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Pseudo-Einstein CR-structures on real hypersurfaces

in a complex space form
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Abstract. We introduce the pseudo-Einstein structure on real hypersurfaces in a

Kählerian manifold, namely, the Ricci curvature tensor for the generalized Tanaka-

Webster connection (restricted) on the Levi subbundle D is proportional to the Levi

form. In particular, we give a classification of pseudo-Einstein Hopf-hypersurfaces in a

non-flat complex space form.
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1. Introduction

Let M be a (2n − 1)-dimensional manifold and TM be its tangent
bundle. A CR-structure on M is a complex rank n − 1 subbundle H ⊂
CTM = TM ⊗ C satisfying
( i ) H ∩ H̄ = {0},
(ii) [H, H] ⊂ H (integrability),

where H̄ denotes the complex conjugation of H.
Then there exists a unique subbundle D = Re{H⊕ H̄}, called the Levi

subbundle (maximally holomorphic subbundle) of (M, H), and a unique
bundle map J such that J2 = −I and H = {X − iJX | X ∈ D}. We call
(D, J) the real representation of H. Let E ⊂ T ∗M be the conormal bundle
of D. If M is an oriented CR-manifold then E is a trivial bundle, hence
admits globally defined a nowhere zero section η, i.e., a real one-form on M

such that Ker(η) = D. For (D, J) we define the Levi form by

L : D × D → F(M), L(X, Y ) = dη(X, JY )

where F(M) denotes the algebra of differential functions on M . If the Levi
form is Hermitian, then the CR-structure is called pseudo-Hermitian, in
addition, if the Levi form is non-degenerate (positive or negative definite,
resp.), then the CR-structure is called a non-degenerate (strongly pseudo-

2000 Mathematics Subject Classification : 53B20, 53C15, 53C25.



2 J.T. Cho

convex, resp.) pseudo-Hermitian CR-structure.
Tanaka-Webster connection ([20], [22]) is defined as a canonical affine

connection on a non-degenerate, pseudo-Hermitian CR-manifold. A real hy-
persurface in a Kählerian manifold has an (integrable) CR-structure (D, J)
which is associated with an almost contact metric structure (η, φ, ξ, g), but
it is not guaranteed to be pseudo-Hermitian and strongly pseudo-convex, in
general. In this context, the present author [7], [8] defined the generalized
Tanaka-Webster connection (in short, the g.-Tanaka-Webster connection)
∇̂(k) for real number k for real hypersurfaces in Kählerian manifolds. In
particular, if a real hypersurface satisfies φA+Aφ = 2kφ, then its associated
CR-structure is pseudo-Hermitian and strongly pseudo-convex, and further
the g.-Tanaka-Webster connection ∇̂(k) coincides with the Tanaka-Webster
connection (see Proposition 2 in Section 3). Very recently, the author and
Kimura [9] proved a classification theorem of real hypersurfaces in a non-flat
complex space form such that the holomorphic sectional curvatures for the
g.-Tanaka-Webster connection are constant.

In this paper, we introduce a pseudo-Einstein CR-structure in a real
hypersurface of a Kählerian manifold, says, the Ricci curvature tensor of
type (0, 2) (restricted) on D for the g.-Tanaka-Webster connection is pro-
portional to the Levi form. A real hypersurface M in a Kählerian manifold
is called a Hopf hypersurface if its structure vector field ξ is a principal
curvature vector field, that is Aξ = α1ξ. The main purpose of this paper is
to prove

Main Theorem Let M be a Hopf hypersurface of a non-flat complex
space form M̃n(c) (c 6= 0) with constant holomorphic sectional curvature c.
Suppose that M admits a pseudo-Einstein CR-structure (for the g.-Tanaka-
Webster connection). Then M is locally congruent to one of the following:
(A0) a horosphere in HnC; (A1) a geodesic hypersphere in PnC or HnC,
a homogeneous tube over Hn−1C in HnC; or dimM = 3 and (B) a homo-
geneous tube over a complex quadric Qn−1 and PnR (resp. HnR) in PnC
(resp. HnC).

We note that a g.-Tanaka-Webster flat real hypersurface (whose cur-
vature tensor R̂ vanishes) is pseudo-Einstein. Before proving the Main
Theorem, we show that a Hopf hypersurface in a non-flat complex space
form admits a flat g.-Tanaka-Webster structure if and only if it is locally
congruent to (A0) a horosphere in HnC, or dim M = 3 and (B) in PnC or
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HnC.

