On nilpotent injectors of Fischer group M(22)

Mashhour Ibrahim MOHAMMED

(Received February 17, 2004; Revised February 22, 2006)

Abstract. The aim of this paper is to prove the following theorem:

Theorem 1 The nilpotent injectors of M(22) are Sylow 2-subgroups.

Key words: nilpotent injectors, generalized fitting group.

1. Introduction

A finite group G is said to be of type M(22) if G possesses an involution d such that $H = C_G(d)$ is quasisimple with $H/\langle d \rangle \cong U_6(2)$ and d is not weakly closed in H with respect to G. For more information one is referred to [2]. The notion of N-injectors in a finite group G was first introduced by B. Fischer in [9] and defined as follows: A subgroup A of G is an N-injector of G, if for each $H \triangleleft \triangleleft G$, $A \cap H$ is a maximal nilpotent subgroup of H. In [12] it has been proved that if $C(F(G)) \subseteq F(G)$, then G contains N-injectors, they form a conjugacy class, and they can be characterized as the maximal nilpotent subgroups which contain F(G) where F(G) denotes the Fitting group of G. If G is solvable then N-injectors exist and any two of them are conjugate [9]. N-injectors of finite solvable groups, Symmetric groups S_n , and alternating group A_n were studied in [5], [6] and [7]. The notion of nilpotent injectors was introduced by A. Bialostocki in [6].

A nilpotent injector in a finite group G is any maximal nilpotent subgroup B of G satisfying $d_2(B) = d_2(G)$, where $d_2(X)$ is defined as $Max\{|A|, A \leq X \text{ and } A \text{ is nilpotent of class at most } 2\}$. Also we define $d_{2,p}(G)$, $m_k(G)$, and $Om_k(G)$ as follows: Let p be a prime, $d_{2,p}(G) = \max\{|P| | P \text{ is a } p\text{-subgroup of } G \text{ of class at most } 2\}$, $m_k(G) = \max\{|C_G(x)| | x \in G, o(x) = p_1p_2 \dots p_k, p_i\text{'s are distinct primes}\}$, where o(x) is the order of x in G. Let $g \in G$ such that $o(g) = p_1p_2 \dots p_k, p_i \neq p_j$ if $i \neq j$ for $i = 1, \dots, k$, and let $|C_G(g)| = p_1^{a_1}p_1^{a_2} \dots p_k^{a_k} m$ where $p_i \nmid m$ for $i = 1, \dots, k$, define $Om_k(G) = \max\{|C_G(x)| | o(x) = p_1p_2 \dots p_k, 2 < p_1 < p_2 \dots < p_k\}$. So we

²⁰⁰⁰ Mathematics Subject Classification : 20E28.

M. I. Mohammed

get the following criterion: If $H \leq G$ such that H is nilpotent and |H| has at least k-prime divisors different from 2, then $|H| \leq Om_k(G) \leq m_k(G)$ [1]. Nilpotent injectors are sometimes called B-injectors. The B-injectors of some sporadic groups have been determined in [1]. A. Neumann [13] studied the nilpotent injectors in finite groups, proving that nilpotent injectors are really N-injectors. The motivation behind this work is that B-injectors will lead to theorems similar to Glauberman's ZJ-Theorem and it is hoped that they provide tools and arguments for a modified and shortened proof of the classification theorem of finite simple groups. The Fischer group M(22)among others turn out to be critical in answering the question whether the B-injectors are conjugate or not.

2. Preliminaries and notation

Let \tilde{F} denote the group M(22). Then $\tilde{F} = \langle D \rangle$ where D is a class of involutions (3-transpositions) with the property, $t_1, t_2 \in D$ implies that $o(t_1t_2) = 1, 2 \text{ or } 3$, where $o(t_1t_2)$ denotes the order of t_1t_2 . So if $t_1 \neq t_2$, then $\langle t_1, t_2 \rangle$ is a group of order 4, i.e. $\langle t_1, t_2 \rangle \cong 2^2$ or $\langle t_1, t_2 \rangle \cong S_3$, the symmetric group of degree 3. There are 3-classes of involutions j in M(22) with the following representatives

(i) $j = d \in D$ such that $C_{\tilde{F}}(d) = 2U_6(2)$.

