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Center manifold approach to discrete integrable systems

related to eigenvalues and singular values
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Abstract. The existence of center manifolds is closedly related to local behavior of

dynamical systems. In this paper we consider center manifolds both of the discrete Toda

equation and the discrete Lotka-Volterra system. Their solutions converge to eigenvalues

and singular values of certain structured matrices. A free parameter plays a key role to

show the existence of a center manifold of the discrete Lotka-Volterra system. A monotone

convergence of the solution of the discrete Lotka-Volterra system is proved with the help

of the existence of a center manifold. In contrast, a center manifold of the discrete Toda

equation does not always exist.
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1. Introduction

The theory of integrable dynamical systems has an unexpected relation-
ship to numerical algorithms. Some integrable systems of Lax form describe
continuous flows of efficient numerical algorithms for eigenvalues [19, 4, 20].
We know, for example, a relationship between the finite nonperiodic Toda
equation and the classical QR algorithm [14]. Each step of the QR algo-
rithm for the exponential of a symmetric tridiagonal matrix L lies on the
continuous flow of the Toda equation. Time-1 evolution of Toda is just one
step of QR. Global convergence of the flow follows from that of QR, and
vice versa. Note that the matrix exponential expL has real, simple, positive
eigenvalues. Local convergence of the Toda flow is discussed in [2] by using
the center manifold theory.

A skillful time discretization of some integrable systems enables us to
formulate numerical algorithms for computing eigenvalues [15]. A time dis-
cretization of the Toda equation is known as the quotient difference (qd)
algorithm of Rutishauser [17]. A new singular value computing algorithm
named the discrete Lotka-Volterra [10, 11] is also formulated starting from
the finite Lotka-Volterra system by the same manner. Let us give a brief
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review on this aspect.
Let us consider the semi-infinite Toda equation⎧⎪⎪⎨

⎪⎪⎩
dVk

dt
= Vk(Jk − Jk+1), V0 = 0,

dJk

dt
= Vk−1 − Vk, k = 0, 1, 2, . . . ,

(1)

where Vk = Vk(t) and Uk = Uk(t), t and k are the time and spatial variables,
respectively. We write Vk(nδ) as V

(n)
k for some positive δ and integer n.

Then V
(n+1)
k = Vk(nδ + δ) and so on. Let Δn denote the difference with

respect to the discrete time variable n. Namely, Δnf (n) := (f (n+1)−f (n))/δ.
A discrete time dynamical system{

ΔnV
(n)
k = V

(n+1)
k J

(n+1)
k − V

(n)
k J

(n)
k+1, V

(n)
0 = 0,

ΔnJ
(n)
k = V

(n+1)
k−1 − V

(n)
k , k = 0, 1, 2, . . .

(2)

is essentially given in [7]. This system is clearly a time discretization of
the semi-infinite Toda equation (1), since it goes to (1) in the continuous
limit δ → 0 with nδ = t. Moreover it has a class of determinant solutions
which is a discrete analogue of that of the continuous Toda equation. Let
us introduce a set of variables {q(n)

k } and {e(n)
k } by J

(n)
k = (1 − q

(n)
k )/δ,

V
(n)
k = e

(n)
k /δ2. Then the discrete Toda equation (2) leads to the recurrence

relation of the qd algorithm [17]

e
(n+1)
k =

q
(n)
k+1e

(n)
k

q
(n+1)
k

, q
(n+1)
k = q

(n)
k −e

(n+1)
k−1 +e

(n)
k . (3)

It is possible [16] to compute, for example, eigenvalues of a tridiagonal
matrix T in the finite case where k = 1, 2, . . . m with e

(n)
0 ≡ 0 and e

(n)
m ≡ 0

for n = 0, 1, . . . . Thus the qd algorithm is equivalent to the discrete Toda
equation. There is no free parameter in (3). The recurrence relation (3) has
a subtraction and it is numerically endangered because of the possibility
that the denominator q

(n+1)
k may vanish. To guarantee the convergence to

eiginvalues one should suppose that q
(0)
k > 0 and e

(0)
k > 0 for all k. This

implies that the eigenvalue of T are all real, simple and positive [17]. In
this case we say that the variable q

(n)
k of the qd algorithm converges to

eigenvalue as n → ∞.
The dLV algorithm is formulated as follows. Let us consider the dy-
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namical system

duk

dt
= uk(uk+1−uk−1), u0(t) = 0, k = 1, 2, . . . . (4)

This system is sometimes called the semi-infinite Lotka-Volterra system hav-
ing Hankel determinant solutions [5]. In infinite case where k = 0, ±1, ±2,
. . . and u0(t) is not specified, (4) is known as a spatial discretization of
the celebrated KdV equation having soliton solutions [13]. The finite (k =
1, 2, . . . , m) Lotka-Volterra system is essentially equivalent to Chu’s dy-
namical system [3] whose solution converges to squares of singular values
of a bidiagonal matrix. There are two ways to discretize (4) which keep
the integrability. One is Hirota’s method [8]. The other is an approach
through spectral transformations of orthogonal polynomials [18]. The dis-
crete Lotka-Volterra system is then

