
Hokkaido Mathematical Journal Vol. 37 (2008) p. 349–362

Comparison results for a class of weakly coupled systems

of eikonal equations

Fabio Camilli and Paola Loreti

(Received November 24, 2006; Revised June 20, 2007)

Abstract. We present two comparison theorems for a class of weakly coupled systems

of Hamilton-Jacobi equations with convex, coercive Hamiltonians. These results apply in

particular to systems arising in large deviations theory for random evolution processes.
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1. Introduction

We study comparison results for the weakly coupled system of Hamilton-
Jacobi equations

Hi(x, Dui) +
M∑

j=1

cij(x)(ui − uj) = 0 x ∈ D. (1.1)

Systems of this type arise in the optimal control of a random evolution
process (see [7], [12]).

Another motivation for (1.1) comes from large deviations theory for
random evolution processes (see [4], [5]). Large deviations functionals de-
fined on the sample paths of this type of stochastic process typically solve
weakly coupled systems of second order linear equations [5]. A standard
way to prove large deviations results via PDE methods is to take the log-
arithmic transform of the path functional and to pass to the limit in the
equation so obtained (see [1], [2], [8], [11]). In the case of random evolution
processes, passing to the limit in the system satisfied by the logarithmic
transform of the path functional we formally get the system (1.1) where
the Hamiltonians are the large deviations ones

Hi(x, p) =
|p|2

2
− bi(x) · p. (1.2)
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To make rigorous the previous method, a key tool is a comparison result
for the limit problem (1.1). But the system does not satisfy monotonicity
assumptions with respect to the variable u which are usually assumed for
this type of results. In fact, rewriting the system (1.1) as

Hi(x, Dui) + dii(x)ui +
∑
j 6=i

dij(x)uj = 0

(we prefer the former notation, instead of more common latter one, in view
of the application to singular perturbations) where dii =

∑
j cij is the co-

efficient of ui and dij = −cij are the coefficients of uj , j 6= i, in the i-th
equation, then we have

dii +
∑
j 6=i

dij = 0

for x ∈ D, i = 1, . . . , M , while in general it is required that dii+
∑

j 6=i dij ≥
c0 > 0. In other words, in the terminology of [9], the system (1.1) is quasi-
monotone but not monotone (see also [7], [12]).

If the system (1.1) has only one component, i.e. M = 1, it reduces to

H(x, Du) = 0, x ∈ D. (1.3)

It is well known that the existence of a strict subsolution is a sufficient,
and also necessary, condition to get comparison result and uniqueness for
Hamilton-Jacobi equations without zero order terms (i.e. quasi-monotone).
More recently, by the Aubry-Mather theory for critical Hamilton-Jacobi
equations [6], it can been shown that to a convex, coercive Hamiltonian
H(x, p), it is possible to associate a closed, possible empty set A, said the
Aubry set of H (for the definition of Aubry set and its properties we refer
to [6]). The main property of the Aubry set is the following

There exists a C1-function ψ and a nonnegative continuous function f

such that

H(x, Dψ) ≤ −f(x), x ∈ D

with f > 0 out of A.
In particular, if A is empty, then there exists a strict subsolution in all D

and it is possible to have a comparison result for (1.3) ([9]). Otherwise,
the Aubry set A behaves as a sort of interior boundary where, to have
uniqueness, the value of the solution has to be prescribed ([6]).
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The idea we follows for (1.1) shares several analogy with the case of a
single equation. We consider a function ψ ∈ C1 which is a subsolution of
all the equations Hi(x, Du) = 0, i = 1, . . . , M , the crucial point being that
ψ is the same for all the Hamiltonians Hi. We introduce some assumptions
to control the sets where ψ fails to be a strict subsolution of the equation
corresponding to the Hamiltonian Hi. Assuming the existence of such a
strict subsolution, the proof of the comparison result for (1.1) is similar to
the one in [9] for (1.3). Also in this case the difficulty is given by the absence
of a zero order term in the equation. For this reason, given a subsolution
u and a supersolution v to (1.1) we compare v with uλ = (λu1 + (1 −
λ)ψ, . . . , λuM +(1−λ)ψ), where λ ∈ (0, 1) and ψ is the strict subsolution.
Then we get the result sending λ → 1.