2. Almost contact metric structures and the associated CR-
structures

In this paper, all manifolds are assumed to be connected and of class
C∞ and the real hypersurfaces are supposed to be oriented.

First, we give a brief review of several fundamental notions and formulas
which we will need later on. An odd-dimensional differentiable manifold M

has an almost contact structure if it admits a (1, 1)-tensor field φ, a vector
field ξ and a 1-form η satisfying

φ2 = −I + η ⊗ ξ, η(ξ) = 1. (1)

Then we can find always a compatible Riemannian metric, namely which
satisfies

g(φX, φY ) = g(X, Y ) − η(X)η(Y ) (2)

for all vector fields on M . We call (η, φ, ξ, g) an almost contact metric
structure of M and M = (M ; η, φ, ξ, g) an almost contact metric manifold.
From (1) and (2) we easily get

φξ = 0, η ◦ φ = 0, η(X) = g(X, ξ). (3)

The tangent space TpM of M at each point p ∈ M is decomposed as TpM =
Dp⊕{ξ}p (direct sum), where we denote Dp = {v ∈ TpM | η(v) = 0}. Then
D : p → Dp defines a distribution orthogonal to ξ. For an almost contact
metric manifold M , one may define naturally an almost complex structure
on the product manifold M×R, where R denotes the real line. If the almost
complex structure is integrable, M is said to be normal. The integrability
condition for the almost complex structure is the vanishing of the tensor
[φ, φ] + 2dη ⊗ ξ, where [φ, φ] denotes the Nijenhuis torsion of φ. For an
almost contact metric manifold M , we define its fundamental 2-form Φ by
Φ(X, Y ) = g(φX, Y ). If M satisfies in addition

Φ = dη, (4)

M is called a contact metric manifold. A normal contact metric manifold
is called a Sasakian manifold. For more details about the general theory of
almost contact metric manifolds, we refer to [5].
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On the other hand, for an almost contact metric manifold
M = (M ; η, φ, ξ, g), the restriction J = φ | D of φ to D defines an almost
complex structure in D. As soon as the following conditions are further
satisfied:

[JX, JY ] − [X, Y ] ∈ D (or [X, JY ] + [JX, Y ] ∈ D) (5)

and

[J, J ](X, Y ) = 0 (6)

for all X, Y ⊥ ξ, where [J, J ] is the Nijenhuis torsion of J , then the pair
(η, J) is called an (integrable) CR-structure associated with the almost con-
tact metric structure (η, φ, ξ, g). In addition that the associated Levi form
L, defined by L(X, Y ) = dη(X, JY ), X, Y ⊥ ξ, is Hermitian, then (η, J) is
called a pseudo-Hermitian CR-structure. If its Levi form is non-degenerate
(positive or negative definite, resp.), then (η, J) is called a non-degenerate
(strongly pseudo-convex, resp.) pseudo-Hermitian CR-structure. In par-
ticular, for a contact metric manifold its associated Levi-form is Hermitian
and positive definite, but its associated almost complex structure is not in
general integrable. For further details about CR-structures, we refer for
example to [3], [21].

3. The generalized Tanaka-Webster connection for real hyper-
surfaces

Let M be an (oriented) real hypersurface of a Kählerian manifold M̃ =
(M̃ ; J̃ , g̃) and N a global unit normal vector on M . By ∇̃, A we denote the
Levi-Civita connection in M̃ and the shape operator with respect to N , re-
spectively. Then the Gauss and Weingarten formulas are given respectively
by

∇̃XY = ∇XY + g(AX, Y )N, ∇̃XN = −AX

for any vector fields X and Y tangent to M , where g denotes the Riemannian
metric of M induced from g̃. An eigenvector (resp. eigenvalue) of the shape
operator A is called a principal curvature vector (resp. principal curvature).
For any vector field X tangent to M , we put

J̃X = φX + η(X)N, J̃N = −ξ. (7)
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We easily see that the structure (η, φ, ξ, g) is an almost contact metric
structure on M i.e., satisfies (1) and (2). From the condition ∇̃J̃ = 0, the
relations (7) and by making use of the Gauss and Weingarten formulas, we
have

(∇Xφ)Y = η(Y )AX − g(AX, Y )ξ, (8)

∇Xξ = φAX. (9)

By using (8) and (9), we see that a real hypersurface in a Kählerian
manifold always satisfies (5) and (6), the integrability condition of the as-
sociated CR-structure. From (4) and (9) we have

Proposition 1 Let M = (M ; η, φ, ξ, g) be a real hypersurface of a
Kählerian manifold. The almost contact metric structure of M is contact
metric if and only if φA + Aφ = 2φ.