Δnu
(n)
k = u

(n)
k u

(n)
k+1−u

(n+1)
k u

(n+1)
k−1 , u

(n)
0 = 0, k = 1, 2, . . . . (5)

Singular value problem for any rectangular matrix is reduced to that for an
upper bidiagonal matrix of the form [6]

B :=

⎛
⎜⎜⎜⎜⎝

b1 b2

b3
. . .
. . . b2m−20 b2m−1

⎞
⎟⎟⎟⎟⎠ , bk > 0.

It is shown in [10] that the solution of the discrete Lotka-Volterra system
linearly converges to the square of singular values of B providing that the
initial values and boundary values are set as u

(0)
2k−1 = b2

2k−1/(1 + δu
(0)
2k−2),

u
(0)
2k = b2

2k/(1 + δu
(0)
2k−1) and u

(n)
0 = 0, u

(n)
2m = 0, respectively. Then the

following convergence is proved

lim
n→∞u

(n)
2k−1 = σ2

k, lim
n→∞u

(n)
2k = 0 (6)

for any δ > 0, where σk are singular values of B such that σ1 > σ2 >

· · · > σm > 0. Therefore a new numerical algorithm for computing singular
values is designed in terms of the discrete Lotka-Volterra system providing
that the singular values of B are all simple and positive. This algorithm is
named the dLV algorithm. There is a free parameter δ > 0 in the recurrence
relation (5). Recently the mdLVs (modified dLV with shift) algorithm which
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is a dLV algorithm with a stable shift is presented in [12]. The mdLVs has
locally a quadratic convergence rate and a relative accuracy higher than the
existing bidiagonal singular value computation algorithms.

The existence of center manifolds is closely related to local convergence
and numerical stability of dynamical systems [1]. In this paper we consider
center manifolds both of the discrete Toda equation, or equivalently the
recurrence relation of the qd algorithm, and of the discrete Lotka-Volterra
system. Center manifols of the discrete Toda equation and the discrete
Lotka-Volterra system are discussed in §2 and §3, respectively. The free
positive parameter δ plays an important role to show the existence of center
manifold of the discrete Lotka-Volterra system. In contrast, center manifold
of the discrete Toda equation does not always exist. Asymptotic behavior
of solutions of the discrete Toda equation and the discrete Lotka-Volterra
system are then investigated in §4 with the help of the center manifold the-
ory. A monotone convergence of the solution of the discrete Lotka-Volterra
system is then proved with the help of the existence of center manifold. It
is shown in this paper that the dLV algorithm has a convergence property
better than the qd algorithm.

2. Center manifold and the discrete Toda equation

In this section, we discuss a center manifold related to the finite discrete
Toda equation{

q
(n+1)
k + e

(n+1)
k−1 = q

(n)
k + e

(n)
k , k = 1, 2, . . . , m,

q
(n+1)
k e

(n+1)
k = q

(n)
k+1e

(n)
k , k = 1, 2, . . . , m − 1,

(7)

e
(n)
0 ≡ 0, e(n)

m ≡ 0, n = 0, 1, . . . ,

where q
(n)
k , e

(n)
k denote the value of qk, ek at the discrete time n, respectively.

The discrete Toda equation (7) generates the time evolution from n to n+1
of {q(n)

k , e
(n)
k }. It is shown in [17] that q

(n)
k and e

(n)
k converge to a certain

nonzero positive constant ck and 0, respectively, as n tends to infinity if
q
(0)
k > 0 and e

(0)
k > 0.

Let q̄
(n)
k be the difference between the discrete Toda variable q

(n)
k and

its equilibrium point ck, namely, q̄
(n)
k := q

(n)
k − ck. Then we have the next

lemma concerning the evolution from n to n + 1 of {q̄(n)
k , e

(n)
k }.
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Lemma 2.1 Let q
(n)
k = q̄

(n)
k + ck in the discrete Toda equation (7). If

|q̄(n+1)
k | < ck for k = 1, 2, . . . , m, then q̄

(n+1)
k , e

(n+1)
k are expressed in the

form

q̄
(n+1)
k = −αk−1e

(n)
k−1 + q̄

(n)
k + e

(n)
k − b̃k−1, k = 1, 2, . . . , m, (8)

e
(n+1)
k = αke

(n)
k + b̃k, k = 1, 2, . . . , m − 1, (9)

respectively, where b̃0 ≡ 0 and αk := ck+1/ck. Here b̃k = b̃k(q̄(n), e(n)), k =
1, 2, . . . , m− 1 denote certain functions of q̄(n) := (q̄(n)

