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Change of variables for weighted Hardy spaces on a domain

Akihiko Miyachi
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Abstract. A generalized version of weighted Hardy spaces on a Euclidean domain

is introduced and it is proved that the spaces are transformed to the same kind of

spaces by certain smooth change of variables. Some related properties of the spaces,

including a modified form of atomic decomposition, and some examples are also given.
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1. Introduction

After the pioneering work of Fefferman and Stein [FS], in which the
Hardy space Hp(Rn) was introduced, several authors introduced variants of
Hp(Rn). Goldberg [G] introduced the local Hardy space hp(Rn). Strömberg
and Torchinsky [ST] introduced the weighted Hardy spaces Hp

w(Rn). The
present author introduced the Hardy space Hp(Ω) on a Euclidean domain in
[M1] and its weighted version Hp(Ω, λ) in [M2] and [M3]. The purpose of the
present paper is to introduce the Hardy spaces Hp(Ω, T, λ) for open subset
Ω of Rn and show, among other things, that certain change of variables
in the basic domain Ω transforms the space Hp(Ω, T, λ) into a space of
the same kind. Our spaces Hp(Ω, T, λ) include, as their special cases, the
spaces hp(Rn), Hp(Ω), Hp(Ω, λ), and also the local version of Hp

w(Rn). Our
result will show, for example, Goldberg’s space hp(R) is transformed to the
space Hp((0, 1), dx/x(1 − x)) of [M2] and [M3] by the change of variables
y = log(x/(1− x)). In this section, we shall explain the main results of this
paper in some detail.

The following notation is used throughout this paper.

Notation The letters Ω and Ω̃ always denote open subsets of Rn. We
write D′(Ω) to denote the set of all distributions on Ω. If Ω 6= Rn, we write

dΩ(x) = dis(x,Ωc) = inf{|x− y| | y ∈ Rn \ Ω} (x ∈ Ω).
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For x ∈ Rn and r ∈ (0,∞), we write the open Euclidean ball with center x

and radius r as B(x, r). If B = B(x, r) is a ball and if a ∈ (0,∞), then we
write aB = B(x, ar). If λ is a Borel measure on Ω and p ∈ (0,∞), we write

‖f‖Lp(Ω,λ) =
( ∫

Ω

|f(x)|pdλ(x)
)1/p

.

If k is a nonnegative integer, then Pk denotes the set of all polynomial
functions on Rn of degree not exceeding k. We write ‖ · ‖L∞ and L∞ to
denote the L∞-norm and the L∞-space on Rn with respect to the Lebesgue
measure. For E ⊂ Rn, the closure of E in Rn is denoted by E. If F and G

are functions defined on a set X taking values in [0,∞) ∪ {∞} and if there
exists a constant A ∈ (0,∞) such that F (x) 5 AG(x) for all x ∈ X, then
we write ‘F (x) . G(x) for x ∈ X’ or ‘G(x) & F (x) for x ∈ X’. We write
‘F (x) ≈ G(x) for x ∈ X’ if F (x) . G(x) and G(x) . F (x) for x ∈ X. We
often omit to mention the set X if it is obviously recognized from the context.
We use the letter c to denote positive constants, which may not be the same
at different places. We write c(α, β, . . . ), for example, to denote a positive
constant which depends only on α, β, . . . . If P (x, y, . . . ) is a proposition
containing variables x, y, . . . , then we define 1{P (x, y, . . . )} to be equal to
1 if the proposition P (x, y, . . . ) is true and to 0 if P (x, y, . . . ) is false. We
write 1E to denote the defining function of a set E; thus 1E(x) = 1{x ∈ E}.

Now the T and λ in Hp(Ω, T, λ) are the ones in the following definitions.

Definition 1.1 If Ω 6= Rn, then T (Ω) denotes the set of all functions T

on Ω that satisfy the following two conditions:
( i ) 0 < T (x) 5 dis(x,Ωc) for all x ∈ Ω;
(ii) |T (x)− T (y)| 5 |x− y| for all x, y ∈ Ω.
If Ω = Rn, then T (Ω) = T (Rn) denotes the set of all positive real-valued
functions T that satisfy the condition (ii).

Notice that, if T ∈ T (Ω) and α ∈ (0, 1], then αT ∈ T (Ω).
For T ∈ T (Ω), x ∈ Ω, and δ ∈ (0,∞), we write

UT (x, δ) = B(x, δT (x)).

For T ∈ T (Ω), we write B(Ω, T ) to denote the set of all balls B(x, r) with
x ∈ Ω and 0 < r < T (x).
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Definition 1.2 Let T ∈ T (Ω) and σ ∈ (0,∞). Then Double∗(Ω, T, σ)
denotes the set of all Borel measures λ on Ω for which there exist α ∈ (0, 1)
and A ∈ [1,∞) such that

0 < λ(B) 5 Atσλ(t−1B) < ∞ (1.1)

for all balls B ∈ B(Ω, αT ) and for all t ∈ [1,∞).

Some basic facts about the measures in Double∗(Ω, T, σ) and about
the related Hardy-Littlewood maximal operator will be given in Section 2,
where, in particular, we shall show that, for Ω 6= ∅, the class Double∗(Ω, T, σ)
is nonempty only if σ = n (see Lemma 2.2 (1)).

To define the space Hp(Ω, T, λ), we use the maximal functions for dis-
tributions that are defined as follows.

Definition 1.3 Let T ∈ T (Ω) and s ∈ (0,∞).
(1) For C∞ functions ψ on Rn, we define

‖ψ‖Λ(s) = sup
B

[
inf

{
|B|−1−s/n

∫

B

|ψ(x)− P (x)|dx

∣∣∣∣ P ∈ P[s]

}]
,

where the sup is taken over all balls B of Rn.
(2) For a ball B of Rn, we define As(B) to be the set of all ψ ∈ C∞0 (Rn)
such that suppψ ⊂ B and ‖ψ‖Λ(s) 5 t−n−s, where t is the radius of B.
(3) For α ∈ (0, 1] and x ∈ Ω, we define AαT

s (x) to be the union of As(B)
over all balls B satisfying x ∈ B ∈ B(Ω, αT ).
(4) For f ∈ D′(Ω) and α ∈ (0, 1], we define the maximal function f∗,αT

s (x)
(x ∈ Ω) by

f∗,αT
s (x) = sup

{|〈f, ψ〉| | ψ ∈ AαT
s (x)

}
.

The space Hp(Ω, T, λ) is defined as follows.

Definition 1.4 Let p ∈ (0,∞), σ ∈ [n,∞), and λ ∈ Double∗(Ω, T, σ).
Take a positive real number α with α < 1/3 and take a positive real number
s satisfying n + s > max{σ/p, σ}. Then we define, for f ∈ D′(Ω),

‖f‖Hp(Ω,T,λ) = ‖f∗,αT
s ‖Lp(Ω,λ)
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and define Hp(Ω, T, λ) as the set of all f ∈ D′(Ω) such that ‖f‖Hp(Ω,T,λ) <

∞.

In Section 3, we shall show that the equivalence class of the quasinorm
‖·‖Hp(Ω,T,λ) and the space Hp(Ω, T, λ) do not depend on the choice of α and
s (see Theorem 3.2). In the same section, we shall also give other maximal
functions which characterize Hp(Ω, T, λ) (see Theorems 3.4 and 3.7).

Remark 1.5 If Ω = Rn, T (x) = 1, and λ = the Lebesgue measure,
then Hp(Ω, T, λ) coincides with hp(Rn) of [G]. If Ω = Rn, T (x) = 1, and
dλ(x) = w(x)dx, then Hp(Ω, T, λ) is the local version of Hp

w(Rn) of [ST]. If
Ω 6= Rn, T (x) = dis(x,Ωc), and λ = the Lebesgue measure, then Hp(Ω, T, λ)
coincides with Hp(Ω) of [M1]. If Ω 6= Rn and T (x) = dis(x,Ωc), then
Hp(Ω, T, λ) coincides with Hp(Ω, λ) of [M2] and [M3].

In order to state the result on the change of variables for Hp(Ω, T, λ),
we use the following notation. Let Φ : Ω → Ω̃ be a C∞ diffeomorphism.
We write JΦ and JΦ−1 to denote the Jacobian determinant of Φ and Φ−1,
respectively. For f ∈ D′(Ω), the distribution f ◦ Φ−1 ∈ D′(Ω̃) is defined by

〈f ◦ Φ−1, ϕ〉 = 〈f, (ϕ ◦ Φ)|JΦ|〉 (ϕ ∈ C∞0 (Ω̃)).

If λ is a Borel measure on Ω, then Φ∗λ is defined to be the Borel measure
on Ω̃ that satisfy

∫

Ω̃

g(y)d(Φ∗λ)(y) =
∫

Ω

g(Φ(x))dλ(x)

for all nonnegative Borel functions g on Ω̃.
Here is a remark. If λ is a Borel measure on Ω and if λ takes finite values

for compact subsets of Ω, then λ could be considered as a distribution on Ω
by

〈λ, ϕ〉 =
∫

Ω

ϕ(x)dλ(x) (ϕ ∈ C∞0 (Ω)).

In this case, although λ ◦ Φ−1 is also a Borel measure on Ω̃, it is not equal
to the Borel measure Φ∗λ. The true relation is this:

d(Φ∗λ)(y) = |JΦ−1(y)|d(λ ◦ Φ−1)(y).
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If the distribution f is a locally integrable function on Ω, then the
distribution f ◦Φ−1 coincides with the composite function f ◦Φ−1, which is
a locally integrable function on Ω̃. In this case, their Lp(Ω, λ)-quasinorms
are related by the equality

‖f‖Lp(Ω,λ) = ‖f ◦ Φ−1‖Lp(Ω̃,Φ∗λ).

The following theorem, which is the first main theorem of this paper, claims
that the Hp(Ω, T, λ)-quasinorms satisfy the similar relation if Φ satisfies
certain conditions.

Theorem 1.6 Let T ∈ T (Ω), T̃ ∈ T (Ω̃), and let Φ : Ω → Ω̃ be a C∞

diffeomorphism. Assume the following :
(a) There exists a constant G ∈ (0,∞) such that

|JΦ(x)| = G−1T̃ (Φ(x))nT (x)−n

for all x ∈ Ω;
(b) For each multi-index α 6= 0, there exists Cα ∈ (0,∞) such that

|∂α
x Φ(x)| 5 CαT̃ (Φ(x))T (x)−|α|

for all x ∈ Ω.
Then the following hold for each σ ∈ [n,∞).
(1) For Borel measures λ on Ω and the corresponding Borel measures Φ∗λ
on Ω̃, we have λ ∈ Double∗(Ω, T, σ) if and only if Φ∗λ ∈ Double∗(Ω̃, T̃ , σ).
(2) If λ ∈ Double∗(Ω, T, σ) and Φ∗λ ∈ Double∗(Ω̃, T̃ , σ) and if p ∈ (0,∞),
then ‖f‖Hp(Ω,T,λ) ≈ ‖f ◦ Φ−1‖Hp(Ω̃,T̃ ,Φ∗λ) for all f ∈ D′(Ω).