The Tanaka-Webster connection ([20], [22]) is the canonical affine con-
nection defined on non-degenerate pseudo-Hermitian CR-manifold. Tanno
([21]) defined the generalized Tanaka-Webster connection for contact met-
ric manifolds by the canonical connection which coincides with the Tanaka-
Webster connection if the associated CR-structure is integrable. We de-
fine the generalized Tanaka-Webster connection (in short, the g.-Tanaka-
Webster connection) for real hypersurfaces of Kählerian manifolds by the
naturally extended one of Tanno’s generalized Tanaka-Webster connection.
Now we recall the generalized Tanaka-Webster connection ∇̂ for contact
metric manifolds:

∇̂XY = ∇XY + (∇Xη)(Y )ξ − η(Y )∇Xξ − η(X)φY

for all vector fields X and Y .
By taking account of (9), the g.-Tanaka-Webster connection ∇̂(k) for

real hypersurfaces of Kählerian manifolds, which is denoted by the same
symbol for contact metric manifolds, is defined by

∇̂(k)
X Y = ∇XY + g(φAX, Y )ξ − η(Y )φAX − kη(X)φY (10)

for a non-zero real number k. We put

FXY = g(φAX, Y )ξ − η(Y )φAX − kη(X)φY. (11)

Then the torsion tensor T̂ is given by T̂ (X, Y ) = FXY − FY X. Also, by
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using (2), (3), (8), (9) and (10) we can see that

∇̂(k)η = 0, ∇̂(k)ξ = 0, ∇̂(k)g = 0, ∇̂(k)φ = 0, (12)

and

T̂ (X, Y ) = 2dη(X, Y )ξ, X, Y ∈ D.

We note that the associated Levi form is L(X, Y ) = (1/2)g((JĀ +
ĀJ)X, JY ), where we denote by Ā the restriction A to D. If M sat-
isfies φA + Aφ = 2kφ, then we see that the associated CR-structure is
pseudo-Hermitian, strongly pseudo-convex and further satisfies T̂ (ξ, φY ) =
−φT̂ (ξ, Y ). Hence the generalized Tanaka-Webster connection ∇̂(k) coin-
cides with the Tanaka-Webster connection (see [7], [8]). Namely, we have

Proposition 2 Let M = (M ; η, φ, ξ, g) be a real hypersurface of a
Kählerian manifold. If M satisfies φA + Aφ = 2kφ, then the associated
CR-structure is pseudo-Hermitian, strongly pseudo-convex, integrable, and
further the g.-Tanaka-Webster connection ∇̂(k) coincides with the Tanaka-
Webster connection.

Remark 1 The almost contact metric structure of M appearing in Propo-
sition 2 is a contact metric structure only for the very special case k = 1.
More precisely, a real hypersurface M in PnC or HnC satisfies φA + Aφ =
2kφ if and only if M is locally congruent to one of real hypersurfaces of
type (A0) in HnC, (A1) or (B) in PnC, HnC among those ones in Theo-
rems 5 and 6 in Section 4 (cf. [13] and [17]). With the help of the tables
in [4] and [18], we see that the almost contact metric structures becomes
contact metric only for a geodesic hypersphere of radius π/4 in PnC and
for a horosphere in HnC. Thus, we see that the real hypersurfaces of type
(A1) in PnC except with the radius r = π/4 or (B) in PnC or HnC are
proper examples which has not contact structures but their associated CR
structures are pseudo-Hermitian, strongly pseudo-convex, integrable.

We define the g.-Tanaka-Webster curvature tensor of R̂ (with respect
to ∇̂(k)) by

R̂(X, Y )Z = ∇̂X(∇̂Y Z) − ∇̂Y (∇̂XZ) − ∇̂[X, Y ]Z

for all vector fields X, Y, Z in M . Then we have
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Proposition 3

R̂(X, Y )Z =−R̂(Y, X)Z,

g(R̂(X, Y )Z, W ) =−g(R̂(X, Y )W, Z).