1 , q̄
(n)
2 , . . . , q̄

(n)
m )� ∈

Rm and e(n) := (e(n)
1 , e

(n)
2 , . . . , e

(n)
m−1)

� ∈ Rm−1. The function b̃k and its
first order derivative ∇(q̄(n),e(n))b̃k are zero at the origin (q̄(n), e(n)) = (0, 0),
namely,

b̃k(0, 0) = 0, ∇(q̄(n),e(n))b̃k(0, 0) = 0, k = 1, 2, . . . , m − 1, (10)

where ∇(q̄(n),e(n)) := (∂/∂q̄
(n)
1 , ∂/∂e

(n)
1 , . . . , ∂/∂q̄

(n)
m−1, ∂/∂e

(n)
m−1, ∂/∂q̄

(n)
m )�.

Proof. By substituting q
(n)
k = q̄

(n)
k + ck into (7), it follows that

q̄
(n+1)
k = q̄

(n)
k + e

(n)
k − e

(n+1)
k−1 , (11)

e
(n+1)
k =

e
(n)
k

ck
(ck+1 + q̄

(n)
k+1)

(
1 +

q̄
(n+1)
k

ck

)−1
. (12)

Let us assume that |q̄(n+1)
k | < ck. Note here that (1 + q̄

(n+1)
k /ck)−1 = 1 +∑∞

j=1(−q̄
(n+1)
k /ck)j . Then from (12) we derive (9) with b̃k as follows:

b̃k =
e
(n)
k

ck

{
q̄
(n)
k+1+(ck+1+q̄

(n)
k+1)

∞∑
j=1

(
− q̄

(n+1)
k

ck

)j
}

. (13)

Obviously, (9) and (11) lead to (8). By combining (13) with (8), we have
the recurrence relation between b̃k and b̃k−1,

b̃k =
e
(n)
k

ck

{
q̄
(n)
k+1+(ck+1+q̄

(n)
k+1)

∞∑
j=1

(e
(n)
k−1

ck−1
− q̄

(n)
k + e

(n)
k − b̃k−1

ck

)j
}

.

(14)
When k = 1 in (14) with e

(0)
0 = 0 and b̃0 = 0, we can regard b̃1 as the

function of q̄(n) and e(n) such that b̃1 = 0 at the origin (q̄(n), e(n)) = (0, 0).
Namely, b̃1 = b̃1(q̄(n), e(n)) and b̃1(0, 0) = 0. Eq. (14) also implies that b̃k =
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b̃k(q̄(n), e(n)) and b̃k(0, 0) = 0 if b̃k−1 = b̃k−1(q̄(n), e(n)) and b̃k−1(0, 0) = 0
for some k. Hence we see that b̃k = b̃k(q̄(n), e(n)) and b̃k(0, 0) = 0 for any
k. Derivatives of b̃k are given as

∂b̃k

∂q̄
(n)
s

=
e
(n)
k

ck

{
ρk+1

∞∑
j=0

(e
(n)
k−1

ck−1
− q̄

(n)
k + e

(n)
k − b̃k−1

ck

)j

+
ck+1 + q̄

(n)
k+1

ck

(∂b̃k−1

∂q̄
(n)
s

− ρk

)

×
∞∑

j=1

j
(e

(n)
k−1

ck−1
− q̄

(n)
k + e

(n)
k − b̃k−1

ck

)j−1
}

, (15)

∂b̃k

∂e
(n)
s

=
ρk

ck
q̄
(n)
k+1 +

ck+1 + q̄
(n)
k+1

ck

×
{

ρk

∞∑
j=1

(e
(n)
k−1

ck−1
− q̄

(n)
k + e

(n)
k − b̃k−1

ck

)j

+ e
(n)
k

(ρk−1

ck−1
− ρk

ck
+

1
ck

∂b̃k−1

∂e
(n)
s

)

×
∞∑

j=1

j
(e

(n)
k−1

ck−1
− q̄

(n)
k + e

(n)
k − b̃k−1

ck

)j−1
}

(16)

where ρk = 1 (if s = k) or ρk = 0 (otherwise). Obviously, ∇(q̄(n),e(n))b̃1(0, 0)
= 0. Suppose that ∇(q̄(n),e(n))b̃k−1(0, 0) = 0 for some k. Then it follows im-
mediately from (15) and (16) with b̃k−1(0, 0) = 0 that ∇(q̄(n),e(n))b̃k(0, 0) =
0. Therefore it is concluded that ∇(q̄(n),e(n))b̃k(0, 0) = 0 for k = 1, 2, . . . ,
m − 1. �

Let us introduce a new variable r(n) := (r(n)
1 , r

(n)
2 , . . . , r

(n)
m )�, r

(n)
k :=

−ck(ck−1−ck)−1e
(n)
k−1+q̄

(n)
k +ck(ck−ck+1)−1e

(n)
k where c1 > c2 > · · · > cm >

0. Then the recurrence relation between {r(n), e(n)} and {r(n+1), e(n+1)},
derived from (8) and (9), satisfies the following lemma.

