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A class of Butler groups and their endomorphism rings
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Abstract. We study a class of Butler groups of infinite rank, called Hawaiian groups.

They are defined as subgroups of a rational vector space and contain parameters that

provide for flexibility but are concrete enough to allow for the computation of certain

crucial subgroups and quotient groups, to exhibit endomorphisms and describe the endo-

morphism rings. Most Hawaiian groups are finitely Butler; under stronger assumptions

they are not finitely filtered and hence not B2-groups.

Key words: torsion-free abelian group of infinite rank, Butler group, finitely Butler, en-

domorphism ring, free direct summand.

1. Introduction

It is common knowledge that the concept of a Butler group is ambiguous
for torsion-free abelian groups that are uncountable. There are competing
definitions which we recall. A torsion-free abelian group G is called finitely
Butler if every finite rank pure subgroup H of G is a Butler group, i.e.,
a pure subgroup or equivalently a homomorphic image of a completely de-
composable group of finite rank. A torsion-free group B is called a B1-group
if BextZ(B, T ) = 0 for all torsion groups T . Here BextZ(−,−) denotes the
subfunctor of ExtZ(−,−) consisting of all balanced exact extensions. Fi-
nally, a torsion-free group G is a B2-group if it has a filtration G =

⋃
α<λ Gα

of pure subgroups Gα such that for every α < λ, Gα+1 = Gα +Hα for some
Butler group Hα of finite rank.
In [ShSt] groups were constructed that are finitely Butler but not B2-group
and it was shown that in certain models of ZFC some of these groups are
B1-groups.
The purpose of this paper is to investigate further the finitely Butler groups

2000 Mathematics Subject Classification : Primary 20K15, 20K20, 20K35, 20K40;

Secondary 18E99, 20J05.

The second author was supported by a grant from the German Research Foundation

DFG. Moreover, he would like to thank the Department of Mathematics at the University

of Hawaii for the kind hospitality.



400 A. Mader and L. Strüngmann

constructed in [ShSt] and to determine their endomorphism rings. We gen-
eralize the construction from [ShSt] and obtain a large class of torsion-free
groups, called Hawaiian groups, that are finitely Butler but not B2-groups
and study their properties as well as characterize the groups that can ap-
pear as endomorphism groups. Hawaiian groups may serve as examples or
counterexamples for various questions on infinite rank Butler groups. For
instance it is not known if Hawaiian groups are pure subgroups of (infinite
rank) completely decomposable groups.
Our notation is standard and we write maps on the right. All groups under
consideration are abelian and written additively. P denotes the set of all
primes. If we say that a prime p divides an integer m or even a fraction
m/n, then this means that p divides m inside Z. If H is a pure subgroup
of the abelian group G, then we write H ⊆∗ G. Moreover, H∗ ⊆ G denotes
the purification of the subgroup H of a torsion-free group G. A reasonable
knowledge about abelian groups as for instance in [Fu] is assumed. However,
the authors have tried to make the paper as accessible as possible.

2. Hawaiian groups

In what follows κ always stands for an infinite cardinal ≤ 2ℵ0 . We let

V :=
⊕
n∈ω

Qxn ⊕
⊕
α<κ

Qyα

be the vector space with basis {xn, yα}. Let

R := (Rn | n < ω), and S := (Sα | α < κ)

be sequences of rational groups by which we mean additive subgroups of Q
that contain Z. Let

F := Fκ(R, S) =
(⊕

n∈ω

Rnxn

)
⊕

(⊕
α<κ

Sαyα

)
be the completely decomposable subgroup of V with “decomposition basis”
{xn, yα}. We define torsion-free groups sandwiched between F and V as
follows.

Definition 2.1 Let T := (Tn | n < ω) be a sequence of rational groups,
let P := (pn : n ∈ ω) be a sequence of (distinct) prime numbers, and finally
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let A = (Aα : α < κ) be a sequence of subsets of ω such that

∀α, β : Aα ∩ Aβ 6= ∅,
⋃
α<κ

Aα = ω, and
⋂
α<κ

Aα = ∅.

The group

B = 〈Fκ(R, S), p−1
n Tn(yα − xn) : α < κ, n ∈ Aα〉 ⊆ V

is called a κ-Hawaiian group or simply a Hawaiian group. The κ-Hawaiian
group with the specified data we denote by Bκ(R, S, T , A, P).

Every element b of B = Bκ(R, S, T , A, P) has a representation

b =
∑
n<ω

rnxn +
∑
α<κ

sαyα +
∑

(α,n) : α<κ,n∈Aα

tα,n

pn
(yα − xn) (2.1)

=
∑
n<ω

(
rn −

∑
α : n∈Aα

tα,n

pn

)
xn +

∑
α<κ

(
sα +

∑
n∈Aα

tα,n

pn

)
yα, (2.2)

where rn ∈ Rn, sα ∈ Sα and tα,n ∈ Tn for n ∈ ω, α < κ, and all but a finite
number of coefficients are zero.
We will use the following notation where the type of a rational group is its
isomorphism class.

Definition 2.2 Let B = Bκ(R, S, T , A, P), and α < β < κ. Then set
( i ) δ := type(Z);
( ii ) Pα := 〈p−1

n : n ∈ Aα〉; δα := type(Pα);
( iii ) P := 〈p−1

n : n ∈ ω〉 =
∑

ρ<κ Pρ; R :=
∑

n<ω Rn; S :=
∑

ρ<κ Sρ;
T :=

∑
n<ω Tn;

( iv ) Pα,β := Pα∩Pβ = 〈p−1
n : n ∈ Aα∩Aβ〉; δα,β := type(Pα,β) = δα∧δβ ;

( v ) T̂α :=
∑

n∈Aα
Tn; τα := type(T̂α);

( vi ) Tα,β :=
∑

n∈Aα∩Aβ
Tn; τα,β := type(Tα,β);

(vii) σα := type(Sα); Sα,β = Sα ∩ Sβ ; σα,β = type(Sα,β) = σα ∧ σβ .

We remark that δα is represented by the characteristic [h1, . . . , hi, . . .]
where hn = 1 if n ∈ Aα and hn = 0 otherwise.
As we proceed we will impose one or more conditions on the rational groups
involved in the definition of Hawaiian groups. Some such conditions are as
follows.

P ∩ T = Z and ∀n < ω : Tn ∩
∑

i : i∈ω,i6=n

Ti = Z. (2.3)
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S ∩ T = Z and S ∩ P = Z. (2.4)

R ∩ P = Z and R ∩ T = Z. (2.5)

All these conditions are satisfied if R = S = T = Z, but it is not difficult to
exhibit many other examples of rational groups satisfying these conditions.
Recall that a rational group is determined by generators of the form p−n

([Ma, Section 1.2]). One only needs to write P as a countable disjoint
union of infinite subsets and pick the generators for the rational groups
from different subsets. For example, to satisfy Tn ∩

∑
i∈ω : i6=n Ti = Z let

U be an infinite set of primes and write U =
⋃

i<ω Ui such that the Ui are
pairwise disjoint and infinite. Now, for each i, choose generators p−n of Ti

such that p ∈ Ui.

Remark 2.3 It follows from the second assumption in (2.3) that T̂α ∩
T̂β = Tα,β .

We will use without explicit mention (see [Ma, Lemma 1.2.13]) the fact that
intersection distributes over finite sums in the poset of rational groups. For
two rational groups S̃, T̃ , let S̃T̃ := {

∑
siti : si ∈ S̃, ti ∈ T̃} ∼= S̃ ⊗ T̃ which

is again a rational group. The type of a rational group is its isomorphism
class and we have

type(S̃ + T̃ ) = type(S̃) ∨ type(T̃ ),

type(S̃ ∩ T̃ ) = type(S̃) ∧ type(T̃ ).

