Hokkaido Mathematical Journal Vol. 37 (2008) p. 133-145

Existence of horseshoe sets with nondegenerate one-sided homoclinic tangencies in \mathbb{R}^3

Yusuke NISHIZAWA

(Received January 4, 2007; Revised August 3, 2007)

Abstract. In this paper, we present some class of three dimensional C^{∞} diffeomorphisms with nondegenerate one-sided homoclinic tangencies q associated with hyperbolic fixed points p each of which exhibits a horseshoe set. A key point in the proof is the existence of a transverse homoclinic point arbitrarily close to q. This result together with Birkhoff-Smale Theorem implies the existence of a horseshoe set arbitrarily close to q.

Key words: Horseshoe sets, homoclinic tangencies, singular $\lambda\text{-Lemma},$ Birkhoff-Smale Theorem.

1. Introduction

Let f be a two dimensional diffeomorphism with a nondegenerate onesided homoclinic tangency q associated with a hyperbolic fixed point p. The problem whether such a map has a horseshoe set is studied by some authors, e.g. Gavrilov-Silnikov [6, 7], Li [10], Homburg-Weiss [9], Gonchenko-Gonchenko-Tatjer [8] and so on. Gavrilov and Silnikov showed the existence of a horseshoe set arbitrarily close to the nondegenerate one-sided homoclinic tangency point as illustrated in Fig. 1.1. Li [10] presented existence theorems of a horseshoe set and a non-uniformly horseshoe set arbitrarily close to q under the assumptions same as those of Gavrilov-Silnikov [6, 7]. Homburg and Weiss [9] studied the case which q is a one-sided homoclinic tangency with finite order of contact as illustrated in Fig. 1.1. Moreover, they asked whether their results hold for diffeomorphisms of dimensions greater than two. Rayskin [15] studied the problem where f is an $n \geq 3$ dimensional diffeomorphism which admits a two-sided homoclinic tangency associated with a hyperbolic point p with the one-dimensional stable manifold and (n-1)-dimensional unstable manifold, as shown in Fig. 1.2. We note that the argument in [15] does not work if the homoclinic tangency is nondegenerate as well as one-sided. In this paper, we consider a three-

²⁰⁰⁰ Mathematics Subject Classification : Primary: 37C15, 37C05; Secondary: 37D10, 37D40.

dimensional diffeomorphism f with a hyperbolic fixed point p with onedimensional stable and two-dimensional unstable manifolds which admit a one-sided homoclinic quadratic tangency q, and show that, if f satisfies some conditions given in Section 3, then f has a horseshoe set. In our proof, a singular λ -lemma for one-sided homoclinic tangencies is crucial. The lemma corresponds to that for two-sided tangencies in [14, 15]. The one-sided singular λ -lemma in Section 4 is one of extension of the original λ -lemma

[12, 16], which can be applied to the case of non-transverse intersection. Once the lemma has been proved, the existences of our desired horseshoe sets is guaranteed by the Birkhoff-Smale Theorem. By the renormalization methods of Palis-Viana [11, 13] along one-parameter families through f which has nondegenerate homoclinic tangency, one can get a sequence of diffeomorphisms arbitrarily C^2 close to f which have horseshoe subsets created by Henon-like maps. In this paper, without such one-parameter families or C^2 -perturbations, we will detect some horseshoe structures of farbitrary close to the homoclinic tangency.

2. Preliminaries

In this section, we will review some definitions and theorems needed to prove our main theorem.

Definition 2.1 Let f be a $C^r(r \ge 1)$ diffeomorphism on \mathbb{R}^3 having a hyperbolic fixed point p. The stable and unstable manifolds $W^s(p)$, $W^u(p)$ of p are defined as

$$W^{s}(p) = \{ x \in \mathbb{R}^{3}; \|f^{n}(p) - f^{n}(x)\| \to 0 \text{ for } n \to +\infty \}, \\ W^{u}(p) = \{ x \in \mathbb{R}^{3}; \|f^{-n}(p) - f^{-n}(x)\| \to 0 \text{ for } n \to +\infty \}.$$