Lemma 2.2 Let A:=I∈Rm×m, B :=diag(α1,α2, . . . ,αm−1)∈R(m−1)×(m−1)

and a := (a1, a2, . . . , am)� ∈ Rm, b := (b1, b2, . . . , bm−1)� ∈ Rm−1. Then
(8) and (9) yield the following system
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{
r(n+1) = Ar(n) + a(r(n), e(n)),

e(n+1) = Be(n) + b(r(n), e(n)),
(17)

where a, b and their Jacobi matrices Da = ∇(r(n),e(n))a
�, Db = ∇(r(n),e(n))b

�,
at the origin (r(n), e(n)) = (0, 0), satisfy{

a(0, 0) = 0, Da(0, 0) = 0,

b(0, 0) = 0, Db(0, 0) = 0.
(18)

Proof. Obviously q̄(n) can be expressed by r(n) and e(n). We may regard
b̃k = b̃k(q̄(n), e(n)) as a function of r(n) and e(n), namely, b̃k(q̄(n), e(n)) =
bk(r(n), e(n)). By substituting b̃k = bk, for k = 1, 2, . . . , m− 1, into (9), we
have e(n+1) = Be(n) + b(r(n), e(n)). Let us recall that b̃k(q̄(n), e(n)) = 0 at
(q̄(n), e(n)) = (0, 0) in Lemma 2.1. Since r(n) = 0 if q̄(n) = 0 and e(n) = 0,
we also see that bk(0, 0) = b̃k(0, 0) = 0 for k = 1, 2, . . . , m − 1. Note here
that ⎧⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

∂b̃k(0, 0)

∂q̄
(n)
s

=
m∑

j=1

∂r
(n)
j

∂q̄
(n)
s

∂bk(0, 0)

∂r
(n)
j

=
m∑

j=1

�j
∂bk(0, 0)

∂r
(n)
j

= 0,

∂b̃k(0, 0)

∂e
(n)
s

=
∂bk(0, 0)

∂e
(n)
s

= 0,

(19)

where �j = 1 (if j = s) or �j = 0 (otherwise). Hence it follows that b(0, 0) =
0 and Db(0, 0) = 0.

On the other hand, the relationship between r(n+1) and r(n) is derived
from

r
(n+1)
k =−

cke
(n+1)
k−1

ck−1− ck
+ q̄

(n+1)
k +

cke
(n+1)
k

ck − ck+1

=−
ck(αk−1e

(n)
k−1 + b̃k−1)

ck−1− ck
+(−αk−1e

(n)
k−1 + q̄

(n)
k +e

(n)
k − b̃k−1)

+
ck(αke

(n)
k + b̃k)

ck − ck+1

=−
cke

(n)
k−1

ck−1− ck
+ q̄

(n)
k +

cke
(n)
k

ck − ck+1
+ ck

1∑
j=0

(−1)j+1

ck+j−1− ck+j
b̃k+j−1
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= r
(n)
k + ck

1∑
j=0

(−1)j+1

ck+j−1− ck+j
bk+j−1. (20)

Let ak := ck
∑1

j=0(−1)j+1(ck+j−1−ck+j)−1bk+j−1 for k = 1, 2, . . . , m. Then

(20) leads to r
(n+1)
k = r

(n)
k + ak with the function ak satisfying⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ak(0, 0) = ck

1∑
j=0

(−1)j+1

ck+j−1 − ck+j
bk+j−1(0, 0) = 0,

∂ak(0, 0)

∂r
(n)
s

= ck

1∑
j=0

(−1)j+1

ck+j−1 − ck+j

∂bk+j−1(0, 0)

∂r
(n)
s

= 0,

∂ak(0, 0)

∂e
(n)
s

= ck

1∑
j=0

(−1)j+1

ck+j−1 − ck+j

∂bk+j−1(0, 0)

∂e
(n)
s

= 0.

(21)

Therefore we have r(n+1) = Ae(n) + a(r(n), e(n)) with a(0, 0) = 0 and
Da(0, 0) = 0. �

By using the center manifold theory [1] with the help of Lemmas 2.1 and
2.2, we have the following theorem for ψ

(n)
Toda : (r(n), e(n)) �→ (r(n+1), e(n+1))

derived from the transformation (q(n), e(n)) �→ (r(n), e(n)) in the discrete
Toda equation (7).

Theorem 2.1 Let q
(n)
k = ck(ck−1−ck)−1e

(n)
k−1+r

(n)
k −ck(ck−ck+1)−1e

(n)
k +

ck in the discrete Toda equation (7). If |q(n+1)
k −ck| < ck for k = 1, 2, . . . , m,

then the map ψ
(n)
Toda : (r(n), e(n)) �→ (r(n+1), e(n+1)) is given as (17). There

also exists a center manifold hToda : Rm → Rm−1 for ψ
(n)
Toda.

