On nilpotent injectors of Fischer group $M(22)$

Mashhour Ibrahim Mohammed
(Received February 17, 2004; Revised February 22, 2006)

Abstract

The aim of this paper is to prove the following theorem: Theorem 1 The nilpotent injectors of $M(22)$ are Sylow 2-subgroups.

Key words: nilpotent injectors, generalized fitting group.

1. Introduction

A finite group G is said to be of type $M(22)$ if G possesses an involution d such that $H=C_{G}(d)$ is quasisimple with $H /\langle d\rangle \cong U_{6}(2)$ and d is not weakly closed in H with respect to G. For more information one is referred to [2]. The notion of N-injectors in a finite group G was first introduced by B. Fischer in [9] and defined as follows: A subgroup A of G is an N -injector of G, if for each $H \triangleleft \triangleleft G, A \cap H$ is a maximal nilpotent subgroup of H. In [12] it has been proved that if $C(F(G)) \subseteq F(G)$, then G contains N-injectors, they form a conjugacy class, and they can be characterized as the maximal nilpotent subgroups which contain $F(G)$ where $F(G)$ denotes the Fitting group of G. If G is solvable then N-injectors exist and any two of them are conjugate [9]. N-injectors of finite solvable groups, Symmetric groups S_{n}, and alternating group A_{n} were studied in [5], [6] and [7]. The notion of nilpotent injectors was introduced by A. Bialostocki in [6].

A nilpotent injector in a finite group G is any maximal nilpotent subgroup B of G satisfying $d_{2}(B)=d_{2}(G)$, where $d_{2}(X)$ is defined as $\operatorname{Max}\{|A|$, $A \leq X$ and A is nilpotent of class at most 2$\}$. Also we define $d_{2, p}(G)$, $m_{k}(G)$, and $O m_{k}(G)$ as follows: Let p be a prime, $d_{2, p}(G)=\max \{|P| \mid P$ is a p-subgroup of G of class at most 2$\}, m_{k}(G)=\max \left\{\left|C_{G}(x)\right| \mid x \in G\right.$, $o(x)=p_{1} p_{2} \ldots p_{k}, p_{i}$'s are distinct primes $\}$, where $o(x)$ is the order of x in G. Let $g \in G$ such that $o(g)=p_{1} p_{2} \ldots p_{k}, p_{i} \neq p_{j}$ if $i \neq j$ for $i=1, \ldots, k$, and let $\left|C_{G}(g)\right|=p_{1}^{a_{1}} p_{1}^{a_{2}} \ldots p_{k}^{a_{k}} \cdot m$ where $p_{i} \nmid m$ for $i=1, \ldots, k$, define $O m_{k}(G)=\max \left\{\left|C_{G}(x)\right| \mid o(x)=p_{1} p_{2} \ldots p_{k}, 2<p_{1}<p_{2} \cdots<p_{k}\right\}$. So we

[^0]get the following criterion: If $H \leq G$ such that H is nilpotent and $|H|$ has at least k-prime divisors different from 2, then $|H| \leq O m_{k}(G) \leq m_{k}(G)$ [1]. Nilpotent injectors are sometimes called B-injectors. The B-injectors of some sporadic groups have been determined in [1]. A. Neumann [13] studied the nilpotent injectors in finite groups, proving that nilpotent injectors are really N-injectors. The motivation behind this work is that B-injectors will lead to theorems similar to Glauberman's ZJ-Theorem and it is hoped that they provide tools and arguments for a modified and shortened proof of the classification theorem of finite simple groups. The Fischer group $M(22)$ among others turn out to be critical in answering the question whether the B-injectors are conjugate or not.

