Rank-one commutators on invariant subspaces of the Hardy space on the bidisk III

Kou Hei Izuchi

(Received September 5, 2008; Revised December 26, 2008)

Abstract

We study a special type of invariant subspaces \mathcal{M} on the bidisk which are studied in the previous papers. We determine the rank of cross commutators on $H^{2} \ominus \mathcal{M}$, and study when \mathcal{M} is generated by $\mathcal{M} \ominus(z \mathcal{M}+w \mathcal{M})$ as an invariant subspace of H^{2}.

Key words: invariant subspaces, backward shift invariant subspaces, rank-one commutators.

1. Introduction

Let \mathbb{D} and Γ be the open unit disk and the unit circle in the complex plane \mathbb{C}, respectively. We denote by $H^{2}=H^{2}\left(\Gamma^{2}\right)$ the Hardy space over the torus Γ^{2}, and we denote two variables by z and w. For $\psi \in L^{\infty}=L^{\infty}\left(\Gamma^{2}\right)$, we define the Toeplitz operator on H^{2} by $T_{\psi} f=P_{H^{2}} \psi f$, where $P_{H^{2}}$ is the orthogonal projection from $L^{2}=L^{2}\left(\Gamma^{2}\right)$ onto H^{2}. A closed subspace M of H^{2} with $M \neq\{0\}$ and $M \neq H^{2}$ is said to be invariant if M is invariant under T_{z} and T_{w}. In one variable case, Beurling [Beu] represented a well known theorem that an invariant subspace M has a form $M=q H^{2}(\Gamma)$, where q is an inner function. But in two variables case, the structure of invariant subspaces of H^{2} is very complicated; see [CG], [DY], [Rud], [Ya1], [Ya2], [Ya3].

For a fixed invariant subspace M of H^{2}, let R_{z} and R_{w} be the compression operators on M defined by $R_{z}=\left.P_{M} T_{z}\right|_{M}$ and $R_{w}=\left.P_{M} T_{w}\right|_{M}$, respectively, where P_{M} is the orthogonal projection from L^{2} onto M. Write $N=H^{2} \ominus M$. Then N is a backward shift invariant subspace, that is, $T_{z}^{*} N \subset N$ and $T_{w}^{*} N \subset N$. Let S_{z} and S_{w} be the compression operators on N defined by $S_{z}=\left.P_{N} T_{z}\right|_{N}$ and $S_{w}=\left.P_{N} T_{w}\right|_{N}$, respectively. We denote the cross commutators by $\left[R_{z}, R_{w}^{*}\right]=R_{z} R_{w}^{*}-R_{w}^{*} R_{z}$ and $\left[S_{z}, S_{w}^{*}\right]=S_{z} S_{w}^{*}-S_{w}^{*} S_{z}$, where R_{w}^{*} and S_{z}^{*} are the adjoint operators
of R_{w} and S_{z} on M and N, respectively. We note that $S_{z}^{*}=\left.T_{z}^{*}\right|_{N}$ and $T_{z}^{*} f=(f-f(0, w)) / z$.

In 1988, Mandrekar [Man] showed that an invariant subspace M has a form $M=q H^{2}$, where q is an inner function, if and only if $\left[R_{z}, R_{w}^{*}\right]=0$. On the other hand, in [INS1] Izuchi, Nakazi, and Seto proved that $\left[S_{z}, S_{w}^{*}\right]=0$ if and only if M has one of the following forms:

$$
M=q_{1}(z) H^{2} ; \quad M=q_{2}(w) H^{2} ; \quad M=q_{1}(z) H^{2}+q_{2}(w) H^{2}
$$

for some non-constant inner functions $q_{1}(z)$ and $q_{2}(w)$. We write $\operatorname{rank}\left[R_{z}, R_{w}^{*}\right]=\operatorname{dim}\left[R_{z}, R_{w}^{*}\right] M$ and $\operatorname{rank}\left[S_{z}, S_{w}^{*}\right]=\operatorname{dim}\left[S_{z}, S_{w}^{*}\right] N$.

In [II4], Izuchi and the author proved that $\operatorname{rank}\left[S_{z}, S_{w}^{*}\right]=1$ if and only if M has one of the following forms:
(i) $M=\varphi H^{2}$, where φ is a non-constant inner function and is not a one variable function,
(ii) $M=q_{1}(z) q_{2}(z) H^{2}+q_{2}(z) q_{3}(w) H^{2}+q_{3}(w) q_{4}(w) H^{2}$, where $q_{1}, q_{2}, q_{3}, q_{4}$ satisfy one of the following:
(α) $q_{1}, q_{2}, q_{3}, q_{4}$ are one variable non-constant inner functions,
(β) $q_{1}=0$, and q_{2}, q_{3}, q_{4} are one variable non-constant inner functions,
$(\gamma) q_{4}=0$, and q_{1}, q_{2}, q_{3} are one variable non-constant inner functions.
Since $\left[R_{z}, R_{w}^{*}\right]=0$ on $w M$, generally a cross commutator $\left[R_{z}, R_{w}^{*}\right]$ is small. In [Ya3, Theorem 2.3], Yang showed that the operator $\left[R_{z}, R_{w}^{*}\right]$ is Hilbert-Schmidt under a mild condition on M; see also [Ya1]. In [II1], [II3], Izuchi and the author studied M under the condition that $\operatorname{rank}\left[R_{z}, R_{w}^{*}\right]=1$, and found an interesting example of M satisfying $\operatorname{rank}\left[R_{z}, R_{w}^{*}\right]=1$. We denote by ball $H^{\infty}(\Gamma)$ the closed unit ball of $H^{\infty}(\Gamma)$ with the supremum norm. [Gar], [Hof] are nice references for the study of $H^{\infty}(\Gamma)$. We denote by $H^{2}\left(\Gamma_{z}\right)$ the Hardy space in variable z.