This may suggest that hToda for ψ
(n)
Toda does not always exist. The center

manifold hToda itself for ψ
(n)
Toda exists if |q(n+1)

k − ck| < ck at some n = n0.
We here find it dubious that |q(n+2)

k − ck| < ck even if |q(n+1)
k − ck| < ck.

Namely, the existence of hToda for ψ
(n)
Toda is not always guaranteed even if n

holds n > n0.

3. Center manifold and the discrete Lotka-Volterra system

Let us consider the discrete Lotka-Volterra system

u
(n+1)
k (1 + δu

(n+1)
k−1 ) = u

(n)
k (1 + δu

(n)
k+1), k = 1, 2, . . . , 2m− 1, (22)
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u
(n)
0 ≡ 0, u

(n)
2m ≡ 0, n = 0, 1, . . . ,

where the discrete step-size δ is some positive constant and u
(n)
k denotes

the value of uk at the discrete time n. The discrete Lotka-Volterra sys-
tem (22) is a time discretization of the continuous Lotka-Volterra system
which describes the dynamics of preys and predators. In [10], the discrete
Lotka-Volttera system (22) is shown to be applicable to the singular value
computation of bidiagonal matrices.

In this section, we discuss a center manifold related to the discrete
Lotka-Volttera system (22) by the same process as in §2. Note here that
u

(n)
2k−1 → tk and u

(n)
2k → 0 as n → ∞ where tk is some nonzero positive con-

stant. Let us introduce a new variable ū
(n)
2k−1 := u

(n)
2k−1 − tk. Then we obtain

the following lemma for the recurrence relation between {ū(n+1)
2k−1 , u

(n+1)
2k }

and {ū(n)
2k−1, u

(n)
2k }.

Lemma 3.1 Let u
(n)
2k−1 = ū

(n)
2k−1 + tk in the discrete Lotka-Volterra system

(22). If |ū(n+1)
2k−1 | < δ−1 for k = 1, 2, . . . , m and |u(n+1)

2k | < δ−1 for k =

1, 2, . . . , m − 1, then {ū(n+1)
2k−1 }k=1,2,...,m and {u(n+1)

2k }k=1,2,...,m−1 take the
form

ū
(n+1)
2k−1 = −δtkβk−1u

(n)
2k−2 + ū

(n)
2k−1 + δtku

(n)
2k + f̃k(ū(n), u(n)), (23)

u
(n+1)
2k = βku

(n)
2k + g̃k(ū(n), u(n)), (24)

respectively, where βk := (1 + δtk+1)/(1 + δtk). Here f̃k = f̃k(ū(n), u(n))
and g̃k = g̃k(ū(n), u(n)) denote certain functions of ū(n) := (ū(n)

1 , ū
(n)
3 , . . . ,

ū
(n)
2m−1)

� ∈ Rm and u(n) := (u(n)
2 , u

(n)
4 , . . . , u

(n)
2m−2)

� ∈ Rm−1. The func-
tions f̃k and g̃k and their first derivatives ∇(ū(n), u(n))f̃k and ∇(ū(n), u(n))g̃k

also satisfy

f̃k(0, 0) = 0, ∇(ū(n),u(n))f̃k(0, 0) = 0, (25)

g̃k(0, 0) = 0, ∇(ū(n),u(n))g̃k(0, 0) = 0, (26)

where

∇(ū(n),u(n)) :=
( ∂

∂ū
(n)
1

,
∂

∂u
(n)
2

, . . . ,
∂

∂ū
(n)
2m−3

,
∂

∂u
(n)
2m−2

,
∂

∂ū
(n)
2m−1

)�
.
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Proof. Let ∇ := ∇(ū(n),u(n)), for simplicity. Let us assume that{
u

(n+1)
2k−2 = βk−1u

(n)
2k−2 + g̃k−1(ū(n), u(n)),

g̃k−1(0, 0) = 0, ∇g̃k−1(0, 0) = 0
(27)

for some k. Then u
(n+1)
2k−2 can be expressed by ū(n) and u(n). Let u

(n+1)
2k−2 =

g∗k−1(ū
(n), u(n)). By substituting u

(n)
2k−1 = ū

(n)
2k−1 + tk, u

(n+1)
2k−1 = ū

(n+1)
2k−1 + tk

and u
(n+1)
2k−2 = g∗k−1 into the discrete Lotka-Volterra system (22), we have

ū
(n+1)
2k−1 = (1+δu

(n)
2k )(ū(n)

2k−1+tk)
(
1 + δg∗k−1

)−1−tk, (28)

where g∗k−1=βk−1u
(n)
2k−2+g̃k−1. Note that (1+δg∗k−1)

−1 = 1+
∑∞

j=1(−δg∗k−1)
j

if |g∗k−1| < δ−1. Then, for a sufficiently small δ, (28) can be transformed to
(23) with f̃k as follows:⎧⎪⎪⎨

⎪⎪⎩
f̃k = −δtkg̃k−1 − δηk

∞∑
j=1

(−δg∗k−1)
j ,

ηk := (u(n)
2k − g∗k−1)(ū

(n)
2k−1 − δtkg

∗
k−1).