This theorem will be proved in Section 4. In the same section, we
also give some properties of the mappings Φ that satisfy the conditions of
the theorem. Some examples of the mappings Φ will be given in Section 7,
where we shall also prove that every conformal mapping of the 2-dimensional
domain satisfies the conditions of Theorem 1.6 (see Proposition 7.7).

The next theorem concerns with the multiplication of the distributions
of Hp(Ω, T, λ) by a smooth function.

Suppose w is a positive real-valued C∞ function on Ω. Then we can
multiply every distribution f on Ω by w and define wf as a distribution on
Ω. If f is a locally integrable function, then wf is also a locally integrable



524 A. Miyachi

function and the Lp-quasinorms of f and wf satisfy the relation

‖wf‖Lp(Ω,λ) = ‖f‖Lp(Ω,wpλ),

where, for a Borel measure λ on Ω, the Borel measure wpλ is defined in such
a way that

∫

Ω

g(x)d(wpλ)(x) =
∫

Ω

g(x)w(x)pdλ(x)

for all nonnegative Borel functions g on Ω. Our next theorem will claim that
similar relation holds for the Hp(Ω, T, λ)-quasinorms if w satisfies certain
conditions. The conditions on w reads as follows.

Definition 1.7 Let T ∈ T (Ω). A function w is said to be of class W (Ω, T )
if it is a positive real-valued C∞ function on Ω and if for each multi-index
α there exists a constant Aα ∈ (0,∞) such that

|∂α
x w(x)| 5 Aαw(x)T (x)−|α| (1.2)

for all x ∈ Ω.

The following is the second main theorem of this paper.

Theorem 1.8 Let T ∈ T (Ω), w ∈ W (Ω, T ), σ ∈ [n,∞), and p ∈ (0,∞).
Then the following hold.
(1) A Borel measure λ on Ω is of the class Double∗(Ω, T, σ) if and only if
wpλ is of the class Double∗(Ω, T, σ).
(2) If λ ∈ Double∗(Ω, T, σ), then ‖wf‖Hp(Ω,T,λ) ≈ ‖f‖Hp(Ω,T,wpλ) for all
f ∈ D′(Ω).

This theorem will be proved in Section 5, where some properties of the
functions in the class W (Ω, T ) will also be given.

The third main theorem of this paper concerns with the atomic decom-
position. One of the fundamental result in the theory of Hardy spaces is
that they can be characterized in terms of atomic decomposition. In most
cases, atoms h are required to satisfy the moment condition such as

∫
h(x)P (x)dx = 0 for all P ∈ Pm−1.
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We shall give an atomic decomposition theorem for Hp(Ω, T, λ) in terms of
atoms h that satisfy the moment condition of the form

∫
h(x)P (Φ(x))w(x)dx = 0 for all P ∈ Pm−1, (1.3)

where Φ is a mapping satisfying the conditions of Theorem 1.6 and w is a
function of class W (Ω, T ). The precise statement will be given in Theorem
6.1 in Section 6.

2. Doubling measures and maximal functions

In this section, we give some basic facts about the measures of the class
Double∗(Ω, T, σ) and the Hardy–Littlewood maximal operator related to the
measure λ ∈ Double∗(Ω, T, σ). The results will be used in the next section
to prove some fundamental facts about the spaces Hp(Ω, T, λ).

We shall first prove some properties of the measures in the class
Double∗(Ω, T, σ). We shall introduce the following notation.

Definition 2.1 Let T ∈ T (Ω), σ ∈ (0,∞), and A ∈ [1,∞). If λ is a Borel
measure on Ω and if the inequalities (1.1) hold for all balls B ∈ B(Ω, T ) and
for all t ∈ [1,∞), then we write λ ∈ Double(Ω, T, σ,A).

Using this notation, Definition 1.2 reads as follows: A Borel measure
λ on Ω belongs to the class Double∗(Ω, T, σ) if it belongs to the class
Double(Ω, αT, σ,A) for some α ∈ (0, 1) and some A ∈ [1,∞).

We have the following.

Lemma 2.2 Let T ∈ T (Ω) and σ ∈ (0,∞).
(1) If Ω 6= ∅ and Double∗(Ω, T, σ) 6= ∅, then σ = n.
(2) If λ ∈ Double∗(Ω, T, σ), then, for each α ∈ (0, 1), there exists an Ã ∈
[1,∞) such that λ ∈ Double(Ω, αT, σ, Ã).

Proof. (1) Suppose Ω 6= ∅ and λ ∈ Double∗(Ω, T, σ). Take α ∈ (0, 1)
and A ∈ [1,∞) such that λ ∈ Double(Ω, αT, σ,A). Take a ball B(x0, t0) ∈
B(Ω, 3−1αT ). For each ε ∈ (0, 1/2), we take disjoint balls Bj = B(xj , εt0)
(j = 1, . . . , N) included in B0. It is possible to take N ≈ ε−n. We have
B0 ⊂ Bj(xj , 2t0) and B(xj , 2t0) ∈ B(Ω, αT ) since αT (xj) = αT (x0)− |xj −
x0| > 2t0. Hence the doubling condition λ ∈ Double(Ω, αT, σ,A) implies
that
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λ(B0) 5 λ(B(xi, 2t0)) 5 A(2/ε)σλ(Bj)

and thus

Nλ(B0) 5
N∑

j=1

A(2/ε)σλ(Bj) 5 A(2/ε)σλ(B0). (2.1)

Since λ(B0) ∈ (0,∞) and since N ≈ ε−n, (2.1) is possible only when σ = n.
(2) Suppose λ ∈ Double∗(Ω, T, σ). Then there exist α0 ∈ (0, 1) and

A ∈ [1,∞) such that λ ∈ Double(Ω, α0T, σ,A). Let α ∈ (0, 1). We shall
prove that λ ∈ Double(Ω, αT, σ, Ã) for some Ã ∈ [1,∞). It is sufficient
to consider only the case α > α0. Take ε ∈ (0, 1) so small that we have
α−1 − 1 + ε > 6ε/α0. Suppose B0 = B(x0, r0) ∈ B(Ω, αT ).

For each x ∈ (1−ε)B0, we set Qx = B(x, 2εr0). Then, for x ∈ (1−ε)B0,
we have 4−1Qx ⊂ (1 − 2−1ε)B0 and 3Qx ∈ B(Ω, α0T ), the latter of which
comes from

T (x) = T (x0)− |x− x0| > α−1r0 − (1− ε)r0 > 6εr0/α0.

By elementary geometry for Euclidean metric, we see that the balls Qx with
x ∈ (1 − ε)B0 cover B0. Then we can select a finite number of balls Qxj

with xj ∈ (1−ε)B0 (j = 1, 2, . . . , m) such that the balls Qxj
are disjoint and

the balls 3Qxj
cover B0. Since 3Qxj

∈ B(Ω, α0T ), the assumed doubling
condition λ ∈ Double(Ω, α0T, σ,A) yields

λ(3Qxj
) 5 12σAλ(4−1Qxj

).

Hence

λ(B0) 5
m∑

j=1

λ(3Qxj ) 5 12σA

m∑

j=1

λ(4−1Qxj )

= 12σAλ

( m⋃

j=1

4−1Qxj

)
5 12σAλ((1− 2−1ε)B0). (2.2)

We write A1 = 12σA. Then repeated application of (2.2) gives

λ(B0) 5 Ak
1λ((1− 2−1ε)kB0) (2.3)
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for all positive integers k.
We take a positive integer N such that (1 − 2−1ε)N 5 α0/α. If 1 =

t−1 = α0/α, then (2.3) with k = N yields

λ(B0) 5 AN
1 λ((1− 2−1ε)NB0) 5 AN

1 λ(t−1B0). (2.4)

If α0/α > t−1 > 0, then, since (α0/α)B0 ∈ B(Ω, α0T ), the inequality (2.3)
with k = N and the assumed doubling condition λ ∈ Double(Ω, α0T, σ,A)
yield

λ(B0) 5 AN
1 λ((1− 2−1ε)NB0) 5 AN

1 λ((α0/α)B0)

5 AN
1 A(α0t/α)σλ(t−1B0). (2.5)

From (2.4) and (2.5), we see that λ ∈ Double(Ω, αT, σ, Ã) with Ã =
max{AN

1 , AN
1 A(α0/α)σ}. Lemma 2.2 is proved.

If λ ∈ Double∗(Ω, T, σ), then Lemma 2.2 (2) asserts that, for each α ∈
(0, 1), there exists an Aα ∈ [1,∞) such that λ ∈ Double(Ω, αT, σ,Aα). We
call any such function (0, 1) 3 α 7→ Aα ∈ [1,∞) the doubling constant of λ

in Double∗(Ω, T, σ).
We shall use the following variant of the Hardy–Littlewood maximal

operator.

Definition 2.3 Let T ∈ T (Ω), λ ∈ Double∗(Ω, T, σ) for some σ ∈ [n,∞),
and let α ∈ (0, 1). For nonnegative Borel functions f on Ω, we define the
function MαT

λ (f)(x) (x ∈ Ω) by

MαT
λ (f)(x) = sup

{
1

λ(B)

∫

B

f(y)dλ(y)
∣∣∣∣ x ∈ B ∈ B(Ω, αT )

}
.

For r ∈ (0,∞), we define MαT
λ,r (f) = [MαT

λ (fr)(x)]1/r.

The following lemma gives the fundamental estimates for MαT
λ (f).

Lemma 2.4 Let T ∈ T (Ω), σ ∈ [n,∞), and λ ∈ Double∗(Ω, T, σ). Let f

and fj denote nonnegative Borel functions on Ω.
(1) If 0 < α < 1/3 and 1 < p 5 ∞, then

∥∥MαT
λ (f)

∥∥
Lp(Ω,λ)

5 c‖f‖Lp(Ω,λ),
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where c depends only on α, p, σ, and on the doubling constant of λ.
(2) If 0 < α < 1/9 and 1 < p, q < ∞, then

∥∥∥∥
[ ∞∑

j=1

{MαT
λ (fj)}q

]1/q∥∥∥∥
Lp(Ω,λ)

5 c

∥∥∥∥
[ ∞∑

j=1

fq
j

]1/q∥∥∥∥
Lp(Ω,λ)

,

where c depends only on α, p, q, σ, and on the doubling constant of λ.