Let $G(z), H(z) \in$ ball $H^{\infty}\left(\Gamma_{z}\right)$ satisfying the following conditions:
(a) $G(z)$ is a non-extreme point in ball $H^{\infty}\left(\Gamma_{z}\right)$,
(b) $|H(z)|^{2}=1-|G(z)|^{2}$ a.e. on Γ_{z},
(c) $H_{0}(z)$ is an outer function with $\left|H_{0}(z)\right|^{2}=1-|G(z)|^{2}$ a.e. on Γ_{z}.
(d) φ is an inner function with

$$
\frac{\varphi H_{0}(z)}{w-G(z)} \in H^{2}
$$

It is known that $f(z)$ is an extreme point in ball $H^{\infty}\left(\Gamma_{z}\right)$ if and only if

$$
\int_{0}^{2 \pi} \log \left(1-\left|f\left(e^{i \theta}\right)\right|\right) \frac{d \theta}{2 \pi}=-\infty
$$

see [Hof, pp. 138-139]. In [II3], it is proved that

$$
\varphi H^{2} \perp \frac{\varphi H(z)}{w-G(z)} H^{2}\left(\Gamma_{z}\right) .
$$

We write

$$
\begin{equation*}
\mathcal{M}=\varphi H^{2} \oplus \frac{\varphi H(z)}{w-G(z)} H^{2}\left(\Gamma_{z}\right) \tag{1.1}
\end{equation*}
$$

It is also proved that \mathcal{M} is an invariant subspace with $\operatorname{rank}\left[R_{z}, R_{w}^{*}\right]=1$. In this paper, we study \mathcal{M} more exactly. In this moment, there are no complete descriptions of M satisfying $\operatorname{rank}\left[R_{z}, R_{w}^{*}\right]=1$. We write $\mathcal{N}=H^{2} \ominus \mathcal{M}$.

Recently in [II5], Izuchi and the author showed that for invariant subspaces M of H^{2} with $\operatorname{rank}\left[R_{w}^{*}, R_{w}\right]\left[R_{z}^{*}, R_{z}\right]<\infty$,

$$
\operatorname{rank}\left[R_{z}, R_{w}^{*}\right]-1 \leq \operatorname{rank}\left[S_{z}, S_{w}^{*}\right] \leq \operatorname{rank}\left[R_{z}, R_{w}^{*}\right]+1
$$

We will study $\operatorname{rank}\left[S_{z}, S_{w}^{*}\right]$ for \mathcal{M}.
About fifteen years ago, Hedenmalm [Hed] gave a very exciting theorem on the Bergman space $L_{a}^{2}(\mathbb{D})$ over the unit disk \mathbb{D}. He proved that there is an invariant subspace I of $L_{a}^{2}(\mathbb{D})$ satisfying $\operatorname{dim}(I \ominus z I)=2$. In [ARS], Aleman, Richter, and Sundberg proved that $[I \ominus z I]=I$ for every invariant subspace I of $L_{a}^{2}(\mathbb{D})$, where $[I \ominus z I]$ is the invariant subspace of $L_{a}^{2}(\mathbb{D})$ generated by $I \ominus z I$; see also [DS], [HKZ].

In H^{2}, we can consider similar issues. Let M be an invariant subspace of H^{2}. The space $M \ominus(z M+w M)$ is naturally considered as the corresponding space to $I \ominus z I$. The space $M \ominus(z M+w M)$ is one of the most important spaces for studying the structure of M. For a subset E of H^{2}, let $[E]$ denote the invariant subspace generated by all functions in E. In [Nak], Nakazi showed that for $f \in H^{2} \operatorname{dim}([f] \ominus(z[f]+w[f]))=1$, and posed a problem whether $[f]=[[f] \ominus(z[f]+w[f])]$ holds or not. Here our question is; when does $M=[M \ominus(z M+w M)]$ hold? We will answer this question for \mathcal{M}.

In Section 2, we treat the case that $G(z)$ is a constant. It is proved
that if $G(0) \neq 0$ and $H(0) \neq 0$, then $\operatorname{dim}(\mathcal{M} \ominus(z \mathcal{M}+w \mathcal{M}))=1$ and $\mathcal{M} \neq[\mathcal{M} \ominus(z \mathcal{M}+w \mathcal{M})]$.

In Section 3, we study the case that $G(z)$ is non-constant. It is proved that if $G(0) \neq 0$ and $H(0) \neq 0$, then $\operatorname{dim}(\mathcal{M} \ominus(z \mathcal{M}+w \mathcal{M}))=1$, and $\mathcal{M}=[\mathcal{M} \ominus(z \mathcal{M}+w \mathcal{M})]$ for some cases. In the first glance, one thinks that \mathcal{M} given by (1.1) is not a singly generated invariant subspace, but this is not true. We give an equivalent condition on $G(z)$ and $H(z)$ for which $\mathcal{M}=[\mathcal{M} \ominus(z \mathcal{M}+w \mathcal{M})]$.

2. The case that $G(z)$ is constant

Let \mathcal{M} be an invariant subspace given in (1.1) with conditions (a), (b), (c), and (d). In this section, we study the case that $G(z)$ is a constant function. Let $G(z)=a \in \mathbb{D}$. Then

$$
\mathcal{M}=\varphi H^{2} \oplus \frac{\varphi H(z)}{w-a} H^{2}\left(\Gamma_{z}\right)
$$

By (b), we can write $H(z)=b I(z)$, where $b \in \mathbb{C}$ with $|b|^{2}=1-|a|^{2}$ and $I(z)$ is inner. We note that

$$
\varphi=\frac{w-a}{1-\bar{a} w} \varphi_{1}
$$

for some inner function φ_{1}. Thus we have

$$
\begin{aligned}
\mathcal{M} & =\varphi_{1}\left(\frac{w-a}{1-\bar{a} w} H^{2} \oplus \frac{H(z)}{1-\bar{a} w} H^{2}\left(\Gamma_{z}\right)\right) \\
& =\varphi_{1}\left(\frac{w-a}{1-\bar{a} w} H^{2}+I(z) H^{2}\right) \\
& =\varphi_{1} \mathcal{M}_{1}
\end{aligned}
$$

where

$$
\mathcal{M}_{1}=\frac{w-a}{1-\bar{a} w} H^{2}+I(z) H^{2}
$$

Proposition 2.1 Let

$$
\mathcal{M}=\varphi_{1} \mathcal{M}_{1}=\varphi_{1}\left(\frac{w-a}{1-\bar{a} w} H^{2}+I(z) H^{2}\right)
$$

for some inner function $\varphi_{1}, a \in \mathbb{D}$, and one variable inner function $I(z)$. Then we have the following:
(i) If φ_{1} is constant, then $\left[S_{z}, S_{w}^{*}\right]=0$.
(ii) Suppose that φ_{1} is non-constant and $I(z)$ is constant. If φ_{1} is one variable, then $\left[S_{z}, S_{w}^{*}\right]=0$. If φ_{1} is not one variable, then $\operatorname{rank}\left[S_{z}, S_{w}^{*}\right]=$ 1.
(iii) Suppose that φ_{1} and $I(z)$ are non-constant. If φ_{1} is one variable, then $\operatorname{rank}\left[S_{z}, S_{w}^{*}\right]=1$. If φ_{1} is not one variable, then $\operatorname{rank}\left[S_{z}, S_{w}^{*}\right]=2$.