The local unstable (resp. local stable) manifold, a small neighborhood of p in $W^u(p)$ (resp. $W^s(p)$), is denoted by $W^u_{\text{loc}}(p)$ (resp. $W^s_{\text{loc}}(p)$). A point $q \in W^s(p) \cap W^u(p) \setminus \{p\}$ is called to be *homoclinic* for p if $W^s(p) \cap W^u(p) \setminus \{p\} \neq \emptyset$. Also, if $T_q W^s(p) \oplus T_q W^u(p) = T_q \mathbb{R}^3$, the homoclinic point q is called to be *transverse*. Otherwise, it is called a *homoclinic tangency*.

Let $U_{\epsilon}(A)$ denote an ϵ -neighborhood of a given point $A \in \mathbb{R}^3$ and $\epsilon > 0$, and let dist(x, S) be a value of metric function for given point x and subset S in \mathbb{R}^3 .

Definition 2.2 For an integer l > 1, S_i (i = 1, 2) be an *i*-dimensional C^l immersed submanifold in \mathbb{R}^3 such that $S_1 \cap S_2$ has an isolated point A. We say that the order of contact of S_1 with S_2 at A is l if there exist positive real numbers m and M such that

$$m \le \frac{\operatorname{dist}(x, S_2)}{\|x - A\|^l} \le M$$

for all $x \in S_{1,\epsilon} \setminus \{A\}$ where $S_{1,\epsilon}$ is a component containing A of $S_1 \cap U_{\epsilon}(A)$ for a small $\epsilon > 0$. If the above integer l > 1 is even, the tangency point A is called to be *one-sided*. Otherwise, it is called to be *two-sided*. The tangency is *nondegenerate* if the order of contact is two.

Remark 2.3 ([15, Proposition 2.2]) The order of contact is preserved for any diffeomorphism of a neighborhood of tangency point.

Remark 2.4 The order of contact in Definition 2.2 is a special case of the definition of order of contact given by Arnold, Zade and Varchenko [1]. They defined the order of contact l for a C^k (k > l) diffeomorphisms between C^s (s > k) manifolds. While Rayskin [15, Definition 2.1 and 2.6] gives a definition of order of contact for pairs of two immersed C^1 manifolds in \mathbb{R}^n . In fact, the order of Rayskin's is greater than or equal to that of Arnold-Zade-Varchenko's [1].

The following theorem plays an important role in the proof of our main theorem.

Lemma 2.5 (Birkhoff-Smale Theorem, see [2, 3, 5, 16]) Let $f \colon \mathbb{R}^n \to \mathbb{R}^n$ be a C^r $(r \geq 1)$ diffeomorphism with a hyperbolic fixed point p and a transverse homoclinic point q of p. Then there exists a hyperbolic invariant set Λ containing p, q and an integer m > 0 such that $f^m | \Lambda$ is topologically conjugate to the two sided shift map σ on the space $\Sigma(2)$ of two symbols.

3. Assumptions in main theorem

Let f be a C^{∞} diffeomorphism on \mathbb{R}^3 with a hyperbolic fixed point $p \in \mathbb{R}^3$ such that the eigenvalues of Df(p) are real numbers μ , λ_1 , λ_2 with $0 < \mu < 1 < \lambda_2 < \lambda_1$. We suppose that f satisfies the following conditions (i)–(v).

(i) There exists a C^∞ linearizing coordinate on a neighborhood U of p such that $p=(0,\,0,\,0)$ and

 $f(x_1, x_2, x_3) = (\lambda_1 x_1, \lambda_2 x_2, \mu x_3)$

for any $(x_1, x_2, x_3) \in U$ with $f(x_1, x_2, x_3) \in U$. (It implies that $W^u_{\text{loc}}(p) \cap U \subset \{x_3 = 0\}$ and $W^s_{\text{loc}}(p) \cap U \subset \{x_1 = x_2 = 0\}$).