This lemma can be proved by slightly modifying the argument for the
classical case where Ω = Rn and T is replaced with ∞. We shall omit the
proof. As for the argument for the classical case, see, e.g., [S, Chapter I,
Section 3] and [ST, Chapter I, Theorem 3]. As for the assumptions on the
parameter α, cf. the comments in [M3, Lemmas 2.1 and 2.2].

As an application of Lemma 2.4 (2), we can prove the following.

Lemma 2.5 Let T ∈ T (Ω), σ ∈ [n,∞), and λ ∈ Double∗(Ω, T, σ). Let
α ∈ (0, 1/9), p, q ∈ (0,∞), and let µ be a real number satisfying µ >

max{σ/p, σ/q}. Then there exists a constant c such that the following in-
equalities hold for all Bj = B(xj , rj) ∈ B(Ω, αT ), all aj ∈ [0,∞], and all
ε ∈ (0, 1]:

∥∥∥∥
[ ∞∑

j=1

aq
j

(
1 + r−1

j | · −xj |
)−µq

1{| · −xj | < αT (xj)}
]1/q∥∥∥∥

Lp(Ω,λ)

5 cε−µ

∥∥∥∥
[ ∞∑

j=1

aq
j1εBj

]1/q∥∥∥∥
Lp(Ω,λ)

, (2.6)

∥∥∥∥
[ ∞∑

j=1

aq
j1Bj

]1/q∥∥∥∥
Lp(Ω,λ)

5 cε−µ

∥∥∥∥
[ ∞∑

j=1

aq
j1εBj

]1/q∥∥∥∥
Lp(Ω,λ)

. (2.7)

The constant c depends only on σ, α, p, q, µ, and the doubling constant of
λ ∈ Double∗(Ω, T, σ).

In fact, (2.6) follows if we apply the inequality of Lemma 2.4 (2) to
fj = a

σ/µ
j 1εBj

with µp/σ and µq/σ in place of p and q, and (2.7) follows
from (2.6) since the function in the left hand side of (2.6) is pointwise larger
than a constant multiple of the function in the left hand side of (2.7). Details
are left to the reader (cf. the similar argument in [M3, Section 2]).
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3. The space Hp(Ω, T, λ)

In this section, we give some basic properties of the space Hp(Ω, T, λ).
In particular, we shall prove that the equivalence class of the quasinorm
‖ · ‖Hp(Ω,T,λ) and the space Hp(Ω, T, λ) defined in Definition 1.4 do not
depend on the choice of α and s.

First, we give the atomic decomposition theorem.

Theorem 3.1 Let T ∈ T (Ω), σ ∈ [n,∞), λ ∈ Double∗(Ω, T, σ), and
p ∈ (0,∞). Let s be a positive real number satisfying n + s > max{σ/p, σ}
and let m be a positive integer satisfying n + m > max{σ/p, σ}.
(1) Suppose 0 < δ 5 1/20 and suppose Bi = UT (xi, δ) with xi ∈ Ω. Suppose
gi ∈ L∞, supp gi ⊂ Bi, and

∑
i ‖gi‖L∞1Bi ∈ Lp(Ω, λ). Then the series∑

i gi converges unconditionally in D′(Ω) and we have

∥∥∥∥
∑

i

(gi)∗,T/40
s

∥∥∥∥
Lp(Ω,λ)

5 c

∥∥∥∥
∑

i

‖gi‖L∞1Bi

∥∥∥∥
Lp(Ω,λ)

,

where the constant c depends only on n, σ, p, s, δ, and the doubling constant
of λ.
(2) Suppose Qj ∈ B(Ω, T/20), hj ∈ L∞, supphj ⊂ Qj,

∫
hj(x)P (x)dx = 0 for all P ∈ Pm−1, (3.1)

and
∑

j ‖hj‖L∞1Qj
∈ Lp(Ω, λ). Then the series

∑
j hj converges uncondi-

tionally in D′(Ω) and

∥∥∥∥
∑

j

(hj)∗,T/40
s

∥∥∥∥
Lp(Ω,λ)

5 c

∥∥∥∥
∑

j

‖hj‖L∞1Qj

∥∥∥∥
Lp(Ω,λ)

,

where the constant c depends only on n, σ, p, s, m, and the doubling constant
of λ.
(3) Suppose f ∈ D′(Ω), α ∈ (0, 1), f∗,αT

s ∈ Lp(Ω, λ), and 0 < δ 5 α/4. We
write v = α/3δ. Then there exist gi, Bi, hj, and Qj such that the following
(i)–(v) hold :

( i ) f =
∑

i gi +
∑

j hj with the two series converging unconditionally in
D′(Ω);
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( ii ) gi ∈ L∞ and supp gi ⊂ Bi = UT (xi, δ);
(iii) hj ∈ L∞, supphj ⊂ Qj ∈ B(Ω, 3δT ), and hj satisfies (3.1);
(iv) For each r ∈ (0,∞), we have

( ∑

i

‖gi‖r
L∞1vBi

(x) +
∑

j

‖hj‖r
L∞1vQj

(x)
)1/r

5 crf
∗,αT
s (x)

for all x ∈ Ω, where cr is a constant depending only on n, s, m, v, and
r;

( v ) For each Bi, there exists a ball B = UT (y, δ) such that Bi ⊂ 2B and
B ∩ supp f 6= ∅; the same holds for the balls Qj.

For the case T = dΩ, Ω 6= Rn, an essentially same theorem as Theorem
3.1 is given in [M3, Theorem 1.2 and 1.3]. Although the exact statement
of Theorem 3.1 for this special case is slightly different from that of [M3,
loc. cit.] and although the assertion (v) is only implicitly given in the latter,
the proof given in [M3, Section 4] can be easily modified and generalized to
the case T ∈ T (Ω). We omit the details of the proof of Theorem 3.1.

Here we give a remark concerning the assertion (3) of Theorem 3.1. In
the proof of (3) as given in [M3, Section 4], with necessary modification, gi,
Bi, hj , and Qj are explicitly constructed from f , Ω, and αT with the aid
of the function f∗,αT

s , and the doubling condition on λ and the assumption
f∗,αT

s ∈ Lp(Ω, λ) are used only to prove the convergence assertion of (i).
Hence the constant cr of Theorem 3.1 (3)(iv) does not depend on λ and p.
(Similar argument for the space Hp(Rn) can also be found in [U, Section
IV].)

Using Theorem 3.1, we shall prove the following theorem.

Theorem 3.2 Let T ∈ T (Ω), σ ∈ [n,∞), λ ∈ Double∗(Ω, T, σ), and p ∈
(0,∞). Suppose αi and si (i = 1, 2) are positive real numbers such that αi <

1/3 and n + si > max{σ/p, σ}. Then ‖f∗,α1T
s1

‖Lp(Ω,λ) ≈ ‖f∗,α2T
s2

‖Lp(Ω,λ) for
all f ∈ D′(Ω). The constants contained in this ≈ can be taken depending
only on n, σ, p, α1, α2, s1, s2, and the doubling constant of λ.

Proof. It is enough to show the inequality

∥∥f∗,α1T
s1

∥∥
Lp(Ω,λ)

5 c
∥∥f∗,α2T

s2

∥∥
Lp(Ω,λ)

. (3.2)
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We shall prove the following two estimates:

∥∥f∗,α1T
s1

∥∥
Lp(Ω,λ)

5 c
∥∥f∗,T/40

s1

∥∥
Lp(Ω,λ)

, (3.3)
∥∥f∗,T/40

s1

∥∥
Lp(Ω,λ)

5 c
∥∥f∗,α2T

s2

∥∥
Lp(Ω,λ)

, (3.4)

which together will imply (3.2).
First we prove (3.3). To prove this, we take positive real numbers r and

ε such that

r < p, (1 + ε)α1 < 1/3, α−1
1 − 1 > 40ε

and prove the following pointwise inequality

f∗,α1T
s1

(x) 5 cM
(1+ε)α1T
λ,r

(
f∗,T/40

s1

)
(x). (3.5)

Once this inequality is proved, (3.3) will readily follow by the use of Lemma
2.4 (1). To prove (3.5), suppose B = B(y, t) ∈ B(Ω, α1T ) and ψ ∈ As1(B).
By using appropriate partition of unity, we can write ψ as ψ =

∑N
j=1 ψj in

such a way that c−1ψj ∈ As1(Bj), Bj = B(yj , εt), yj ∈ B, N = c(n, ε), and
c = c(n, s1, ε). Since

T (yj) = T (y)− |y − yj | > (α−1
1 − 1)t > 40εt,

we have Bj ∈ B(Ω, T/40). Hence

|〈f, ψj〉| 5 c inf
Bj

f∗,T/40
s1

5 c

[
1

λ(Bj)

∫

Bj

(
f∗,T/40

s1

)r
dλ

]1/r

. (3.6)

Notice that Bj ⊂ (1 + ε)B ⊂ B(yj , (2 + ε)t). Since T (yj) > (α−1
1 − 1)t and

α−1
1 − 1 > 2 + ε, we can use the doubling condition on λ to obtain

λ((1 + ε)B) 5 λ(B(yj , (2 + ε)t)) 5 cλ(Bj).

Hence from (3.6) we obtain

|〈f, ψ〉| 5
N∑

j=1

|〈f, ψj〉| 5 c

[
1

λ((1 + ε)B)

∫

(1+ε)B

(
f∗,T/40

s1

)r
dλ

]1/r

.
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Notice that (1 + ε)B ∈ B(Ω, (1 + ε)α1T ). Hence, taking supremum over ψ

and B, we obtain (3.5). Thus we proved (3.3).
Next we prove (3.4). We may assume ‖f∗,α2T

s2
‖Lp(Ω,λ) < ∞. Then using

Theorem 3.1 (3) with s = s2, α = α2, and with sufficiently small δ, we
obtain the decomposition of f as mentioned there. In particular we have

∑

i

‖gi‖L∞1Bi(x) +
∑

j

‖hj‖L∞1Qj (x) 5 cf∗,α2T
s2

(x). (3.7)

Then using the obvious inequality

f∗,T/40
s1

(x) =
(∑

i

gi+
∑

j

hj

)∗,T/40

s1

(x) 5
∑

i

(gi)∗,T/40
s1

(x)+
∑

j

(hj)∗,T/40
s1

(x),

using Theorem 3.1 (1) and (2) with s = s1, and using (3.7), we obtain

∥∥f∗,T/40
s1

∥∥
Lp(Ω,λ)

5
∥∥∥∥

∑

i

(gi)∗,T/40
s1

+
∑

j

(hj)∗,T/40
s1

∥∥∥∥
Lp(Ω,λ)

5 c

∥∥∥∥
∑

i

‖gi‖L∞1Bi

∥∥∥∥
Lp(Ω,λ)

+ c

∥∥∥∥
∑

j

‖hj‖L∞1Qj

∥∥∥∥
Lp(Ω,λ)

5 c
∥∥f∗,α2T

s2

∥∥
Lp(Ω,λ)

.