- (ii) $j = d_1 d_2 = d_2 d_1$, where d_1, d_2 are uniquely determined by j and if $g \in C_{\tilde{F}}(j)$, one obtains $d_1^g = d_1$, $d_2^g = d_2$ or $d_1^g = d_2$, $d_2^g = d_1$. So $C_{\tilde{F}}(d_1) \cap C_{\tilde{F}}(d_2)$ is a normal subgroup of $C_{\tilde{F}}(j)$ of index 2.
- (iii) $j = d_1 d_2 d_3$ where $d_i d_j = d_j d_i$.

Lemma 1 ([2])

- (a) $C_{\tilde{F}}(d_1) = 2 \cdot U_6(2).$
- (b) $C_{\tilde{F}}(d_1d_2) = 2.2^{1+8} : U_4(2).2.$
- (c) $C_{\tilde{F}}(d_1d_2d_3) \leq K.(A_6 \times S_3)$, where K is a 2-group isomorphic to 2^{5+8} .
- (d) Let $C^* = C_{\tilde{F}}(d_1d_2d_3)$, it holds that $O_2(C^*)$ is a special group of shape 2^{5+8} , and $C^*/O_2(C^*)$, is isomorphic to $S_3 \times 3^2$: 4, where $O_p(G)$ is the unique maximal normal p-subgroup of G. Moreover for $M = N_{\tilde{F}}(O_2(C^*))$ it holds that $M/O_2(C^*)$ is isomorphic to $S_3 \times A_6$, where M is maximal in \tilde{F} and it is 2-constrained.

Corollary 1 $d_2(\tilde{F}) \ge d_{2,2}(\tilde{F}) \ge 2^{13} > d_{2,3}(\tilde{F}).$

Proof. From Lemma 1 we get $d_{2,2}(\tilde{F}) \geq 2^{13}$. The Sylow 3-subgroups of \tilde{F} have order 3⁹, and are isomorphic to Sylow 3-subgroups of O(7,3). As \tilde{F} contains subgroups isomorphic to O(7,3), it can be easily verified that Sylow 3-subgroups of O(7,3) are of class greater than 2. Hence $d_{2,3}(\tilde{F}) \leq 3^8 \leq 2^{13}$, and the claim follows.

3. Definitions and results

Our notation is fairly standard. Throughout, all groups are finite. If G is a group, the generalized Fitting group $F^*(G)$ is defined by $F^*(G) = F(G)E(G)$ where $E(G) = \langle L/L \triangleleft \triangleleft G$ and L is quasisimple \rangle is a subgroup of G. A group L is called quasisimple iff L' = L where L' is the derived group of L and L'/Z(L) is a non abelian simple group. Let Z(G) denote the center of G. If H and X are subsets of $G, C_H(X)$ and $N_H(X)$ denote respectively the centralizer and normalizer of X in H. The components of a group X are its subnormal quasisimple subgroups.

Lemma 2

- (a) If K is a quasi-simple group, and $M \leq K$, then M = K or $M \subseteq Z(K)$.
- (b) If $N \leq G$ and G/N is solvable, then E(G) = E(N).

Proof.

- (a) Since $M \leq K$, $MZ(K)/Z(K) \leq K/Z(K)$. As K/Z(K) is simple, it follows that MZ(K) = K or MZ(K) = Z(K). If MZ(K) = K, then $K = K' = (MZ(K))' = M' \subseteq M$, so $K \subseteq M \subseteq K$, and thus K = M.
- (b) If K is a component of G, then $N \cap K \leq K$ and $K/K \cap N \cong KN/N \leq G/N$. As G/N is solvable, $K/K \cap N$ is solvable, and by (a), $K \cap N = K$ or $K \cap N \leq Z(K)$. If $K \cap N = K$, then $K \subseteq N$ and if $K \cap N \leq Z(K)$, it follows that $K/Z(K) \cong K/K \cap N/Z(K)/K \cap N$. So K/Z(K) is a factor group of $K/K \cap N$ which implies that K/Z(K) is solvable, a contradiction.