In the last section, we discuss our assumptions, in particular we prove
that an assumption introduced in [5], named strong Levinson’s condition,
implies the existence of a strict subsolution to (1.1) when Hi are the large
deviations Hamiltonians (1.2).

2. Definitions and assumptions

Consider the weakly-coupled system of Hamilton-Jacobi equations

Hi(x, Dui) +
M∑

j=1

cij(x)(ui − uj) = 0 x ∈ D, i = 1, . . . , M (2.1)

where D is a bounded set with Lipschitz-continuous boundary. In all the
paper we will assume that
(2.2) cij : D → R are continuous for x ∈ D, i, j = 1, . . . , M ,
(2.3) Hi(x, p) is continuous in (x, p), convex and coercive in p for i =

1, . . . , M

(2.4) there exist a C1 function ψ and continuous functions fi ≥ 0 such
that Hi(x, Dψ) ≤ −fi(x) in D, i = 1, . . . , M .

For the uniqueness results, we consider two different sets of assumptions.
We define

Ai = {x ∈ D : fi(x) = 0}

and we will assume either
(2.5) cij(x) ≥ 0 for x ∈ D, i, j = 1, . . . , M , i 6= j, and Ai is empty, for

any i = 1, . . . , M ,
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or
(2.6) cij(x) > 0 for x ∈ D, i, j = 1, . . . , M , i 6= j, and

∩M
i=1 Ai is empty.

Note that assumption (2.6) implies that the intersection of Aubry sets, see
[6], of the Hamiltonians Hi is empty. But it is stronger in the sense that it
also require that there is a same subsolution for all the Hamiltonians which
is a strict subsolution at any point of D for at least one Hamiltonian.

For a function u : E → RM , we say that u = (u1, . . . , uM ) is u.s.c. and
we write u ∈ USC(E) if all the components ui, i = 1, . . . , M , are u.s.c. in
E. Similarly v ∈ LSC(E) if all the components vi, i = 1, . . . , M , are l.s.c.
in E.

If u = (u1, . . . , uM ), v = (v1, . . . , vM ), are two functions defined in a
set E we write u ≤ v in E if ui ≤ vi in E, i ∈ {1, . . . , M}.

We recall the definition of viscosity solution for weakly coupled systems
(see [7], [9] for more details)

Definition 2.1
i) An u.s.c. function u : D → RM is said a viscosity subsolution of (2.1)

if whenever φ ∈ C1(D), i ∈ {1, . . . , M} and ui − φ attains a local
maximum at x ∈ D, then

Hi(x, Dφ(x)) +
M∑

j=1

cij(x)(ui − uj) ≤ 0.

ii) A l.s.c. v : D → RM is said a viscosity supersolution of (2.1) if whenever
φ ∈ C1(D), i ∈ {1, . . . , M} and vi − φ attains a local minimum at
x ∈ D, then

Hi(x, Dφ(x)) +
M∑

j=1

cij(x)(vi − vj) ≥ 0.

iii) A continuous function u is said a viscosity solution of (2.1) if it is both
a viscosity sub- and supersolution of (2.1).

Proposition 2.2 Let u ∈ USC(D) be a viscosity subsolution to (2.1).
Then u is Lipschitz continuous in D.

Proof. It is sufficient to observe that ui, i = 1, . . . , M , is a viscosity sub-
solution of

Hi(x, Du) ≤ C x ∈ D
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where C is a sufficiently large constant such that ‖
∑M

j=1 cij(x)(ui−uj)‖∞ ≤
C. Then the Lipschitz continuity of ui is consequence of the coercitivity of
the Hamiltonian Hi (see [1, Lemma 2.5]). ¤

3. Two maximum principles for weakly coupled systems of
eikonal type

Aim of this section is to show a comparison theorem for (2.1) under
either assumption (2.5) or assumption (2.6).