To prove Proposition 2.1, we need the following lemma due to Yang [Ya4, p. 179].

Lemma $2.2 \operatorname{rank}\left[S_{z}, S_{w}^{*}\right] \leq \operatorname{rank}\left[R_{w}^{*}, R_{w}\right]\left[R_{z}^{*}, R_{z}\right]$.
It is easy to see that

$$
\left[R_{w}^{*}, R_{w}\right]\left[R_{z}^{*}, R_{z}\right]=\left(I-R_{w} R_{w}^{*}\right)\left(I-R_{z} R_{z}^{*}\right)=P_{\mathcal{M} \ominus w \mathcal{M}} P_{\mathcal{M} \ominus z \mathcal{M}}
$$

Proof of Proposition 2.1. (i): By [INS1], we have that if φ_{1} is constant, then $\left[S_{z}, S_{w}^{*}\right]=0$.
(ii): Suppose that φ_{1} is non-constant and $I(z)$ is constant. Then $\mathcal{M}_{1}=$ H^{2} and $\mathcal{M}=\varphi_{1} H^{2}$. By [INS1], we know that if φ_{1} is one variable inner, then $\left[S_{z}, S_{w}^{*}\right]=0$. Yang [Ya4] pointed out that if φ_{1} is not one variable, then $\operatorname{rank}\left[S_{z}, S_{w}^{*}\right]=1$.
(iii): Suppose that φ_{1} and $I(z)$ are non-constant inner functions. By [II4], if φ_{1} is one variable, then $\operatorname{rank}\left[S_{z}, S_{w}^{*}\right]=1$, and if φ_{1} is not one variable, then $\operatorname{rank}\left[S_{z}, S_{w}^{*}\right] \geq 2$. We have

$$
\mathcal{M} \ominus z \mathcal{M}=\varphi H^{2}\left(\Gamma_{w}\right) \oplus \mathbb{C} \cdot \frac{\varphi H(z)}{w-a}
$$

Hence

$$
P_{\mathcal{M} \ominus w \mathcal{M}} P_{\mathcal{M} \ominus z \mathcal{M}} \mathcal{M} \subset \mathbb{C} \cdot \varphi \oplus \mathbb{C} \cdot \frac{\varphi H(z)}{w-a}
$$

By Lemma 2.2, we have $\operatorname{rank}\left[S_{z}, S_{w}^{*}\right] \leq 2$. So, φ_{1} is not one variable and $\operatorname{rank}\left[S_{z}, S_{w}^{*}\right]=2$.

In the following theorem, we study $[\mathcal{M} \ominus(z \mathcal{M}+w \mathcal{M})]$. To study our problem, an inner factor φ_{1} is not essential, so we may assume that $\varphi_{1}=1$. If $I(z)$ is constant, then $\mathcal{M}=H^{2}$. Hence $\mathcal{M} \ominus(z \mathcal{M}+w \mathcal{M})=\mathbb{C} \cdot 1$ and $[\mathcal{M} \ominus(z \mathcal{M}+w \mathcal{M})]=\mathcal{M}$. So, we assume that $I(z)$ is non-constant.

Theorem 2.3 Let

$$
\mathcal{M}=\frac{w-a}{1-\bar{a} w} H^{2}+I(z) H^{2}
$$

for some $a \in \mathbb{D}$ and a one variable non-constant inner function $I(z)$. Then we have the following:
(i) If $a=0$ and $I(0)=0$, then

$$
\mathcal{M} \ominus(z \mathcal{M}+w \mathcal{M})=\mathbb{C} \cdot w+\mathbb{C} \cdot I(z)
$$

and

$$
[\mathcal{M} \ominus(z \mathcal{M}+w \mathcal{M})]=\mathcal{M}
$$

(ii) If $a=0$ and $I(0) \neq 0$, then

$$
\mathcal{M} \ominus(z \mathcal{M}+w \mathcal{M})=\mathbb{C} \cdot I(z)
$$

and

$$
[\mathcal{M} \ominus(z \mathcal{M}+w \mathcal{M})]=I(z) H^{2} \neq \mathcal{M}
$$

(iii) If $a \neq 0$ and $I(0)=0$, then

$$
\mathcal{M} \ominus(z \mathcal{M}+w \mathcal{M})=\mathbb{C} \cdot \frac{w-a}{1-\bar{a} w}
$$

and

$$
[\mathcal{M} \ominus(z \mathcal{M}+w \mathcal{M})]=\frac{w-a}{1-\bar{a} w} H^{2} \neq \mathcal{M}
$$

(iv) If $a \neq 0$ and $I(0) \neq 0$, then

$$
\mathcal{M} \ominus(z \mathcal{M}+w \mathcal{M})=\mathbb{C} \cdot\left(\frac{-\bar{a}(w-a)}{\left(1-|a|^{2}\right)(1-\bar{a} w)}+\frac{\overline{I(0)} I(z)}{1-\bar{a} w}\right)
$$

and

$$
[\mathcal{M} \ominus(z \mathcal{M}+w \mathcal{M})] \neq \mathcal{M}
$$

To describe $\mathcal{M} \ominus(z \mathcal{M}+w \mathcal{M})$, we use Guo and Yang's result given in [GY]. Let M be an invariant subspace of H^{2}, and $K(\lambda, Z)$ be the reproducing kernel for $M, \lambda \in \Gamma^{2}$, and $Z=(z, w) \in \mathbb{D}^{2}$. Associated with M, Guo and Yang defined the core operator C on M by

$$
\begin{equation*}
C(f)(Z)=\int_{\Gamma^{2}}\left(1-\overline{\lambda_{1}} z\right)\left(1-\overline{\lambda_{2}} w\right) K(\lambda, Z) f(\lambda) d m(\lambda) \tag{2.1}
\end{equation*}
$$

where $d m(\lambda)$ is the normarized Lebesgue measure on Γ^{2}, and they showed that

$$
\begin{equation*}
C=I-R_{z} R_{z}^{*}-R_{w}\left(1-R_{z} R_{z}^{*}\right) R_{w}^{*} \tag{2.2}
\end{equation*}
$$

So, C is a bounded selfadjoint operator on M. Also they showed the following.