(ii) $W^s(p) \cap W^u(p) \cap U$ contains a homoclinic tangency point $q = (0, 0, q_3)$, $q_3 \neq 0$ with the order of contact two. Moreover, the lines passing

Fig. 3.1. The case of $q_3 > 0$ where L meets the negative part of the x_2 -axis and the second entry of the coordinate of s is negative.

through q and parallel respectively to the x_1 and x_2 -axes meet $W^u(p)$ transversely at q.

- (iii) For any sufficiently large $N \in \mathbb{N}$, the point $s = f^{-N}(q)$ is contained in $W^{u}_{loc}(p) \cap U$ as illustrated in Fig. 3.1.
- (iv) Let l denote a small curve in $W^s(p)$ containing s. Assume that $l \setminus \{s\} \subset W^u_{\text{loc}}(p) \times I_q$ where I_q is the interval $(0, q_3]$ (resp. $[q_3, 0)$) if $q_3 > 0$ (resp. $q_3 < 0$).
- (v) Let H be the intersection of $W^u(p)$ and a small neighborhood V_q of q in \mathbb{R}^3 . The image $L = \operatorname{pr}(H)$ meets either the positive or negative parts of the x_2 -axis non-trivially, but does not the opposite part, where $\operatorname{pr}: \mathbb{R}^3 \longrightarrow \mathbb{R}^2$ is the orthogonal projection defined by $\operatorname{pr}(x_1, x_2, x_3) = (x_1, x_2)$. Moreover, the second entry of the coordinate of s is positive (resp. negative) if L intersects the positive (resp. negative) part, as shown Fig. 3.1.

According to the Sternberg Linearizing Theorem [17], the linearizing condition (i) is generic in the space of C^{∞} diffeomorphisms on \mathbb{R}^3 . By the above (ii)–(iii) and Remark 2.3, l is a curve tangent to $\mathbb{R}^2 \times \{0\}$ quadratically at s. Since the above assumptions do not depend on the global structure of the ambient space, the following result is true for diffeomorphisms defined on any three-dimensional Riemannian manifold.

Theorem 3.1 Under the assumption (i)–(v) for $f \in \text{Diff}^{\infty}(\mathbb{R}^3)$, for any small ϵ -neighborhood $U_{\epsilon}(p)$ and $U_{\epsilon}(s)$ of the saddle fixed point p and the homoclinic tangency s, respectively, there exists an integer $n_0 \geq \mathbb{N}$ such that, for any $n \geq n_0$, f^n has uniformly hyperbolic subset in $U_{\epsilon}(p) \cap U_{\epsilon}(s)$ topologically conjugate to the shift map of $\Sigma(2)$, that is, f has a horseshoe set arbitrarily close to the nondegenerate one-sided homoclinic tangency.

For the proof of the theorem, we need to show that $W^u(p)$ and $W^s(p)$ have a transverse intersection point contained in an arbitrarily small neighborhood of s in U. In fact, the assertion is proved by using the *one-sided* singular λ -Lemma (Lemma 4.3). We remark that the similar results to Theorem 3.1 for *degenerate one-sided* homoclinic tangency are unproved yet which are not trivial from this paper as well as [15]. For example, the implicit function theorem is one of essential roles in the next Section 4, but can not be applied to such degenerate situations.

4. Proof of main theorem

From the condition (ii), we may assume that H is represented as the graph of a C^{∞} function $x_1 = \varphi(x_2, x_3)$ if necessary replacing V_q by a smaller neighborhood of q. The function φ is satisfies with the following conditions.

$$\varphi(0, q_3) = 0, \quad \frac{\partial \varphi}{\partial x_3}(0, q_3) = 0, \quad \frac{\partial^2 \varphi}{\partial x_3^2}(0, q_3) \neq 0.$$

The former two conditions are derived immediately from the definition of φ . If $\partial^2 \varphi(0, q_3)/\partial x_3^2 = 0$, then q would be a tangency of $W^s(p)$ and $W^u(p)$ with order of contact greater than two. This contradicts the condition. By the implicit function theorem, there exists a C^{∞} function $x_3 = \eta(x_2)$ defined in a small neighborhood V of 0 in the x_2 -axis and such that $\eta(0) = q_3$ and $\partial \varphi(x_2, \eta(x_2))/\partial x_3 = 0$. We set

$$h = \{ (\varphi(x_2, \eta(x_2)), x_2, \eta(x_2)); x_2 \in V \} \text{ and } h = \operatorname{pr}(h) \subset L$$

For two non-negative functions a(u, v), b(u, v), $a(u, v) \sim b(u, v)$ means that there exist constants C_1 , $C_2 > 0$ independent of u, v and satisfying

$$C_1a(u,v) \le b(u,v) \le C_2a(u,v)$$

for any u, v.