(29)

Obviously, g∗k−1(0, 0) = g̃k−1(0, 0) = 0. Let ū(n) = 0 and u(n) = 0 in (29).
Then it follows from g̃k−1(0, 0) = 0 and g∗k−1(0, 0) = 0 that ηk(0, 0) = 0
and f̃k(0, 0) = 0. Here the first derivatives of f̃k, ηk and g̃k are given as⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

∇fk = −δtk∇g̃k−1 + δ(∇ηk − δηk∇g∗k−1)
∞∑

j=1

(−δg∗k−1)
j ,

∇ηk = (ū(n)
2k−1 − δtkg

∗
k−1)(∇u

(n)
2k −∇g∗k−1)

+ (u(n)
2k − g∗k−1)(∇ū

(n)
2k−1 − δtk∇g∗k−1),

∇g∗k−1 = βk−1∇u
(n)
2k−2 + ∇g̃k−1.

(30)

Since ηk(0, 0) = 0, g∗k−1(0, 0) = 0 and ∇g̃k−1(0, 0) = 0, we also see from
(30) that ∇g∗k−1(0, 0) = (0, 0, . . . , 0, βk−1, 0, 0, . . . , 0)�, ∇ηk(0, 0) = 0
and ∇f̃k(0, 0) = 0. Hence, for some k, (23) is derived from the discrete
Lotka-Volterra system (22) and f̃k satisfies (25) under the assumption (27).

Similarly, for a suitable δ, u
(n+1)
2k is written as (24) with
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⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

g̃k = −δγkξk

∞∑
j=0

(−δγkf
∗
k )j ,

ξk := u
(n)
2k (βkf

∗
k − ū

(n)
2k+1),

f∗
k := −δtkβk−1u

(n)
2k−2 + ū

(n)
2k−1 + δtku

(n)
2k + f̃k,

(31)

where γk = (1 + δtk)−1. By combining f̃k(0, 0) = 0 with (31), it turns
out that f∗

k (0, 0) = 0, ξk(0, 0) = 0 and g̃k(0, 0) = 0. Moreover the first
derivatives⎧⎪⎪⎨

⎪⎪⎩
∇g̃k = −δγk(∇ξk − jδγkξk∇f∗

k )
∑∞

j=0(−δβkf
∗
k )j ,

∇ξk = ∇u
(n)
2k (βkf

∗
k − ū

(n)
2k+1) + u

(n)
2k (βk∇f∗

k −∇ū
(n)
2k+1),

∇f∗
k = −δtkβk−1∇u

(n)
2k−2 + ∇ū

(n)
2k−1 + δtk∇u

(n)
2k + ∇f̃k

(32)

imply that ∇f∗
k (0, 0) = (0, 0, . . . , 0, −δtkβk−1, δtk, 1, 0, 0, . . . , 0)�,

∇ξk(0, 0) = 0 and ∇g̃k(0, 0) = 0. Therefore, the assumption (27) leads
to (23)–(26) for some k.

When k = 1 in (22), we have ū
(n+1)
1 = ū

(n)
1 + δt1u

(n)
2 + f̃1 with f̃1 =

δū
(n)
1 u

(n)
2 . Obviously, f̃1(0, 0) = 0 and ∇f̃1(0, 0) = 0. The discrete Lotka-

Volterra system (22) with k = 1 also yields that u
(n+1)
2 = β1u

(n)
2 + g̃1 and⎧⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

g̃1 = −δγ1ξ1

∞∑
j=0

(−δγ1f
∗
1 )j ,

ξ1 := u
(n)
2 (β1f

∗
1 − ū

(n)
3 ),

f∗
1 := ū

(n)
1 + δt1u

(n)
2 + f̃1,

(33)

if δ < |f∗
1 |−1. We may regard (33) as (31) with k = 1. Hence, we derive

g̃1(0, 0) = 0 and ∇g̃1(0, 0) = 0 from f̃1(0, 0) = 0 and ∇f̃1(0, 0) = 0,
immediately. Without loss of generality, u

(n+1)
2 and g̃1 satisfy (27) with

k = 2. �

Moreover, we describe a lemma derived from (23) and (24) in Lemma
3.1.