Lemma 3 ([1]) Let H be a nilpotent injector of a group G. If there exists a subgroup $M \leq G$ such that:

- (i) $H \leq M \leq G$.
- (ii) $F^*(M) = O_p(M)$, then H is a Sylow p-subgroup of G.

Proposition 1 Let H be a finite group such that $H/O_2(H)$ is a nonabelian simple group, then $F^*(H) = O_2(H)$ or any element of odd order in M. I. Mohammed

H centralizes $O_2(H)$.

Proof. Since $O_2(H) \leq F(H) \leq F^*(H) \leq H$, $F(H)/O_2(H) \leq H/O_2(H)$ and $F^*(H)/O_2(H) \leq H/O_2(H)$. As $H/O_2(H)$ is simple, we see that $F(H) = O_2(H)$ and $F^*(H) = O_2(H)$ or $F^*(H) = H$. So, assume that $F^*(H) = H$. Thus $H = F^*(H) = F(H)E(H) = O_2(H)E(H)$ and $[E(H), O_2(H)] = 1$. If p is an odd prime divisor of |H|, then the Sylow p-subgroups of E(H) are also Sylow p-subgroups of H. So let P be a Sylow p-subgroup of H, this implies that there exists $x \in H$ such that $P^x \leq E(H) \leq C_H(O_2(H)) \leq H$, so $P \leq (C_H(O_2(H)))^{x^{-1}} = C_H(O_2(H))$. Hence for any odd prime p, all the Sylow p-subgroups of H are contained in $C_H(O_2(H))$. Thus $H/C_H(O_2(H))$ is a 2-group. So, any element of odd order centralizes $O_2(H)$. □

Proposition 2 If M, K are two normal subgroups of H, such that $M < K \le H$, M is a 2-group, K/M is a non abelian simple group, $H/K \cong S_3$ and $F^*(K) = O_2(K)$, then $F^*(H) = O_2(H)$ or there exists an element $t \in H$, such that o(t) = 3 and t centralizes K.

Proof. As $H/K \cong S_3$ is solvable, and $F^*(K) = O_2(K)$, it follows that E(H) = E(K) = 1. So $F^*(H) = F(H)$ and $O_p(H) \cap K \subset O_p(K) \subseteq F^*(K) = O_2(K)$. Hence if $p \neq 2$, then $O_p(H) \cap K = 1$, and $O_p(H) = O_p(H)/O_p(H) \cap K = O_p(H)K/K \leq H/K \cong S_3$. This implies that p = 3, and $|O_3(H)| \leq 3$. Assume that $O_3(H) \neq 1$, and let $t \in O_3(H)$ such that o(t) = 3. It follows that t centralizes M as $M \subseteq O_2(H)$ and $[M, \langle t \rangle] \subseteq [O_2(H), O_3(H)] = 1$, and $M = O_2(K) = F^*(K)$ as K/M is simple.

Now let $x \in K$. Since $x^{-1}x^t = x^{-1}t^{-1}xt = (t^{-1})^x t \in K \cap C_H(M)$ since $K \leq H$ and $C_H(M)$ are normal subgroups of H. It follows that $x^{-1}x^t \in K \cap C_H(M) = C_K(M) = C_K(F^*(K)) \subseteq F^*(K) = M$, thus $x^{-1}x^t = z \in Z(M)$ or $x^t = xz$. This implies $x^{t^2} = xz^2$ and $x^{t^3} = xz^3$, but $t^3 = 1$. Hence z = 1 and so; $x^t = x$ for all $x \in K$. Thus t centralizes K and the proposition is proved.

Theorem 1

(i) $F^*(C_{\tilde{F}}(j_2)) = O_2(C_{\tilde{F}}(j_2))$, where $j_2 = d_1d_2 = d_2d_1$, $d_i \in D$, i = 1, 2.