The first identity follows trivially from the definition of R̂. Since the
connection parallelizes the metric form, (i.e., ∇̂g = 0) we have also the
second one by a similar way as the case of Riemanian curvature tensor. We
remark that since the Tanaka-Webster connection is not torsion-free, the
Jacobi- or Bianchi-type identities do not hold, in general.

The g.-Tanaka-Webster Ricci (curvature) tensor ρ̂ (of ∇̂(k)) is defined
by

ρ̂(X, Y ) = trace of {V 7→ R̂(V, X)Y }, V, X, Y ∈ D. (13)

We define the pseudo-Einstein structure on real hypersurfaces in a Kählerian
manifold.

Definition 4 Let M be a real hypersurface in a Kählerian manifold. Then
the CR-structure (η, J) is said to be pseudo-Einstein if the g.-Tanaka-
Webster Ricci tensor is proportional to the Levi form, namely,

ρ̂(X, Y ) = λL(X, Y ) (14)

for X, Y ⊥ ξ, where λ is a real number.

Since L(X, Y ) = (1/2)g((φA + Aφ)X, φY ) for X, Y ⊥ ξ, λ in (14) is
determined by r̂ = λ(H − α1), where we have put α1 = η(Aξ).

4. Pseudo-Einstein real hypersurfaces in a complex space form

Let M̃ = M̃n(c) be a complex space form of constant holomorphic
sectional curvature c and M a real hypersurface of M̃ . Then we have the
following Gauss and Codazzi equations:

R(X, Y )Z =
c

4
{g(Y, Z)X − g(X, Z)Y

+ g(φY, Z)φX − g(φX, Z)φY − 2g(φX, Y )φZ}
+ g(AY, Z)AX − g(AX, Z)AY,

(15)

(∇XA)Y − (∇Y A)X =
c

4
{η(X)φY − η(Y )φX − 2g(φX, Y )ξ}(16)
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for any tangent vector fields X, Y, Z on M . From (15) we get for the Ricci
tensor S of type (1,1):

SX =
c

4
{(2n + 1)X − 3η(X)ξ} + HAX − A2X, (17)

where H(= trace of A) denotes the mean curvature.
We now suppose that M is a Hopf hypersurface, that is ξ is a principal

curvature vector field Aξ = α1ξ. Then we already know that α1 is constant
(cf. [12], [13]). Differentiating this covariantly, and then by using (9) we
have

(∇XA)ξ = α1φAX − AφAX,

and further by using (16) we obtain

(∇ξA)X =
c

4
φX + α1φAX − AφAX

for any vector field X on M . The symmetry of ∇ξA gives

2AφAX − c

2
φX = α1(φA + Aφ)X.

If we assume that AX = µX (‖X‖ = 1) for X orthogonal to ξ, then we get

(2µ − α1)AφX =
(
µα1 +

c

2

)
φX. (18)

If 2µ − α1 = 0, then the above equation gives µ2 = −c/4. This case
determines the horosphere in HnC (cf. [4]). We prepare some more which
are needed soon to prove our results.

Theorem 5 ([10]) Let M be a Hopf hypersurface of PnC. Then M has
constant principal curvatures if and only if M is locally congruent to one of
the following:
(A1) a geodesic hypersphere of radius r, where 0 < r < π/2,
(A2) a tube of radius r over a totally geodesic PlC(1 ≤ l ≤ n − 2), where

0 < r < π/2,
(B) a tube of radius r over a complex quadric Qn−1 and PnR, where 0 <

r < π/4,
(C) a tube of radius r over P1C×P(n−1)/2C, where 0 < r < π/4 and n (≥

5) is odd,
(D) a tube of radius r over a complex Grassmann G2,5C, where 0 < r <

π/4 and n = 9,
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(E) a tube of radius r over a Hermitian symmetric space SO(10)/U(5),
where 0 < r < π/4 and n = 15.