Lemma 3.2 Let t1 > t2 > · · · > tm. Then from (23) and (24) it follows
that {

v(n+1) = Fv(n) + f(v(n), u(n)),
u(n+1) = Gu(n) + g(v(n), u(n)),

(34)
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where v(n) := (v(n)
1 , v

(n)
3 , . . . , v

(n)
2m−1)

� ∈ Rm, v
(n)
2k−1 := −tk(1 + δtk)(tk−1 −

tk)−1u
(n)
2k−2+ū

(n)
2k−1+tk(1+δtk)(tk−tk+1)−1u

(n)
2k and F := diag(1, 1, . . . , 1) ∈

Rm×m, G := diag(β1, β2, . . . , βm−1) ∈ R(m−1)×(m−1). The functions f , g

and their Jacobi matrices Df = ∇(v(n),u(n))f
�, Dg = ∇(v(n),u(n))g

� are
zero at the origin, namely, f(0, 0) = 0, g(0, 0) = 0 and Df(0, 0) = 0,
Dg(0, 0) = 0.

Proof. There exist some functions f̂k and ĝk such that f̂k(v(n), u(n)) =
f̃k(ū(n), u(n)) and ĝk(v(n), u(n)) = g̃k(ū(n), u(n)). This is because ū(n) can
be expressed by using v(n) and u(n). By the transformation (ū(n), u(n)) �→
(v(n), u(n)) in (23) and (24), we derive⎧⎪⎪⎨

⎪⎪⎩
v

(n+1)
2k−1 = v

(n)
2k−1 + f̂k +

1∑
j=0

(−1)j+1tk(1 + δtk)
tk+j−1 − tk+j

ĝk+j−1,

u
(n+1)
2k = βku

(n)
2k + ĝk.

(35)

Let fk(v(n), u(n)) and gk(v(n), u(n)) defined by⎧⎪⎨
⎪⎩

fk := f̂k +
1∑

j=0

(−1)j+1tk(1 + δtk)
tk+j−1 − tk+j

ĝk+j−1,

gk := ĝk.

(36)

Let f := (f1, f2, . . . , fm)� and g := (g1, g2, . . . , gm−1)�. Then we have
(34). Obviously, (v(n), u(n)) = 0 if (ū(n), u(n)) = 0. Hence we see from (25)
and (26) that⎧⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

f̂k(0, 0) = f̃k(0, 0) = 0,

∇(v(n),u(n))f̂k(0, 0) = ∇(ū(n),u(n))f̃k(0, 0) = 0,

ĝk(0, 0) = g̃k(0, 0) = 0,

∇(v(n),u(n))ĝk(0, 0) = ∇(ū(n),u(n))g̃k(0, 0) = 0.

(37)

Consequently, it follows from (36) and (37) that f(0, 0) = 0, g(0, 0) = 0
and Df(0, 0) = 0, Dg(0, 0) = 0. �

Lemmas 3.1 and 3.2 with the center manifold theory state to the fol-
lowing theorem for ψ

(n)
LV : (v(n), u(n)) �→ (v(n+1), u(n+1)) associated with the

discrete Lotka-Volterra system (22).
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Theorem 3.1 Let u
(n)
2k−1 = tk(1 + δtk)(tk−1 − tk)−1u

(n)
2k−2 + v

(n)
2k−1 − tk(1 +

δtk)(tk − tk+1)−1u
(n)
2k + tk in the discrete Lotka-Volterra system (22). If

|ū(n+1)
2k−1 | < δ−1 for k = 1, 2, . . . , m and |u(n+1)

2k | < δ−1 for k = 1, 2, . . . , m−
1, then the map ψ

(n)
LV : (v(n), u(n)) �→ (v(n+1), u(n+1)) is given as (34). There

also exists a center manifold hLV : Rm → Rm−1 for ψ
(n)
LV .

It is obvious from [11] that 0 < maxk |u(n)
k | < M for some positive M .

Namely, there exists a discrete step-size δ such that mink |ū(n+1)
2k−1 | < δ−1 and

mink |u(n+1)
2k | < δ−1 at any n. The center manifold for ψ

(n)
LV exists certainly

at any n if the discrete step-size δ, a free parameter of the discrete Lotka-
Volterra system, is suitably chosen. This is greatly different from the center
manifold for ψ

(n)
Toda related to the discrete Toda equation (7).

4. Asymptotic behavior

In this section, we investigate the asymptotic behavior of the solution
of the discrete Toda equation (7) and the discrte Lotka-Volterra system (22)
with the help of the center manifold theorems in [1].

Let us assume T : R2m−1 → R2m−1 has the following form

T (x, y) = (Ax+ζ(x, y), By+χ(x, y)), (38)

where x ∈ Rm and y ∈ Rm−1. Let A and B be square matrices such that
each eigenvalue of A has modulus 1 and each eigenvalues of B has modulus
less than 1. Let ζ and χ be C2 functions such that

ζ(0, 0) = 0, Dζ(0, 0) = 0, (39)

χ(0, 0) = 0, Dχ(0, 0) = 0, (40)

where Dζ and Dχ denote Jacobi matrices of ζ and χ, respectively. Obvi-
ously, there exists a center manifold h for T . In general, it is not easy to
find center manifolds for maps exactly. The following theorem is useful in
finding such manifolds approximately.