- (ii) $F^*(C_{\tilde{F}}(j_3)) = O_2(C_{\tilde{F}}(j_3))$, where $j_3 = d_1 d_2 d_3$, $d_i \in D$, i = 1, 2, 3 and
- (iii) If B is a nilpotent-injector of M(22) containing an involution of type $j_1 = d_1 \in D$ in its center, then there exists a subgroup $X \leq C_{\tilde{F}}(j_1) = 2 \cdot U_6(2)$ such that $B \leq X \leq 2 \cdot U_6(2)$ with $F^*(X) = O_2(X)$.

Proof.

- (i) Let $C_{\tilde{F}}(j_2) = (M.U_4(2))$: 2, where M is a 2-group of order 2^{10} , and let H = K.2 where $K = M.U_4(2)$. If $F^*(H) \neq O_2(H)$, then $F^*(K) \neq O_2(K)$. As $5 \mid |U_4(2)|$, then by Proposition 1, there exists an element of order 5 in \tilde{F} centralizes a group of order 2^{10} , this is a contradiction as \tilde{F} contains only one element of order 5 with centralizer $Z_5 \times S_5$. See [2]. So $F^*(C_{\tilde{F}}(j_2)) = O_2(C_{\tilde{F}}(j_2))$.
- (ii) $C_{\tilde{F}}(j_3)$ is contained in a subgroup $H = 2^{5+8} \cdot (A_6 \times S_3)$. Let $K \leq H$ such that $H/K \cong S_3$ and $K/O_2(K) \cong A_6$ where $|O_2(K)| = 2^{13}$. As $5 \mid |A_6|$, by Proposition 1, it follows that $F^*(K) = O_2(K)$, otherwise there would exist an element of order 5 whose centralizer is divisible by 2^{13} , so $F^*(K) = O_2(K)$. If $F^*(H) \neq O_2(H)$, then there exists an element of order 3 in H centralizing K, this is a contradiction, compare the centralizers of elements of order 3 in \tilde{F} see [2]. So $F^*(C_{\tilde{F}}(j_3)) = O_2(C_{\tilde{F}}(j_3))$.
- (iii) If B is a nilpotent injector of M(22) such that B contains an involution of type j_1 in its centre, then $B \leq C_{\tilde{F}}(j_1) = 2 \cdot U_6(2) = H$. As $C_{\tilde{F}}(j_3)$ contains a special group of order 2^{5+8} , in particular it contains a 2groups of class ≤ 2 and of order $\geq 2^{13}$, then $d_2(\tilde{F}) \geq 2^{13} > 2.3^6$. So $d_2(B) > 2.3^6$. As B is a nilpotent injector of \tilde{F} , there exists $A \leq B$, class $(A) \leq 2$ and of order $d_2(B)$, so $Z(H) \leq A$ and $A/Z(H) \leq H/Z(H) = U_6(2)$. Thus $3^6 < \frac{1}{2}d_2(B) = \frac{1}{2}|A| = |A/Z(H)|$. This implies that $2 \mid |A/Z(H)|$, as otherwise by Flavell's bound [10] we would have that $|A/Z(H)| \leq 3^6$. Also $Z(H) \leq B$ and $B/Z(H) \leq$ $H/Z(H) = U_6(2)$. This implies that $2 \mid |B/Z(H)|$ as $A/Z(H) \leq$ B/Z(H). Consider $\bar{B} \leq H/Z(H) = U_6(2)$, and let $\bar{t} \in Z(\bar{B})$ be an involution such that $t \in B$. Hence $\bar{t} = tZ(H)$ and $C_{H/Z(H)}(tZ(H)) =$ X/Z(H) for $Z(H) \leq X \leq H$ and $B \leq X$. As $U_6(2)$ has characteristic 2, then by (Proposition 1.29, [11]), it follows that $F^*(X/Z(H)) =$ $O_2(X/Z(H))$.