Theorem 6 ([4]) Let M be a Hopf hypersurface of HnC. Then M has
constant principal curvatures if and only if M is locally congruent to one of
the following:
(A0) a horosphere,
(A1) a geodesic hypersphere or a tube over a complex hyperbolic hyperplane

Hn−1C,
(A2) a tube over a totally geodesic HlC(1 ≤ l ≤ n − 2),
(B) a tube over a totally real hyperbolic space HnR.

From the definition of R̂, together with (10) and (11), we have

R̂(X, Y )Z = R(X, Y )Z + (∇XF )Y Z

+ FXFY Z − (∇Y F )XZ − FY FXZ

for all vector fields X, Y, Z tangent to M . We put

E(X, Y )Z = (∇XF )Y Z + FXFY Z − (∇Y F )XZ − FY FXZ.

Use (9) to get

E(X, Y )Z

= (∇XF )Y Z − (∇Y F )XZ + FXFY Z − FY FXZ

= g
(
φ((∇XA)Y − (∇Y A)X), Z

)
ξ + 2g(φAY, Z)φAX

− 2g(φAX, Z)φAY + g
(
(∇Xφ)AY − (∇Y φ)AX, Z

)
ξ

− η(Z)
(
φ
(
(∇XA)Y − (∇Y A)X

)
+ (∇Xφ)AY − (∇Y φ)AX

)
− k

(
g
(
(φA + Aφ)X,Y

)
φZ + η(Y )(∇Xφ)Z − η(X)(∇Y φ)Z

)
+ g(φAX, FY Z)ξ − η(FY Z)φAX − kη(X)φFY Z

− g(φAY, FXZ)ξ + η(FXZ)φAY + kη(Y )φFXZ.

(19)

Then E is a tensor field of type (1, 3), and

R̂(X, Y )Z = R(X, Y )Z + E(X, Y )Z (20)

for all vector fields X, Y, Z in M .
Here, we prove
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Proposition 7 Let M be a Hopf hypersurface of a non-flat complex space
form M̃n(c), c 6= 0. Then M admits a flat g.-Tanaka-Webster structure,
namely, R̂ = 0 if and only if M is locally congruent to a horosphere in
HnC, or dimM = 3 and a homogeneous tube over a complex quadric Qn−1

and PnR (resp. HnR) in PnC (resp. HnC).

Proof. Suppose that M is flat with respect to ∇̂(k), that is M satisfies
R̂ = 0. Together with (11), (19) and (20), using (1), (2), (3), (8) and (16),
then we have

R(X, Y )Z

=
c

4
{η(X)g(Y, Z)ξ − η(Y )g(X, Z)ξ + η(Z)(η(Y )X − η(X)Y )}

+ η(AX)g(AY, Z)ξ − η(AY )g(AX, Z)ξ

+ η(Z)(η(AY )AX − η(AX)AY ) + kg((φA + Aφ)X, Y )φZ

+ g(φAX, Z)φAY − g(φAY, Z)φAX.

(21)

We assume that ξ is a principal curvature vector field, that is Aξ = α1ξ on
M . Then for X ⊥ ξ, ‖X‖ = 1, from (21) we get

g(R(X, φX)φX, X)

= −kg((φA + Aφ)X, φX) + g(φAX, φX)g(φAφX, X)

− g(φAφX, φX)g(φAX, X)

= −k
(
g(AX, X) + g(AφX, φX)

)
− g(AX, X)g(AφX, φX) + g(AφX, X)2.

But, from (15) we also get

g(R(X, φX)φX, X) = c + g(AφX, φX)g(AX, X) − g(AX, φX)2

for any vector field X ⊥ ξ, ‖X‖ = 1. The above two equations give

− k
(
g(AX, X) + g(AφX, φX)

)
− 2g(AX, X)g(AφX, φX) + 2g(AX, φX)2 = c (22)

for any vector field X ⊥ ξ, ‖X‖ = 1.
Here, we divide our arguments into two cases: (i) 2µ = α1, (ii) 2µ 6= α1.

We consider the case (i). Then we already knew that M is a horosphere in
HnC. In fact, with its shape operator A = I + η ⊗ ξ in HnC(−4) and (15)
we can check that a horosphere satisfies the equation (21). This time we
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study the case (ii). If we assume that AX = µX, X ⊥ ξ, ‖X‖ = 1, then,
from (22) by using (18) we have

(k + α1)µ2 +
3
2
cµ − 1

2
cα1 +

1
4
ck = 0. (23)

From (23), we see at once that k 6= −α1 (because k = −α1 implies that 2µ =
α1). Further from (23), it follows that M has at most three distinct principal
curvatures including α1. So, in view of Takagi’s list of homogeneous Hopf-
hypersurfaces in PnC or Berndt’s list of Hopf-hypersurfaces of constant
principal curvatures in HnC, we see that M is of type (A), (B) in PnC or
HnC.

