τ1 + τ2) + 1

)
.

Proof. For any f ∈ X ′, define (ϕu, ϕp) ≡ B−1(f, 0) ∈ X × Y . Then, by
the Fredholm alternative theorem, the invertibility of (I −A) implies that
there exists a unique element z ∈ X × Y satisfying (I − A)z = (ϕu, ϕp).
When we set

Nhz :=Qhz − [I −A]−1
h Qh((I −A)z − (ϕu, ϕp)),

T z :=Nhz + (I −Qh)(Az + (ϕu, ϕp)),

notice that (I −A)z = (ϕu, ϕp) is equivalent to T z = z. Using the decom-
position z = zh + z∗ with zh ≡ Qhz and z∗ ≡ z − Qhz, by some simple
calculations, we have

zh = [I −A]−1
h (QhAz∗ + Qh(ϕu, ϕp)),

z∗ = (I −Qh)A(zh + z∗) + (I −Qh)(ϕu, ϕp).
(3.14)

Hence, taking the estimates in the proof of Theorem 7 and letting ϕ =



792 M.T. Nakao, K. Hashimoto and K. Kobayashi

Δ−1f , we have by (3.14)[
‖uh‖H1

0

‖ph‖L2

]
≤

[
Mu

Mp

]
(C1‖u∗‖H1

0
+ ‖Phϕ‖H1

0
)

≤
[

Mu

Mp

]
(C1‖u∗‖H1

0
+ ‖f‖H−1), (3.15)

and [
‖u∗‖H1

0

‖p∗‖L2

]
≤

[
ν−1Eu(h)

Ep(h)

]
C2(‖uh‖H1

0
+ ‖u∗‖H1

0
)

+ [‖(I −Qh)B−1(f, 0)‖]

≤
[

ν−1Eu(h)
Ep(h)

]
C2(‖uh‖H1

0
+ ‖u∗‖H1

0
)

+
[

ν−1eu

ep

]
‖f‖H−1 . (3.16)

Substituting the estimate of ‖uh‖H1
0

in (3.15) into the last right-hand side
of (3.16) and solving it with respect to ‖u∗‖H1

0
, we get

‖u∗‖H1
0

=
1
ν

(
MuEu(h)C2 + eu

)
‖f‖H−1

1 − κ
= τ∗

1 ‖f‖H−1 . (3.17)

Thus, we also have by (3.15)[
‖uh‖H1

0

‖ph‖L2

]
≤

[
Mu

Mp

]
(C1τ

∗
1 + 1)‖f‖H−1 =

[
τ∗
2

τ∗
3

]
‖f‖H−1 . (3.18)

Hence, it implies that

‖p∗‖L2 =
(
Ep(h)C2(τ∗

1 + τ∗
2 ) + ep

)
‖f‖H−1

= τ∗
4 ‖f‖H−1 . (3.19)

Therefore, from (3.17)–(3.19) and ‖u‖H1
0

≤ ‖uh‖H1
0

+ ‖u∗‖H1
0
, ‖p‖L2 ≤

‖ph‖L2 + ‖p∗‖L2 , the proof of the former part is completed. Also, for the
case that f ∈

(
L2(Ω)

)2, one can easily derive the results in the latter part
by the similar arguments above. �
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4. Applications to nonlinear problems

In this section, we describe the actual applications of the results ob-
tained in the previous section to the verification of solutions for the sta-
tionary Navier-Stokes equation (1.1). We assume that a function g ∈ X(Δ)
satisfies g = g on ∂Ω and div g = 0 in Ω. Then, our original problem can
be written as

−νΔu + ((u + g) · ∇)(u + g) + ∇p = νΔg in Ω,

−div u =0 in Ω,

u =0 on ∂Ω.

(4.1)

We transform the original stationary Navier-Stokes problem (4.1) into the
so-called residual equation by using an approximate solution (ũh, p̃h) ∈
Xh × Yh defined by

ν(∇ũh, ∇vh)0 − (p̃h, div vh)0 = (νΔg − f(ũh + g), vh)0,
(−div ũh, qh)0 = 0,

(4.2)

for all vh ∈ Xh, qh ∈ Yh, where f(u) := (u · ∇)u.
For the effective computation of the solution for (4.2) with guaranteed

accuracy, refer, for example, [11] etc.
Next, we define (ū, p̄) ∈ X × Y by the solution of the Stokes equation:

B(ū, p̄) = (νΔg − f(ũh + g), 0).