Lemma 2.4 Let $f \in M$. Then $C(f)=f$ if and only if $f \in M \ominus(z M+$ $w M)$.

Proof of Theorem 2.3. It is not difficult to show (i), (ii), and (iii), so we shall show (iv). Write

$$
q(w)=\frac{w-a}{1-\bar{a} w} .
$$

By [Ya4, p. 176],

$$
\begin{aligned}
& \left(1-\overline{\lambda_{1}} z\right)\left(1-\overline{\lambda_{2}} w\right) K(\lambda, Z) \\
& \quad=\overline{I\left(\lambda_{1}\right)} I(z)+\overline{q\left(\lambda_{2}\right)} q(w)-\overline{I\left(\lambda_{1}\right) q\left(\lambda_{2}\right)} I(z) q(w)
\end{aligned}
$$

Hence by (2.1) and Lemma 2.4,

$$
\mathcal{M} \ominus(z \mathcal{M}+w \mathcal{M}) \subset \mathbb{C} \cdot I(z)+\mathbb{C} \cdot q(w)+\mathbb{C} \cdot I(z) q(w)
$$

Let $F=a I(z)+b q(w)+c I(z) q(w)$ satisfying $C(F)=F$. It is not difficult to see that

$$
\begin{aligned}
C(F)= & (a+b \overline{I(0)} q(0)+c q(0)) I(z)+(a I(0) \overline{q(0)}+b+c I(0)) q(w) \\
& -(a \overline{q(0)}+b \overline{I(0)}+c) I(z) q(w) .
\end{aligned}
$$

Hence we get

$$
b \overline{I(0)} q(0)+c q(0)=0, \quad a I(0) \overline{q(0)}+c I(0)=0, \quad-a \overline{q(0)}-b \overline{b(0)}=2 c
$$

Since $q(0) \neq 0$ and $I(0) \neq 0$, we have

$$
a=-\frac{1}{\overline{q(0)}} c \quad \text { and } \quad b=-\frac{1}{\overline{I(0)}} c
$$

By Lemma 2.4, we have

$$
-\frac{1}{\overline{q(0)}} I(z)-\frac{1}{\overline{I(0)}} q(w)+I(z) q(w) \in \mathcal{M} \ominus(z \mathcal{M}+w \mathcal{M})
$$

Therefore

$$
\begin{aligned}
\mathcal{M} & \ominus(z \mathcal{M}+w \mathcal{M}) \\
& =\mathbb{C} \cdot\left(-\overline{I(0)} I(z)+\frac{\bar{a}(w-a)}{1-\bar{a} w}-\overline{a I(0)} I(z) \frac{w-a}{1-\bar{a} w}\right) \\
& =\mathbb{C} \cdot\left(\frac{-\bar{a}(w-a)}{\left(1-|a|^{2}\right)(1-\bar{a} w)}+\frac{\overline{I(0)} I(z)}{1-\bar{a} w}\right)
\end{aligned}
$$

It remains to prove $[\mathcal{M} \ominus(z \mathcal{M}+w \mathcal{M})] \neq \mathcal{M}$. Let \mathcal{M}_{1} be the invariant subspace of H^{2} generated by the function

$$
\frac{-\bar{a}(w-a)}{\left(1-|a|^{2}\right)(1-\bar{a} w)}+\frac{\overline{I(0)} I(z)}{1-\bar{a} w} .
$$

We note that $(1-\bar{a} w) \mathcal{M}_{1}=\mathcal{M}_{1}$. Then \mathcal{M}_{1} is generated by

$$
\frac{1-\bar{a} w}{\overline{I(0)}}\left(\frac{-\bar{a}(w-a)}{\left(1-|a|^{2}\right)(1-\bar{a} w)}+\frac{\overline{I(0)} I(z)}{1-\bar{a} w}\right)=\frac{-\bar{a}(w-a)}{\overline{I(0)}\left(1-|a|^{2}\right)}+I(z) .
$$

Therefore it is enough to show that

$$
\left[\frac{-\bar{a}(w-a)}{\overline{I(0)}\left(1-|a|^{2}\right)}+I(z)\right] \neq \frac{w-a}{1-\bar{a} w} H^{2}+I(z) H^{2}
$$

To prove this, we suppose that the equality holds. Since $1-\bar{a} w$ is an invertible function in $H^{\infty}\left(\Gamma_{w}\right)$, we have

$$
\left[\frac{-\bar{a}(w-a)}{\overline{I(0)}\left(1-|a|^{2}\right)}+I(z)\right]=(w-a) H^{2}+I(z) H^{2}
$$

Since $I(z)$ is non-constant inner, $I(\mathbb{D})$ is dense in \mathbb{D}. Since the range of the function

$$
\frac{-\bar{a}(w-a)}{\overline{I(0)}\left(1-|a|^{2}\right)}
$$

contains small open disks with center 0 , one sees that the common zero set in \mathbb{D}^{2} of

$$
\left[\frac{-\bar{a}(w-a)}{\overline{I(0)}\left(1-|a|^{2}\right)}+I(z)\right]
$$

has a nonempty connected component. On the other hand, the common zero set in \mathbb{D}^{2} of $(w-a) H^{2}+I(z) H^{2}$ is $\left\{(\zeta, a) \in \mathbb{D}^{2} \mid I(\zeta)=0\right\}$ and this set is either empty or a discrete set. This is a contradiction. This completes the proof.