Theorem 3.1 Assume (2.2)–(2.4) and (2.5). Let u ∈ USC(D) and v ∈
LSC(D) be respectively a subsolution and a supersolution of (2.1) such that
u ≤ v on ∂D. Then

u ≤ v in D.

The proof of the theorem is based on the following lemma.

Lemma 3.2 Let gi ∈ C0(D), i = 1, . . . , M , and assume that (2.2)–(2.4)
and (2.5) hold with gi in place of fi. Let u ∈ USC(D) be a subsolution of

Hi(x, Dui) +
M∑

j=1

cij(x)(ui − uj) ≤ −gi(x), x ∈ D, (3.1)

v ∈ LSC(D) a supersolution of (2.1) and assume that u ≤ v on ∂D. Then

u ≤ v in D.

Proof. We set A = {1, . . . , M} and we assume by contradiction that

M = max
i∈A
x∈D

{ui − vi} > 0.

We define

Ψε(x, y, i) = ui(x) − vi(y) − |x − y|2

2ε2
.

Let (xε, yε, iε) be such that Ψε(xε, yε, iε) = maxD×D×A Ψ(x, y, j). Since

M ≤ Ψε(xε, yε, iε)

we have

|xε − yε|2

2ε2
≤ uiε(xε) − viε(yε) − M (3.2)
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and therefore limε→0 |xε − yε| = 0. Let (xεm , yεm , iεm) be a converging
sequence for εm → 0 and (x, y, i) = limm→∞(xεm , yεm , iεm). Then x = y

and by (3.2)

lim sup
m→∞

|xεm − yεm |2

2ε2
m

≤ ui(x) − vi(x) − M ≤ 0.

It follows that limε→0 |xε − yε|2/(2ε2) = 0 and, by (3.2), xε, yε ∈ D for ε

sufficiently small. By (3.2) we also have

|xε − yε|2

2ε2
≤ uiε(xε)− uiε(yε) + uiε(yε) − viε(yε)− M ≤ L|xε − yε|

where L, see Proposition 2.2, is the maximum of the Lipschitz constants for
ui, i = 1, . . . , M . Therefore

|xε − yε|
ε2

≤ 2L.

Since Ψ(x, yε, iε) has a maximum point at xε, we have

Hiε

(
xε,

xε − yε

ε2

)
+

∑
j∈A

ciεj(xε)(uiε(xε) − uj(xε)) ≤ −giε(xε) (3.3)

Since −Ψ(xε, y, iε) has a minimum point at yε, we have

Hiε

(
yε,

xε − yε

ε2

)
+

∑
j∈A

ciεj(yε)(viε(yε) − vj(yε)) ≥ 0. (3.4)

Subtracting (3.4) by (3.3), we get

Hiε

(
xε,

xε − yε

ε2

)
− Hiε

(
yε,

xε − yε

ε2

)
+

∑
j∈A

(ciεj(xε) − ciεj(yε))(uiε(xε) − uj(xε))

+
∑
j∈A

ciεj(yε)
(
(uiε(xε) − viε(yε)) − (uj(xε) − vj(yε))

)
≤ −giε(xε)

Recalling (2.5) and observing that Ψ(xε, yε, j) ≤ Ψ(xε, yε, iε) implies that
uj(xε) − vj(yε) ≤ uiε(xε) − viε(yε), j = 1, . . . , M , we get a contradiction
for ε sufficiently small. ¤
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Proof of Theorem 3.1. For λ ∈ (0, 1), set uλ = (λu1+(1−λ)ψ, . . . , λuM +
(1 − λ)ψ), where ψ is as in (2.4). Then, by convexity of Hi, it is straight-
forward to verify that uλ is a subsolution of

Hi(x, Dui) +
∑
j∈A

cij(x)(ui − uj) = −(1 − λ)fi(x)

x ∈ D, i = 1, . . . , M (3.5)

Since ψ is defined up to a constant, we can assume that ψ ≤ minj∈A{uj}
in D, hence uλ ≤ v on ∂D. By Lemma 3.2, we have for any λ ∈ (0, 1)

uλ ≤ v in D

and we get the statement for λ → 1. ¤

For the maximum principle under assumption (2.6), we need to assume
the continuity of the supersolution.