2. Preliminaries and notation

Let \tilde{F} denote the group $M(22)$. Then $\tilde{F}=\langle D\rangle$ where D is a class of involutions (3-transpositions) with the property, $t_{1}, t_{2} \in D$ implies that $o\left(t_{1} t_{2}\right)=1,2$ or 3 , where $o\left(t_{1} t_{2}\right)$ denotes the order of $t_{1} t_{2}$. So if $t_{1} \neq t_{2}$, then $\left\langle t_{1}, t_{2}\right\rangle$ is a group of order 4 , i.e. $\left\langle t_{1}, t_{2}\right\rangle \cong 2^{2}$ or $\left\langle t_{1}, t_{2}\right\rangle \cong S_{3}$, the symmetric group of degree 3. There are 3 -classes of involutions j in $M(22)$ with the following representatives
(i) $j=d \in D$ such that $C_{\tilde{F}}(d)=2 U_{6}(2)$.
(ii) $j=d_{1} d_{2}=d_{2} d_{1}$, where d_{1}, d_{2} are uniquely determined by j and if $g \in C_{\tilde{F}}(j)$, one obtains $d_{1}^{g}=d_{1}, d_{2}^{g}=d_{2}$ or $d_{1}^{g}=d_{2}, d_{2}^{g}=d_{1}$. So $C_{\tilde{F}}\left(d_{1}\right) \cap C_{\tilde{F}}\left(d_{2}\right)$ is a normal subgroup of $C_{\tilde{F}}(j)$ of index 2 .
(iii) $j=d_{1} d_{2} d_{3}$ where $d_{i} d_{j}=d_{j} d_{i}$.

Lemma 1 ([2])
(a) $C_{\tilde{F}}\left(d_{1}\right)=2 \cdot U_{6}(2)$.
(b) $C_{\tilde{F}}\left(d_{1} d_{2}\right)=2.2^{1+8}: U_{4}(2) .2$.
(c) $C_{\tilde{F}}\left(d_{1} d_{2} d_{3}\right) \leq K .\left(A_{6} \times S_{3}\right)$, where K is a 2-group isomorphic to 2^{5+8}.
(d) Let $C^{*}=C_{\tilde{F}}\left(d_{1} d_{2} d_{3}\right)$, it holds that $O_{2}\left(C^{*}\right)$ is a special group of shape 2^{5+8}, and $C^{*} / O_{2}\left(C^{*}\right)$, is isomorphic to $S_{3} \times 3^{2}: 4$, where $O_{p}(G)$ is the unique maximal normal p-subgroup of G. Moreover for $M=N_{\tilde{F}}\left(O_{2}\left(C^{*}\right)\right)$ it holds that $M / O_{2}\left(C^{*}\right)$ is isomorphic to $S_{3} \times A_{6}$, where M is maximal in \tilde{F} and it is 2 -constrained.
Corollary $1 \quad d_{2}(\tilde{F}) \geq d_{2,2}(\tilde{F}) \geq 2^{13}>d_{2,3}(\tilde{F})$.

Proof. From Lemma 1 we get $d_{2,2}(\tilde{F}) \geq 2^{13}$. The Sylow 3 -subgroups of \tilde{F} have order 3^{9}, and are isomorphic to Sylow 3 -subgroups of $O(7,3)$. As \tilde{F} contains subgroups isomorphic to $O(7,3)$, it can be easily verified that Sylow 3 -subgroups of $O(7,3)$ are of class greater than 2 . Hence $d_{2,3}(\tilde{F}) \leq 3^{8} \leq 2^{13}$, and the claim follows.

3. Definitions and results

Our notation is fairly standard. Throughout, all groups are finite. If G is a group, the generalized Fitting group $F^{*}(G)$ is defined by $F^{*}(G)=$ $F(G) E(G)$ where $E(G)=\langle L / L \triangleleft \triangleleft G$ and L is quasisimple \rangle is a subgroup of G. A group L is called quasisimple iff $L^{\prime}=L$ where L^{\prime} is the derived group of L and $L^{\prime} / Z(L)$ is a non abelian simple group. Let $Z(G)$ denote the center of G. If H and X are subsets of $G, C_{H}(X)$ and $N_{H}(X)$ denote respectively the centralizer and normalizer of X in H. The components of a group X are its subnormal quasisimple subgroups.

Lemma 2

(a) If K is a quasi-simple group, and $M \unlhd K$, then $M=K$ or $M \subseteq Z(K)$.
(b) If $N \unlhd G$ and G / N is solvable, then $E(G)=E(N)$.

Proof.
(a) Since $M \unlhd K, M Z(K) / Z(K) \unlhd K / Z(K)$. As $K / Z(K)$ is simple, it follows that $M Z(K)=K$ or $M Z(K)=Z(K)$. If $M Z(K)=K$, then $K=K^{\prime}=(M Z(K))^{\prime}=M^{\prime} \subseteq M$, so $K \subseteq M \subseteq K$, and thus $K=M$.
(b) If K is a component of G, then $N \cap K \unlhd K$ and $K / K \cap N \cong K N / N \leq$ G / N. As G / N is solvable, $K / K \cap N$ is solvable, and by (a), $K \cap N=K$ or $K \cap N \leq Z(K)$. If $K \cap N=K$, then $K \subseteq N$ and if $K \cap N \leq Z(K)$, it follows that $K / Z(K) \cong K / K \cap N / Z(K) / K \cap N$. So $K / Z(K)$ is a factor group of $K / K \cap N$ which implies that $K / Z(K)$ is solvable, a contradiction.