Thus we obtain (3.4). Theorem 3.2 is proved.
For later purpose, we shall introduce another maximal function which

characterizes the space Hp(Ω, T, λ).

Definition 3.3 Let T ∈ T (Ω) and let k be a positive integer.
(1) For a ball B in Rn, we define A(k)(B) to be the set of all ψ ∈ C∞0 (Rn)
such that suppψ ⊂ B and |∂ν

y ψ(ty)| 5 t−n for all multi-indices ν with
|ν| 5 k and for all y ∈ Rn, where t denotes the radius of B.
(2) For α ∈ (0, 1] and x ∈ Ω, we define AαT

(k)(x) to be the union of
A(k)(B(x, t)) over t ∈ (0, αT (x)).
(3) For f ∈ D′(Ω) and α ∈ (0, 1], we define the maximal function f∗,αT

(k) (x)
(x ∈ Ω) by

f∗,αT
(k) (x) = sup

{|〈f, ψ〉| | ψ ∈ AαT
(k)(x)

}
.
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We have the following theorem.

Theorem 3.4 Let T ∈ T (Ω), σ ∈ [n,∞), λ ∈ Double∗(Ω, T, σ), and
p ∈ (0,∞). Let α ∈ (0, 1/3) and let k be a positive integer satisfying n+k >

max{σ/p, σ}. Then ‖f‖Hp(Ω,T,λ) ≈ ‖f∗,αT
(k) ‖Lp(Ω,λ) for all f ∈ D′(Ω).

Proof. Take positive real numbers s1 and s2 such that s1 > k > s2 and
n + s2 > max{σ/p, σ}. Then, for ψ ∈ C∞0 (Rn) with suppψ ⊂ B(0, 1), we
have

‖ψ‖Λ(s1) &
∑

|ν|5k

‖∂νψ‖L∞ & ‖ψ‖Λ(s2).

By dilation and translation, we see that, if ψ ∈ C∞0 (Rn) and suppψ ⊂
B(y, t), then

ts1‖ψ‖Λ(s1) &
∑

|ν|5k

∥∥∂ν
xψ(tx)

∥∥
L∞ & ts2‖ψ‖Λ(s2).

Observe also that, if x ∈ B(y, t) ∈ B(Ω, 3−1αT ), then B(y, t) ⊂ B(x, 2t) ∈
B(Ω, αT ). Using these facts, we see the pointwise inequality

f∗,3
−1αT

s1
(x) . f∗,αT

(k) (x) . f∗,αT
s2

(x) (3.8)

holds for all f ∈ D′(Ω) and all x ∈ Ω. Hence the desired result follows from
Theorem 3.2. This completes the proof.

Finally we shall give a result concerning the ‘radial’ maximal functions.
This result will not be used in this paper but will be of independent interest.

Definition 3.5 Let φ be a function in C∞0 (Rn) such that suppφ ⊂ B(0, 1)
and

∫
φ(x)dx 6= 0. For t ∈ (0,∞), we write (φ)t(x) = t−nφ(t−1x). Let

T ∈ T (Ω) and α ∈ (0, 1]. For f ∈ D′(Ω), we define the function f+,(φ),αT (x)
(x ∈ Ω) by

f+,(φ),αT (x) = sup{|〈f, (φ)t(x− ·)〉| | 0 < t < αT (x)}.

Theorem 3.6 Let T ∈ T (Ω), σ ∈ [n,∞), λ ∈ Double∗(Ω, T, σ). Let φ be
a function as mentioned in Definition 3.5, α ∈ (0, 1), and let s be a positive
real number satisfying n + s = σ. Then
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f∗,3
−1αT

s (x) 5 cM3−1αT
λ,σ/(n+s)(f

+,(φ),αT )(x)

for all f ∈ D′(Ω) and all x ∈ Ω, where c depends only on n, φ, α, s, σ, and
the doubling constant of λ.

A proof of this theorem for the case T (x) = dΩ(x), Ω 6= Rn, is given in
[M3, Section 3, Lemma 3.3]. The proof can be modified to the general case
without any difficulty.

Using Theorem 3.6 and the obvious converse inequality

f+,(φ),αT (x) 5 csf
∗,αT
s (x),

and also using Lemma 2.4 (1), we obtain the following.

Theorem 3.7 Let T ∈ T (Ω), λ ∈ Double∗(Ω, T, σ) for some σ ∈ [n,∞),
and p ∈ (0,∞). Let φ be a function as mentioned in Definition 3.5 and let
α ∈ (0, 1/3). Then ‖f‖Hp(Ω,T,λ) ≈ ‖f+,(φ),αT ‖Lp(Ω,λ) for all f ∈ D′(Ω).

4. Change of variables

In this section, we shall prove Theorem 1.6. We also prove some prop-
erties the mappings Φ that satisfy the conditions of this theorem.

Theorem 1.6 is a direct consequence of the following two propositions.

Proposition 4.1 Let T ∈ T (Ω), T̃ ∈ T (Ω̃), and let Φ : Ω → Ω̃ be
a C∞ diffeomorphism. Assume there exist constants ε and K satisfying
0 < ε < 1 5 K < ∞ and εK 5 1 for which the following (i)–(iv) hold :

( i ) Φ(UT (x, t)) ⊂ U T̃ (Φ(x),Kt) for all x ∈ Ω and all t ∈ (0, ε];
( ii ) Φ−1(U T̃ (y, t)) ⊂ UT (Φ−1(y),Kt) for all y ∈ Ω̃ and all t ∈ (0, ε];
(iii) For each multi-index α 6= 0, there exists a constant Bα ∈ (0,∞) such

that
∣∣∂α

x Φ(x)
∣∣ 5 BαT̃ (Φ(x0))T (x0)−|α|

whenever x0 ∈ Ω and x ∈ UT (x0, ε);
(iv) For each multi-index α 6= 0, there exists a constant Bα ∈ (0,∞) such

that
∣∣∂α

y Φ−1(y)
∣∣ 5 BαT (Φ−1(y0))T̃ (y0)−|α|
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whenever y0 ∈ Ω̃ and y ∈ U T̃ (y0, ε).

Then the conclusions of Theorem 1.6 hold.

Proposition 4.2 The assumptions of Proposition 4.1 are satisfied if and
only if the assumptions of Theorem 1.6 are satisfied.

Proof of Proposition 4.1. (1) Suppose λ ∈ Double∗(Ω, T, σ). By Lemma
2.2 (2), there exists A such that λ ∈ Double(Ω, 2−1T, σ,A). We set δ =
min{ε, 1/2K}. Suppose y ∈ Ω̃, x = Φ−1(y), t ∈ (0, δ), and s ∈ [1,∞). Then
the doubling condition λ ∈ Double(Ω, 2−1T, σ,A) implies that

λ(UT (x,Kt)) 5 A(K2s)σλ(UT (x,K−1s−1t)).

By (i) and (ii), we have

Φ−1(U T̃ (y, t)) ⊂ UT (x,Kt),

Φ(UT (x,K−1s−1t)) ⊂ U T̃ (y, s−1t).

Hence

(Φ∗λ)(U T̃ (y, t)) = λ(Φ−1(U T̃ (y, t))) 5 λ(UT (x,Kt))

5 A(K2s)σλ(UT (x,K−1s−1t))

= A(K2s)σ(Φ∗λ)
(
Φ(UT (x,K−1s−1t))

)

5 A(K2s)σ(Φ∗λ)
(
U T̃ (y, s−1t)

)
.

This implies that Φ∗λ ∈ Double(Ω̃, δT̃ , σ,AK2σ) and thus Φ∗λ ∈
Double∗(Ω̃, T̃ , σ). The converse also holds by the symmetry of the assump-
tions (i)–(iv).

(2) Let x0 ∈ Ω and y0 = Φ(x0). Using (iii), we obtain the estimate

|∂αJΦ(x)| 5 cαT̃ (y0)nT (x0)−n−|α| for x ∈ UT (x0, ε). (4.1)

Since JΦ(x) is locally of constant sign, the same estimate holds also for
∂α|JΦ(x)|. Using this estimate and using (ii) and (iii), we can easily de-
duce the following: For each positive integer k, there exists a constant ck
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such that, if t ∈ (0, ε/K) and ψ ∈ A(k)(U T̃ (y0, t)), then c−1
k (ψ ◦ Φ)|JΦ| ∈

A(k)(UT (x0,Kt)). Hence taking the supremum of

|〈f ◦ Φ−1, ψ〉| = |〈f, (ψ ◦ Φ)|JΦ|〉|

over ψ ∈ A(k)(U T̃ (y0, t)) and t ∈ (0, ε/K), we obtain

(f ◦ Φ−1)∗,εK
−1T̃

(k) (y0) 5 ckf∗,εT(k) (x0) = ckf∗,εT(k) (Φ−1(y0)). (4.2)

Assume λ ∈ Double∗(Ω, T, σ), Φ∗λ ∈ Double∗(Ω̃, T̃ , σ), and p ∈ (0,∞).
We take a positive integer k satisfying n + k > max{σ/p, σ}. We may
assume ε < 1/3. Then, taking the Lp(Ω̃,Φ∗λ)-quasinorm of (4.2) and using
Theorem 3.4, we obtain

‖f ◦ Φ−1‖Hp(Ω̃,T̃ ,Φ∗λ) ≈
∥∥(f ◦ Φ−1)∗,εK

−1T̃
(k)

∥∥
Lp(Ω̃,Φ∗λ)

.
∥∥f∗,εT(k) ◦ Φ−1

∥∥
Lp(Ω̃,Φ∗λ)

=
∥∥f∗,εT(k)

∥∥
Lp(Ω,λ)

≈ ‖f‖Hp(Ω,T,λ).