First, we treat a real hypersurface of type (A). Then we know that those
ones of type (A) are determined by the equation

µ2 − α1µ − c

4
= 0 (Aφ = φA) (24)

(cf. [16], [15]). From (23) and (24), we obtain k2 = −c/4, α2
1 = −c, and (µ−

α1/2)2 = 0, which can not occur. Thus, we see that among them of type
(A) in PnC or HnC, only a horosphere in HnC admits a g.-Tanaka-Webster
flat structure.

Next, we consider a real hypersurface of type (B). Its defining equation
is

α1µ
2 + cµ − c

4
α1 = 0

(
Aφ + φA = − c

α1
φ
)

(25)

(cf. [13]). Together with (23), we get α1 = 2k. Thus, from (15) and (21),
we have for any vector fields X, Z, W ⊥ ξ

− c

2
g(φZ, W )φX + g(φAZ, X)φAW − g(φAW, X)φAZ

=
c

4
(
g(W, X)Z − g(Z, X)W + g(φW, X)φZ

− g(φZ, X)φW − 2g(φZ, W )φX
)

+ g(AW, X)AZ − g(AZ, X)AW.

(26)

It arises naturally two subcases: (i) dim M ≥ 5, (ii) dimM = 3.
In the case (i), if we put X = Z (26) in and take an orthonormal pair

{X, W} belonging to an eigenspace D(µ) for an eigenvalue µ, then we get
c/4 + µ2 = 0, which together with (25), yields a contradiction.

In case that (ii) dim M = 3, we can check that (26) always holds for all
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the (possible) cases:
- X = W ∈ D(µ) and Z = φX;
- X = Z ∈ D(µ) and W = φX;
- Z = W ∈ D(µ) and X = φZ.

Conversely, we can also check that a 3-dimensional hypersurface M of
type (B) in PnC or HnC satisfies (21) with k = α1/2. In fact, we are aware
that it holds always that R̂(X, Y )ξ = 0 for any vector fields X and Y . Also,
from (20) we can see that every Hopf hypersurface satisfies R̂(ξ, X)Y = 0
for any vector fields X and Y . Together with Proposition 3 (the symmetry
of R̂) we can see that R̂ vanishes for M . ¤

Now, we prove our Main Theorem.

Proof of the Main Theorem. Let M be a Hopf hypersurface in PnC or
HnC. First by (11), FXY = g(φAX, Y )ξ for X, Y ∈ Dp (p ∈ M). Then
(19) implies

g(E(X, Y )Z, W ) = g(φAY, Z)g(φAX, W )−g(φAX, Z)g(φAY, W )

−kg((φA+Aφ)X, Y )g(φZ, W )

for X, Y, Z, W ∈ Dp. Hence for an orthonormal basis {ei} on Dp (p ∈ M),
i = 1, 2, . . . , 2n − 2,

2n−2∑
i=1

g(E(ei, X)Y, ei) = g(AφY, φAX) + kg((φA + Aφ)X, φY ).

Moreover, from (20) we have

ρ̂(X, Y ) =
2n−2∑
i=1

g(R(ei, X)Y, ei) +
2n−2∑
i=1

g(E(ei, X)Y, ei)

= ρ(X, Y )− g(R(ξ, X)Y, ξ) +
2n−2∑
i=1

g(E(ei, X)Y, ei)

= ρ(X, Y )− c

4
g(X, Y )− η(Aξ)g(AX, Y ) + η(AX)η(AY )

+g(AφY, φAX) + kg((φA + Aφ)X, φY )

for X, Y ⊥ ξ, where we have put ρ(X, Y ) = g(SX, Y ). Suppose that M is
pseudo-Einstein, then by Definition 4 we have
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ρ(X, Y ) =
c

4
g(X, Y ) +

(λ

2
+ α1 − k

)
g(AX, Y )