Lemma 3 ([1]) Let H be a nilpotent injector of a group G. If there exists a subgroup $M \leq G$ such that:
(i) $H \leq M \leq G$.
(ii) $F^{*}(M)=O_{p}(M)$, then H is a Sylow p-subgroup of G.

Proposition 1 Let H be a finite group such that $H / O_{2}(H)$ is a nonabelian simple group, then $F^{*}(H)=O_{2}(H)$ or any element of odd order in
H centralizes $O_{2}(H)$.
Proof. Since $O_{2}(H) \leq F(H) \leq F^{*}(H) \unlhd H, F(H) / O_{2}(H) \unlhd H / O_{2}(H)$ and $F^{*}(H) / O_{2}(H) \unlhd H / O_{2}(H)$. As $H / O_{2}(H)$ is simple, we see that $F(H)$ $=O_{2}(H)$ and $F^{*}(H)=O_{2}(H)$ or $F^{*}(H)=H$. So, assume that $F^{*}(H)=H$. Thus $H=F^{*}(H)=F(H) E(H)=O_{2}(H) E(H)$ and $\left[E(H), O_{2}(H)\right]=1$. If p is an odd prime divisor of $|H|$, then the Sylow p-subgroups of $E(H)$ are also Sylow p-subgroups of H. So let P be a Sylow p-subgroup of H, this implies that there exists $x \in H$ such that $P^{x} \leq E(H) \leq C_{H}\left(O_{2}(H)\right) \unlhd H$, so $P \leq\left(C_{H}\left(O_{2}(H)\right)\right)^{x^{-1}}=C_{H}\left(O_{2}(H)\right)$. Hence for any odd prime p, all the Sylow p-subgroups of H are contained in $C_{H}\left(O_{2}(H)\right)$. Thus $H / C_{H}\left(O_{2}(H)\right)$ is a 2-group. So, any element of odd order centralizes $O_{2}(H)$.

Proposition 2 If M, K are two normal subgroups of H, such that $M<$ $K \leq H, M$ is a 2 -group, K / M is a non abelian simple group, $H / K \cong S_{3}$ and $F^{*}(K)=O_{2}(K)$, then $F^{*}(H)=O_{2}(H)$ or there exists an element $t \in H$, such that $o(t)=3$ and t centralizes K.

Proof. As $H / K \cong S_{3}$ is solvable, and $F^{*}(K)=O_{2}(K)$, it follows that $E(H)=E(K)=1$. So $F^{*}(H)=F(H)$ and $O_{p}(H) \cap K \subset O_{p}(K) \subseteq$ $F^{*}(K)=O_{2}(K)$. Hence if $p \neq 2$, then $O_{p}(H) \cap K=1$, and $O_{p}(H)=$ $O_{p}(H) / O_{p}(H) \cap K=O_{p}(H) K / K \leq H / K \cong S_{3}$. This implies that $p=3$, and $\left|O_{3}(H)\right| \leq 3$. Assume that $O_{3}(H) \neq 1$, and let $t \in O_{3}(H)$ such that $o(t)=3$. It follows that t centralizes M as $M \subseteq O_{2}(H)$ and $[M,\langle t\rangle] \subseteq$ $\left[O_{2}(H), O_{3}(H)\right]=1$, and $M=O_{2}(K)=F^{*}(K)$ as K / M is simple.

Now let $x \in K$. Since $x^{-1} x^{t}=x^{-1} t^{-1} x t=\left(t^{-1}\right)^{x} t \in K \cap C_{H}(M)$ since $K \unlhd H$ and $C_{H}(M)$ are normal subgroups of H. It follows that $x^{-1} x^{t} \in K \cap C_{H}(M)=C_{K}(M)=C_{K}\left(F^{*}(K)\right) \subseteq F^{*}(K)=M$, thus $x^{-1} x^{t}=$ $z \in Z(M)$ or $x^{t}=x z$. This implies $x^{t^{2}}=x z^{2}$ and $x^{t^{3}}=x z^{3}$, but $t^{3}=1$. Hence $z=1$ and so; $x^{t}=x$ for all $x \in K$. Thus t centralizes K and the proposition is proved.