Before going on we need to record a consequence of the assumption P ∩T =
Z.

Lemma 2.4 Suppose that P ∩ T = Z. Then the following statements are
true.
( i )

∑
n∈Aα

(1/pn)Tn = Pα + T̂α = PαT̂α.
(ii) δα ∨ τβ ≥ δα′ ∨ τβ′ if and only if δα ≥ δα′ and τβ ≥ τβ′.

Proof. (i) Let n ∈ Aα and tn ∈ Tn. Then tn = (1/pn)(tnpn) ∈ (1/pn)Tn,
so T̂α ⊆

∑
n∈Aα

(1/pn)Tn. Further, Pα =
∑

n∈Aα
(1/pn)Z ⊆

∑
n∈Aα

(1/pn)Tn.
Hence Pα + T̂α ⊆

∑
n∈Aα

(1/pn)Tn.
Conversely, let n ∈ Aα and 0 6= tn/pn ∈ (1/pn)Tn. Write tn as a reduced
fraction tn = r/s. Then the assumption P∩T = Z implies that gcd(pn, s) =
1. In fact, if s = pns′, then r/pn = (r/s)s′ ∈ P ∩ T = Z, a contradiction.
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We have a Bezout equation upn + vs = 1 and

tn
pn

=
r

spn
=

r(upn + vs)
spn

=
ru

s
+

rv

pn
∈ Tn + Pα.

This shows that
∑

n∈Aα
(1/pn)Tn ⊆ Pα + T̂α and the desired equality is

established.
To show that Pα + T̂α = PαT̂α we first note that trivially Pα + T̂α ⊆ PαT̂α.
The reverse containment follows from the partial fraction decomposition of
an element r ∈ Pα:

r =
r1

pn1

+
r2

pn2

+ · · · , ri ∈ Z, ni ∈ Aα.

(ii) Suppose that δα∨τβ ≥ δα′∨τβ′ . The lattice of types is distributive and
the hypothesis P ∩T = Z implies that always δρ ∧ τσ = δ = type(Z). Hence
δα′ ∧ δα = δα′ ∧ (δα ∨ τβ) ≥ δα′ ∧ (δα′ ∨ τβ′) = δα′ and δα ∧ δα′ ≥ δα′ implies
that δα ≥ δα′ . The inequality τβ ≥ τβ′ is obtained analogously. ¤

To establish properties of Hawaiian groups we need a preparatory numerical
lemma.

Lemma 2.5 Assume (2.3). Then a finite sum
∑

n∈ω tn/pn with tn ∈ Tn

is in Z if and only if tn/pn ∈ Z for all n ∈ ω.

Proof. Let F be a finite subset of ω and set m :=
∑

i∈F ti/pi ∈ Z with
0 6= ti ∈ Ti. Let n ∈ F and write tn as a reduced fraction tn = r/s. Then
the first equation of (2.3) implies that gcd(s, pn) = 1. We have r/pn =
s(tn/pn), so

r

pn

( ∏
n6=i∈F

pi

)
= s

( ∏
n6=i∈F

pi

)(
m −

∑
n6=i∈F

ti
pi

)
∈ P ∩ T = Z.

Hence pn divides r. Now m−
∑

n6=i∈F ti/pi = tn/pn ∈ Tn ∩
∑

n6=i∈F Ti = Z.
¤

We introduce important subgroups of B.

Definition 2.6 Let B = Bκ(R, S, T , A, P) be a Hawaiian group. For
each α ≤ κ define

Fα(R, S) :=
(⊕

n∈ω

Rnxn

)
⊕

(⊕
ρ<α

Sρyρ

)
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and

Bα := 〈Fα(R, S), p−1
n Tn(yρ − xn) : ρ < α, n ∈ Aρ〉.

In particular, B0 =
⊕

n∈ω Rnxn and Bκ = B.

Lemma 2.7 Let B be a Hawaiian group and let Bα (α < κ) be the as-
cending chain of subgroups defined in Definition 2.6. So B =

⋃
α<κ Bα.

Assume (2.3) and (2.4). Then the following statements hold.
( i ) Bα is pure in B for every α < κ.
( ii ) B/B0

∼=
⊕

ρ<κ(Sρ +
∑

n∈Aρ
(1/pn)Tn)yρ, the isomorphism being in-

duced by the projection

π : V →
⊕
ρ<κ

Qyρ along QB0.

(iii) For β < α, Bα/Bβ
∼=

⊕
β≤ρ<α(Sρ +

∑
n∈Aρ

(1/pn)Tn)yρ, the isomor-
phism being induced by the projection

π : QB0 ⊕
(⊕

ρ<α

Qyρ

)
→

⊕
β≤ρ<α

Qyρ

along QBβ = QB0 ⊕
(⊕

ρ<β

Qyρ

)
.

Proof. (i) Let b ∈ B be as in (2.1) and assume that mb ∈ Bα for some
nonzero integer m. By (2.2)

∀σ ≥ α : sσ +
∑

n∈Aσ

tσ,n

pn
= 0. (2.6)

Hence ∀σ ≥ α : sσ = −
∑

n∈Aσ
(tσ,n/pn) ∈ Sσ ∩ PσT̂σ

Lemma 2.4= Sσ ∩ (Pσ +
T̂σ) ⊆ S ∩ (P +T ) = (S ∩P )+(S ∩T ) = Z and by Lemma 2.5 we have that

∀σ ≥ α, ∀n ∈ Aσ :
tσ,n

pn
∈ Z. (2.7)

Therefore

b =
∑
n∈ω

rnxn +
∑
ρ<κ

sρyρ +
∑

(ρ,n) : ρ<κ,n∈Aρ

tρ,n

pn
(yρ − xn)

=
∑
n∈ω

(
rn −

∑
ρ : n∈Aρ

tρ,n

pn

)
xn +

∑
ρ<κ

(
sρ +

∑
n∈Aρ

tρ,n

pn

)
yρ
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(2.6)
=

∑
n∈ω

(
rn −

∑
ρ : n∈Aρ

tρ,n

pn

)
xn +

∑
ρ<α

(
sρ +

∑
n∈Aρ

tρ,n

pn

)
yρ

=
∑
n∈ω

rnxn −
∑
n∈ω

( ∑
ρ : n∈Aρ

tρ,n

pn

)
xn +

∑
ρ<α

sρyρ +
∑

(ρ,n) : ρ<α,n∈Aρ

tρ,n

pn
yρ

=
∑
n∈ω

rnxn −
∑
n∈ω

( ∑
ρ : ρ≥α,n∈Aρ

tρ,n

pn

)
xn +

∑
ρ<α

sρyρ

+
∑

(ρ,n) : ρ<α,n∈Aρ

tρ,n

pn
(yρ − xn)

(2.7)
∈ Bα.

(iii) Let

π : QB0 ⊕
(⊕

ρ<α

Qyρ

)
→

⊕
β≤ρ<α

Qyρ

be the projection along QBβ . We claim that π ¹Bα has image⊕
β≤ρ<α

(
Sρ +

∑
n∈Aρ

1
pn

Tn

)
yρ

and kernel Bβ .
By (i) Bβ is pure in Bα and hence Bα ∩ QBβ = Bβ . Therefore Ker(π ¹Bα)
= Bβ . Let b ∈ Bα be given in the representation (2.2). Then

bπ =
∑

β≤ρ<α

(
sρ +

∑
n∈Aρ

tρ,n

pn

)
yρ ∈

⊕
β≤ρ<α

(
Sρ +

∑
n∈Aρ

1
pn

Tn

)
yρ.