−
(λ

2
− k

)
g(φAφX, Y ) + g(φAφAX, Y ) (27)

for X, Y ⊥ ξ. So, together with (17) we have

g(A2X, Y ) +
(λ

2
+ α1 − H − k

)
g(AX, Y ) − c

2
ng(X, Y )

+
(
k − λ

2

)
g(φAφX, Y ) + g(φAφAX, Y ) = 0 (28)

for any vector fields X and Y orthogonal to ξ.
As already seen in the proof of Proposition 7, a horosphere in HnC

(with c = −4) is a pseudo-Einstein space (with λ = 2k − 2). From now
we consider the cases except a horosphere in HnC. Now we assume that
AX = µX (‖X‖ = 1) for X orthogonal to ξ, then from (28) we get

µ2 +
(λ

2
+ α1 − H − k

)
µ − c

2
n +

(λ

2
− k

)
µ̄ − µµ̄ = 0.

Here, we substitute µ̄ = (α1µ + c/2)/(2µ − α1). Then this is rewritten as

2µ3 + (λ − 2H − 2k)µ2

+
(
α1H − α2

1 − cn − c

2

)
µ +

c

2
nα1 +

c

4
λ − c

2
k = 0. (29)

We denote its roots µ1, µ2, µ3 and we may assume that µ3 = µ̄2. Then
from the roots and coefficients of (29), we have the following relations:

µ1 + µ2 + µ3 = −1
2
(λ − 2H − 2k),

µ1µ2 + µ1µ3 + µ2µ3 =
1
2

(
α1H − α2

1 − cn − c

2

)
,

µ1µ2µ3 = −1
2

( c

2
nα1 +

c

4
λ − c

2
k
)
.

(30)

Let U be the maximal open and dense subset of M such that on each
connected component of U the multiplicities mi of the eigenvalue functions
µi (i = 1, 2) of the shape operator A are constant. Let U0 be a connected
component of U , and we discuss our arguments on U0. Then we may express
H = α1 + m1µ1 + m2µ2 + m2µ̄2, m1 > 1. From the first equation of (30)
we get

(1 − m2)µ̄2 = α1 + (m1 − 1)µ1 + (m2 − 1)µ2 + k − 1
2
λ. (31)
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We may consider two cases divided: (i) m2 = 1, (ii) m2 6= 1. First, we
treat the case (i). Then (31) yields that µ1 is constant. If µ1 6= 0, then
succeedingly the third equation of (30) gives µ2µ̄2 = constant. Since µ̄2 =
(α1µ2 + c/2)/(2µ2 − α1) it follows that µ2 is constant and then µ̄2 is also
constant. If µ1 = 0, from (31) we get λ = 2(k + α1), and thus from the
third one of (30) we get α1 = 0. Then with the second equation of (30) we
get µ2µ̄2 = −cn− c/2, which yields that µ2 and µ̄2 are constants. Next, we
consider the case (ii). Then from (31) we obtain µ1 = f1(µ2), a function
of µ2. (If µ1 = 0, then from (31) we at once see that µ2 is constant.) So,
from the third equation of (30) we can see that µ2 is constant, and hence
µ1 and µ̄2 are also constants. Finally, since M is connected, we conclude
that M has at most four distinct constant principal curvatures (including
α1) on M . Due to [4] and [10], we conclude that M is locally congruent to
one of types (A1), (A2), (B) in PnC or (A0), (A1), (A2), (B) in HnC.

In a similar way as in the proof of Proposition 7, we first look at a real
hypersurface of type (A). Then their characteristic property φA = Aφ have
the equation (28) be simpler:

(λ + α1 − H − 2k)g(AX, Y ) − c

2
ng(X, Y ) = 0

for X, Y ⊥ ξ. This says that M is totally η-umbilical, that is A = aI +bη⊗
ξ for constants a, b. As concerns of it, we already know that (A1) in PnC
and (A0), (A1) in HnC only have the property (cf. [15], [18]). Indeed, we
compute the pseudo-Einstein constant λ = (2n − 2)a + 2k + c/2an. (Here,
a 6= 0 because a = 0 implies (rank of Ap) ≤ 1 at every point p, which is
impossible (see, Theorem 2.3 in [13])).

