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Existence of horseshoe sets

with nondegenerate one-sided homoclinic tangencies in R3

Yusuke Nishizawa
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Abstract. In this paper, we present some class of three dimensional C∞ diffeomor-

phisms with nondegenerate one-sided homoclinic tangencies q associated with hyperbolic

fixed points p each of which exhibits a horseshoe set. A key point in the proof is the

existence of a transverse homoclinic point arbitrarily close to q. This result together with

Birkhoff-Smale Theorem implies the existence of a horseshoe set arbitrarily close to q.

Key words: Horseshoe sets, homoclinic tangencies, singular λ-Lemma, Birkhoff-Smale

Theorem.

1. Introduction

Let f be a two dimensional diffeomorphism with a nondegenerate one-
sided homoclinic tangency q associated with a hyperbolic fixed point p. The
problem whether such a map has a horseshoe set is studied by some au-
thors, e.g. Gavrilov-Silnikov [6, 7], Li [10], Homburg-Weiss [9], Gonchenko-
Gonchenko-Tatjer [8] and so on. Gavrilov and Silnikov showed the existence
of a horseshoe set arbitrarily close to the nondegenerate one-sided homo-
clinic tangency point as illustrated in Fig. 1.1. Li [10] presented existence
theorems of a horseshoe set and a non-uniformly horseshoe set arbitrarily
close to q under the assumptions same as those of Gavrilov-Silnikov [6, 7].
Homburg and Weiss [9] studied the case which q is a one-sided homoclinic
tangency with finite order of contact as illustrated in Fig. 1.1. Moreover,
they asked whether their results hold for diffeomorphisms of dimensions
greater than two. Rayskin [15] studied the problem where f is an n(≥ 3)-
dimensional diffeomorphism which admits a two-sided homoclinic tangency
associated with a hyperbolic point p with the one-dimensional stable man-
ifold and (n − 1)-dimensional unstable manifold, as shown in Fig. 1.2. We
note that the argument in [15] does not work if the homoclinic tangency
is nondegenerate as well as one-sided. In this paper, we consider a three-
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dimensional diffeomorphism f with a hyperbolic fixed point p with one-
dimensional stable and two-dimensional unstable manifolds which admit a
one-sided homoclinic quadratic tangency q, and show that, if f satisfies some
conditions given in Section 3, then f has a horseshoe set. In our proof, a
singular λ-lemma for one-sided homoclinic tangencies is crucial. The lemma
corresponds to that for two-sided tangencies in [14, 15]. The one-sided sin-
gular λ-lemma in Section 4 is one of extension of the original λ-lemma
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[12, 16], which can be applied to the case of non-transverse intersection.
Once the lemma has been proved, the existences of our desired horseshoe
sets is guaranteed by the Birkhoff-Smale Theorem. By the renormaliza-
tion methods of Palis-Viana [11, 13] along one-parameter families through
f which has nondegenerate homoclinic tangency, one can get a sequence
of diffeomorphisms arbitrarily C2 close to f which have horseshoe subsets
created by Henon-like maps. In this paper, without such one-parameter
families or C2-perturbations, we will detect some horseshoe structures of f

arbitrary close to the homoclinic tangency.

2. Preliminaries

In this section, we will review some definitions and theorems needed to
prove our main theorem.

Definition 2.1 Let f be a Cr(r ≥ 1) diffeomorphism on R3 having a
hyperbolic fixed point p. The stable and unstable manifolds W s(p), W u(p)
of p are defined as

W s(p) = {x ∈ R3; ‖fn(p) − fn(x)‖ → 0 for n → +∞},
W u(p) = {x ∈ R3; ‖f−n(p) − f−n(x)‖ → 0 for n → +∞}.

The local unstable (resp. local stable) manifold, a small neighborhood of p

in W u(p) (resp. W s(p)), is denoted by W u
loc(p) (resp. W s

loc(p)). A point
q ∈ W s(p)∩W u(p) \ {p} is called to be homoclinic for p if W s(p)∩W u(p) \
{p} 6= ∅. Also, if TqW

s(p) ⊕ TqW
u(p) = TqR3, the homoclinic point q is

called to be transverse. Otherwise, it is called a homoclinic tangency.