3. The case that $G(z)$ is non-constant

Write

$$
\begin{equation*}
h_{0}=\frac{\varphi H(z)}{w-G(z)} \in H^{2} \tag{3.1}
\end{equation*}
$$

Then $\mathcal{M}=\varphi H^{2}+h_{0} H^{2}\left(\Gamma_{z}\right)$. By (3.1),

$$
\begin{equation*}
h_{0}=\varphi H(z) \sum_{n=0}^{\infty} \bar{w}^{(n+1)} G^{n}(z) \tag{3.2}
\end{equation*}
$$

so for $i \neq j$ we have

$$
\begin{aligned}
\left\langle h_{0} z^{i}, h_{0} z^{j}\right\rangle & =\sum_{n=0}^{\infty}\left\langle z^{i} H(z) G^{n}(z), z^{j} H(z) G^{n}(z)\right\rangle \\
& \left.=\left.\langle | H(z)\right|^{2} \sum_{n=0}^{\infty}|G(z)|^{2 n}, z^{j-i}\right\rangle \\
& =\left\langle 1, z^{j-i}\right\rangle \quad \text { by condition }(\mathrm{b}) \\
& =0 .
\end{aligned}
$$

Hence

$$
\begin{equation*}
h_{0} z^{i} \perp h_{0} z^{j}, \quad i \neq j, \tag{3.3}
\end{equation*}
$$

so we have $\mathcal{M} \subset H^{2}$. By (3.2), for $i, j, k \geq 0$

$$
\left\langle\varphi z^{i} w^{j}, h_{0} z^{k}\right\rangle=\left\langle z^{i} w^{j}, z^{k} H(z) \sum_{n=0}^{\infty} \bar{w}^{(n+1)} G^{n}(z)\right\rangle=0 .
$$

Thus we have

$$
\varphi H^{2} \perp h_{0} H^{2}\left(\Gamma_{z}\right)
$$

so $\mathcal{M}=\varphi H^{2} \oplus h_{0} H^{2}\left(\Gamma_{z}\right)$. By condition (b) and (3.2), we have

$$
\begin{equation*}
\left\|h_{0}\right\|^{2}=\sum_{n=0}^{\infty}\left\|H(z) G^{n}(z)\right\|^{2}=\int_{0}^{2 \pi} \frac{\left|H\left(e^{i \theta}\right)\right|^{2}}{1-\left|G\left(e^{i \theta}\right)\right|^{2}} \frac{d \theta}{2 \pi}=1 \tag{3.4}
\end{equation*}
$$

Since $\mathcal{M}=\varphi H^{2} \oplus h_{0} H^{2}\left(\Gamma_{z}\right)$, by (3.3) we have

$$
\begin{equation*}
\mathcal{M} \ominus z \mathcal{M}=\varphi H^{2}\left(\Gamma_{w}\right) \oplus \mathbb{C} \cdot h_{0} \tag{3.5}
\end{equation*}
$$

Proposition 3.1 If $G(z)$ is non-constant, then $\operatorname{rank}\left[S_{z}, S_{w}^{*}\right]=2$.
Proof. By (3.5), we have

$$
\begin{aligned}
{\left[R_{w}^{*}, R_{w}\right]\left[R_{z}^{*}, R_{z}\right] \mathcal{M} } & =P_{\mathcal{M} \ominus w \mathcal{M}}(\mathcal{M} \ominus z \mathcal{M}) \\
& =P_{\mathcal{M} \ominus w \mathcal{M}}\left(\varphi H^{2}\left(\Gamma_{w}\right) \oplus \mathbb{C} \cdot h_{0}\right) \\
& =P_{\mathcal{M} \ominus w \mathcal{M}}\left(\mathbb{C} \cdot \varphi \oplus \mathbb{C} \cdot h_{0}\right)
\end{aligned}
$$

Therefore by Lemma 2.2, $\operatorname{rank}\left[S_{z}, S_{w}^{*}\right] \leq 2$. By [INS1], we have $\left[S_{z}, S_{w}^{*}\right] \neq 0$. By [II4], $\operatorname{rank}\left[S_{z}, S_{w}^{*}\right] \neq 1$. Thus we get $\operatorname{rank}\left[S_{z}, S_{w}^{*}\right]=2$.

Next, we study $[\mathcal{M} \ominus(z \mathcal{M}+w \mathcal{M})]$. Recall that, by (2.2)

$$
C=I-R_{z} R_{z}^{*}-R_{w}\left(I-R_{z} R_{z}^{*}\right) R_{w}^{*}=P_{\mathcal{M} \ominus z \mathcal{M}}-R_{w} P_{\mathcal{M} \ominus z \mathcal{M}} R_{w}^{*}
$$

Now it is easy to see that $C=0$ on $w \varphi H^{2}$. We have

$$
\begin{equation*}
\mathcal{M} \ominus w \varphi H^{2}=\varphi H^{2}\left(\Gamma_{z}\right) \oplus h_{0} H^{2}\left(\Gamma_{z}\right) \tag{3.6}
\end{equation*}
$$

Lemma 3.2 For $f(z) \in H^{2}\left(\Gamma_{z}\right)$, we have the following:
(i) $C(\varphi f(z))=f(0) \varphi-\langle f(z), H(z)\rangle w h_{0}$.
(ii) $C\left(h_{0} f(z)\right)=f(0) h_{0}-\langle f(z), G(z)\rangle w h_{0}$.
(iii) $C\left(w h_{0}\right)=H(0) \varphi+G(0) h_{0}-w h_{0}$.
(iv) $C(\mathcal{M})=\mathbb{C} \cdot \varphi+\mathbb{C} \cdot h_{0}+\mathbb{C} \cdot w h_{0}$.