The converse inequality ‖f‖Hp(Ω,T,λ) . ‖f ◦ Φ−1‖Hp(Ω̃,T̃ ,Φ∗λ) also holds by
the symmetry of the assumptions (i)–(iv). Proposition 4.1 is proved.

In order to prove Proposition 4.2, we use the following lemma, which
gives a qualitative assertion for the implicit function theorem. We shall
omit the proof of this lemma; a proof can be found, maybe implicit, in an
undergraduate text on analysis. We shall write ‖ · ‖ to denote the operator
norm for linear mappings Rn → Rn.

Lemma 4.3 Let x0 ∈ Rn, t ∈ (0,∞), M ∈ (0,∞), and let F : B(x0, t) →
Rn be a C1 mapping. Assume the Fréchet derivative F ′(x0) is invertible
and ‖F ′(x0)−1‖ 5 M . Also assume ‖F ′(x0)−1F ′(x) − I‖ 5 1/2 for all
x ∈ B(x0, t). Then F (B(x0, t)) ⊃ B(F (x0), t/2M).

Proof of Proposition 4.2. First we assume (a) and (b) of Theorem 1.6 and
deduce (i)–(iv) of Proposition 4.1.

By the condition (b), there exists a constant c1 such that

‖Φ′(x)‖ 5 c1T̃ (Φ(x))T (x)−1 (4.3)

for all x ∈ Ω. We set η = min{2−1, (9c1)−1}. We shall first prove that
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|Φ(x)− Φ(x0)| 5 2−1T̃ (Φ(x0)) if x0 ∈ Ω and x ∈ UT (x0, η). (4.4)

Suppose on the contrary there exist x0, x1 ∈ Ω such that |x1−x0| < ηT (x0)
and |Φ(x1)−Φ(x0)| > 2−1T̃ (Φ(x0)). We write xt = (1−t)x0+tx1 (t ∈ [0, 1]).
Then by continuity there exists s ∈ (0, 1) such that

|Φ(xs)− Φ(x0)| = 2−1T̃ (Φ(x0)) (4.5)

and

|Φ(xt)− Φ(x0)| < 2−1T̃ (Φ(x0)) for t ∈ (0, s). (4.6)

Using (4.3), we see that

∣∣∣∣
d

dt
Φ(xt)

∣∣∣∣ = |Φ′(xt)(x1 − x0)|

5 ‖Φ′(xt)‖|x1 − x0| 5 c1T̃ (Φ(xt))T (xt)−1|x1 − x0|.

For t ∈ (0, s), we use the Lipschitz continuity of T̃ and T and use (4.6) to
see that

T̃ (Φ(xt)) 5 T̃ (Φ(x0)) + |Φ(xt)− Φ(x0)| < (3/2)T̃ (Φ(x0))

and

T (xt) = T (x0)− |xt − x0| > (1− η)T (x0) = 2−1T (x0)

and thus
∣∣∣∣
d

dt
Φ(xt)

∣∣∣∣ 5 3c1T̃ (Φ(x0))T (x0)−1|x1 − x0|.

Hence

|Φ(xs)− Φ(x0)| 5
∫ s

0

∣∣∣∣
d

dt
Φ(xt)

∣∣∣∣dt

5 3c1T̃ (Φ(x0))T (x0)−1|x1 − x0|s < 3c1T̃ (Φ(x0))η

5 3−1T̃ (Φ(x0)),
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which contradicts (4.5). Thus we proved (4.4).
Using (4.4), we can improve (b) as follows:

(c) If x0 ∈ Ω and x ∈ UT (x0, η), then |∂α
x Φ(x)| 5 3 · 2|α|−1CαT̃ (Φ(x0))

T (x0)−|α| for each α 6= 0.
In fact, if x0 ∈ Ω and x ∈ UT (x0, η), then, by the Lipschitz continuity of T̃

and T and by (4.4), we have

T̃ (Φ(x)) 5 T̃ (Φ(x0)) + |Φ(x)− Φ(x0)| 5 (3/2)T̃ (Φ(x0))

and

T̃ (x) = T (x0)− |x− x0| > (1/2)T (x0),

and hence (c) follows from (b).
We shall now prove (i)–(iv). Although we shall not refer to the constants

ε and K in the following argument, the existence of them will be apparent.
(i) If 0 < t 5 η and x ∈ UT (x0, t), then using (c) with |α| = 1 we see

that

|Φ(x)− Φ(x0)| 5 cT̃ (Φ(x0))T (x0)−1|x− x0| < cT̃ (Φ(x0))t.

This implies Φ(UT (x0, t)) ⊂ U T̃ (Φ(x0), ct) for t ∈ (0, η].
(ii) From (a) and (b) with |α| = 1, we see that there exists a constant

c2 such that

‖Φ′(x0)−1‖ 5 c2T̃ (Φ(x0))−1T (x0). (4.7)

On the other hand, using (c) with |α| = 2, we see the following: If t ∈ (0, η]
and x ∈ UT (x0, t), then

‖Φ′(x)−Φ′(x0)‖ 5 cT̃ (Φ(x0))T (x0)−2|x−x0| < cT̃ (Φ(x0))T (x0)−1t. (4.8)

If t ∈ (0, η] and x ∈ UT (x0, t), then (4.7) and (4.8) imply ‖Φ′(x0)−1Φ′(x)−
I‖ 5 ct. Hence we can take an η′ ∈ (0, η] so small that we have

‖Φ′(x0)−1Φ′(x)− I‖ 5 1/2 if x ∈ UT (x0, η
′). (4.9)

By Lemma 4.3 and by (4.7) and (4.9), we see that if 0 < t 5 η′ then
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Φ(UT (x0, t)) ⊃ B
(
Φ(x0), tT (x0)/2c2T̃ (Φ(x0))−1T (x0)

)

= U T̃ (Φ(x0), t/2c2). (4.10)

(iii) The condition (iii) immediately follows from (c).
(iv) Let c2 and η′ be the constants as mentioned above. We may assume

c2 = 1. We shall prove the following: If y0 ∈ Ω̃ and y ∈ U T̃ (y0, η
′/2c2), then

∣∣∂α
y Φ−1(y)

∣∣ 5 cαT (Φ−1(y0))T̃ (y0)−|α| (4.11)

for each α 6= 0. We shall prove this by induction on |α|. For the rest
of the argument we assume y0 ∈ Ω̃ and y ∈ U T̃ (y0, η

′/2c2) and we write
x0 = Φ−1(y0) and x = Φ−1(y). Notice that, by (4.10),

x ∈ Φ−1
(
U T̃ (y0, η

′/2c2)
) ⊂ UT (x0, η

′) ⊂ UT (x0, η).

We first prove (4.11) for |α| = 1. Since y ∈ U T̃ (y0, η
′/2c2) ⊂ U T̃ (y0, 1/4)

and since x ∈ UT (x0, η
′) ⊂ UT (x0, 1/2), the Lipschitz continuity of T̃ and

T yield

(3/4)T̃ (y0) < T̃ (y0)− |y − y0| 5 T̃ (y) 5 T̃ (y0) + |y − y0| < (5/4)T̃ (y0),

(1/2)T (x0) < T (x0)− |x− x0|5 T (x) 5 T (x0) + |x− x0|< (3/2)T (x0).

Combining these inequalities with (a), we have

|JΦ(x)| = G−1T̃ (y)nT (x)−n = cT̃ (y0)nT (x0)−n. (4.12)

From (4.12) and (c) with |α| = 1, we see that

‖(Φ−1)′(y)‖ = ‖Φ′(x)−1‖ 5 cT (x0)T̃ (y0)−1. (4.13)

This shows the case |α| = 1 of (4.11).
Next suppose k is a positive integer and suppose (4.11) holds for 1 5

|α| 5 k. We shall show (4.11) for |α| = k + 1. Let β be a multi-index with
|β| = k and apply ∂β

y to the equality Φ′(x)(Φ−1)′(y) = I. Then we have
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Φ′(x)∂β
y (Φ−1)′(y) +

∑

β′+β′′=β,
β′ 6=0

(
β

β′

)(
∂β′

y Φ′(x)
)(

∂β′′
y (Φ−1)′(y)

)
= 0. (4.14)

For |β′| 5 |β| = k, we use (c) and the induction hypothesis to see that

∥∥∂β′
y Φ′(x)

∥∥ 5 cT (x0)−1T̃ (y0)1−|β
′|.

For |β′′| < |β| = k, the induction hypothesis implies that

∥∥∂β′′
y (Φ−1)′(y)

∥∥ 5 cT (x0)T̃ (y0)−1−|β′′|.

Combining these estimates with (4.14) and (4.13), we obtain

∥∥∂β
y (Φ−1)′(y)

∥∥ 5 c‖Φ′(x)−1‖
∑

β′+β′′=β,
β′ 6=0

∥∥∂β′
y Φ′(x)

∥∥ · ∥∥∂β′′
y (Φ−1)′(y)

∥∥

5 cT (x0)T̃ (y0)−1−|β|.

This shows (4.11) for |α| = k + 1. Thus we proved (iv).
Next we shall prove the converse assertion that (i)–(iv) of Proposition

4.1 imply (a) and (b) of Theorem 1.6. Assume (i)–(iv) of Proposition 4.1.
Then (b) is obvious from (iii). By (iv) for |α| = 1 we have

|JΦ−1(y)| 5 cT (Φ−1(y))nT̃ (y)−n,

which implies (a) since JΦ−1(y) = JΦ(Φ−1(y))−1. This completes the proof
of Proposition 4.2 and thus the proof of Theorem 1.6 is also complete.

Remark 4.4 A close look at the above proof shows the following relations
between the constants of Theorem 1.6 and Proposition 4.1. If (a) and (b)
of Theorem 1.6 holds, then the constants in (i)–(iv) of Proposition 4.1 can
be taken as follows:

ε = c(n,G, max{Cα | |α| = 1, 2}),
K = c(n,G, max{Cα | |α| = 1}),

Bα = c(n, α,G, max{Cβ | 1 5 |β| 5 |α|}).
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If (i)–(iv) of Proposition 4.1 hold, then the constant c contained in the
relation ≈ of (2) of Theorem 1.6 can be taken as

c = c(n, p, σ,A, ε,K, max{Bα | 1 5 |α| 5 m0 + 1}),

where A is the constant such that λ ∈ Double(Ω, 2−1T, σ,A) and m0 is the
smallest positive integer such that n + m0 > max{σ/p, σ}.

Finally we give some results concerning the mapping Φ of Theorem 1.6.
We shall simply say that Φ : (Ω, T ) → (Ω̃, T̃ ) satisfies the conditions of
Theorem 1.6 if Ω, Ω̃, T , T̃ , and Φ satisfy the conditions of Theorem 1.6.