Let Uε(A) denote an ε-neighborhood of a given point A ∈ R3 and ε > 0,
and let dist(x, S) be a value of metric function for given point x and subset
S in R3.

Definition 2.2 For an integer l > 1, Si (i = 1, 2) be an i-dimensional C l

immersed submanifold in R3 such that S1 ∩S2 has an isolated point A. We
say that the order of contact of S1 with S2 at A is l if there exist positive
real numbers m and M such that

m ≤ dist(x, S2)
‖x − A‖l

≤ M
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for all x ∈ S1,ε \ {A} where S1,ε is a component containing A of S1 ∩Uε(A)
for a small ε > 0. If the above integer l > 1 is even, the tangency point A is
called to be one-sided. Otherwise, it is called to be two-sided. The tangency
is nondegenerate if the order of contact is two.

Remark 2.3 ([15, Proposition 2.2]) The order of contact is preserved for
any diffeomorphism of a neighborhood of tangency point.

Remark 2.4 The order of contact in Definition 2.2 is a special case of
the definition of order of contact given by Arnold, Zade and Varchenko
[1]. They defined the order of contact l for a Ck (k > l) diffeomorphisms
between Cs (s > k) manifolds. While Rayskin [15, Definition 2.1 and 2.6]
gives a definition of order of contact for pairs of two immersed C1 manifolds
in Rn. In fact, the order of Rayskin’s is greater than or equal to that of
Arnold-Zade-Varchenko’s [1].

The following theorem plays an important role in the proof of our main
theorem.

Lemma 2.5 (Birkhoff-Smale Theorem, see [2, 3, 5, 16]) Let f : Rn →
Rn be a Cr (r ≥ 1) diffeomorphism with a hyperbolic fixed point p and a
transverse homoclinic point q of p. Then there exists a hyperbolic invariant
set Λ containing p, q and an integer m > 0 such that fm|Λ is topologically
conjugate to the two sided shift map σ on the space Σ(2) of two symbols.

3. Assumptions in main theorem

Let f be a C∞ diffeomorphism on R3 with a hyperbolic fixed point
p ∈ R3 such that the eigenvalues of Df(p) are real numbers µ, λ1, λ2 with
0 < µ < 1 < λ2 < λ1. We suppose that f satisfies the following conditions
(i)–(v).
( i ) There exists a C∞ linearizing coordinate on a neighborhood U of p

such that p = (0, 0, 0) and

f(x1, x2, x3) = (λ1x1, λ2x2, µx3)

for any (x1, x2, x3) ∈ U with f(x1, x2, x3) ∈ U . (It implies that
W u

loc(p) ∩ U ⊂ {x3 = 0} and W s
loc(p) ∩ U ⊂ {x1 = x2 = 0}).

( ii ) W s(p)∩W u(p)∩U contains a homoclinic tangency point q = (0, 0, q3),
q3 6= 0 with the order of contact two. Moreover, the lines passing
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Fig. 3.1. The case of q3 > 0 where L meets the negative part of the x2-axis and
the second entry of the coordinate of s is negative.

through q and parallel respectively to the x1 and x2-axes meet W u(p)
transversely at q.

(iii) For any sufficiently large N ∈ N, the point s = f−N (q) is contained in
W u

loc(p) ∩ U as illustrated in Fig. 3.1.
(iv) Let l denote a small curve in W s(p) containing s. Assume that l \

{s} ⊂ W u
loc(p)× Iq where Iq is the interval (0, q3] (resp. [q3, 0)) if q3 >

0 (resp. q3 < 0).
( v ) Let H be the intersection of W u(p) and a small neighborhood Vq of

q in R3. The image L = pr(H) meets either the positive or negative
parts of the x2-axis non-trivially, but does not the opposite part, where
pr : R3 −→ R2 is the orthogonal projection defined by pr(x1, x2, x3) =
(x1, x2). Moreover, the second entry of the coordinate of s is positive
(resp. negative) if L intersects the positive (resp. negative) part, as
shown Fig. 3.1.