Theorem 3.3 Assume (2.2)–(2.4) and (2.6). Let u ∈ USC(D) and v ∈
LSC(D) ∩ C0(D) be respectively a subsolution and a supersolution of (2.1)
such that u ≤ v on ∂D, then

u ≤ v in D.

Given the following lemma, the proof of Theorem 3.3 is exactly the
same of that of Theorem 3.1.

Lemma 3.4 Let gi ∈ C0(D), i = 1, . . . , M , and assume that (2.2)–(2.4)
and (2.6) hold with gi in place of fi. Let u ∈ USC(D) be a subsolution of
(3.1), v ∈ LSC(D) ∩ C0(D) a supersolution of (2.1) and assume that u ≤ v

on ∂D. Then

u ≤ v in D.

Proof. We set A = {1, . . . , M} and we assume by contradiction that

M = max
i∈A
x∈D

{ui − vi} > 0.

Let z ∈ D be a point where the maximum is achieved. Then z ∈ D. We
distinguish two cases:
A) There exists k ∈ A such that uk(z) − vk(z) ≤ M − δ for some δ > 0;
B) ui(z) − vi(z) = M for any i ∈ A.



356 F. Camilli and P. Loreti

We start proving A). Let i ∈ A be an index such that ui(z)−vi(z) = M .
Define

Ψε(x, y) = ui(x) − vi(y) − |x − y|2

2ε2
− |y − z|2 (3.6)

and let (xε, yε) ∈ D×D be such that Ψε(xε, yε) = maxD×D Ψ. Let us show
that

|xε − yε|2

2ε2
+ |yε − z|2 −→ 0 for ε → 0+. (3.7)

By Ψε(z, z) ≤ Ψε(xε, yε) and recalling that z is a maximum point for u−v,
we get

|xε − yε|2

2ε2
+ |yε − z|2 ≤ ui(yε) − vi(yε)

−(ui(z) − vi(z)) + ui(xε) − ui(yε) ≤ L|xε − yε|

where L, see Proposition 2.2, is the maximum of the Lipschitz constants for
ui, i = 1, . . . , M . Therefore

|xε − yε|
ε2

≤ 2L

and

lim
ε→0

xε = lim
ε→0

yε = z. (3.8)

Since Ψ(x, yε) has a maximum at xε, we have

Hi

(
xε,

xε − yε

ε2

)
+

∑
j∈A

cij(xε)(ui(xε) − uj(xε)) ≤ −gi(xε). (3.9)

Since −Ψ(xε, y) has a minimum at yε we get

Hi

(
yε,

xε − yε

ε2
− 2(yε − z)

)
+

∑
j∈A

cij

(
yε)(vi(yε) − vj(yε)

)
≥ 0. (3.10)

Subtracting (3.10) by (3.9), we get

Hi

(
xε,

xε − yε

ε2

)
− Hi

(
yε,

xε − yε

ε2
− 2(yε − z)

)
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+
∑
j∈A

(cij(xε) − cij(yε))(ui(xε) − uj(xε))

+
∑
j 6=k

cij(yε)
(
(ui(xε) − vi(yε)) − (uj(xε) − vj(yε))

)
+ cik(yε)

(
(ui(xε) − vi(yε)) − (uk(xε) − vk(yε))

)
≤ 0

Recalling (2.2), (2.6), (3.8) and that ui(z)−vi(z) ≥ uj(z)−vj(z), j ∈ A and
ui(z) − vi(z) ≥ uk(z) − vk(z) + δ, we get a contradiction for ε sufficiently
small since u, v ∈ C0(D).