Now suppose that y ∈
⊕

β≤ρ<α(Sρ +
∑

n∈Aρ
(1/pn)Tn)yρ. Then y has the

form

y =
∑

β≤ρ<α

(
sρ +

∑
n∈Aρ

tρ,n

pn

)
yρ with sρ ∈ Sρ and tρ,n ∈ Tn.

Then

b :=
∑

β≤ρ<α

sρyρ +
∑

(ρ,n) : β≤ρ<α,n∈Aρ

tρ,n

pn
(yρ − xn) ∈ Bα

and clearly bπ = y. This proves (iii).
Finally, (ii) is the special case α = κ and β = 0 of (iii). ¤

Using Lemma 2.4 we can reformulate results in Lemma 2.7.
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Corollary 2.8 Let B be a Hawaiian group and assume (2.3) and (2.4).
Then

B/B0
∼=

⊕
ρ<κ

(Pρ + Sρ + T̂ρ)yρ.

The groups Yα,β := 〈yα − yβ〉B∗ ⊆ B turn out to be very important in
studying the endomorphism ring of a Hawaiian group. We describe next
the structure of Yα,β .

Lemma 2.9 Let B = Bκ(R, S, T , A, P) be a Hawaiian group. Assume
(2.3), (2.4), and (2.5). Then

∀α < β < κ : Yα,β = (Pα,β + Sα,β + Tα,β)(yα − yβ).

In particular,

∀α < β < κ : type(Yα,β) = δα,β ∨ τα,β ∨ σα,β .

Proof. Suppose that α < β < κ.
Let s ∈ Sα,β = Sα ∩ Sβ . Then syα ∈ B and syβ ∈ B, so s(yα − yβ) ∈ B.
Hence

Sα,β(yα − yβ) ⊆ B.

The assumption Aα ∩Aβ 6= ∅ assures that there is m ∈ Aα ∩Aβ. Let m be
such an integer.

Let t ∈ Tm. Then t(yα − xm) ∈ B and t(yβ − xm) ∈ B. Hence

t(yα − yβ) = t(yα − xm) − t(yβ − xm) ∈ B.

This shows that Tm(yα−yβ) ⊆ B and therefore, m having been any element
of Aα ∩ Aβ ,

Tα,β(yα − yβ) ⊆ B.

Finally, let p−1
m ∈ Pα,β . Then p−1

m (yα − xm) ∈ B and p−1
m (yβ − xm) ∈ B,

hence also p−1
m (yα − yβ) ∈ B which shows that

Pα,β(yα − yβ) ∈ B.

Altogether we have

(Sα,β + Tα,β + Pα,β)(yα − yβ) ⊆ Yα,β .
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For the reverse containment we make use of the projection π in Lemma
2.7(ii). We have Yα,β = U(yα − yβ) for some rational group U containing
Sα,β + Tα,β + Pα,β and, by Corollary 2.8,

(Yα,β)π = U(yα − yβ)π ⊆ Uyα ⊕ Uyβ

⊆ (Sα + Pα + T̂α)yα ⊕ (Sβ + Pβ + T̂β)yβ .

Hence by our assumptions ([Ma, Lemma 1.2.13] for distributivity)

U ⊆ (Sα + Pα + T̂α) ∩ (Sβ + Pβ + T̂β)

= (Sα ∩ Sβ) + (Sα ∩ Pβ) + (Sα ∩ T̂β) + (Pα ∩ Sβ) + (Pα ∩ Pβ)

+(Pα ∩ T̂β) + (T̂α ∩ Sβ) + (T̂α ∩ Pβ) + (T̂α ∩ T̂β)
2.4(ii)
= (Sα ∩ Sβ) + Z + Z + Z + (Pα ∩ Pβ) + Z + Z + Z + (T̂α ∩ T̂β)
2.3= Sα,β + Pα,β + Tα,β .

We have established that U = Sα,β + Pα,β + Tα,β . ¤

Lemma 2.10 Assume (2.3), (2.4), (2.5) and R ∩ S = Z. Then

∀α < κ, ∀n ∈ Aα : 〈yα − xn〉B∗ =
1
pn

Tn(yα − xn).

Proof. As it is clear that 〈yα−xn〉B∗ ⊃ (1/pn)Tn(yα−xn), we suppose that

b =
∑
i∈ω

(
ri −

∑
ρ : i∈Aρ

tρ,i

pi

)
xi +

∑
ρ<κ

(
sρ +

∑
i∈Aρ

tρ,i

pi

)
yρ ∈ 〈yα − xn〉B∗ .

Then there is a positive integer m such that mb = q(yα − xn) for some
rational number q. It follows that

∀i 6= n : ri −
∑

ρ : i∈Aρ

tρ,i

pi
= 0, and ∀ρ 6= α : sρ +

∑
i∈Aρ

tρ,i

pi
= 0.

Hence

b =
(
rn −

∑
ρ : n∈Aρ

tρ,n

pn

)
xn +

(
sα +

∑
i∈Aα

tα,i

pi

)
yα,

and

m
(
rn − 1

pn

∑
ρ : n∈Aρ

tρ,n

)
xn + m

(
sα +

∑
i∈Aα

tα,i

pi

)
yα = q(yα − xn).
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So

m
(
rn − 1

pn

∑
ρ : n∈Aρ

tρ,n

)
= −q and m

(
sα +

∑
i∈Aα

tα,i

pi

)
= q.

Adding the two equations and canceling m we obtain

rn − 1
pn

∑
ρ : n∈Aρ

tρ,n + sα +
∑
i∈Aα

tα,i

pi
= 0.

Hence

rn + sα =
1
pn

∑
ρ : n∈Aρ

tρ,n −
∑
i∈Aα

tα,i

pi

∈ (R + S) ∩ PT = (R + S) ∩ (P + T ) = Z.

Our assumption R ∩ S = Z further implies that

rn ∈ Z, sα ∈ Z,
1
pn

∑
ρ : n∈Aρ

tρ,n −
∑
i∈Aα

tα,i

pi
∈ Z.

In the last expression the term tα,n/pn cancels and we are left with

1
pn

∑
ρ : ρ 6=α,n∈Aρ

tρ,n −
∑

i : i6=n,i∈Aα

tα,i

pi
∈ Z.

By Lemma 2.5

− 1
pn

∑
ρ : ρ6=α,n∈Aρ

tρ,n ∈ Z and ∀i 6= n, i ∈ Aα :
tα,i

pi
∈ Z.

Hence b = zxn + syα + (1/pn)tα,n(yα − xn) for integers z, s. Using again
that mb = q(yα − xn) we find that z = −s, and finally that

b =
(
s +

1
pn

tα,n

)
(yα − xn)

=
1
pn

(spn + tα,n)(yα − xn) ∈ 1
pn

Tn(yα − xn).

¤

Before determining the endomorphism ring of certain Hawaiian groups we
show that all Hawaiian groups are finitely Butler.
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Theorem 2.11 Let B = Bκ(R, S, T , A, P) and assume (2.3), (2.4), and
(2.5). Then B is finitely Butler.

Proof. Let H ⊆∗ B be a pure subgroup of B of finite rank. Then there is
a finite set E ⊆ κ and a finite subset W ⊆ ω such that

H ⊆∗ L∗ with L :=
〈
FH ,

1
pn

Tn(yα − xn) : α ∈ E, n ∈ Aα ∩ W
〉

where FH = (
⊕

m∈W Rmxm)⊕ (
⊕

ρ∈E Sρyρ). Without loss of generality we
may assume that Aα ∩ Aβ ∩ W 6= ∅ for all α, β ∈ E which assures that
Yα,β ⊆ L∗.
We claim that L∗ ⊆ B is a Butler group. Since the class of Butler groups
is closed under pure subgroups, also H is then a Butler group of finite
rank. We first define a completely decomposable group of finite rank as an
external direct sum

C = FH ⊕
⊕

(α,n) : α∈E,n∈Aα∩W

1
pn

Tn(yα − xn) ⊕
⊕

α,β∈E,α<β

Yα,β .