Lemma 4.1

$$\left|\frac{\partial\varphi}{\partial x_3}(x_2, x_3)\right| \sim \operatorname{dist}(h, (\varphi(x_2, x_3), x_2))^{1/2}$$

Proof. By the Taylor expansion of $\varphi(x_2, x_3)$ at $x_3 = \eta(x_2)$ of order two, we have

$$\varphi(x_2, x_3) - \varphi(x_2, \eta(x_2)) = \frac{\partial \varphi}{\partial x_3} (x_2, \eta(x_2)) (x_3 - \eta(x_2)) + \frac{1}{2} \frac{\partial^2 \varphi}{\partial x_3^2} (x_2, \eta(x_2)) (x_3 - \eta(x_2))^2 + \text{h.o.t.}, \quad (4.1)$$

where 'h.o.t.' represents a higher order term with respect to $x_3 = \eta(x_2)$. Since $\partial \varphi(x_2, \eta(x_2))/\partial x_3 = 0$ and $\partial^2 \varphi(0, q_3)/\partial x_3^2 \neq 0$, if necessary replacing V_q by a smaller neighborhood of q in \mathbb{R}^3 , one can suppose that

$$|\varphi(x_2, x_3) - \varphi(x_2, \eta(x_2))| \sim |x_3 - \eta(x_2)|^2$$

for any (x_2, x_3) with $(\varphi(x_2, x_3), x_2, x_3) \in V_q$. By the condition (ii) in our assumption, the angle θ of h and the x_1 -axis satisfies θ with

$$0 < |\theta| < \frac{\pi}{2}.$$

Then, as illustrated in Fig. 4.1, we have

dist(h,
$$(\varphi(x_2, x_3), x_2)) \sim \|(\varphi(x_2, \eta(x_2)), x_2) - (\varphi(x_2, x_3), x_2)\|$$

= $|\varphi(x_2, \eta(x_2)) - \varphi(x_2, x_3)|$ (4.2)
 $\sim |x_3 - \eta(x_2)|^2$.

Differentiating the both sides of (4.1) by x_3 ,

$$\left|\frac{\partial\varphi}{\partial x_3}(x_2,x_3)\right| \sim |x_3-\eta(x_2)|.$$

Then the proof is completed by this approximation and (4.2).

The curve \tilde{h} divides H into two components. Take a component H_0 of $H \setminus \tilde{h}$. The surface H_0 is represented as the graph of a C^{∞} function $\gamma(x_1, x_2)$ with domain $\text{Int}(L) = L \setminus h$. Then any point (x_1, x_2, x_3) of H_0 satisfies

$$\varphi(x_2, x_3) = x_1$$
 and $\gamma(x_1, x_2) = x_3.$ (4.3)

Fig. 4.1. The case of $\theta > 0$. $p_{\eta} = (\varphi(x_2, \eta(x_2)), x_2), p_3 = (\varphi(x_2, x_3), x_2).$

Lemma 4.2 For any $(x_1, x_2) \in Int(L)$,

$$\left|\frac{\partial\gamma}{\partial x_1}(x_1, x_2)\right| \sim \left|\frac{\partial\gamma}{\partial x_2}(x_1, x_2)\right| \sim \frac{1}{\operatorname{dist}(h, (x_1, x_2))^{1/2}}.$$

Proof. By (4.3), $\varphi(x_2, \gamma(x_1, x_2)) = x_1$. Differentiating the both sides of the equation by x_1 and x_2 , we have

$$\frac{\partial \varphi}{\partial x_3}(x_2, \gamma(x_1, x_2))\frac{\partial \gamma}{\partial x_1}(x_1, x_2) = 1,$$

$$\frac{\partial \varphi}{\partial x_2}(x_2, \gamma(x_1, x_2)) + \frac{\partial \varphi}{\partial x_3}(x_2, \gamma(x_1, x_2))\frac{\partial \gamma}{\partial x_2}(x_1, x_2) = 0.$$