To prove B), let i be such that gi(z) > 0 and define Ψε as in (3.6).
Repeating the same argument of the case A), we get

Hi

(
xε,

xε − yε

ε2

)
− Hi

(
yε,

xε − yε

ε2
− 2(yε − z)

)
+

∑
j∈A

(cij(xε) − cij(yε))(ui(xε) − uj(xε))

+
∑
j∈A

cij(xε)
(
(ui(xε) − vi(yε)) − (uj(xε) − vj(yε)

)
≤ −gi(xε)

which gives immediately a contradiction for ε sufficiently small since
gi(z) < 0. ¤

Remark 3.5 Concerning the existence of a solution to (2.1), Ishii in [9]
extended the Perron’s method for viscosity solutions to weakly coupled sys-
tems of nonlinear equations. We remark that for the Perron’s method,
besides standard continuity assumptions, it is sufficient to assume that the
system is quasi-monotone. It follows that if the system (2.1) satisfies as-
sumptions (2.2)–(2.4) and there exist a subsolution u and a supersolution v

of (2.1) such that u = v on ∂D, then there exists a solution to (2.1) which
assume the same boundary datum.

4. Examples

In this section we discuss two examples of systems satisfying the hy-
potheses (2.5) or (2.6).

4.1. Systems with Eikonal Hamiltonians
Consider the system (2.1) where Hi(x, p) = |p| − Fi(x), with Fi non-

negative, continuous functions such that either {x ∈ D : Fi(x) = 0} is empty
for any i = 1, . . . , M or

∩M
i=1{x ∈ D : Fi(x) = 0} is empty. Then ψ ≡ 0
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and fi(x) = Fi(x) satisfy (2.3)–(2.4) and either (2.5) or (2.6).
We also give an example of system having infinite many solutions. Con-

sider the one-dimensional system
|Du1| − F (x) + u1(x) − u2(x) = 0 x ∈ (−1, 1)

|Du2| − F (x) + u2(x) − u1(x) = 0 x ∈ (−1, 1)

ui(±1) = 0 i = 1, 2

(4.1)

where F (x) = 2|x|. Then u1(x) = u2(x) = 1 − x2 and u1(x) = u2(x) =
min{1 − x2, x2 + C}, C ∈ (0, 1), are viscosity solutions to (4.1). Note that
the set Ai for the Hamiltonian Hi(x, p) = |p| − 2|x| coincide with {0} and
therefore the assumptions (2.5) and (2.6) are not satisfied.

4.2. Systems with large deviations Hamiltonians
Consider a right continuous strong Markov process (Xε

t , νε
t ) with phase

space RN × {1, . . . , M}. The first component of process satisfies

dXε
t = bνε

t
(Xε

t )dt + ε1/2dWt (4.2)

where Xε
0 = x ∈ D, while the second component νε

t is a random process
with states {1, . . . , M} for which

P{νε
t+∆ = j | νε

t = i, Xε
t = x} = cij(x) + O(∆) (4.3)

for ∆ → 0, i, j = 1, . . . , M , i 6= j. For ε = 0 the process (Xε
t , νε

t ) degener-
ates into the random process (X0

t , ν0
t ) defined by

dX0

dt
= bν0

t
(X0

t ) (4.4)

with ν0
t satisfying (4.3) for ε = 0. The process (X0

t , ν0
t ) is said a Random

Evolution process. Large deviations functionals defined on the paths of the
process (4.2) satisfy weakly coupled systems of second order linear equa-
tions. Passing to the limit in the system satisfied by the log-transform of
the large-deviations functional (see [5]) we get the system (2.1) where the
Hamiltonians Hi are the large-deviations ones

Hi(x, p) =
|p|2

2
− bi(x) · p. (4.5)