Since all summands of C are subgroups of L∗ we obtain a homomorphism

ϕ : C → L∗

induced by the inclusion of the summands of C. It remains to prove that ϕ

is surjective. Let b ∈ B and assume that mb ∈ L for some 0 6= m ∈ N, i.e.,
b ∈ L∗. Then

mb =
∑
n∈W

r′nxn +
∑
ρ∈E

s′ρyρ +
∑

(ρ,n) : ρ∈E,n∈Aρ∩W

t′ρ,n

pn
(yρ − xn) (2.8)

for some r′n ∈ Rn, s′ρ ∈ Sρ and t′ρ,n ∈ Tn with n ∈ W , ρ ∈ E. Let b be given
in the form of (2.1). Then

mb =
∑
n∈ω

mrnxn +
∑
ρ<κ

msρyρ +
∑

(ρ,n) : ρ<κ,n∈Aρ

mtρ,n

pn
(yρ − xn)

for some rn ∈ Rn, sρ ∈ Sρ and tρ,n ∈ Tn where n ∈ ω, ρ < κ. Equating
coefficients of yα in V , we obtain that

∀α 6∈ E : m
(
sα +

∑
n∈Aα

tα,n

pn

)
= 0.
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By Lemma 2.5 it follows that

∀α 6∈ E, ∀n ∈ Aα :
tα,n

pn
∈ Z.

Note that S ∩ P = S ∩ T = Z and hence sα = −
∑

n∈Aα
tα,n/pn ∈ S ∩

(P + T ) = Z. Hence, combining and renaming coefficients we may assume
without loss of generality that

b =
∑
n∈ω

rnxn +
∑
ρ∈E

sρyρ +
∑

(ρ,n) : ρ∈E,n∈Aρ

tρ,n

pn
(yρ − xn)

=
( ∑

n∈W

rnxn +
∑
ρ∈E

sρyρ +
∑

(ρ,n) : ρ∈E,n∈Aρ∩W

tρ,n

pn
(yρ − xn)

)
+

∑
n6∈W

rnxn +
∑

(ρ,n) : ρ∈E,n∈Aρ\W

tρ,n

pn
(yρ − xn).

Obviously, h :=
∑

n∈W rnxn+
∑

ρ∈E sρyρ+
∑

(ρ,n) : ρ∈E,n∈Aρ∩W (tρ,n/pn)(yρ−
xn) is in the image of ϕ, so it remains to prove that∑

n6∈W

rnxn +
∑

(ρ,n) : ρ∈E,n∈Aρ\W

tρ,n

pn
(yρ − xn) ∈ Cϕ.

Fix k 6∈ W . For our current b, the multiple mb must have the form (2.8).
Equating coefficients of xk yields that

m
(
rk −

∑
ρ : ρ∈E,k∈Aρ\W

tρ,k

pk

)
= 0.

If there is no ρ ∈ E such that k ∈ Aρ, then rk = 0. So assume that there is
ρ ∈ E with k ∈ Aρ. Then

rk =
∑

ρ : ρ∈E,k∈Aρ\W

tρ,k

pk
∈ Rk ∩ 1

pk
Tk = Z.

Hence
1
pk

∑
ρ : ρ∈E,k∈Aρ\W

tρ,k ∈ Z. (2.9)



A class of Butler groups and their endomorphism rings 411

Let {α1, . . . , αn} = {α ∈ E : k ∈ Aα \ W}. Then

rkxk +
1
pk

∑
ρ : ρ∈E,k∈Aρ\W

tρ,k(yρ − xk)

= rkxk +
1
pk

∑
ρ∈{α1,...,αn}

tρ,k(yρ − xk)

= rkxk +
1
pk

tα1,k(yα1 − yα2) +
1
pk

(tα1,k + tα2,k)(yα2 − yα3) + · · ·

+
1
pk

(tα1,k + · · · + tαn−1,k)(yαn−1 − yαn)

+
1
pk

(tα1,k + · · · + tαn,k)(yαn − xk),

which is an element of Im ϕ since (1/pk)(tα1,k + · · ·+ tαn,k) ∈ Z by equation
(2.9) and (1/pk)(tα1,k + · · · + tαi,k) ∈ (1/pk)Tk for all i. This finishes the
proof. ¤

3. Strong Hawaiian groups

We now need to make stronger assumptions on our Hawaiian groups by
placing further restrictions on the defining sequences A.

Definition 3.1 Let ℵ be an infinite cardinal. A set of types {δα | α < ℵ}
is called a strong anti-chain of size ℵ if it satisfies the following condition.
If α < ℵ and E ⊆ ℵ is a finite subset of ℵ such that α 6∈ E, then δα and∧

ρ∈E δρ are incomparable.

Strong anti-chains satisfy stronger conditions than those postulated by the
definition.

Lemma 3.2 Let ∆ = {δα | α < ℵ} be a strong anti-chain of size ℵ. If E

and E′ are finite subsets of ℵ such that E 6⊆ E′ and E′ 6⊆ E, then
∧

β∈E δβ

and
∧

β∈E′ δβ are incomparable.

Proof. By way of contradiction assume that
∧

β∈E δβ and
∧

β∈E′ δβ are
comparable. Without loss of generality we may assume that

∧
β∈E δβ ≤∧

β∈E′ δβ . Choosing α ∈ E′ \E which exists by assumption, we obtain that∧
β∈E δβ ≤ δα contradicting the fact that ∆ is a strong anti-chain. ¤

We prove next that strong anti-chains exist in ZFC.
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Lemma 3.3 There exist strong anti-chains of size ℵ0.

Proof. We define subsets Am of ω using the binary expansion of integers.
For m ∈ ω let

A0 = {0} ∪
{∑

i∈ω

ai2i
∣∣∣ a0 = 1

}
and for m ≥ 1 Am :=

{∑
i∈ω

ai2i
∣∣∣ am = 1

}
.

Then the following statements are evident.
• Am is infinite;
•

⋃
m<ω Am = ω;

•
⋂

m<ω Am = ∅;
• For disjoint finite subsets E and E′ of ω the intersection( ⋂

n∈E

An

)
∩

( ⋂
n∈E′

{An

)
is infinite.

Here { stands for complementation in ω. Let P = {p0, p1, . . .} be an infinite
set of primes and define δm := type〈p−1

i | i ∈ Am〉. Then it is easy to see
that {δm | m ∈ ω} is a strong anti-chain of size ℵ0. ¤

We can also show that there exist strong anti-chains of size 2ℵ0 .

Theorem 3.4 There exists a strong anti-chain of cardinality 2ℵ0.