Next, we deal with real hypersurfaces type (B). Use their determining
relation φA + Aφ = −(c/α1)φ in (28) to obtain the quadratic equation for
µ:

2µ2 +
( c

α1
+ α1 − H

)
µ +

(
− c

α1

(λ

2
− k

)
− c

2
n
)

= 0.

Comparing the above equation with the defining equation (25) for (B), then
we have

c = α1(α1 − H). (32)

- For the case that M is of type (B) in PnC(4), the principal curvatures
and their eigenspaces are given as follows (cf. [2], [19]): µ1 = (1 + x)/(1 −



Pseudo-Einstein CR-structures on real hypersurfaces 15

x), µ2 = (x − 1)/(x + 1), α1 = (x2 − 1)/x, where

x = cot r, m(µ1) = n − 1, m(µ2) = n − 1, m(α1) = 1.

H = (n − 1)
(1 + x)
(1 − x)

+ (n − 1)
(x − 1)
(x + 1)

+
x2 − 1

x
.

Together with these data, (32) gives n = 2.
- In case that M is of type (B) in HnC(−4), then the principal cur-

vatures and their eigenspaces are given as follows (cf. [4]): µ1 = x(=
coth r), µ2 = 1/x, α1 = 4x/(x2 + 1), where m(µ1) = n − 1, m(µ2) = n −
1, m(α1) = 1. H = (n− 1)x + (n− 1)(1/x) + 4x/(x2 + 1). We also see that
(32) only holds in n = 2.

In both cases the pseudo-Einstein constant λ = 2k − α1. After all, we
have proved our Main Theorem. ¤

Remark 2 The name “pseudo-Einstein structure” in real hypersurfaces
of a complex space form already used in [13]. Actually, the author adapt the
notion by the same condition of “η-Einstein structure” in (almost) contact
geometry (cf. [23]):

ρ = αg + βη ⊗ η, (33)

for constants α, β. To avoid a confusion, we call an almost contact metric
space satisfying (33) an η-Einstein space. In the same paper [13] he classified
η-Einstein real hypersurfaces in PnC for n ≥ 3. Later, Cecil and Ryan
[6], Montiel [14] developed this result for PnC, HnC, respectively. Indeed
they classified (weakly) η-Einstein real hypersurfaces in PnC or HnC, n ≥
3 for smooth functions α and β. They are realized as homogeneous real
hypersurfaces of type (A): horospheres, tubes over Hn−1C in HnC, geodesic
hyperspheres in PnC or HnC, tubes of special radii r (0 < r < π/2) over
a totally geodesic PlC (1 ≤ l ≤ n − 2), or homogeneous real hypersurfaces
of type (B) in PnC: tubes of specific radii r (0 < r < π/4) over a complex
quadric Qn−1 and PnR. There is no inclusion relation between the pseudo-
Einstein real hypersurfaces and the η-Einstein real hypersurfaces.

Remark 3 Ruled real hypersufaces in PnC and HnC given in [11] and [1],
respectively. Let γ : I → M̃n(c) be a regular curve in M̃n(c) (PnC or HnC).
Then for each t ∈ I, let M

(t)
n−1(c) be a totally geodesic complex hypersurfaces

which is orthogonal to holomorphic plane Span{γ̇, Jγ̇}. We have a ruled
real hypersurface M =

⋃
t∈I M

(t)
n−1(c). These ruled ones are non-Hopf. The
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shape operator is written by the following form:

Aξ = α1ξ + νV (ν 6= 0),

AV = νξ,

AX = 0 for any X ⊥ ξ, V,

where V is a unit vector orthogonal to ξ, and α1, ν are differentiable func-
tions on M . Moreover, we see that M is Levi-flat, that is, L(X, Y ) =
(1/2)g((JĀ + ĀJ)X, JY ) = 0 for any vector fields X,Y orthogonal to ξ.
From (17), we have

Sξ = fξ,

SV = gV,

SX =
c

4
(2n + 1)X for any X ⊥ ξ, V,

where f = (c/2)(n − 1) − ν2 and g = (c/4)(2n + 1) − ν2. Suppose that
M admits the pseudo-Einstein structure. Then, together with (27), we get
cn = 0, which is impossible. Thus, a ruled real hypersurface M does not
admit a pseudo-Einstein structure.

Acknowledgment The author thanks to the referee for careful reading
the manuscripts and useful comments and suggestions for the revised ver-
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