According to the Sternberg Linearizing Theorem [17], the linearizing
condition (i) is generic in the space of C∞diffeomorphisms on R3. By the
above (ii)–(iii) and Remark 2.3, l is a curve tangent to R2×{0} quadratically
at s. Since the above assumptions do not depend on the global structure of
the ambient space, the following result is true for diffeomorphisms defined
on any three-dimensional Riemannian manifold.
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Theorem 3.1 Under the assumption (i)–(v) for f ∈ Diff∞(R3), for any
small ε-neighborhood Uε(p) and Uε(s) of the saddle fixed point p and the
homoclinic tangency s, respectively, there exists an integer n0 ≥ N such
that, for any n ≥ n0, fn has uniformly hyperbolic subset in Uε(p) ∩ Uε(s)
topologically conjugate to the shift map of Σ(2), that is, f has a horseshoe
set arbitrarily close to the nondegenerate one-sided homoclinic tangency.

For the proof of the theorem, we need to show that W u(p) and W s(p)
have a transverse intersection point contained in an arbitrarily small neigh-
borhood of s in U . In fact, the assertion is proved by using the one-sided
singular λ-Lemma (Lemma 4.3). We remark that the similar results to
Theorem 3.1 for degenerate one-sided homoclinic tangency are unproved
yet which are not trivial from this paper as well as [15]. For example, the
implicit function theorem is one of essential roles in the next Section 4, but
can not be applied to such degenerate situations.

4. Proof of main theorem

From the condition (ii), we may assume that H is represented as the
graph of a C∞ function x1 = ϕ(x2, x3) if necessary replacing Vq by a smaller
neighborhood of q. The function ϕ is satisfies with the following conditions.

ϕ(0, q3) = 0,
∂ϕ

∂x3
(0, q3) = 0,

∂2ϕ

∂x3
2 (0, q3) 6= 0.

The former two conditions are derived immediately from the definition
of ϕ. If ∂2ϕ(0, q3)/∂x3

2 = 0, then q would be a tangency of W s(p) and
W u(p) with order of contact greater than two. This contradicts the con-
dition. By the implicit function theorem, there exists a C∞ function x3 =
η(x2) defined in a small neighborhood V of 0 in the x2-axis and such that
η(0) = q3 and ∂ϕ(x2, η(x2))/∂x3 = 0. We set

h̃ = {
(
ϕ(x2, η(x2)), x2, η(x2)

)
;x2 ∈ V } and h = pr(h̃) ⊂ L.

For two non-negative functions a(u, v), b(u, v), a(u, v) ∼ b(u, v) means
that there exist constants C1, C2 > 0 independent of u, v and satisfying

C1a(u, v) ≤ b(u, v) ≤ C2a(u, v)

for any u, v.
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Lemma 4.1∣∣∣ ∂ϕ

∂x3
(x2, x3)

∣∣∣ ∼ dist(h, (ϕ(x2, x3), x2))1/2.

Proof. By the Taylor expansion of ϕ(x2, x3) at x3 = η(x2) of order two,
we have

ϕ(x2, x3) − ϕ(x2, η(x2)) =
∂ϕ

∂x3
(x2, η(x2))(x3 − η(x2))

+
1
2

∂2ϕ

∂x3
2 (x2, η(x2))(x3 − η(x2))2 + h.o.t., (4.1)

where ‘h.o.t.’ represents a higher order term with respect to x3 = η(x2).
Since ∂ϕ(x2, η(x2))/∂x3 = 0 and ∂2ϕ(0, q3)/∂x3

2 6= 0, if necessary replac-
ing Vq by a smaller neighborhood of q in R3, one can suppose that

|ϕ(x2, x3) − ϕ(x2, η(x2))| ∼ |x3 − η(x2)|2

for any (x2, x3) with (ϕ(x2, x3), x2, x3) ∈ Vq. By the condition (ii) in our
assumption, the angle θ of h and the x1-axis satisfies θ with

0 < |θ| <
π

2
.