Proof. (i): We have $P_{\mathcal{M} \ominus z \mathcal{M}} \varphi f(z)=f(0) \varphi$. Since $R_{w}^{*}(\varphi f(z)) \perp \varphi H^{2}$, we have

$$
\begin{aligned}
R_{w} P_{\mathcal{M} \ominus z \mathcal{M}} R_{w}^{*}(\varphi f(z)) & =w\left\langle R_{w}^{*} \varphi f(z), h_{0}\right\rangle h_{0} \quad \text { by }(3.4) \text { and }(3.5) \\
& =\left\langle\varphi f(z), w h_{0}\right\rangle w h_{0} \\
& =\left\langle f(z), \sum_{n=0}^{\infty} \bar{w}^{n} G(z)^{n} H(z)\right\rangle w h_{0} \\
& =\langle f(z), H(z)\rangle w h_{0} .
\end{aligned}
$$

Thus we get (i).
(ii): We have $P_{\mathcal{M} \ominus z \mathcal{M}}\left(h_{0} f(z)\right)=f(0) h_{0}$. Since $R_{w}^{*}\left(h_{0} f(z)\right) \perp \varphi H^{2}$, we
have

$$
\begin{aligned}
R_{w} & P_{\mathcal{M} \ominus z \mathcal{M}} R_{w}^{*}\left(h_{0} f(z)\right) \\
& =\left\langle R_{w}^{*} h_{0} f(z), h_{0}\right\rangle w h_{0} \\
& =\left\langle h_{0} f(z), w h_{0}\right\rangle w h_{0} \\
& =\left\langle\sum_{n=0}^{\infty} f(z) H(z) G(z)^{n} \bar{w}^{(n+1)}, \sum_{n=-1}^{\infty} H(z) G(z)^{n+1} \bar{w}^{(n+1)}\right\rangle w h_{0} \\
& =\sum_{n=0}^{\infty}\left\langle f(z) H(z) G(z)^{n}, H(z) G(z)^{n+1}\right\rangle w h_{0} \\
& \left.=\left.\left\langle f(z), \sum_{n=0}^{\infty}\right| H(z)\right|^{2}|G(z)|^{2 n} G(z)\right\rangle w h_{0} \\
& =\langle f(z), G(z)\rangle w h_{0}
\end{aligned}
$$

(iii): Since $w h_{0}=\varphi H(z)+h_{0} G(z)$, by (i) and (ii) we have

$$
\begin{aligned}
C\left(w h_{0}\right) & =H(0) \varphi+G(0) h_{0}-\left(\|H\|^{2}+\|G\|^{2}\right) w h_{0} \\
& =H(0) \varphi+G(0) h_{0}-w h_{0} \quad \text { by condition }(\mathrm{b}) .
\end{aligned}
$$

(iv): This follows from (3.6), (i) and (ii).

Theorem 3.3 Suppose that $G(z)$ is non-constant. Then we have the following:
(i) If $G(0)=H(0)=0$, then

$$
\mathcal{M} \ominus(z \mathcal{M}+w \mathcal{M})=\mathbb{C} \cdot \varphi \oplus \mathbb{C} \cdot \frac{\varphi H(z)}{w-G(z)}
$$

and

$$
\mathcal{M}=[\mathcal{M} \ominus(z \mathcal{M}+w \mathcal{M})]
$$

(ii) If $G(0)=0$ and $H(0) \neq 0$, then

$$
\mathcal{M} \ominus(z \mathcal{M}+w \mathcal{M})=\mathbb{C} \cdot \frac{\varphi H(z)}{w-G(z)}
$$

and $\mathcal{M}=[\mathcal{M} \ominus(z \mathcal{M}+w \mathcal{M})]$ if and only if $H(z)=a H_{0}(z)$ for some $a \in \mathbb{C}$ with $|a|=1$.
(iii) If $G(0) \neq 0$ and $H(0)=0$, then

$$
\mathcal{M} \ominus(z \mathcal{M}+w \mathcal{M})=\mathbb{C} \cdot \varphi
$$

and

$$
\mathcal{M} \neq \varphi H^{2}\left(\Gamma^{2}\right)=[\mathcal{M} \ominus(z \mathcal{M}+w \mathcal{M})]
$$

(iv) If $G(0) \neq 0$ and $H(0) \neq 0$, then

$$
\mathcal{M} \ominus(z \mathcal{M}+w \mathcal{M})=\mathbb{C} \cdot \varphi\left(1-\frac{\overline{H(0)} H(z)}{\overline{G(0)}(w-G(z))}\right)
$$

and $\mathcal{M}=[\mathcal{M} \ominus(z \mathcal{M}+w \mathcal{M})]$ if and only if

$$
1 \leq\left|G(z)+\frac{\overline{H(0)} H(z)}{\overline{G(0)}}\right|
$$

for every $z \in \mathbb{D}$.
Proof. By (3.5),

$$
\mathcal{M} \ominus z \mathcal{M}=\varphi H^{2}\left(\Gamma_{w}\right) \oplus \mathbb{C} \cdot h_{0}
$$

Then we can get easily

$$
\{0\} \neq \mathcal{M} \ominus(z \mathcal{M}+w \mathcal{M}) \subset \mathbb{C} \cdot \varphi \oplus \mathbb{C} \cdot h_{0}
$$

Let's start to prove Theorem 3.3.
(i): Since $G(0)=H(0)=0$, by Lemmas 2.4 and 3.2 we have

$$
\mathcal{M} \ominus(z \mathcal{M}+w \mathcal{M})=\mathbb{C} \cdot \varphi \oplus \mathbb{C} \cdot h_{0}
$$

In this case, it is easy to see that $\mathcal{M}=[\mathcal{M} \ominus(z \mathcal{M}+w \mathcal{M})]$.
(ii): By Lemmas 2.4 and 3.2, we have $\mathcal{M} \ominus(z \mathcal{M}+w \mathcal{M})=\mathbb{C} \cdot h_{0}$. We can write $H(z)=I(z) H_{0}(z)$ for some inner function $I(z)$. Since $H_{0}(z)$ is outer, by [Gar, p. 85] there exists a sequence of polynomials $\left\{p_{n}(z)\right\}_{n}$
such that $\left|p_{n}(z) H_{0}(z)\right| \leq 1$ a.e. on Γ_{z} and $p_{n}(z) H_{0}(z) \rightarrow 1$ a.e. on Γ_{z} as $n \rightarrow \infty$. Since $(w-G(z)) h_{0}=\varphi H(z)$, by the Lebesgue dominated convergence theorem

$$
p_{n}(z)(w-G(z)) h_{0}=p_{n}(z) H_{0}(z) \varphi I(z) \rightarrow \varphi I(z) \quad \text { in } H^{2}
$$