These equations together with Lemma 4.1 show

$$\left|\frac{\partial\gamma}{\partial x_1}(x_1, x_2)\right| \sim \frac{1}{\operatorname{dist}(h, (x_1, x_2))^{1/2}},\\ \left|\frac{\partial\gamma}{\partial x_2}(x_1, x_2)\right| \sim \frac{1}{\operatorname{dist}(h, (x_1, x_2))^{1/2}} \left|\frac{\partial\varphi}{\partial x_2}(x_2, \gamma(x_1, x_2))\right|.$$

Since

$$\lim_{(x_1,x_2)\to(0,0)}\frac{\partial\varphi}{\partial x_2}(x_2,\,\gamma(x_1,\,x_2))=\frac{\partial\varphi}{\partial x_2}(0,\,q_3)\neq 0$$

by the condition (ii), one can choose H (and hence L) so that

$$\left|\frac{\partial\gamma}{\partial x_2}(x_1, x_2)\right| \sim \frac{1}{\operatorname{dist}(h, (x_1, x_2))^{1/2}}$$

for any $(x_1, x_2) \in \text{Int}(L)$. This completes the proof.

Set $W = U \cap \{x_3 = 0\}$ in $W^u(p)$ and let \mathcal{T} be a small ϵ -neighborhood of the x_1x_3 -plane in \mathbb{R}^3 satisfying $\mathcal{T} \cap \{s\} = \emptyset$.

Lemma 4.3 (One-sided singular λ -Lemma) The sequence $\{f^n(H_0) \cap U \setminus \mathcal{T}\}$ C^1 converges to an open subsurface of $W^u(p) \setminus \mathcal{T}$ containing s as $n \to +\infty$.

Proof. We only consider the case when L meets the negative parts of the x_2 -axis non-trivially, as shown in Fig. 3.1. In the other case, the proof is done quite similarly. By the condition(i),

$$f^{n}(\lambda_{1}^{-n}x_{1}, \lambda_{2}^{-n}x_{2}, \mu^{-n}x_{3}) = (x_{1}, x_{2}, x_{3})$$

for any $(x_1, x_2, x_3) \in U \setminus \mathcal{T}$ with $(\lambda_1^{-n} x_1, \lambda_2^{-n} x_2, \mu^{-n} x_3) \in V_q$. In particular, for all sufficiently large $n \in \mathbb{N}$, $f^n(\operatorname{Int}(L)) \cap W \setminus \mathcal{T}$ is equal to $W^- \setminus \mathcal{T}$ and hence it contains s, where $W^- = \{(x_1, x_2) \in W; x_2 < 0\}$.

For any $(x_1, x_2) \in W^- \setminus \mathcal{T}$, there exists an integer $n_0 > 0$ such that $\operatorname{Int}(L)$ contains $(\lambda_1^{-n} x_1, \lambda_2^{-n} x_2)$ if $n \ge n_0$. Then we set

$$g_n(x_1, x_2) = f^n \left(\lambda_1^{-n} x_1, \lambda_2^{-n} x_2, \gamma(\lambda_1^{-n} x_1, \lambda_2^{-n} x_2) \right) = \left(x_1, x_2, \mu^n \gamma(\lambda_1^{-n} x_1, \lambda_2^{-n} x_2) \right).$$
(4.4)

Note that h is well C^1 approximated by the straight segment $\{(t, t \tan \theta); |t| < \delta\}$ for some $\delta > 0$ in a small neighborhood of (0, 0) in the x_1x_2 -plane. Moreover, since $0 < \lambda_1^{-1} < \lambda_2^{-1}$ and $|x_2| \ge \varepsilon$,

dist
$$(h, (\lambda_1^{-n} x_1, \lambda_2^{-n} x_2)) \sim |\lambda_1^{-n} x_1 \tan \theta - \lambda_2^{-n} x_2| \sim \lambda_2^{-n},$$
 (4.5)

see Fig. 4.2.