Since |Z(H)| = 2, $F^*(X) = O_2(X)$. Hence the claim follows.

Corollary 2 Under the assumption of Theorem 2 (iii), B is a Sylow 2-subgroup.

Proof. By Lemma 3 and Theorem 2 (iii), it follows that B is a nilpotent injector of X, and hence a Sylow 2-subgroup. Now we are in a position to

M. I. Mohammed

prove Theorem 1.

Proof of Theorem 1. Let B be a nilpotent injector of \tilde{F} . In particular we have $d_2(B) = d_2(\tilde{F}) \ge d_{2,2}(\tilde{F}) \ge 2^{13}$. As $d_2(B) > 30 = m_3(\tilde{F})$, the order of B can have at most 2 prime divisors. As also $d_2(B) > 21 = Om_2(\tilde{F})$, we find that B is either a p-group or 2 divides its order.

Case 1 B is a p-group. Then p = 2, and B is a Sylow 2-subgroup

Proof. As $d_2(\tilde{F}) = d_2(B) = d_{2,p}(\tilde{F})$, one obtains $2^{13} \leq d_2(\tilde{F}) = d_{2,p}(B) \leq |B|$. As $|B| \geq 2^{13}$, it follows that p is either 2 or 3. As $d_{2,3}(\tilde{F}) < 2^{13}$ by Corollary 1, we have p = 2. Hence the claim follows.

Case 2 If 2 divides the order of *B*, then *B* is a Sylow 2-subgroup.

Proof. If 2 divides the order of B, then there exists an involution j in Z(B), and B is a nilpotent injector of $H = C_{\tilde{F}}(j)$. If H is 2-constrained i.e. $F^*(H) = O_2(H)$, then B is a Sylow 2-subgroup by Lemma 3, Theorem 2 and Corollary 2, or $j \in D$ and H is a quasi-simple of shape $2 \cdot U_6(2)$. It is possible to treat the case $2 \cdot U_6(2)$ using by Theorem 2 (iii) and Lemma 3. So B in fact is a Sylow 2-subgroup.

This completes the proof of Theorem 1. $\hfill \Box$

Acknowledgment I appreciate Mr. H. J. Schaeffer for his helpful discussion.

References

- Alali M. I., Hering Ch. and Neumann A., On B-injectors of sporadic groups. Communications in Algebra 27(6) (1999), 2853–2863.
- [2] Aschbacher M., 3 transposition groups, Cambridge University Press, 1997.
- [3] Aschbacher M., Sporadic Groups, Cambridge University Press, 1994.
- [4] Aschbacher M., *Finite Group Theory*. Cambridge University Press, Cambridge, (1986).
- [5] Arad Z. and Chillag D., Injectors of finite solvable groups. Communications in Algebra 7(2) (1979), 115–138.
- [6] Bialostocki A., Nilpotent injectors in symmetric groups. Israel J. Math. 41(3) (1982), 261–273.
- Bialostocki A., Nilpotent injectors in alternating groups. Israel J. Math. 44(4) (1983), 335–344.

- [8] Fischer B., Finite groups generated by 3-transpositions. Invent. Math. 13 (1971), 232-246.
- [9] Fischer B., Gaschutz W. and Hartley B., Injectoren Endlicher Auflosbarer Groupen. Math. Z. 102 (1967), 337–339.
- [10] Flavell P., Class two sections of finite classical groups. J. London. Math. Soc. 52(2) (1995), 111–120.
- [11] Gorenstein D., Finite simple groups. New York and London, (1982).
- [12] Mann A., Injectors and normal subgroups of finite groups. Israel J. Math. 9(4) (1971), 554–558.
- [13] Neumann A., Nilpotent injectors in finite groups. Archiv der Mathematik 71(5) (1998), 337–340.
- [14] Neumann A., Ph.D thesis, Tubingen University, in preparation.

Mutah University-Department of Mathematics P.O.Box 7 Mutah-Alkarak-Jordan E-mail: mashhour_ibrahim@yahoo.com