Proof. The result follows from [Je, Lemma 24.8] but for the convenience
of the reader we recall it. Let λ be an infinite cardinal. A family C of
subsets of a cardinal λ is called uniformly independent if for any distinct sets
X1, . . . , Xn and Y1, . . . , Ym in C the intersection X1 ∩ · · ·∩Xn ∩{Y1 ∩ · · ·∩
{Ym has cardinality λ. Here { denotes complementation in λ. Obviously, for
λ = ω, the existence of a uniformly independent family {Aα : α < 2ℵ0} of
subsets of ω yields the desired strong anti-chain by choosing an infinite set
of primes P = {p0, p1, . . .} putting Rα = 〈p−1

i : i ∈ Aα〉, and δα = typeRα

for α < 2ℵ0 .
[Je, Lemma 24.8] states that for every infinite cardinal λ there is a uniformly
independent family of size 2λ. A proof is as follows.
Let P be the collection of all pairs (F, F) where F is a finite subset of λ

and F is a finite set of finite subsets of λ. Then |P | = λ and it suffices to
find a uniformly independent family of subsets of P of size 2λ. For u ⊆ λ
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let Xu = {(F, F) ∈ P : F ∩ u ∈ F} and let C = {Xu : u ⊆ λ}. It is easy
to check that all the Xu’s are distinct and hence |C| = 2λ. To show that
C is uniformly independent let u1, . . . , un, v1, . . . , vm be distinct subsets
of λ. Choose αi,j ∈ ui\vj or αi,j ∈ vj\ui for i ≤ n and j ≤ m. For any
finite subset F of λ containing all the αi,j ’s we let F = {F ∩ ui : i ≤ n}.
Then (F, F) ∈ Xui for all i ≤ n and (F, F) 6∈ Xvj for all j ≤ m. Thus the
intersection Xu1 ∩ · · · ∩ Xun ∩ {Xv1 ∩ · · · ∩ {Xvm has cardinality λ. ¤

Recall that in the context of Hawaiian groups we have Pα := 〈p−1
n : n ∈ Aα〉

and δα := type(Pα).

Definition 3.5 A Hawaiian group B = Bκ(R, S, T , A, P) is called a
strong Hawaiian group if ∀α < κ : Sα = Z and {δα | α < κ} is a strong
anti-chain of size κ. We denote the strong Hawaiian group with the specified
data by Bκ(R, T , A∗, P).

Note that for Bκ(R, T , A∗, P) the condition (2.4) is satisfied due to the
special choice of S. For the next theorem recall that a torsion-free group
G is called finitely filtered if G is the union of an ascending continuous
sequence {Gα : α < λ} of pure subgroups Gα such that for every α < λ

there is a finite rank subgroup Hα of G with Gα+1 = Gα + Hα.

Theorem 3.6 Let B = Bκ(R, T , A∗, P) and assume that cf(κ) > ℵ0.
Then B is not a finitely filtered group. In particular, B is not a B2-group.

Proof. The proof is essentially contained in [ShSt, Theorem 5.1] but for
the convenience of the reader we shall recall the main steps. By way of
contradiction assume that B is finitely filtered. Hence (the Bα in this proof
have no relation to the Bα in Definition 2.6)

B =
⋃
α<κ

Bα

where Bα+1 = Bα+Hα for some finite rank subgroup Hα. It is now straight
forward to check that the set C = {δ < κ | Bδ = 〈xn, yβ : n < ω, β < δ〉∗}
is a closed unbounded subset (cub) of κ since κ has uncountable cofinality
(see [ShSt, Lemma 5.2]). Now let δ ∈ C be such that δ > ℵ0 and w.l.o.g. let
δ be a limit ordinal. This is possible since C is a cub. Note that yδ 6∈ Bδ.
However, as in [ShSt, Lemma 5.3] one proves that there exist n∗ < ω and a
sequence of ordinals δ ≤ α1 ≤ α2 · · · ≤ αn∗ < κ such that
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〈Bδ + Zyδ〉∗ ⊆
∑

m≤n∗

Hαm + Bδ.

For every m ≤ n∗ we choose a finite set Wm ⊆ κ and an integer nm < ω

such that

Hαm ⊆
〈 ∑

γ∈Wm

Zyγ +
∑

i≤nm

Rixi

〉
∗
.

Collecting all these generators and letting W =
⋃

m≤n∗ Wm, k = max{nm :
m ≤ n∗} and H = 〈

∑
γ∈W Zyγ +

∑
i≤k Rixi〉∗ we obtain

〈Bδ + Zyδ〉∗ ⊆ H + Bδ. (3.1)

Now choose β < δ\W and let n ≥ k be such that

n ∈ (Aβ ∩ Aδ)\
⋃

γ∈W,γ 6=δ

Aγ .

Note that this choice is possible since B is a strong Hawaiian group and
hence the types δα (α < κ) form a strong anti-chain. It is now straightfor-
ward to see that p−1

n (yδ − yβ) is an element of 〈Bδ + Zyδ〉∗ but it is not an
element of H+Bδ contradicting equation (3.1) (see also [ShSt, Lemma 5.3]).

¤

Note that every ℵ0-Hawaiian group is a B2-group since it is finitely Butler.
Finally we show that a strong Hawaiian group possesses many fully invariant
subgroups.

Lemma 3.7 Let B = Bκ(R, T , A∗, P) and assume (2.3) and (2.5). Then
the following hold for α < β < κ.
( i ) B(type(Yα,β)) = Yα,β ;
(ii) Yα,β is a pure fully invariant subgroup of B.

Proof. Put µα,β = type(Yα,β) = δα,β ∨ τα,β . The inclusion Yα,β ⊆ B(µα,β)
is obvious. Conversely, let b ∈ B(µα,β). Then typeB(b) ≥ µα,β . Hence
typeB/B0(b + B0) ≥ µα,β . Since B is strong Hawaiian, the types δγ , γ < κ,
form a strong anti-chain and hence (B/B0)(µα,β) ∼= (Pα + T̂α)yα ⊕ (Pβ +
T̂β)yβ by Lemma 3.2 and Lemma 2.7(ii). By Lemma 2.7(ii) the types
δγ ∨ τγ , γ < κ, form a strong anti-chain. Using the isomorphism π from
Lemma 2.7(ii) we obtain that
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b = rαyα + rβyβ +
∑
n∈ω

rnxn

+
∑

n∈Aα

tα,n

pn
(yα − xn) +

∑
n∈Aβ

tβ,n

pn
(yβ − xn)

for some rα ∈ Pα, rβ ∈ Pβ , tα,n, tβ,n ∈ Tn, and rn ∈ Rn for n ∈ ω.
Hence multiplying by a suitable product K of prime numbers and renaming
coefficients we may assume without loss of generality that

Kb = rα(yα − yβ) + (rβ + rα)yβ +
∑
n∈ω

rnxn +
∑

n∈Aα

tα,n(yα − yβ)

+
∑

n∈Aα

tα,n(yβ − xn) +
∑

n∈Aβ

tβ,n(yβ − xn)

with tα,n, tβ,n ∈ Z. Thus

Kb − rα(yα − yβ) −
∑

n∈Aα

tα,n(yα − yβ)

= (rβ + rα)yβ +
∑
n∈ω

rnxn +
∑

n∈Aα

tα,n(yβ − xn)

+
∑

n∈Aβ

tβ,n(yβ − xn) ∈ B(µα,β).

Using that B is a strong Hawaiian group (hence the types δα where α < κ,
form a strong anti-chain) it is now easy to check that this can only happen
if Kb − rα(yα − yβ) −

∑
n∈Aα

tα,n(yα − yβ) = 0 and hence Kb ∈ Yα,β . By
purity it follows that b ∈ Yα,β . This shows that Yα,β = B(µα,β) and hence
(i) and (ii) hold. ¤

4. Endomorphism rings of Hawaiian groups

We begin with an explanation on notations used for classes of Hawaiian
groups. These are as follows.
• Bκ(R, S, T , A, P) is most general Hawaiian group where R = (Rn |

n < ω), S = (Sα | α < κ), T = (Tn | n < ω), are sequences of arbitrary
rational groups, A = (Aα | α < κ) is a family of subsets of ω such that
Aα ∩ Aβ 6= ∅,

⋃
α<κ Aα = ω, and

⋂
α<κ Aα = ∅, and P = (pn : n ∈ ω)

is a sequence of primes.
• Bκ(R, T , A, P) is the group Bκ(R, S, T , A, P) with S = (Z, Z, . . .).
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• Bκ(R, T , A∗, P) is the group Bκ(R, T , A, P) where A is such that
the types δα form a strong anti-chain.