When νε(t) has only one state for any ε, then (4.2) corresponds to a small
random perturbation of a dynamical system. In this setting, a classical
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assumption which gives large deviations principles is the regularity of the
vector field b. This corresponds to require that
(4.6) ∃T > 0 such that for any integral curve of ẋ = b(x(t)) with x(0) ∈ D,

there exists s < T for which x(s) 6∈ D

Condition (4.6) is known in the probabilistic literature as the Levinson’s
condition for the dynamical system ẋ = b(x(t)). It has also a significa-
tive consequence in the PDE approach to large deviations. In fact (see [1,
Lemma 6.1] for the proof)

Proposition 4.1 The following conditions are equivalent
i) Condition (4.6)
ii) There exists a C1 function ψ such that

|Dψ|2

2
− b(x) · Dψ < 0 for x ∈ D

As discussed in the introduction the existence of a strict subsolution is
fundamental to get comparison results for Hamilton-Jacobi equations with-
out zero order terms. For this reason, condition (4.6) has been used by
several authors to study singular perturbation results in the framework of
viscosity solution theory (see [1, Chapter VI], [2], [8], [11]).

An analogous of the Levinson’s condition for random evolution pro-
cesses is that the process (4.4) exits out of D a.s. in a uniformly bounded
time, i.e. there exists T < ∞ such that

Px,i(τ0 ≤ T ) = 1, for any x ∈ D and i = 1, . . . ,M (4.7)

where τ0 is the exit-time of the process X0(t) from D and Px,i is the condi-
tional probability with respect to the initial condition X0(0) = x, ν0(0) = i.
A sufficient condition for (4.7) (see [5]) is the following condition
(4.8) For any smooth vector field λ(x) = (λ1(x), . . . , λM (x)) satisfying

λi(x) ≥ 0,
∑M

i=1 λi(x) = 1 for x ∈ D the vector field b(x) =∑M
i=1 λi(x)bi(x) is regular, i.e. it satisfies (4.6).

In the next proposition, we show that (4.8) is equivalent to (2.5) for the
Hamiltonians (4.5) and we also give a simple geometric condition which
guarantees the property

Proposition 4.2 The following three conditions are equivalent:
i) Condition (4.8).
ii) For any x ∈ D, the null vector does not belong to the convex hull
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co{b1(x), . . . , bM (x)}.
iii) There exists a C1 function ψ such that Hi(x, Dψ) < 0 in D, for any

i = 1, . . . , M .

We need a preliminary lemma. Let B(a, r) = {x ∈ RM : |x − a| ≤ r}
for a ∈ RM and r > 0.

Lemma 4.3 Given M vectors v1, . . . , vM in RN , then 0 6∈ co{v1, . . . , vM}
if and only if B =

∩M
i=1 B(vi, |vi|) has non empty interior (co stands for

the convex hull).

Proof. Assume that 0 6∈ C := co{v1, . . . , vM}. Let P be a point which
realizes the minimum of the distance between cl(C) and 0 and let ` be the
line through 0 and P . Denote by `i, i = 1, . . . , M , the intersection between
` and B(vi, |vi|). `i is a segment of positive length centered at wi, the
projection of vi on `. Because of the choice of P , all the segments `i are on
the same side of ` with respect to the origin. Hence their intersection is a
segment of positive length and any point of its interior is in the interior of
B.

Now assume that B has nonempty interior. Hence there exists a non-
null vector p such that p ∈ int(B(vi(x), |vi|)) or, equivalently,

|p|2

2
− vi · p < 0, i = 1, . . . , M. (4.9)

If, by contradiction, 0 ∈ co{v1, . . . , vM}, then there exists λi ∈ [0, 1],∑M
i=1 λi = 1 such that

∑M
i=1 λivi = 0. By (4.9),

0 >

M∑
i=1

λi

( |p|2
2

− vi · p
)

=
|p|2

2
−

( M∑
i=1

λivi

)
· p =

|p|2

2
,

hence a contradiction since |p| 6= 0. ¤

Proof of Proposition 4.2. ii) ⇒ iii): By Lemma 4.3, for any x0 ∈ D, there
exists p ∈ int