Theorem 1

(i) $F^{*}\left(C_{\tilde{F}}\left(j_{2}\right)\right)=O_{2}\left(C_{\tilde{F}}\left(j_{2}\right)\right)$, where $j_{2}=d_{1} d_{2}=d_{2} d_{1}, d_{i} \in D, i=1,2$.
(ii) $F^{*}\left(C_{\tilde{F}}\left(j_{3}\right)\right)=O_{2}\left(C_{\tilde{F}}\left(j_{3}\right)\right)$, where $j_{3}=d_{1} d_{2} d_{3}, d_{i} \in D, i=1,2,3$ and
(iii) If B is a nilpotent-injector of $M(22)$ containing an involution of type $j_{1}=d_{1} \in D$ in its center, then there exists a subgroup $X \leq C_{\tilde{F}}\left(j_{1}\right)=$ $2 \cdot U_{6}(2)$ such that $B \leq X \leq 2 \cdot U_{6}(2)$ with $F^{*}(X)=O_{2}(X)$.

Proof.
(i) Let $C_{\tilde{F}}\left(j_{2}\right)=\left(M . U_{4}(2)\right)$: 2 , where M is a 2 -group of order 2^{10}, and let $H=K .2$ where $K=M . U_{4}(2)$. If $F^{*}(H) \neq O_{2}(H)$, then $F^{*}(K) \neq$ $O_{2}(K)$. As $5\left|\left|U_{4}(2)\right|\right.$, then by Proposition 1, there exists an element of order 5 in \tilde{F} centralizes a group of order 2^{10}, this is a contradiction as \tilde{F} contains only one element of order 5 with centralizer $Z_{5} \times S_{5}$. See [2]. So $F^{*}\left(C_{\tilde{F}}\left(j_{2}\right)\right)=O_{2}\left(C_{\tilde{F}}\left(j_{2}\right)\right)$.
(ii) $C_{\tilde{F}}\left(j_{3}\right)$ is contained in a subgroup $H=2^{5+8} \cdot\left(A_{6} \times S_{3}\right)$. Let $K \unlhd H$ such that $H / K \cong S_{3}$ and $K / O_{2}(K) \cong A_{6}$ where $\left|O_{2}(K)\right|=2^{13}$. As $5\left|\left|A_{6}\right|\right.$, by Proposition 1, it follows that $F^{*}(K)=O_{2}(K)$, otherwise there would exist an element of order 5 whose centralizer is divisible by 2^{13}, so $F^{*}(K)=O_{2}(K)$. If $F^{*}(H) \neq O_{2}(H)$, then there exists an element of order 3 in H centralizing K, this is a contradiction, compare the centralizers of elements of order 3 in \tilde{F} see [2]. So $F^{*}\left(C_{\tilde{F}}\left(j_{3}\right)\right)=$ $O_{2}\left(C_{\tilde{F}}\left(j_{3}\right)\right)$.
(iii) If B is a nilpotent injector of $M(22)$ such that B contains an involution of type j_{1} in its centre, then $B \leq C_{\tilde{F}}\left(j_{1}\right)=2 \cdot U_{6}(2)=H$. As $C_{\tilde{F}}\left(j_{3}\right)$ contains a special group of order 2^{5+8}, in particular it contains a 2 groups of class ≤ 2 and of order $\geq 2^{13}$, then $d_{2}(\tilde{F}) \geq 2^{13}>2.3^{6}$. So $d_{2}(B)>2.3^{6}$. As B is a nilpotent injector of \tilde{F}, there exists $A \leq B$, class $(A) \leq 2$ and of order $d_{2}(B)$, so $Z(H) \leq A$ and $A / Z(H) \leq H / Z(H)=U_{6}(2)$. Thus $3^{6}<\frac{1}{2} d_{2}(B)=\frac{1}{2}|A|=|A / Z(H)|$. This implies that $2||A / Z(H)|$, as otherwise by Flavell's bound [10] we would have that $|A / Z(H)| \leq 3^{6}$. Also $Z(H) \leq B$ and $B / Z(H)$ $\leq H / Z(H)=U_{6}(2)$. This implies that $2||B / Z(H)|$ as $A / Z(H) \leq$ $B / Z(H)$. Consider $\bar{B} \leq H / Z(H)=U_{6}(2)$, and let $\bar{t} \in Z(\bar{B})$ be an involution such that $t \in B$. Hence $\bar{t}=t Z(H)$ and $C_{H / Z(H)}(t Z(H))=$ $X / Z(H)$ for $Z(H) \leq X \leq H$ and $B \leq X$. As $U_{6}(2)$ has characteristic 2, then by (Proposition 1.29, [11]), it follows that $F^{*}(X / Z(H))=$ $O_{2}(X / Z(H))$.