Proposition 4.5 (1) If Φ : (Ω, T ) → (Ω̃, T̃ ) satisfies the conditions of
Theorem 1.6, then so does the inverse mapping Φ−1 : (Ω̃, T̃ ) → (Ω, T ).
(2) If Φ : (Ω0, T0) → (Ω1, T1) and Ψ : (Ω1, T1) → (Ω2, T2) satisfy the
conditions of Theorem 1.6, then so does the composite mapping Ψ ◦ Φ :
(Ω0, T0) → (Ω2, T2).
(3) Suppose Φ : (Ω, T ) → (Ω̃, T̃ ) satisfies the conditions of Theorem 1.6. Let
V be a proper open subset of Ω, let Ṽ = Φ(V ), and let

S(x) = min{T (x), dV (x)} (x ∈ V ),

S̃(y) = min{T̃ (y), dṼ (y)} (y ∈ Ṽ ).

Then S ∈ T (V ), S̃ ∈ T (Ṽ ), and Φ|V : (V, S) → (Ṽ , S̃) satisfies the condi-
tions of Theorem 1.6.

Proof. The assertion (1) immediately follows from Proposition 4.2 and
from the symmetry of the conditions of Proposition 4.1. The assertion (2)
can be proved by elementary calculations.

We shall prove (3). The assertion that S ∈ T (V ) and S̃ ∈ T (Ṽ ) is
readily checked. By Proposition 4.2, Φ : (Ω, T ) → (Ω̃, T̃ ) satisfies the condi-
tions of Proposition 4.1. Let ε and K be the constants of Proposition 4.1.
Suppose x ∈ V and write y = Φ(x). By (ii) of Proposition 4.1, we have

B(y, εS(x)T (x)−1T̃ (y)) ⊂ Φ(B(x,KεS(x))) ⊂ Φ(B(x, S(x))) ⊂ Φ(V ) = Ṽ .

This implies εS(x)T (x)−1T̃ (y) 5 dṼ (y). We also have S(x)T (x)−1T̃ (y) 5
T̃ (y) since S(x) 5 T (x). Hence εS(x)T (x)−1T̃ (y) 5 min{dṼ (y), T̃ (y)} =
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S̃(y) or, equivalently,

ε
T̃ (y)
T (x)

5 S̃(y)
S(x)

.

By the symmetry of the conditions of Proposition 4.1, we have the similar
inequality with x and y interchanged. Hence we obtain

ε
T̃ (y)
T (x)

5 S̃(y)
S(x)

5 1
ε

T̃ (y)
T (x)

.

Using this inequality, we easily see that Φ|V : (V, S) → (Ṽ , S̃) satisfies the
conditions of Theorem 1.6. This completes the proof of Proposition 4.5.

5. Multiplication by smooth functions

In this section, we prove Theorem 1.8. Before we proceed to the proof
of Theorem 1.8, we shall give some properties of the functions in the class
W (Ω, T ).

Proposition 5.1 Let T ∈ T (Ω) and w ∈ W (Ω, T ). Then there exists a
constant δ ∈ (0, 1) such that 1/2 5 w(x)/w(x0) 5 2 whenever x0 ∈ Ω and
x ∈ UT (x0, δ).

Proof. Let Aα be the constants in (1.2) and set

δ = min
{
4−1, (16

√
n max{Aα | |α| = 1})−1

}
.

We shall prove that this δ has the desired property.
We first prove that

w(x) 5 2w(x0) if x0 ∈ Ω and x ∈ UT (x0, 2δ). (5.1)

Suppose on the contrary there exist x0, x1 ∈ Ω such that x1 ∈ UT (x0, 2δ)
and w(x1) > 2w(x0). We write xt = (1 − t)x0 + tx1. Then, by continuity,
there exists s ∈ (0, 1) such that w(xs) = 2w(x0) and w(xt) < 2w(x0) for
t ∈ (0, s). For t ∈ (0, s), we have

T (xt) = T (x0)− |xt − x0| > T (x0)− 2δT (x0) = 2−1T (x0)
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and hence
∣∣∣∣
d

dt
w(xt)

∣∣∣∣ =
∣∣∣∣

n∑

j=1

∂w

∂xj
(xt)(x1,j − x0,j)

∣∣∣∣

5
n∑

j=1

max{Aα | |α| = 1}w(xt)T (xt)−1|x1,j − x0,j |

5
n∑

j=1

4max{Aα | |α| = 1}w(x0)T (x0)−1|x1,j − x0,j |

< 4max{Aα | |α| = 1}w(x0)
√

n · 2δ

5 2−1w(x0).

Hence

w(xs) = w(x0) +
∫ s

0

d

dt
w(xt)dt 5 (3/2)w(x0),

which contradicts the equality w(xs) = 2w(x0). Thus (5.1) is proved.
Now suppose x0 ∈ Ω and x ∈ UT (x0, δ). Then (5.1) gives w(x) 5

2w(x0). Moreover, by the Lipschitz continuity of T , we have |T (x)− T (x0)|
5 |x− x0| < δT (x0) 5 4−1T (x0) and hence

(3/4)T (x0) < T (x) < (5/4)T (x0).

Thus

|x− x0| < δT (x0) < (4/3)δT (x) < 2δT (x)

and thus x0 ∈ UT (x, 2δ). Hence (5.1) gives w(x0) 5 2w(x). Proposition 5.1
is proved.

We omit the proof of the next proposition, which will be quite elemen-
tary.

Proposition 5.2 If w and v are functions of class W (Ω, T ), then so are
the functions w + v, wv, w/v, and wa with a ∈ R.

The next proposition will be used in Section 6.
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Proposition 5.3 Suppose Ω, Ω̃, T , T̃ , and Φ satisfy the assumptions of
Theorem 1.6 and suppose w ∈ W (Ω, T ). Then:
(1) The function |JΦ| is of class W (Ω, T );
(2) The composite function w ◦ Φ−1 is of class W (Ω̃, T̃ ).

Proof. The claim (1) can be seen from (4.1) and (a) of Theorem 1.6. The
claim (2) can be seen by the use of (iv) of Proposition 4.1 (cf. Proposition
4.2). Proposition 5.3 is proved.

No we shall prove Theorem 1.8.

Proof of Theorem 1.8. Let δ be the constant as mentioned in Proposition
5.1. We may assume δ < 1/3. Notice that T (x) ≈ T (x0) for x and x0

satisfying x ∈ UT (x0, δ).
(1) For balls B(x0, t) with t < δT (x0), the inequality of Proposition 5.1

yields

(wpλ)(B(x0, t)) ≈ (w(x0))pλ(B(x0, t)).

From this inequality, it is obvious that the doubling conditions on wpλ and
on λ are mutually equivalent.

(2) Let λ ∈ Double∗(Ω, T, σ) and p ∈ (0,∞). Take a positive inte-
ger k such that n + k > max{σ/p, σ}. Let x0 ∈ Ω, t ∈ (0, δ), and ψ ∈
A(k)(UT (x0, t)). Then, using the inequalities of Proposition 5.1, we easily see
that there exists a constant c0 such that c−1

0 w(x0)−1wψ ∈ A(k)(UT (x0, t))
and c−1

0 w(x0)w−1ψ ∈ A(k)(UT (x0, t)). Hence, for each f ∈ D′(Ω), we have

|〈wf, ψ〉| = |〈f, wψ〉| 5 c0w(x0)f
∗,δT
(k) (x0)

and

|〈f, ψ〉| = |〈wf,w−1ψ〉| 5 c0w(x0)−1(wf)∗,δT
(k) (x0).

Taking the supremum over ψ and t, we obtain

(wf)∗,δT
(k) (x0) ≈ w(x0)f

∗,δT
(k) (x0). (5.2)

Hence, using Theorem 3.4, we have
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‖wf‖Hp(Ω,T,λ) ≈
∥∥(wf)∗,δT

(k)

∥∥
Lp(Ω,λ)

≈ ∥∥wf∗,δT
(k)

∥∥
Lp(Ω,λ)

=
∥∥f∗,δT

(k)

∥∥
Lp(Ω,wpλ)

≈ ‖f‖Hp(Ω,T,wpλ).

Theorem 1.8 is proved.

Remark 5.4 From the above proof we see the following: If Aα is the
constant in (1.2), σ ∈ [n,∞), λ ∈ Double∗(Ω, T, σ), and if m0 is the small-
est positive integer satisfying n + m0 > max{σ/p, σ}, then the constants
contained in the relation ≈ of Theorem 1.8 (2) can be taken depending only
on n, p, σ, max{Aα | |α| 5 m0}, and on the doubling constant of λ.

6. Modified form of atomic decomposition

An atomic decomposition for Hp(Ω, T, λ) has been given in Theorem
3.1. The purpose of this section is to give a modified atomic decomposition
that involves a moment condition of the form (1.3). The result reads as
follows.

Theorem 6.1 Suppose Ω, Ω̃, T , T̃ , and Φ satisfy the assumptions of
Proposition 4.1; let K be the constant as mentioned in the proposition. Let
w ∈ W (Ω, T ). Let σ ∈ [n,∞), λ ∈ Double∗(Ω, T, σ), p ∈ (0,∞), and let
k and m be positive integers satisfying n + k > max{σ/p, σ} and n + m >

max{σ/p, σ}. Then the following (1) and (2) hold.
(1) Suppose Qj ∈ B(Ω, T/20), hj ∈ L∞, supphj ⊂ Qj,

∫
hj(x)P (Φ(x))w(x)dx = 0 for all P ∈ Pm−1, (6.1)

and suppose
∑

j ‖hj‖L∞1Qj
∈ Lp(Ω, λ). Then the series

∑
j hj converges

unconditionally in D′(Ω) and

∥∥∥∥
∑

j

hj

∥∥∥∥
Hp(Ω,T,λ)

5 c

∥∥∥∥
∑

j

‖hj‖L∞1Qj

∥∥∥∥
Lp(Ω,λ)

.

(2) If f ∈ Hp(Ω, T, λ), if α is a sufficiently small positive real number, and
if 0 < δ 5 α/12, then there exist gi, Bi, hj, and Qj such that the following
(i)–(v) hold :
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( i ) f =
∑

i gi +
∑

j hj with the two series converging unconditionally in
D′(Ω);

( ii ) gi ∈ L∞ and supp gi ⊂ Bi = UT (xi, δ);
(iii) hj ∈ L∞, supphj ⊂ Qj ∈ B(Ω, 3δT ), and hj satisfies (6.1);
(iv) For each r ∈ (0,∞), there exists a constant cr ∈ (0,∞) such that

( ∑

i

‖gi‖r
L∞1{x ∈ K−2vBi}+

∑

j

‖hj‖r
L∞1{x ∈ K−2vQj}

)1/r

5 crf
∗,αT
(k) (x)

for all x ∈ Ω, where v = α/9δ;
( v ) For each Bi, there exists a ball B = UT (y, δ) such that Bi ⊂ 2K2B

and B ∩ supp f 6= ∅; the same holds for the balls Qj.