• Bκ(R∗, T , A∗, P) is the group Bκ(R, T , A∗, P) where R is such that
the types type(Rn) are pairwise incomparable.

• Finally, Bκ(A∗, P) (respectively Bκ(A, P)) is the group Bκ(R, T , A∗,
P) (respectively Bκ(R, T , A, P)) where R and T are all sequences of
the integers Z.

The scheme is to drop sequences of Z from the listing, and to place a ∗ if a
special condition is imposed on the sequence.
In this section we consider Hawaiian groups Bκ(A, P). Note that (2.3),
(2.4), and (2.5) are satisfied for these special groups. We will show that
these Hawaiian groups have many endomorphisms. Recall that all Hawaiian
groups Bκ(A, P) are of the form

B = 〈F, p−1
n (yα − xn) : n ∈ Aα, α < κ〉

where F =
⊕
n∈ω

Zxn ⊕
⊕
α<κ

Zyα.

Definition 4.1 Let B = Bκ(A, P). Recall that A = (Aα : α < κ). Let
( i ) A′

α ⊆ Aα for α < κ;
( ii ) A′ = (A′

α : α < κ);
(iii) N =

⋃
α<κ A′

α and δ : N → κ be a function such that (n)δ ∈ {α : α <

κ, n ∈ A′
α} for every n ∈ N ;

(iv) b̄ = (b, bn : n ∈ ω) with b, bn ∈ B for all n ∈ ω;
( v ) m ∈ Z.
Then a linear transformation φ = φA′,δ,b̄,m ∈ EndQ(V ) is defined as follows:
( i ) (yα)φ = myα + b for α < κ;
( ii ) (xn)φ = my(n)δ + b − pnbn if n ∈ N ;
(iii) (xn)φ = mxn + b − pnbn if n 6∈ N .
A linear transformation φ of V is called a Hawaiian transformation if there
exist A′, δ, b̄, m as above such that φ = φA′, δ, b̄, m.

Lemma 4.2 Let B = Bκ(A, P). Then every Hawaiian transformation of
V is an endomorphism of B.

Proof. Let φ = φA′,δ,b̄,m be a Hawaiian transformation of V . By definition
φ satisfies (F )φ ⊆ B. Now, let α < κ and n ∈ Aα. If n 6∈ N , then

(yα − xn)φ = myα + b − (mxn + b − pnbn) = m(yα − xn) + pnbn
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and hence (yα − xn)φ is pn-divisible in B which shows that (1/pn)(yα −
xn)φ ∈ B. If n ∈ N , then

(yα − xn)φ = myα + b − (myδ(n) + b − pnbn)

= m(yα − yδ(n)) + pnbn

= m(yα − xn) − m(yδ(n) − xn) + pnbn

which is pn-divisible in B since n ∈ Aα and n ∈ Aδ(n), hence pn divides
yα − yδ(n) in B. This finishes the proof. ¤

To illustrate the Hawaiian transformations that induce endomorphisms of
Hawaiian groups let us give three examples.

Example 4.3 Let B = Bκ(A, P). If b ∈ B and m ∈ Z, then the linear
transformation of V defined by yα 7→ myα + b and xn 7→ mxn + b for α < κ,
and n ∈ ω is an endomorphism of B.

Proof. Follows from the Lemma 4.2 choosing N = ∅ = A′
α for all α < κ,

and bn = 0 for all n ∈ ω. ¤

Example 4.4 Let B = Bκ(A, P). For (fixed) α < κ and m ∈ Z, the
linear transformation of V defined by yβ 7→ m(yβ − yα) for all β < κ, xn 7→
m(xn−yα) for n 6∈ Aα and xn 7→ 0 for n ∈ Aα, restricts to an endomorphism
of B.

Proof. This follows from Lemma 4.2 choosing b = −myα, bn = 0 for every
n ∈ ω, N = Aα = A′

α and A′
β = ∅ for β 6= α as well as δ(n) = α for

n ∈ N . ¤

Example 4.5 Let B = Bκ(A, P). For m ∈ Z, the linear transformation ϕ

of V defined by yβ 7→ myβ and xn 7→ mxn−pnxn for every n ∈ ω restricts to
an endomorphism of B. Moreover, B0 is invariant under ϕ and the induced
homomorphism ϕ̄ : B/B0 → B/B0 is multiplication by m.

Proof. This follows from Lemma 4.2 choosing b = 0, bn = xn for every
n ∈ ω and N = ∅. ¤

Note that the linear transformations from Example 4.5 are in fact endomor-
phisms of any Hawaiian group B = Bκ(R, S, T , A, P).
The following lemma shows that a Hawaiian group Bκ(A∗, P) usually has
many free summands.
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Lemma 4.6 Let B = Bκ(A, P) and α < κ. Then 〈yα, (1/pn)(yα −
xn) : n ∈ Aα〉 is a free summand of B.

Proof. Choose ϕ ∈ EndZ(B) as in Example 4.4 with m = 1. Thus
( i ) (yβ)ϕ = yβ − yα for all β < κ;
( ii ) (xn)ϕ = xn − yα for n 6∈ Aα;
(iii) (xn)ϕ = 0 for n ∈ Aα.
Since (yα)ϕ = 0 it is easily checked that ϕ is a projection, i.e., ϕ2 = ϕ.
Consequently, B = Ker(ϕ) ⊕ Im(ϕ). We claim that Ker(ϕ) = 〈yα, (1/pn)
(yα − xn) : n ∈ Aα〉. By definition of ϕ we have 〈yα, (1/pn)(yα − xn) : n ∈
Aα〉 ⊆ Ker(ϕ). Therefore, let b ∈ B such that ϕ(b) = 0. Assume that b is
represented as in equation (2.1), i.e.,

b =
∑
n∈ω

rnxn +
∑
β<κ

sβyβ +
∑

(β,n) : β<κ,n∈Aβ

tβ,n

pn
(yβ − xn) (4.1)

for some rn, sβ , tβ,n ∈ Z. Then

(b)ϕ =
∑

n6∈Aα

rn(xn − yα) +
∑
β<κ

sβ(yβ − yα)

+
∑

(β,n) : β<κ,n∈Aβ\Aα

tβ,n

pn
(yβ − xn)

+
∑

(β,n) : β<κ,n∈Aβ∩Aα

tβ,n

pn
(yβ − yα) = 0.

Now choose α 6= β < κ and equate coefficients for yβ inside V to get

sβ +
∑

n∈Aβ

tβ,n

pn
= 0

which (Lemma 2.5) implies that pn must divide tβ,n for all n ∈ Aβ . Hence,
combining and renaming coefficients in (4.1) shows that b is of the form

b =
∑
n∈ω

rnxn + sαyα +
∑

n∈Aα

tα,n

pn
(yα − xn).

Now, (b)ϕ = 0 reads as (b)ϕ =
∑

n6∈Aα
rn(xn − yα) = 0 and hence rn = 0

for all n 6∈ Aα. Thus b ∈ 〈yα, (1/pn)(yα − xn) : n ∈ Aα〉 which proves that
〈yα, (1/pn)(yα − xn) : n ∈ Aα〉 = Ker(ϕ).
Finally, we have to show that 〈yα, (1/pn)(yα − xn) : n ∈ Aα〉 is free. Fix
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n′ ∈ Aα. We claim that〈
yα,

1
pn

(yα − xn) : n ∈ Aα

〉
=

⊕
n∈Aα

1
pn

Z(yα − xn) ⊕ Zxn′ .