Then, as illustrated in Fig. 4.1, we have

dist(h, (ϕ(x2, x3), x2)) ∼ ‖(ϕ(x2, η(x2)), x2) − (ϕ(x2, x3), x2)‖
= |ϕ(x2, η(x2)) − ϕ(x2, x3)|
∼ |x3 − η(x2)|2.

(4.2)

Differentiating the both sides of (4.1) by x3,∣∣∣ ∂ϕ

∂x3
(x2, x3)

∣∣∣ ∼ |x3 − η(x2)|.

Then the proof is completed by this approximation and (4.2). ¤

The curve h̃ divides H into two components. Take a component H0

of H \ h̃. The surface H0 is represented as the graph of a C∞ function
γ(x1, x2) with domain Int(L) = L \ h. Then any point (x1, x2, x3) of H0

satisfies

ϕ(x2, x3) = x1 and γ(x1, x2) = x3. (4.3)
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Fig. 4.1. The case of θ > 0. pη = (ϕ(x2, η(x2)), x2), p3 = (ϕ(x2, x3), x2).

Lemma 4.2 For any (x1, x2) ∈ Int(L),∣∣∣ ∂γ

∂x1
(x1, x2)

∣∣∣ ∼ ∣∣∣ ∂γ

∂x2
(x1, x2)

∣∣∣ ∼ 1

dist
(
h, (x1, x2)

)1/2
.

Proof. By (4.3), ϕ(x2, γ(x1, x2)) = x1. Differentiating the both sides of
the equation by x1 and x2, we have

∂ϕ

∂x3
(x2, γ(x1, x2))

∂γ

∂x1
(x1, x2) = 1,

∂ϕ

∂x2
(x2, γ(x1, x2)) +

∂ϕ

∂x3
(x2, γ(x1, x2))

∂γ

∂x2
(x1, x2) = 0.

These equations together with Lemma 4.1 show∣∣∣ ∂γ

∂x1
(x1, x2)

∣∣∣ ∼ 1

dist
(
h, (x1, x2)

)1/2
,

∣∣∣ ∂γ

∂x2
(x1, x2)

∣∣∣ ∼ 1

dist
(
h, (x1, x2)

)1/2

∣∣∣ ∂ϕ

∂x2
(x2, γ(x1, x2))

∣∣∣.
Since

lim
(x1,x2)→(0,0)

∂ϕ

∂x2
(x2, γ(x1, x2)) =

∂ϕ

∂x2
(0, q3) 6= 0

by the condition (ii), one can choose H (and hence L) so that∣∣∣ ∂γ

∂x2
(x1, x2)

∣∣∣ ∼ 1

dist
(
h, (x1, x2)

)1/2
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for any (x1, x2) ∈ Int(L). This completes the proof. ¤

Set W = U ∩ {x3 = 0} in W u(p) and let T be a small ε-neighborhood
of the x1x3-plane in R3 satisfying T ∩ {s} = ∅.

Lemma 4.3 (One-sided singular λ-Lemma) The sequence {fn(H0)∩U \
T } C1 converges to an open subsurface of W u(p) \ T containing s as n →
+∞.

Proof. We only consider the case when L meets the negative parts of the
x2-axis non-trivially, as shown in Fig. 3.1. In the other case, the proof is
done quite similarly. By the condition(i),

fn(λ−n
1 x1, λ−n

2 x2, µ−nx3) = (x1, x2, x3)

for any (x1, x2, x3) ∈ U\T with (λ−n
1 x1, λ−n

2 x2, µ−nx3) ∈ Vq. In particular,
for all sufficiently large n ∈ N, fn(Int(L)) ∩ W \ T is equal to W− \ T and
hence it contains s, where W− = {(x1, x2) ∈ W ; x2 < 0}.

For any (x1, x2) ∈ W− \ T , there exists an integer n0 > 0 such that
Int(L) contains (λ−n

1 x1, λ−n
2 x2) if n ≥ n0. Then we set

gn(x1, x2) = fn
(
λ−n

1 x1, λ−n
2 x2, γ(λ−n

1 x1, λ−n
2 x2)

)
=

(
x1, x2, µnγ(λ−n

1 x1, λ−n
2 x2)

)
.