By Lemma 4.2 together with (4.5),

Fig. 4.2. $\boldsymbol{s}_n = (\lambda_1^{-n} x_1, \lambda_2^{-n} x_2), \boldsymbol{t}_n = (\lambda_1^{-n} x_1, \lambda_1^{-n} x_1 \tan \theta).$

Since $0 < \lambda_1^{-1} \lambda_2^{1/2} < \lambda_2^{-1/2} < 1$, these approximations imply that the map $g_n(x_1, x_2)$ on $W^- \setminus \mathcal{T}$ defined by (4.4) C^1 converges uniformly to $(x_1, x_2, 0)$ as $n \to \infty$. This completes the proof. \Box

Lemma 4.4 Let l be the curve given in the condition (iv). Then there exists an $n_0 \in \mathbb{N}$ such that $f^n(H_0)$ meets l non-trivially and transversely for any integer $n \geq n_0$.

Proof. Since l is tangent to the x_1x_2 -plane quadratically at s, the curve l is parametrized as $\mathbf{a}(\tau) = (a_1(\tau), a_2(\tau), \tau^2 + O(|\tau|^3))$ for any $\tau \in \mathbb{R}$ near 0 with $(a_1(0), a_2(0), 0) = s$ where each a_i is a C^{∞} map on \mathbb{R} . By Lemma 4.3, $f^n(H_0) \cap l \neq \emptyset$ for all sufficiently large n, which shows the former part of this lemma, see Fig. 4.3.

Suppose that $\mathbf{a}(\tau_n) \in f^n(H_0) \cap l$. Since $\tau_n^2 + O(|\tau_n|^3) = \mu^n \gamma(\lambda_1^{-n} a_1(\tau_n), \lambda_2^{-n} a_2(\tau_n))$,

$$\lim_{n \to \infty} \frac{\tau_n^2}{\mu^n} = \lim_{(x_1, x_2) \to (0, 0)} \gamma(x_1, x_2) = q_3.$$
(4.7)

By (4.4),

$$\begin{aligned} \boldsymbol{b}(\tau_n) &:= \frac{\partial g_n}{\partial x_1} (a_1(\tau_n), \, a_2(\tau_n)) \\ &= \left(1, \, 0, \, \mu^n \lambda_1^{-n} \frac{\partial \gamma}{\partial x_1} \big(\lambda_1^{-n} a_1(\tau_n), \, \lambda_2^{-n} a_2(\tau_n) \big) \right), \\ \boldsymbol{c}(\tau_n) &:= \frac{\partial g_n}{\partial x_2} (a_1(\tau_n), \, a_2(\tau_n)) \end{aligned}$$

$$= \left(0, 1, \mu^n \lambda_2^{-n} \frac{\partial \gamma}{\partial x_2} \left(\lambda_1^{-n} a_1(\tau_n), \lambda_2^{-n} a_2(\tau_n)\right)\right).$$

Since $a'(\tau_n) = (a'_1(\tau_n), a'_2(\tau_n), 2\tau_n + O(|\tau_n|^2)),$

$$\boldsymbol{a}'(\tau_n) \cdot (\boldsymbol{b}(\tau_n) \times \boldsymbol{c}(\tau_n)) = 2\tau_n + O(|\tau_n|^2) - a_1'(\tau_n)\mu^n \lambda_1^{-n} \frac{\partial \gamma}{\partial x_1} (\lambda_1^{-n} a_1(\tau_n), \lambda_2^{-n} a_2(\tau_n)) - a_2'(\tau_n)\mu^n \lambda_2^{-n} \frac{\partial \gamma}{\partial x_2} (\lambda_1^{-n} a_1(\tau_n), \lambda_2^{-n} a_2(\tau_n)).$$

By (4.6) and (4.7),

$$\lim_{n \to \infty} \mu^{-n/2} \boldsymbol{a}'(\tau_n) \cdot (\boldsymbol{b}(\tau_n) \times \boldsymbol{c}(\tau_n)) = 2\sqrt{q_3} \neq 0.$$

This means that $a'(\tau_n)$ is not contained in the tangent space of $f^n(H_0)$ at $a(\tau_n)$ for all sufficiently large $n \in \mathbb{N}$, see Fig. 4.4. Thus l meets $f^n(H_0)$ transversely at $a(\tau_n)$. This completes the proof.