The equality of the two sides is obvious, hence it suffices to prove that⊕
n∈Aα

(1/pn)Z(yα − xn) ⊕ Zxn′ is indeed a direct sum. Therefore, assume
that ∑

n∈Aα

tn
pn

(yα − xn) + t′xn′ = 0 (4.2)

for some tn, t′ ∈ Z. Equating coefficients for yα we obtain
∑

n∈Aα
tn/pn =

0 and thus (Lemma 2.5) pn must divide tn for all n ∈ Aα. Moreover, for
n 6= n′ we get tn/pn = 0 by looking at the coefficient of xn in (4.2) and thus
taken together tn′/pn′ = 0. Finally, for n′ we have t′ = tn′/pn′ = 0. Hence
the sum is direct. ¤

Corollary 4.7 Let B = Bκ(A, P). Then |HomZ(B, Z)| ≥ 2ℵ0.

Proof. This follows easily from Lemma 4.6 and the fact that HomZ(
⊕

ω Z,
Z) ∼=

∏
ω HomZ(Z, Z). ¤

The final result of this section shows that the lower bound in Corollary 4.7
is best possible if we deal with strong Hawaiian groups.

Corollary 4.8 Let B = Bκ(A∗, P) and assume that Aα is infinite for
every α. Then

HomZ(B, Z) ∼=
∏
n∈ω

Z and |HomZ(B, Z)| = 2ℵ0 .

Proof. Let B be a strong Hawaiian group and f ∈ HomZ(B, Z). Since
B is strong each type δα,β is bigger than Z for every α < β < κ. Thus
(yα − yβ)f = 0 (α < β < κ) which implies that (yα)f = (y0)f for all
α < κ. We put (y0)f = zf ∈ Z. Now, let n ∈ ω and choose α < κ

such that n ∈ Aα. Then (yα − xn)f = pn

(
(1/pn)(yα − xn

)
f = pnzf

n for
some zf

n ∈ Z. Therefore, (xn)f = zf − pnzf
n. We now define a mapping

Ψ: HomZ(B, Z) → Z×
∏

n∈ω Z by sending f ∈ HomZ(B, Z) to the sequence
(zf , zf

n : n ∈ ω). It is immediately verified that Ψ is a group isomorphism
and hence HomZ(B, Z) ∼=

∏
n∈ω Z which shows |HomZ(B, Z)| = 2ℵ0 . ¤

The next result shows that the Hawaiian transformations from Definition 4.1
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form a subgroup of the endomorphism ring of Hawaiian groups.

Theorem 4.9 Let B = Bκ(R, T , A, P). Then there is an injective ho-
momorphism of additive groups

Φ: Z ⊕ B ⊕
∏
n∈ω

pnB → EndZ(B).

Proof. We first define Φ. Let b̄ = (z, b, pnbn : n ∈ ω) ∈ Z×B×
∏

n∈ω pnB.
We define fb̄ ∈ EndZ(B) to be the endomorphism of B induced by the
Hawaiian transformation defined by yα 7→ zyα + b and xn 7→ zxn + b− pnbn

for all α < κ and n ∈ ω. By Lemma 4.2 fb̄ is a well-defined endomorphism
of B and it is easy to see that Φ: Z ⊕ B ⊕

∏
n∈ω pnB → EndZ(B), b̄ 7→ fb̄,

is a well-defined injective homomorphism of additive groups. ¤

5. Endomorphism rings of strong Hawaiian groups

In this section we will study the endomorphism rings of general strong
Hawaiian groups, i.e., groups Bκ(R, T , A∗, P). It turns out that these
groups have endomorphism rings that are ”rather small” which means ”close
to Z”. Recall that the nucleus nuc(P ) of a rational group P ⊆ Q is defined to
be the largest subring contained in P . Equivalently, if we consider EndZ(P )
as a subring of Q, then nuc(P ) = EndZ(P ).

Lemma 5.1 Let B = Bκ(R, T , A∗, P) and f ∈ EndZ(B). Assume (2.3),
and (2.5). Then there exists an integer r ∈ Z such that f ¹Yα,β

is multipli-
cation by r for every α < β < κ.

Proof. Let α < β < κ and f ∈ EndZ(B) as stated. By Lemma 3.7 we know
that Yα,β is a pure fully invariant subgroup of B, hence (yα − yβ)f ∈ Yα,β .
Since (Lemma 2.9) Yα,β

∼= Pα,β + Tα,β we obtain that there is an element
rα,β ∈ nuc(Tα,β) such that f ¹Yα,β

is multiplication by rα,β . It remains to
prove that rα,β is independent of α, β and an integer. Therefore, let α <

β < γ < κ. Applying f to the equation

(yα − yβ) + (yβ − yγ) = yα − yγ

implies that

rα,β(yα − yβ) + rβ,γ(yβ − yγ) = rα,γ(yα − yγ).
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Equating coefficients inside V it follows that

rα,β = rα,γ = rβ,γ .

Since α, β, γ were arbitrary we have that r := r0,1 = rα,β ∈
⋂

α<β<κ nuc(Tα,β)
for all α < β < κ. By (2.3) it follows that r ∈ Z and therefore f ¹Yα,β

is
multiplication by r ∈ Z for every α < β < κ. ¤

The next result shows that the Hawaiian transformations from Definition 4.1
determine completely the endomorphism ring of strong Hawaiian groups.

Theorem 5.2 Let B = Bκ(A∗, P) be a strong Hawaiian group. Then
there is a bijective homomorphism of additive groups

Φ: Z ⊕ B ⊕
∏
n∈ω

pnB → EndZ(B).

Proof. By Theorem 4.9 we only need to show that Φ is surjective. There-
fore, let f ∈ EndZ(B). By Lemma 5.1 there is an integer z ∈ Z such that
(yα − yβ)f = z(yα − yβ) for all α < β < κ. Putting b = (y0)f − zy0 this
implies that (yα)f = zyα + b for all α < κ. Moreover, if n ∈ ω, then there
is α < κ such that xn ∈ Aα and hence (yα − xn)f = pnb′n for some b′n ∈ B.
Thus (xn)f = zyα + b − pnb′n. Since p−1

n (yα − xn) ∈ B we let bn = b′n −
p−1

n z(yα−xn) and obtain (xn)f = zxn + b−pnbn for all n ∈ ω. Thus f = fb̄

where b̄ = (z, b, pnbn : n ∈ ω) and so Φ is surjective. ¤

The next theorem deals with possible direct decompositions of strong Hawai-
ian groups.

Theorem 5.3 Let B = Bκ(A∗, P). If f ∈ EndZ(B) is idempotent, then
there are b, bn ∈ B (n ∈ ω) such that either

Ker(f) = 〈b, bn : n ∈ ω〉∗ or Im(f) = 〈b, bn : n ∈ ω〉∗.

Hence, B = 〈b, bn : n ∈ ω〉∗⊕C for some C ⊆ B. In particular, if B = A⊕
C, then A or C must be countable.