Further, let define residues by

u − ũh =wu + v0, where wu := u − ū, v0 := ū − ũh,

p − p̃h =wp + q0, where wp := p − p̄, q0 := p̄ − p̃h.
(4.3)

Note that v0 and q0 are unknown functions but its norm can be computed
by an a priori and a posteriori techniques (e.g., see [7] [11] [12]). Thus,
concerned problem is reduced to the following residual form

Find (wu, wp) ∈ X × Y such that

B(wu, wp) = (f(ũh + g) − f(wu + v0 + ũh + g), 0) in Ω. (4.4)

In this case, the coefficient vector function in (3.2) is given by c := ũh + g.
By using the map Φ defined in the previous section, we have

f(ũh + g) − f(wu + v0 + ũh + g) = −Φ(wu + v0) − f(wu + v0).
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Hence, as in (3.1), the Newton-type residual equation for (4.4) is written
as:

Find w = (wu, wp) ∈ X × Y such that

Lw ≡ Bw + Ψw = (−Φv0 − f(wu + v0), 0) in Ω. (4.5)

If L is invertible, then (4.5) is rewritten as the fixed point form

w = F (w)
(
≡ L−1(−Φv0 − f(wu + v0), 0)

)
. (4.6)

Note that, from the above definition, the nonlinear map F in (4.6) means
a Newton-like operator and is compact on X × Y by the property of the
nonlinear map f , and it is expected to be a contraction map on some neigh-
borhood of zero. Therefore, we consider the candidate set Wα = Wu × Wp

for α = (αu, αp) of the form

Wu ≡ {wu ∈ X ; ‖wu‖H1
0
≤ αu},

Wp ≡ {wp ∈ Y ; ‖wp‖L2 ≤ αp}.

First, for the existential condition of solutions, based on the Schauder
fixed point theorem, we need to choose the set Wα so that:

F (Wα) ⊂ Wα. (4.7)

And next, for the proof of local uniqueness within Wα, the following con-
traction property is needed:

[‖F (w1) − F (w2)‖] ≤ λ[‖w1 − w2‖], ∀w1, w2 ∈ Wα, (4.8)

for some constant 0 < λ < 1.
Taking account that f(wu + v0) ∈ X ′, by Theorem 8, a sufficient condition
for (4.7) can be written as

[‖F (Wα)‖]≡ sup
w∈Wα

[‖F (w)‖]

≤
[
Mu

Mp

]
sup

wu∈Wu

‖Φv0‖L2

+
[
M∗

u

M∗
p

]
sup

wu∈Wu

‖f(wu + v0)‖H−1

≤α, (4.9)

where (Mu, Mu) and (M∗
u, M∗

u) are the constants defined in Theorem 8.
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Further we have the following estimates

‖Φv0‖L2 = ‖(c · ∇)v0 + (v0 · ∇)c‖L2

≤ (Kc + CL4K∂c) ‖v0‖H1
0
,

‖f(wu + v0)‖H−1 = ‖(v0 · ∇)v0 + (wu · ∇)v0

+ (v0 · ∇)wu + (v0 · ∇)v0‖H−1

≤C2
L4

(
‖wu‖H1

0
+ ‖v0‖H1

0

)2

≤C2
L4

(
αu + ‖v0‖H1

0

)2
.

Hence, we can rewrite the existential condition (4.9) as[
M∗

uC2
L4

(
αu +‖v0‖H1

0

)2 +Mu

(
Kc +CL4K∂c

)
‖v0‖H1

0

M∗
pC

2
L4

(
αu +‖v0‖H1

0

)2 +Mp

(
Kc +CL4K∂c

)
‖v0‖H1

0

]
<

[
αu

αp

]
.

From above, we obtain the local uniqueness condition (4.8) with λ by

λ ≡ 2M∗
uC2

L4

(
αu + ‖v0‖H1

0

)
< 1.