Lemma 4.4 implies that there exists a transversal homoclinic point associated with p and arbitrarily close to the point s. Then, by Birkhoff-Smale Theorem (Lemma 2.5), we have a horseshoe set which is also arbitrarily close to s. This completes the proof of Theorem 3.1.

Fig. 4.3. The cross section along the x_2x_3 -plane. The shaded region represents \mathcal{T} .

Fig. 4.4.

Acknowledgment I would like to thank Professors Masato Tsujii, Shin Kiriki and Teruhiko Soma for their encouragement and helpful suggestions. I also would like to thank the referees for their valuable comments according to which various parts of this paper are cleared and improved.

References

- Arnold V.I., Gusein-Zade S.M. and Varchenko A.N., Singularities of Differentiable Maps Volume I. The classification of critical points, caustics and wave frons, Birkhäuser, Boston, 1985.
- [2] Birkhoff G.D., Nouvelles recherches sur ler systems dynamiques. "Pontifical Memori", Cllected Works, vol. 2, Amer. Math. Soc., New York, 1950.
- [3] Brin M. and Stuck G., Introduction to Dynamical Systems. Cambridge University Press, 2002.
- Burns K. and Weiss H., A Geometric Criterion for Positive Topological Entropy. Commun. Math. Phys. 172 (1995), 95–118
- [5] Cairns S.S., Differential and Combinatorial Topology. Princeton University Press, 1965.
- [6] Gavrilov N. and Silnikov L., On 3-Dimensional Dynamical Systems Close to Systems with a Structurally Unstable Homoclinic Curves, I. Math. USSR Sb. 88 (1972), 467– 485.
- Gavrilov N. and Silnikov L., On 3-Dimensional Dynamical Systems Close to Systems with a Structurally Unstable Homoclinic Curves, II. Math. USSR Sb. 90 (1973), 139–156.
- [8] Gonchenko S.V., Gonchenko V.S. and Tatjer J.T., Bifurcations of three-dimensional diffeomorphisms with non-simple quadratic homoclinic tangencies and generalized Henon maps. preprint.

- [9] Homburg A.J. and Weiss H., A Geometric Criterion for Positive Topological Entropy II; Homoclinic Tangencies. Commun. Math. Phys. 208, (1999), 267–273.
- [10] Li M.-C., Nondegenerate homoclinic tangency and hyperbolic sets. Nonlinear Analysis 52 (2003), 1521–1533.
- [11] Viana M., Strange Attractors in Higher Dimensions. Bol. Soc. Mat. 24 (1993), 13–62.
- [12] Palis J. and Takens F., Hyperbolicity and sensitive chaotic dynamics at homoclinic bifurcations. Cambridge University Press, 1993.
- [13] Palis J. and Viana M., High dimension diffeomorphisms displaying infinitely many periodic attractor. Annals of mathematics 140 (1994), 207–250.
- [14] Rayskin V., Multidimensional Singular λ-Lemma. Electronic Journal of Differential Equations 38 (2003), 1–9.
- [15] Rayskin V., Homoclinic tangencies in Rⁿ. Discrete and continuous Dynamical Systems (3) 12 (2005), 465–480.
- [16] Robinson C., Dynamical systems, Stability, symbolic dynamics, and chaos. Second edition, Studies in Advanced Mathematics, CRC Press, Boca Raton, FL, 1999.
- Sternberg S., On the Structure of Local Homeomorphisms of Euclidean n-Space II. Amer. J. Math. (3) 80 (1958), 623–631.

Department of Mathematics and Information Sciences Tokyo Metropolitan University Minami-osawa Hachioji Tokyo, 192-0397, Japan E-mail: nishizawa-yusuke@ed.tmu.ac.jp