Hence we get $\varphi I(z) \in\left[h_{0}\right]$.
Now we prove that $\mathcal{M}=[\mathcal{M} \ominus(z \mathcal{M}+w \mathcal{M})]$ if and only if $H(z)=a H_{0}(z)$ for some $a \in \mathbb{C}$ with $|a|=1$.
(\Leftarrow) If $I(z)=a$, then we have $\varphi \in\left[h_{0}\right]$ and $\mathcal{M}=\left[\varphi, h_{0}\right]=\left[h_{0}\right]$.
(\Rightarrow) To prove this by the contradiction, suppose that $I(z)$ is non-constant. Then $\varphi T_{z}^{*} I(z) \neq 0$ and $\varphi T_{z}^{*} I(z) \in \mathcal{M}$. For every non-negative integers i, j, we have

$$
\begin{aligned}
\left\langle\varphi T_{z}^{*} I(z), z^{i} w^{j} h_{0}\right\rangle & =\left\langle T^{*}{ }_{z} I(z), z^{i} w^{j} I(z) H_{0}(z) \sum_{k=0}^{\infty} \bar{w}^{(k+1)} G^{k}(z)\right\rangle \\
& =\left\langle 1, \sum_{k=0}^{\infty} z^{i+1} \bar{w}^{(k+1-j) H_{0}(z) G^{k}(z)}\right\rangle \\
& =0
\end{aligned}
$$

Hence we get $\varphi T_{z}^{*} I(z) \perp\left[h_{0}\right]$, so that $\mathcal{M} \neq\left[h_{0}\right]$. Thus we get (ii).
(iii): By Lemmas 2.4 and 3.2, we have $\mathcal{M} \ominus(z \mathcal{M}+w \mathcal{M})=\mathbb{C} \cdot \varphi$. Then we easily get (iii).
(iv): Let $F=a \varphi+b h_{0}$ satisfying $C(F)=F$. By Lemma 3.2,

$$
C(F)=a \varphi-a \overline{H(0)} w h_{0}+b h_{0}-b \overline{G(0)} w h_{0}
$$

Hence we get $b=-\overline{H(0)} a / \overline{G(0)}$. By Lemma 2.4,

$$
\mathcal{M} \ominus(z \mathcal{M}+w \mathcal{M})=\mathbb{C} \cdot\left(\varphi+\alpha h_{0}\right)
$$

where $\alpha=-\overline{H(0)} / \overline{G(0)}$. By (3.1),

$$
\varphi+\alpha h_{0}=\varphi\left(1+\frac{\alpha H(z)}{w-G(z)}\right)
$$

Since

$$
\mathcal{M}=\varphi\left(H^{2} \oplus \frac{H(z)}{w-G(z)} H^{2}\left(\Gamma_{z}\right)\right)
$$

we have

$$
\begin{equation*}
\left[1+\frac{\alpha H(z)}{w-G(z)}\right] \subset H^{2} \oplus \frac{H(z)}{w-G(z)} H^{2}\left(\Gamma_{z}\right) \tag{3.7}
\end{equation*}
$$

and it holds that

$$
\begin{equation*}
\mathcal{M}=\varphi\left[1+\frac{\alpha H(z)}{w-G(z)}\right] \tag{3.8}
\end{equation*}
$$

if and only if

$$
\begin{equation*}
\left[1+\frac{\alpha H(z)}{w-G(z)}\right]=H^{2} \oplus \frac{H(z)}{w-G(z)} H^{2}\left(\Gamma_{z}\right) \tag{3.9}
\end{equation*}
$$

First suppose that $1 \leq|G(z)-\alpha H(z)|$ for every $z \in \mathbb{D}$. Then by [IY, Corollary 2.7], we have

$$
[w-(G(z)-\alpha H(z))]=H^{2}
$$

This shows that

$$
\begin{aligned}
{\left[1+\frac{\alpha H(z)}{w-G(z)}\right] } & \supset \overline{(w-G(z))\left[1+\frac{\alpha H(z)}{w-G(z)}\right]} \\
& =[w-(G(z)-\alpha H(z))] \\
& =H^{2}
\end{aligned}
$$

Hence

$$
1, \quad \frac{H(z)}{w-G(z)} \in\left[1+\frac{\alpha H(z)}{w-G(z)}\right]
$$

Therefore

$$
H^{2} \oplus \frac{H(z)}{w-G(z)} H^{2}\left(\Gamma_{z}\right) \subset\left[1+\frac{\alpha H(z)}{w-G(z)}\right]
$$

By (3.7), we have (3.9). So we get (3.8).
Finally we consider the case that $\left|G\left(z_{0}\right)-\alpha H\left(z_{0}\right)\right|<1$ for some $z_{0} \in D$. By [IY, Corollary 2.7],

$$
\begin{equation*}
[w-(G(z)-\alpha H(z))] \neq H^{2} \tag{3.10}
\end{equation*}
$$

In this case, it is sufficient to prove that (3.9) does not hold. Suppose that (3.9) holds. Then we have

$$
\begin{equation*}
(w-G(z))\left[1+\frac{\alpha H(z)}{w-G(z)}\right]=(w-G(z)) H^{2}+H(z) H^{2}\left(\Gamma_{z}\right) \tag{3.11}
\end{equation*}
$$

Since

$$
(w-G(z))\left[1+\frac{\alpha H(z)}{w-G(z)}\right] \subset[w-(G(z)-\alpha H(z))]
$$

by (3.11) we have

$$
[w-G(z)] \subset[w-(G(z)-\alpha H(z))]
$$

Hence

$$
\begin{aligned}
\{0\} & \neq H^{2} \ominus[w-(G(z)-\alpha H(z))] \quad \text { by }(3.10) \\
& \subset H^{2} \ominus[w-G(z)]
\end{aligned}
$$

By [IY, Theorem 2.5, Corollary 2.9 and its proof], we have

$$
G(z)-\alpha H(z)=G(z)
$$

This contradicts that $H(z) \neq 0$. Therefore (3.9) does not hold. This completes the proof.

In the case (iv) in Theorem 3.1, by (3.7) we have

$$
\varphi\left[1+\frac{\alpha H(z)}{w-G(z)}\right] \subset \mathcal{M}
$$

where $\alpha=-\overline{H(0)} / \overline{G(0)}$.