5. Numerical examples

In this section, we present numerical examples for the stationary Navier-
Stokes equation related to a mathematical model of the step flow problem.
In such a case, it should be natural to take a domain as Ω = (0, A) ×
(0, B) \ [0, a]× [0, b], where the constants A, B, a and b satisfy 0 < a < A

and 0 < b < B.
The boundary vector function g = (g1, g2) is given as

g1 ≡ g1(x, y)=

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

(B − y)(y − b)
(B − b)3

if x = 0,

(B − y)(y − 0)
(B − 0)3

if x = A,

0 otherwise,

(5.1)

g2 ≡ g2(x, y) = 0 on ∂Ω, respectively. In particular, we choose that A = 2,
B = 1 and a = b = 0.5.

Notice that the function g1 satisfies the following relation which corre-
sponding to the incompressibility condition.∫ B

b
g1(0, y)dy =

∫ B

0
g1(A, y)dy.
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Fig. 1. Image of ψ

For this example, we can present a C3-class stream function ψ such that
g = (ψy, −ψx) in (4.1) for the boundary vector function g in (5.1). Namely,
setting functions f5− , f5+ , f5 and f3 which are defined by

f3 ≡ f3(y, k) = − 1
6k3

(2y − 3k)y2,

f5+ ≡ f5+(x, k) = − 1
k5

(4x − 5k)x4,

f5 ≡ f5(y, k) = − 1
6k5

(4y − 5k)y4,

f5− ≡ f5−(x, k) =
1
k5

(4x + k)(x − k)4,

the stream function ψ ≡ ψ(x, y) is given by (see Fig. 1)

ψ(x, y) =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

f5+(x − a, A − a)f3(y, B)

+(1 − f5+(x − a, A − a))f5(y − b, B − b) in Ω1

f5+(x − a, A − a)f3(y, B) in Ω2

f5−(x, a)f3(y − b, B − b)

+(1 − f5−(x, a))f5(y − b, B − b) in Ω3

where Ω1 = [a, A] × [b, B], Ω2 = [a, A] × [0, b] and Ω3 = [0, a] × [b, B].
In the below, as the finite element subspaces, we used the bi-quadratic

C0 element for the velocity, the bi-linear C0 element for the pressure. And
note that the Poincaré constant can be computed by CL2 =

√
AB − ab/π =√

1.75/π in the present case.
We show several computational results for the constructive a priori
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constants in Theorem 4 and Corollary 5 by Table 1 in which the constant
β is calculated by the method in [7].

1/h Eu(h) Ep(h) η σ C(h)
20 1.6760e-1 2.2878e-0 1.9870 1.4721e-2/ν 0.5069·h
40 9.2139e-2 1.2945e-0 2.2181 7.6094e-3/ν 0.6234·h
60 7.0026e-2 9.9109e-1 2.4079 5.6365e-3/ν 0.7099·h
1/h eu(h) ep(h) η̂ σ̂ β

20 min(15.1208, 2) 200.07 184.88 1.3793/ν 10.1572
40 min(15.7029, 2) 213.68 382.56 1.3856/ν 10.1572
60 min(16.0338, 2) 220.91 563.59 1.3863/ν 10.1572

Table 1. Numerical results for the a priori constant

Notice that the a priori constant C(h) for the H1
0 -projection in Assump-

tion 1 is obtained by the procedure which is presented in [12]. Due to the
noncovexity of the domain, as shown in Table 1, the rate of convergence in
the a priori constant C(h) seems to be less than 1, i.e., worse than O(h).
Also, the constant β is much bigger compared with regular domains such
as the rectangle in [7]. Table 2 shows the verification results for the sta-
tionary Navier-Stokes equation (1.1) with the boundary condition (5.1). As
shown in this table, we could verify the invertibility of the linearlized oper-
ator at the approximate solution as well as the verification of solutions for
the nonlinear problem with rather rough mesh size, for example h = 1/20.
However, we would need more finer mesh for smaller elasticity constants.
Fig. 2 illustrates the contour of stream lines of approximate solution for this
problem with h = 1/60.

1/h M∗
u Mu Mu κ ‖v0‖H1

0
αu

20 0.2932 0.0678 0.1416 6.4642e-2 9.0835e-1 2.4632e-1
40 0.2701 0.0621 0.1417 2.6443e-2 6.4212e-1 1.2143e-1
60 0.2646 0.0611 0.1417 1.8879e-2 5.5259e-1 9.6571e-2

Table 2. Numerical results for ν = 10

All computations in tables are carried out on the Dell Precision 650
Workstation Intel Xeon Dual CPU 3.20GHz by MATLAB.
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