Proof. Let f ∈ EndZ(B) and assume that f is idempotent, i.e., f2 = f . By
Theorem 4.9 there are elements b, bn ∈ B and m ∈ Z such that f is induced
by the Hawaiian transformation yα 7→ myα + b and xn 7→ mxn + b − pnbn

for all α < κ and n ∈ ω. Therefore we obtain

myα + b = (yα)f = (yα)f2 = m(yα)f + (b)f = m2yα + mb + (b)f.
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If we pick α < κ large enough (so that yα does not appear in the repre-
sentations of b and (b)f), then equating coefficients implies that m = m2,
hence m = 0 or m = 1. Let us first assume that m = 0. Then (yα)f = b for
all α < κ. Thus b = (yα)f = (yα)f2 = (b)f . Moreover, for n ∈ ω we have

b − pnbn = (xn)f = (xn)f2 = (b)f − pn(bn)f = b − pn(bn)f,

hence bn = (bn)f for all n ∈ ω. It now follows easily that Im(f) =
〈b, bn : n ∈ ω〉∗ ⊆ B.
On the other hand, if m = 1, then we consider g = 1−f instead of f . Then
g is again idempotent and Im(g) = Ker(f). Moreover, in the case of g we
have m = 0, hence the above shows that Im(g) = 〈b, bn : n ∈ ω〉∗ = Ker(f).
The other claims follow immediately. ¤

The next lemma shows that the endomorphism ring of a strong Hawaiian
group is very special if the group has many invariant subgroups.

Lemma 5.4 Let B = Bκ(R, T , A∗, P) and assume (2.3), and (2.5). As-
sume further that for all α < κ and n ∈ ω, the map f ∈ EndZ(B) is such
that (yα − xn)f = rα,n(yα − xn) for some rα,n ∈ Q. Then there is r ∈ Z
such that rα,n = r. Moreover, f is induced by the linear transformation
yα 7→ ryα + b, xn 7→ rxn + (y0f − ry0) for α < κ and n ∈ ω.

Proof. Since B = Bκ(R, T , A∗, P), Lemma 5.1 applies and there is r ∈ Z
such that (yα − yβ)f = r(yα − yβ) for all α < β < κ. Fix α < κ and n ∈ ω.
Choose any β > α. Then

yα − yβ = (yα − xn) − (yβ − xn)

and hence

r(yα − yβ) = rα,n(yα − xn) − rβ,n(yβ − xn)

and equating coefficients we see that r = rα,n = rβ,n ∈ Z.
Now, (y0 − xn)f = r(y0 − xn) implies that

xnf = y0f − ry0 + rxn = rxn + (y0f − ry0).

Moreover, (y0 − yβ)f = r(y0 − yβ) says that

yβf = y0f − ry0 + ryβ = ryβ + (y0f − ry0)

for all β < κ and the claim is established. ¤
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Finally, we study some special strong Hawaiian groups with especially nice
properties.

Lemma 5.5 Let B = Bκ(R, T , A∗, P) and assume (2.3), and (2.4). As-
sume further that f ∈ EndZ(B) and that xnf = rnxn for some rn ∈ Q and
all n < ω. Then there is r ∈ Z and εn ∈ nuc(Rn) such that f is induced by
the linear transformation yα 7→ ryα, xn 7→ rxn + εnpnxn where α < κ and
n ∈ ω.

Proof. By Lemma 5.1 we obtain r ∈ Z such that (yα − yβ)f = r(yα − yβ)
for all α < β < κ. Then, choosing α = 0,

yβf = ryβ + (y0f − ry0)

for every β < κ and hence

(yβ − xn)f = ryβ + (y0f − ry0) − rnxn

= r(yβ − xn) + (r − rn)xn + (y0f − ry0)

for all β < κ and n ∈ ω. Thus, for β < κ and n ∈ Aβ we get that

pn divides (r − rn)xn + (y0f − ry0) in B. (5.1)

Passing to the quotient B/B0 this implies that (y0f − ry0) + B0 is divisible
by pn whenever n ∈ Aβ . As

⋃
α<κ Aα = ω it follows that (y0f − ry0)+B0 is

divisible by every p ∈ P. Using Lemma 2.7(ii) it follows that y0f−ry0 ∈ B0

and hence y0f −ry0 =
∑

m∈ω r′mxm for some r′m ∈ Rm. Therefore, by (5.1),

(r − rn)xn +
∑
m∈ω

r′mxm ∈ pnB,

and by purity of B0 and its summands Rmxm,

(r − rn) + r′n ∈ pnRn, and ∀n 6= m : r′m ∈ pnRm. (5.2)

We will show that this is impossible except when r′m = 0 for all m ∈ ω.
Suppose to the contrary that there is an m such that r′m 6= 0. Write r′m as a
canceled fraction r′m = a/b. Since n was arbitrary in (5.2) there is some pn

that does not divide a. Now a/b = r′m ∈ pnRm, so a/pn = b(1/pn)r′m ∈ Rm

and since Rm contains 1, also 1/pn ∈ Rm. But then 1/pn ∈ R ∩ P = Z, a
contradiction. We have established that r′m = 0 for all m. Thus y0f = ry0

and pn divides r− rn inside Rn for every n ∈ ω. Let rn − r = pnεn for some
εn ∈ Rn. Then rn = pnεn + r and hence xnf = rnxn = rxn + pnεnxn as
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claimed. Since f is a homomorphism and Rnxn is fully invariant, we must
have rn ∈ nuc(Rn). Furthermore r ∈ Z ⊆ nuc(Rn) and nuc(Rn) is pure,
therefore also εn ∈ nuc(Rn) for all n ∈ ω. ¤

We specialize further to groups Bκ(R, T , A∗, P) with the additional prop-
erty that q0R = R for some prime number q0 6∈ P. The following re-
sult completely describes the (small) endomorphism ring of such a group
Bκ(R∗, T , A∗, P).

Corollary 5.6 Let B = Bκ(R∗, T , A∗, P) satisfying the additional prop-
erty that q0R = R for some prime number q0 6∈ P and {type(Rn) : n ∈ ω}
is an anti-chain. Assume (2.3), and (2.5). Then f ∈ EndZ(B) if and only
if f is induced by a linear transformation yα 7→ ryα, xn 7→ rxn + εnpnxn

where r ∈ Z and εn ∈ nuc(Rn).

Proof. By hypothesis q0R = R and {type(Rn) : n ∈ ω} is an anti-chain,
hence q0B0 = B0 and therefore B0 is fully invariant in B. In fact, every
Rnxn is a fully invariant subgroup of B for n ∈ ω. Thus, any f ∈ EndZ(B)
satisfies xnf = rnxn for some rn ∈ Q and all n ∈ ω. By Lemma 5.5 it follows
that f is of the desired form. Conversely, every linear transformation of the
described form is an endomorphism of B (see also Example 4.5). ¤

We end with a second corollary.

Corollary 5.7 Let B = Bκ(R∗, T , A∗, P) satisfying the additional prop-
erty that q0R = R for some prime number q0 6∈ P and {type(Rn) : n ∈ ω} is
an anti-chain. Assume (2.3), and (2.5) and furthermore that ∀n < ω : Tn 6⊆
Rn. Then EndZ(B) = Z.

Proof. Let B be given and let f ∈ EndZ(B). By Corollary 5.6 it follows
that f is induced by the linear transformation yα 7→ ryα, xn 7→ rxn+εnpnxn

for α < κ, n ∈ ω for some r ∈ Z, εn ∈ nuc(Rn). Let n ∈ ω and choose
α < κ such that n ∈ Aα. Then {t ∈ Q | t(yα − xn) ∈ B} ⊇ Tn. Hence
also {t ∈ Q | t

(
(yα − xn)f − r(yα − xn)

)
∈ B} ⊇ Tn. But (yα − xn)f −

r(yα − xn) = εnxn. By way of contradiction assume that εn 6= 0. Then
Rn = {t ∈ Q | tεnxn ∈ B} ⊇ Tn contradicting our assumptions. Therefore
εn = 0, f is multiplication by r ∈ Z, and EndZ(B) = Z. ¤
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