Example 3.4 There are invariant subspaces \mathcal{M} such that

$$
\begin{equation*}
\varphi\left[1+\frac{\alpha H(z)}{w-G(z)}\right]=\mathcal{M} \tag{3.12}
\end{equation*}
$$

and

$$
\begin{equation*}
\varphi\left[1+\frac{\alpha H(z)}{w-G(z)}\right] \varsubsetneqq \mathcal{M} \tag{3.13}
\end{equation*}
$$

respectively.
Let $G(z)=I(z) / 2$ for some non-constant inner function $I(z)$ with $I(0) \neq 0$. Then $G(z)$ is a non-constant and non-extreme point in ball $H^{\infty}\left(\Gamma_{z}\right)$ with $G(0) \neq 0$.

First we give an example of (3.12). Let $H(z)=\sqrt{3} / 2$. Then $|G(z)|^{2}+$ $|H(z)|^{2}=1$ a.e. on Γ_{z} and $H(0) \neq 0$. For each $z \in \mathbb{D}$, we have

$$
|G(z)-\alpha H(z)|=\left|\frac{I(z)}{2}+\frac{3}{2 \overline{I(0)}}\right| \geq \frac{1}{2}\left(\frac{3}{|I(0)|}-1\right)>1
$$

Thus by Theorem 3.3, we have (3.12).
Next we give an example of (3.13). Let $H(z)=\sqrt{3} I(z) / 2$. Then we have $|G(z)|^{2}+|H(z)|^{2}=1$ a.e. on $\Gamma_{z}, H(0) \neq 0$ and $G(z)-\alpha H(z)=2 I(z)$. Since $I(z)$ is non-constant inner, there exists $z_{0} \in \mathbb{D}$ such that $\left|G\left(z_{0}\right)-\alpha H\left(z_{0}\right)\right|<$ 1. Thus by Theorem 3.3, we get (3.13).

When $G(z)$ is contained in the disk algebra, the space of functions $f(z) \in$ $C(\overline{\mathbb{D}})$ which are analytic in \mathbb{D}, the existence of inner function φ satisfying

$$
\varphi\left[1+\frac{\alpha H(z)}{w-G(z)}\right] \subset H^{2}
$$

is known, see [II3, Theorem 2.3].

Acknowledgement

The author thanks the referee for his kind suggestions.

References

[ARS] Aleman A., Richter S. and Sundberg C., Beurling's theorem for the Bergman space. Acta Math. 117 (1996), 275-310.
[Beu] Beurling A., On two problems concerning linear transformations in Hilbert space. Acta Math. 81 (1949), 239-255.
[CG] Chen X. and Guo K., Analytic Hilbert Modules. Chapman \& Hall/CRC, Boca Raton, FL, 2003.
[DY] Douglas R. G. and Yang R., Operator theory in the Hardy space over the bidisk (I). Integral Eq. Op. Theory 38 (2000), 207-221.
[DS] Duren P. and Schuster A., Bergman spaces. Mathematical Surveys and Monographs, Vol. 100, Amer. Math. Soc., Providence, RI, 2004.
[Gar] Garnett J. B., Bounded Analytic Functions. Academic Press, New York, 1981.
[GY] Guo K. and Yang R., The core function of submodules over the bidisk. Indiana Univ. Math. J. 53 (2004), 205-222.
[Hed] Hedenmalm H., A factorization theorem for square area-integrableanalytic functions. J. Reine Angew. Math. 422 (1991), 45-68.
[HKZ] Hedenmalm H., Korenblum B. and Zhu K., Theory of Bergman Spaces. Springer-Verlag, New York, 2000.
[Hof] Hoffman K., Banach Spaces of Analytic Functions. Prentice Hall, Englewood Cliffs, N.J., 1962.
[II1] Izuchi K. J. and Izuchi K. H., Rank-one commutators on invariant subspaces of the Hardy space on the bidisk. J. Math. Anal. Appl. 316 (2006), 1-8.
[II2] Izuchi K. J. and Izuchi K. H., Cross commutators on backward shift invariant subspaces over the bidisk. Acta Sci. Math. (Szeged) 72 (2006), 251-270.
[II3] Izuchi K. J. and Izuchi K. H., Rank-one commutators on invariant subspaces of the Hardy space on the bidisk II. J. Operator Theory, to appear.
[II4] Izuchi K. J. and Izuchi K. H., Rank-one cross commutators on backward shift invariant subspaces on the bidisk. Preprint.
[II5] Izuchi K. J. and Izuchi K. H., Ranks of cross commutators on backward shift invariant subspaces over the bidisk. Rocky Mountain J. Math., to appear.
[INS1] Izuchi K. J., Nakazi T. and Seto M., Backward shift invariant subspaces in the bidisc II. J. Operator Theory 51 (2004), 361-376.
[INS2] Izuchi K. J., Nakazi T. and Seto M., Backward shift invariant subspaces in the bidisc III. Acta Sci. Math. (Szeged) 70 (2004), 727-749.
[IY] Izuchi K. J. and Yang R., Strictly contractive compression on backward
shift invariant subspaces over the torus. Acta Sci. Math. (Szeged) 70 (2004), 147-165.
[Man] Mandrekar V., The validity of Beurling theorems in polydiscs. Proc. Amer. Math. Soc. 103 (1988), 145-148.
[Nak] Nakazi T., An outer function and several important functions. Arch. der Math. 66 (1996), 490-498.
[Rud] Rudin W., Function Theory in Polydiscs. Benjamin, New York, 1969.
[Sar] Sarason D., Algebraic properties of truncated Toeplitz operartors. Preprint.
[Ya1] Yang R., The Berger-Shaw theorem in the Hardy module over the bidisk. J. Operator Theory 42 (1999), 379-404.
[Ya2] Yang R., Operator theory in the Hardy space over the bidisk (II). Integral Eq. Op. Theory 42 (2002), 99-124.
[Ya3] Yang R., Operator theory in the Hardy space over the bidisk (III). J. Funct. Anal. 186 (2001), 521-545.
[Ya4] Yang R., Hilbert-Schmidt submodules and issues of unitary equivalence. J. Operator Theory 53 (2005), 169-184.
[Ya5] Yang, R., The cor operator and congruent submodules. J. Funct. Anal. 228 (2005), 469-489.

Department of Mathematics
Korea University
Seoul 136-701, Korea
E-mail: kh.izuchi@gmail.com