Remark 6.2 A close look at the proof of this theorem to be given below
will show the following facts about the constants in the theorem. Let ε

and Bα be the constants in the conditions of Proposition 4.1. Let Aα be
the constant in (1.2). Let m0 be the smallest positive integer such that
n + m0 > max{σ/p, σ}. Then the following hold.
(1) The constant c of Theorem 6.1 (1) can be taken depending only on n,
p, σ, ε, K, max{Aα | |α| 5 m0}, max{Bα | 1 5 |α| 5 m0 + 1}, and on the
doubling constant of λ in Double∗(Ω, T, σ).
(2) The constant α of Theorem 6.1 (2) can be taken arbitrarily in the range
0 < α 5 α0, where α0 is a constant that depends only on n, ε, K, max{Bα |
1 5 |α| 5 2}, and max{Aα | |α| = 1}.
(3) The constant cr of Theorem 6.1 (2) (iv) can be taken depending only on
n, k, m, v, r, K, max{Aα | |α| 5 k}, and max{Bα | 1 5 |α| 5 k + 1}.
Proof of Theorem 6.1. (1) We write Qj = UT (xj , sj). Notice that sj <

1/20 by our assumption that Qj ∈ B(Ω, T/20). We take a sufficiently small
number ξ > 0 and divide the indices j into the two sets I = {j | sj < ξ} and
II = {j | ξ 5 sj < 1/20}.

First we consider the series over j ∈ II. We shall prove that, for any
ξ > 0 fixed, the series

∑
j∈II hj converges unconditionally in D′(Ω) and

∥∥∥∥
∑

j∈II

hj

∥∥∥∥
Hp(Ω,T,λ)

5 cξ

∥∥∥∥
∑

j∈II

‖hj‖L∞1Qj

∥∥∥∥
Lp(Ω,λ)

. (6.2)
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To prove this, we set Q′j = UT (xj , 1/20) for j ∈ II. Then Q′j ⊃ Qj ⊃ 20ξQ′j
and hence, by Lemma 2.5,

∥∥∥∥
∑

j∈II

‖hj‖L∞1Q′j

∥∥∥∥
Lp(Ω,λ)

5 cξ

∥∥∥∥
∑

j∈II

‖hj‖L∞1Qj

∥∥∥∥
Lp(Ω,λ)

< ∞. (6.3)

Since supphj ⊂ Qj ⊂ Q′j , by virtue of Theorem 3.1 (1), the series
∑

j∈II hj

converges unconditionally in D′(Ω) and

∥∥∥∥
∑

j∈II

hj

∥∥∥∥
Hp(Ω,T,λ)

5 c

∥∥∥∥
∑

j∈II

‖hj‖L∞1Q′j

∥∥∥∥
Lp(Ω,λ)

. (6.4)

Thus (6.2) follows from (6.4) and (6.3).
Next we consider the series over j ∈ I. We shall show that, if ξ > 0 is

chosen sufficiently small, then the series
∑

j∈I hj converges unconditionally
in D′(Ω) and

∥∥∥∥
∑

j∈I

hj

∥∥∥∥
Hp(Ω,T,λ)

5 c

∥∥∥∥
∑

j∈I

‖hj‖L∞1Qj

∥∥∥∥
Lp(Ω,λ)

. (6.5)

In order to prove this, we define, for j ∈ I,

fj = w|JΦ|−1hj , f̃j = fj ◦ Φ−1, Rj = U T̃ (Φ(xj),Ksj).

We also define the Borel measures µ on Ω and µ∗ on Ω̃ by

µ = (w−1|JΦ|)pλ, µ∗ = Φ∗µ. (6.6)

Then f̃j ∈ L∞, supp f̃j = Φ(supphj) ⊂ Φ(Qj) ⊂ Rj , Rj ∈ B(Ω̃,KξT̃ ), and

∫
f̃j(y)P (y)dy =

∫
f̃j(Φ(x))P (Φ(x))|JΦ(x)|dx

=
∫

hj(x)w(x)P (Φ(x))dx = 0

for all P ∈ Pm−1. We shall prove
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∥∥∥∥
∑

j∈I

‖f̃j‖L∞1Rj

∥∥∥∥
Lp(Ω̃,µ∗)

5 c

∥∥∥∥
∑

j∈I

‖hj‖L∞1Qj

∥∥∥∥
Lp(Ω,λ)

. (6.7)

Suppose for the moment (6.7) is proved. Then, by Theorem 3.1 (2), the
series

∑
j∈I f̃j converges unconditionally in D′(Ω̃) and

∥∥∥∥
∑

j∈I

f̃j

∥∥∥∥
Hp(Ω̃,T̃ ,µ∗)

5 c

∥∥∥∥
∑

j∈I

‖f̃j‖L∞1Rj

∥∥∥∥
Lp(Ω̃,µ∗)

.

Hence the series
∑

j∈I hj =
∑

j∈I w−1|JΦ|(f̃j ◦ Φ) also converges uncondi-
tionally in D′(Ω) and, by Theorem 1.8 and Theorem 1.6 (2),

∥∥∥∥
∑

j∈I

hj

∥∥∥∥
Hp(Ω,T,λ)

=
∥∥∥∥w−1|JΦ|

∑

j∈I

fj

∥∥∥∥
Hp(Ω,T,λ)

≈
∥∥∥∥

∑

j∈I

fj

∥∥∥∥
Hp(Ω,T,µ)

≈
∥∥∥∥

∑

j∈I

f̃j

∥∥∥∥
Hp(Ω̃,T̃ ,µ∗)

.

Combining the above inequalities, we obtain (6.5). Thus it is sufficient to
prove (6.7).

We shall prove (6.7). Suppose j ∈ I. By Propositions 5.1 and 5.3, we
see that

‖f̃j‖L∞ = ‖fj‖L∞ ≈ w(x)|JΦ(x)|−1‖hj‖L∞ for all x ∈ Qj . (6.8)

Since Φ−1(K−2Rj) ⊂ Qj , (6.8) implies

‖f̃j‖L∞1K−2Rj
(y) 5 cw(Φ−1(y))|JΦ(Φ−1(y))|−1‖hj‖L∞1Qj

(Φ−1(y)).

Hence, by Lemma 2.5,
∥∥∥∥

∑

j∈I

‖f̃j‖L∞1Rj

∥∥∥∥
Lp(Ω̃,µ∗)

5 c

∥∥∥∥
∑

j∈I

‖f̃j‖L∞1K−2Rj

∥∥∥∥
Lp(Ω̃,µ∗)

5 c

∥∥∥∥
∑

j∈I

w(Φ−1(y))|JΦ(Φ−1(y))|−1‖hj‖L∞1Qj (Φ
−1(y))

∥∥∥∥
Lp(Ω̃,µ∗)
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= c

∥∥∥∥
∑

j∈I

w(x)|JΦ(x)|−1‖hj‖L∞1Qj (x)
∥∥∥∥

Lp(Ω,µ)

= c

∥∥∥∥
∑

j∈I

‖hj‖L∞1Qj

∥∥∥∥
Lp(Ω,λ)

,

which proves (6.7).
The claim (1) now follows from (6.2) and (6.5).
(2) We assume f ∈ Hp(Ω, T, λ), α > 0 is sufficiently small, and 0 < δ 5

α/12. We take a real number s such that s > k.
We define F ∈ D′(Ω), F̃ ∈ D′(Ω̃), α̃, and δ̃ by

F = w|JΦ|−1f, F̃ = F ◦ Φ−1,

α̃ = α/3K, δ̃ = δ/K.

We also define µ∗ by (6.6). Using the inequalities (3.8), (4.2), and (5.2), and
using Propositions 5.3 and 5.2, we have

F̃ ∗,α̃T̃
s (Φ(x)) 5 cF̃ ∗,3α̃T̃

(k) (Φ(x)) 5 cF ∗,αT
(k) (x)

5 cw(x)|JΦ(x)|−1f∗,αT
(k) (x). (6.9)

From the assumption f ∈ Hp(Ω, T, λ), we have f∗,αT
(k) ∈ Lp(Ω, λ) and hence

(6.9) implies that F̃ ∗,α̃T̃
s ∈ Lp(Ω̃, µ∗). We see that µ∗ ∈ Double∗(Ω̃, T̃ , σ)

by using Propositions 5.3 and 5.2, Theorem 1.8 (1), and Theorem 1.6 (1).
Hence, by Theorem 3.1 (3), F̃ can be decomposed as follows:
(a) F̃ =

∑
i ai +

∑
j bj with the two series converging unconditionally in

D′(Ω̃);
(b) ai ∈ L∞ and supp ai ⊂ B̃i = U T̃ (yi, δ̃);
(c) bj ∈ L∞, supp bj ⊂ Q̃j = U T̃ (zj , sj), sj < 3δ̃, and

∫
bj(y)P (y)dy = 0 for all P ∈ Pm−1;

(d) For v = α̃/3δ̃ and for each r ∈ (0,∞), we have
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( ∑

i

‖ai‖r
L∞1{y ∈ vB̃i}+

∑

j

‖bj‖r
L∞1{y ∈ vQ̃j}

)1/r

5 crF̃
∗,α̃T̃
s (y)

for all y ∈ Ω̃;
(e) For each B̃i, there exists a ball B̃ = U T̃ (y, δ̃) such that B̃i ⊂ 2B̃ and
B̃ ∩ supp F̃ 6= ∅; the same holds for the balls Q̃j .
We define gi, Bi, hj , and Qj by

gi = w−1|JΦ|(ai ◦ Φ), Bi = UT (Φ−1(yi), δ),

hj = w−1|JΦ|(bj ◦ Φ), Qj = UT (Φ−1(zi),Ksj).

We shall prove that these satisfy the conditions (i)–(v) of the theorem.
The condition (i) immediately follows from (a).
The conditions (ii) and (iii) can be seen as follows. We have

supp gi = Φ−1(supp ai) ⊂ Φ−1(U T̃ (yi, δ̃)) ⊂ UT (Φ−1(yi), δ) = Bi,

supphj = Φ−1(supp bj) ⊂ Φ−1(U T̃ (zj , sj)) ⊂ UT (Φ−1(zj),Ksj) = Qj .