Since $|Z(H)|=2, F^{*}(X)=O_{2}(X)$. Hence the claim follows.
Corollary 2 Under the assumption of Theorem 2 (iii), B is a Sylow 2subgroup.

Proof. By Lemma 3 and Theorem 2 (iii), it follows that B is a nilpotent injector of X, and hence a Sylow 2-subgroup. Now we are in a position to
prove Theorem 1.
Proof of Theorem 1. Let B be a nilpotent injector of \tilde{F}. In particular we have $d_{2}(B)=d_{2}(\tilde{F}) \geq d_{2,2}(\tilde{F}) \geq 2^{13}$. As $d_{2}(B)>30=m_{3}(\tilde{F})$, the order of B can have at most 2 prime divisors. As also $d_{2}(B)>21=O m_{2}(\tilde{F})$, we find that B is either a p-group or 2 divides its order.

Case $1 \quad B$ is a p-group. Then $p=2$, and B is a Sylow 2-subgroup
Proof. As $d_{2}(\tilde{F})=d_{2}(B)=d_{2, p}(\tilde{F})$, one obtains $2^{13} \leq d_{2}(\tilde{F})=d_{2, p}(B) \leq$ $|B|$. As $|B| \geq 2^{13}$, it follows that p is either 2 or 3 . As $d_{2,3}(\tilde{F})<2^{13}$ by Corollary 1, we have $p=2$. Hence the claim follows.

Case 2 If 2 divides the order of B, then B is a Sylow 2-subgroup.
Proof. If 2 divides the order of B, then there exists an involution j in $Z(B)$, and B is a nilpotent injector of $H=C_{\tilde{F}}(j)$. If H is 2-constrained i.e. $F^{*}(H)=O_{2}(H)$, then B is a Sylow 2-subgroup by Lemma 3, Theorem 2 and Corollary 2, or $j \in D$ and H is a quasi-simple of shape $2 \cdot U_{6}(2)$. It is possible to treat the case $2 \cdot U_{6}(2)$ using by Theorem 2 (iii) and Lemma 3. So B in fact is a Sylow 2-subgroup.

This completes the proof of Theorem 1.
Acknowledgment I appreciate Mr. H. J. Schaeffer for his helpful discussion.

References

[1] Alali M. I., Hering Ch. and Neumann A., On B-injectors of sporadic groups. Communications in Algebra 27(6) (1999), 2853-2863.
[2] Aschbacher M., 3 transposition groups, Cambridge University Press, 1997.
[3] Aschbacher M., Sporadic Groups, Cambridge University Press, 1994.
[4] Aschbacher M., Finite Group Theory. Cambridge University Press, Cambridge, (1986).
[5] Arad Z. and Chillag D., Injectors of finite solvable groups. Communications in Algebra $\mathbf{7}(2)$ (1979), 115-138.
[6] Bialostocki A., Nilpotent injectors in symmetric groups. Israel J. Math. 41(3) (1982), 261-273.
[7] Bialostocki A., Nilpotent injectors in alternating groups. Israel J. Math. 44(4) (1983), 335-344.
[8] Fischer B., Finite groups generated by 3-transpositions. Invent. Math. 13 (1971), 232-246.
[9] Fischer B., Gaschutz W. and Hartley B., Injectoren Endlicher Auflosbarer Groupen. Math. Z. 102 (1967), 337-339.
[10] Flavell P., Class two sections of finite classical groups. J. London. Math. Soc. 52(2) (1995), 111-120.
[11] Gorenstein D., Finite simple groups. New York and London, (1982).
[12] Mann A., Injectors and normal subgroups of finite groups. Israel J. Math. 9(4) (1971), 554-558.
[13] Neumann A., Nilpotent injectors in finite groups. Archiv der Mathematik 71(5) (1998), 337-340.
[14] Neumann A., Ph.D thesis, Tubingen University, in preperation.

Mutah University-Department of Mathematics P.O.Box 7
Mutah-Alkarak-Jordan
E-mail: mashhour_ibrahim@yahoo.com

[^0]: 2000 Mathematics Subject Classification : 20E28.