Theorem 4.1 (Carr) Let φ : R�1 → R�2 be a C1 map with φ(0) = 0 and
Dφ(0) = 0. Let M be the operator on φ given as

Mφ(x) = φ
(
Ax+ζ(x, φ(x))

)
−Bφ(x)−χ(x, φ(x)). (41)
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If Mφ(x) = O(|x|p) as x → 0 for some p > 1, then a center manifold h

satisfies h(x) = φ(x) + O(|x|p) as x → 0.

Let us recall the functions a, b and f , g shown in previous sections.
Note here that a(r(n), 0) = 0, b(r(n), 0) = 0 and f(v(n), 0) = 0, g(v(n), 0) =
0. Let ζ(x, y) and χ(x, y) satisfy ζ(x, 0) = 0 and χ(x, 0) = 0, respectively.
Then it is obvious that φ(x) = 0 is a solution of Mφ(x) = 0. Hence, for
sufficiently small x, φ(x) = 0 is a good approximation of the center manifold
h.

Let us consider the discrete system{
x(n+1) = Ax(n) + ζ(x(n), y(n)),

y(n+1) = By(n) + χ(x(n), y(n)).
(42)

From viewpoint of the center manifold theory, (42) is the same type of
discrete system as (17) and (34). The evolution from n to n + 1 in (42) is
also equivalent to that by the map T : (x(n), y(n)) �→ (x(n+1), y(n+1)). To
investigate the asymptotic behavior of solution of (42) for small x(n) can be
simplified by the following two theorems.

Theorem 4.2 (Carr) The asymptotic behavior of small solution of (42)
is governed by the flow on the center manifold h for T which is given by

z(n+1) = Az(n)+ζ(z(n), h(z(n))). (43)

Theorem 4.3 (Carr) The stability of the zero solution of (42) is equiv-
alent to that of (43). In particular, suppose that (x(n), y(n)) is a solution
of (42) with the sufficiently small initial value (x(0), y(0)) and zero solution
of (43) is stable. Then there exists a solution z(n) of (43) such that |x(n) −
z(n)| ≤ κεn and |y(n) − h(z(n))| ≤ κεn at any n where κ and ε are positive
constants with ε < 1.

Let h = 0 in (43). Then we have ζ(z(n), 0) = 0 and z(n+1) = z(n).
Namely, the zero solution of (43) is stable. Hence we see from Theorem 4.3
that the solution (x(n), y(n)) with sufficiently small (x(0), y(0)) of (42) mono-
tonically converges. On the other hand, it is not clear whether we may apply
the center manifold theory to the asymptotic analysis of the discrete Toda
equation (7) in the case where ck is extremely small. Regarding the discrete
Lotka-Volterra system (22), the existance of the associated center manifold
can be guaranteed by a suitable choice of δ. In concluding, we establish the
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following theorem for the discrete Lotka-Volterra system (22).

Theorem 4.4 The solution (u(n)
2k−1, u

(n)
2k ) of the Lotka-Volterra system (22)

monotonically tends to (tk, 0) for n ≥ n∗, if (u(n∗)
2k−1−tk, u

(n∗)
2k ) is sufficiently

small.

With respect to the discrete Toda equation (7), we also have a similar
theorem except for the case where extremely small q

(n)
k ≈ ck emerges in the

denominator.

5. Concluding remarks

In this paper, we analyse two discrete integrable systems, the discrete
Toda equation and the discrete Lotka-Volterra system, from the viewpoint of
the center manifold theory. We discuss the existence of the center manifolds
for the associated maps with the discrete Toda equation and the discrete
Lotka-Volterra system in §2 and §3, respectively. In §4, we investigate the
asymptotic behavior, which is not able to be realized from an approach to
global convergence in [17] and [10, 11], of the solutons of both integrable
systems by using the center manifold theorems.

As a result, the solution of the discrete Lotka-Volterra system is shown
to have more desirable convergence than that of the discrete Toda equation.
Moreover, the property shown in Theorem 4.4 is convenient to design an
efficient numerical algorithm and for finite arithmetic on computer. This
is because the residual to equilibrium decreases monotonically if n is suf-
ficiently large. In other words, the residual does not grow suddenly. The
dLV algorithm based on the discrete Lotka-Volterra system is accordingly
a highly credible algorithm for singular values.

The center manifold theory is applicable to some discrete systems in
numerical algorithms, for example, the discrete Lotka-Volterra system with
variable step-size [9, 18] appeared in the mdLVs algorithm [12]. This aspect
will be discussed in a separate paper.
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