Since Ksj < 3Kδ̃ = 3δ, we have Qj ∈ B(Ω, 3δT ). Since, by Propositions 5.1
and 5.3 (1), the functions w and |JΦ| are roughly equal to constants on the
balls Bi and Qj , we see that gi and hj are functions of L∞. The moment
condition (6.1) follows from the moment condition on bj as given in (c).

We shall prove (iv). Notice that v = α̃/3δ̃ = α/9δ. By Proposition 5.1,
we have

‖gi‖L∞ ≈ w(x)−1|JΦ(x)|‖ai‖L∞ for all x ∈ vBi,

‖hj‖L∞ ≈ w(x)−1|JΦ(x)|‖bj‖L∞ for all x ∈ vQj .

We also have

Φ(K−2vBi) = Φ
(
UT (Φ−1(yj),K−2vδ)

) ⊂ U T̃ (yi, vδ̃) = vB̃i,

Φ(K−2vQj) = Φ
(
UT (Φ−1(zj),K−1vsj)

) ⊂ U T̃ (zj , vsj) = vQ̃j .

Hence, for each r ∈ (0,∞), we use (d) and (6.9) to see that
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( ∑

i

‖gi‖r
L∞1{x ∈ K−2vBi}+

∑

j

‖hj‖r
L∞1{x ∈ K−2vQj}

)1/r

5 cw(x)−1|JΦ(x)|
( ∑

i

‖ai‖r
L∞1{Φ(x) ∈ vB̃i}

+
∑

j

‖bj‖r
L∞1{Φ(x) ∈ vQ̃j}

)1/r

5 crw(x)−1|JΦ(x)|F̃ ∗,α̃T̃
s (Φ(x))

5 crf
∗,αT
(k) (x),

which proves (iv).
Finally we shall prove (v). If B̃i and B̃ = U T̃ (y, δ̃) satisfy the conditions

as mentioned in (e), then

Bi = UT (Φ−1(yi), δ) ⊂ Φ−1
(
U T̃ (yi,K

2δ̃)
)

= Φ−1(K2B̃i)

⊂ Φ−1(2K2B̃) = Φ−1
(
U T̃ (y, 2K2δ̃)

)

⊂ UT (Φ−1(y), 2K3δ̃) = 2K2UT (Φ−1(y), δ)

and

UT (Φ−1(y), δ) ∩ supp f = UT (Φ−1(y),Kδ̃) ∩ suppF

⊃ Φ−1
(
U T̃ (y, δ̃) ∩ supp F̃

) 6= ∅.

Hence B = UT (Φ−1(y), δ) satisfies the conditions of (v). The same holds
for Qj . Theorem 6.1 is proved.

7. Examples

In this section, we give some examples of the mapping Φ of Theorem
1.6 and Proposition 4.1. We shall also prove a proposition which will give
plenty of examples in the case of 2-dimension.

The Examples 7.1–7.5 are the examples in the 1-dimensional case. For
these examples, to check the conditions of Theorem 1.6 or Proposition 4.1 is
an elementary task and the details are left to the reader. In these examples,
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we use the letters x and y to denote the variables in Ω and Ω̃, respectively;
x ∈ Ω and y ∈ Ω̃.

Example 7.1 Ω = (0, π), Ω̃ = (−1, 1), T (x) = dΩ(x), T̃ (y) = dΩ̃(y),
Φ(x) = cos x. In this case, T̃ (y) ≈ T (x)2. This case was already considered
in [M4].

Example 7.2 Ω = (−π/2, π/2), Ω̃ = R, T (x) = dΩ(x), T̃ (y) = 1 + |y|,
Φ(x) = tanx. In this case, T̃ (y) ≈ 1/T (x).

Example 7.3 Ω = (0,∞), Ω̃ = R, T (x) = dΩ(x) = x, T̃ (y) = 1, Φ(x) =
log x.

Example 7.4 Ω = (0, 1), Ω̃ = (0,∞), T (x) = dΩ(x), T̃ (y) = dΩ̃(y) = y,
Φ(x) = x/(1− x).

Example 7.5 Ω = (0, 1), Ω̃ = R, T (x) = dΩ(x), T̃ (y) = 1, Φ(x) =
log{x/(1 − x)}. This Φ is the composition of the Φ’s of Examples 7.4 and
7.3.

The next is an example for arbitrary dimension.

Example 7.6 Ω = Ω̃ = Rn \ {0}, T (x) = T̃ (x) = dΩ(x) = |x|, Φ(x) =
x/|x|2.
Proof. If a ∈ Rn \ {0}, b = Φ(a) = a/|a|2, and t ∈ (0, 1), then

Φ(UT (a, t)) = Φ(B(a, t|a|)) = B
(
b/(1− t2), t|b|/(1− t2)

)

⊂ B(b, t|b|/(1− t)) = U T̃ (b, t/(1− t)).

From this we easily see that Φ = Φ−1 satisfy the conditions (i) and (ii) of
Proposition 4.1. To check the conditions (iii) and (iv) of Proposition 4.1 is
easy.

Finally we shall give a result in the 2-dimensional case. In order to state
the result, we identify R2 with the complex number field C by identifying
(x, y) ∈ R2 with x + iy ∈ C. For open subsets Ω and Ω̃ of R2 = C, we
say that Φ is a conformal mapping of Ω onto Ω̃ if Φ(x, y) is a holomorphic
function of x + iy ∈ Ω and if the mapping Φ : Ω → Ω̃ is a bijection.

The result reads as follows.

Proposition 7.7 If Ω and Ω̃ are proper open subsets of R2 = C and if Φ
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is a conformal mapping of Ω onto Ω̃, then Ω, Ω̃, T = dΩ, T̃ = dΩ̃, and Φ
satisfy the conditions of Theorem 1.6.

In order to prove this proposition, we use the lemmas to be given below.
In these lemmas, we use the letter z to denote a complex variable and write
the complex derivatives as Φ′(z) = dΦ(z)/dz and Φ(k)(z) = dkΦ(z)/dzk.
In the first lemma, we shall say that a holomorphic function on a domain
D ⊂ C is univalent in D if the mapping D 3 z 7→ f(z) is one to one; thus the
conformal mapping and the univalent function are in fact the same thing.

Lemma 7.8 Suppose f is a univalent function on B(0, 1) ⊂ C and f(0) =
0 and f ′(0) = 1. Then:
(1) f(B(0, 1)) ⊃ B(0, 1/4);
(2) |z|/(1 + |z|)2 5 |f(z)| 5 |z|/(1− |z|)2 for all z ∈ B(0, 1).

The facts given in the above lemma is well known as the distortion
theorems for univalent functions. For a proof, see, e.g., [H, Theorems 1.2
and 1.3].

Lemma 7.9 Let Ω and Ω̃ be proper open subsets of C and let Φ be a con-
formal mapping of Ω onto Ω̃. Let z0 ∈ Ω and w0 = Φ(z0) ∈ Ω̃. Then the
following hold.

(1) dΩ̃(w0)

4dΩ(z0)
5 |Φ′(z0)| 5 4dΩ̃(w0)

dΩ(z0)
.

(2) If δ ∈ (0, 1), then Φ(B(z0, δdΩ(z0))) ⊃ B(w0, 4−1δ(1 + δ)−2dΩ̃(w0)).
(3) If δ ∈ (0, 1), then Φ(B(z0, δdΩ(z0))) ⊂ B(w0, 4δ(1− δ)−2dΩ̃(w0)).
(4) If 0 < ε < δ < 1 and k is a positive integer, then, for all z ∈
B(z0, εdΩ(z0)), we have

|Φ(k)(z)| 5 4k!δ
(1− δ)2(δ − ε)k

· dΩ̃(w0)
dΩ(z0)k

.

Proof. We define the function f by

f(z) =
Φ(z0 + dΩ(z0)z)− w0

dΩ(z0)Φ′(z0)
(z ∈ B(0, 1)).

This function satisfies the assumptions of Lemma 7.8.
(1) Applying Lemma 7.8 (1) to f , we have
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Φ(B(z0, dΩ(z0)) ⊃ B
(
w0, 4−1dΩ(z0)|Φ′(z0)|

)
.

This implies dΩ̃(w0) = 4−1dΩ(z0)|Φ′(z0)| or, equivalently, the second in-
equality of (1). We obtain the first inequality of (1) by applying the second
one to Φ−1.

(2) Let δ ∈ (0, 1). By the first inequality of Lemma 7.8 (2), we have
|f(z)| = δ(1 + δ)−2 for |z| = δ. Hence, by Rouché’s theorem, f(B(0, δ)) ⊃
B(0, δ(1 + δ)−2), which is equivalent to

Φ
(
B(z0, δdΩ(z0))

) ⊃ B
(
w0, δ(1 + δ)−2dΩ(z0)|Φ′(z0)|

)
.

This and the first inequality of (1) implies the desired result.
(3) Let δ ∈ (0, 1). By the second inequality of Lemma 7.8 (2), we have

f(B(0, δ)) ⊂ B(0, δ(1− δ)−2), which is equivalent to

Φ
(
B(z0, δdΩ(z0))

) ⊂ B
(
w0, δ(1− δ)−2dΩ(z0)|Φ′(z0)|

)
.

This and the second inequality of (1) implies the desired result.
(4) Let 0 < ε < δ < 1. By the second inequality of Lemma 7.8 (2), we

have |f(z)| 5 δ(1 − δ)−2 for |z| = δ. Hence Cauchy’s inequality gives, for
|z| < ε,

|f (k)(z)| 5 k!δ(1− δ)−2(δ − ε)−k

or, equivalently,

dΩ(z0)k|Φ(k)(z0 + dΩ(z0)z)| 5 k!δ(1− δ)−2(δ − ε)−kdΩ(z0)|Φ′(z0)|.

This and the second inequality of (1) give the desired inequality. Lemma
7.9 is proved.

Now we shall prove Proposition 7.7.

Proof of Proposition 7.7. By Proposition 4.2, it is sufficient to show that
Ω, Ω̃, T = dΩ, T̃ = dΩ̃, and Φ satisfy the conditions (i)–(iv) of Proposi-
tion 4.1. The conditions (i) and (ii) follow from Lemma 7.9 (3) and (2),
respectively. The condition (iii) follows from Lemma 7.9 (4). The condition
(iv) follows if we apply Lemma 7.9 (4) to Φ−1. This completes the proof of
Proposition 7.7.
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