(4.4)

Note that h is well C1 approximated by the straight segment {(t, t tan θ);
|t| < δ} for some δ > 0 in a small neighborhood of (0, 0) in the x1x2-plane.
Moreover, since 0 < λ−1

1 < λ−1
2 and |x2| ≥ ε,

dist(h, (λ−n
1 x1, λ−n

2 x2)) ∼ |λ−n
1 x1 tan θ − λ−n

2 x2| ∼ λ−n
2 , (4.5)

see Fig. 4.2.
By Lemma 4.2 together with (4.5),∣∣∣ ∂

∂x1
µnγ(λ−n

1 x1, λ−n
2 x2)

∣∣∣ ∼ µnλ−n
1

dist
(
(λ−n

1 x1, λ−n
2 x2), h

)1/2

∼ µnλ−n
1 λ

n/2
2 ,∣∣∣ ∂

∂x2
µnγ(λ−n

1 x1, λ−n
2 x2)

∣∣∣ ∼ µnλ−n
2

dist
(
(λ−n

1 x1, λ−n
2 x2), h

)1/2

∼ µnλ
−n/2
2 .

(4.6)
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Since 0 < λ−1
1 λ

1/2
2 < λ

−1/2
2 < 1, these approximations imply that the map

gn(x1, x2) on W− \T defined by (4.4) C1 converges uniformly to (x1, x2, 0)
as n → ∞. This completes the proof. ¤

Lemma 4.4 Let l be the curve given in the condition (iv). Then there
exists an n0 ∈ N such that fn(H0) meets l non-trivially and transversely for
any integer n ≥ n0.

Proof. Since l is tangent to the x1x2-plane quadratically at s, the curve l

is parametrized as a(τ) =
(
a1(τ), a2(τ), τ2 + O(|τ |3)

)
for any τ ∈ R near 0

with (a1(0), a2(0), 0) = s where each ai is a C∞ map on R. By Lemma 4.3,
fn(H0) ∩ l 6= ∅ for all sufficiently large n, which shows the former part of
this lemma, see Fig. 4.3.

Suppose that a(τn) ∈ fn(H0)∩ l. Since τ2
n +O(|τn|3) = µnγ(λ−n

1 a1(τn),
λ−n

2 a2(τn)),

lim
n→∞

τ2
n

µn
= lim

(x1,x2)→(0,0)
γ(x1, x2) = q3. (4.7)

By (4.4),

b(τn) :=
∂gn

∂x1
(a1(τn), a2(τn))

=
(
1, 0, µnλ−n

1

∂γ

∂x1

(
λ−n

1 a1(τn), λ−n
2 a2(τn)

))
,

c(τn) :=
∂gn

∂x2
(a1(τn), a2(τn))
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=
(
0, 1, µnλ−n

2

∂γ

∂x2

(
λ−n

1 a1(τn), λ−n
2 a2(τn)

))
.

Since a′(τn) =
(
a′1(τn), a′2(τn), 2τn + O(|τn|2)

)
,

a′(τn) · (b(τn)× c(τn)) = 2τn + O(|τn|2)

− a′1(τn)µnλ−n
1

∂γ

∂x1

(
λ−n

1 a1(τn), λ−n
2 a2(τn)

)
− a′2(τn)µnλ−n

2

∂γ

∂x2

(
λ−n

1 a1(τn), λ−n
2 a2(τn)

)
.

By (4.6) and (4.7),

lim
n→∞

µ−n/2a′(τn) · (b(τn) × c(τn)) = 2
√

q3 6= 0.

This means that a′(τn) is not contained in the tangent space of fn(H0) at
a(τn) for all sufficiently large n ∈ N, see Fig. 4.4. Thus l meets fn(H0)
transversely at a(τn). This completes the proof. ¤

Lemma 4.4 implies that there exists a transversal homoclinic point asso-
ciated with p and arbitrarily close to the point s. Then, by Birkhoff-Smale
Theorem (Lemma 2.5), we have a horseshoe set which is also arbitrarily
close to s. This completes the proof of Theorem 3.1.
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