(∩M
i=1 B(bi(x0), |bi(x0)|)

)
. Then Hi(x0, p) < 0 for any i =

1, . . . , M and, by continuity, the inequalities Hi(x, p) ≤ 0 hold for x ∈
B(x0, δ), for δ sufficiently small. Hence the function ψx0(x) = p · (x−x0) is
a C1-strict subsolution of Hi(x, Du) = 0 in B(x0, δ) for any i = 1, . . . , M .
Now applying the argument in [6, Theorem 3.3], based on a partition of the
unity of D, to each Hamiltonian Hi we can construct a function ψ which
satisfies iii).
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iii) ⇒ i): Let ψ be a C1 function satisfying iii) and take a vector field λ

as in i). Set H(x, p) = |p|2/2 − b(x) · p, where b(x) =
∑M

i=1 λi(x)bi(x). We
have for x ∈ D

H(x, Dψ) =
|Dψ|2

2
− b(x) · Dψ =

|Dψ|2

2
−

M∑
i=1

λi(x)bi(x) · Dψ

=
M∑
i=1

λi(x)
( |Dψ|2

2
− bi(x) · Dψ

)
=

M∑
i=1

λi(x)Hi(x, Dψ) < 0

Since ψ is a strict subsolution of the Hamilton-Jacobi equation correspond-
ing to b(x), then, by Proposition 4.1, the vector field b is regular and there-
fore i) holds.
i) ⇒ ii): Assume by contradiction that 0 ∈ co{b1(x0), . . . , bM (x0)}, for
some x ∈ D, hence there exists µi, i = 1, . . . , M such that µi ∈ [0, 1],∑M

i=1 µi = 1 and
∑M

i=1 µibi(x0) is the null vector. By iii) and Proposi-
tion 4.1, we know that for any λ(x) as in (4.8), there exists ψ ∈ C1(D) such
that

H(x, Dψ) =
|Dψ|2

2
−

M∑
i=1

λi(x)bi(x) · Dψ < 0 (4.10)

Now choosing λ(x) in such a way that

λi(x0) = µi, i = 1, . . . , M

and substituting in (4.10), we get for x = x0

|Dψ(x0)|2

2
< 0

and therefore a contradiction. ¤

Remark 4.4 Taking λ(x) such that for any x ∈ D λi(x) = 1 and λj(x) =
0 for j 6= i in (4.8), we get that the vector field bi(x), for any i = 1, . . . , M ,
is regular in the sense of definition (4.6).

But, even if all the vector fields bi are regular, not necessarily (4.8) is
satisfied. In fact, taking b1(x) = (1, . . . , 1) and b2(x) = −b1(x), then b1 and
b2 are regular vector fields in D = [0, 1]N . But, since 0 ∈ co{b1(x), b2(x)}
for any x ∈ D by Proposition 4.2, (4.8) is not satisfied. Another interesting
example of the same phenomenon is given in [5].
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Anal Non Linéaire 2 (1985), 1–20.

[ 9 ] Ishii H., Perron’s method for monotone systems of second-order elliptic PDEs. Diff.

and Int. Eq. 5 (1992), 1–24.

[10] Ishii H., A simple, direct proof of uniqueness for solutions of the Hamilton-Jacobi

equations of eikonal type. Proc. Amer. Math. Soc. 100 (1987), 247–251.

[11] Ishii H. and Koike S., Remarks on elliptic singular perturbation problems. Appl.

Math. Optim. 23 (1991), 1–15.

[12] Ishii H. and Koike S., Viscosity solutions for monotone systems of second-order

elliptic PDEs. Comm. Partial Differential Equations 16 (1991), 1095–1128.

F. Camilli

Dip. di Matematica Pura e Applicata

Univ. dell’Aquila loc.

Monteluco di Roio

67040 l’Aquila, Italy

E-mail: camilli@ing.univaq.it

P. Loreti

Dip. di Metodi e Modelli Matematici per le Scienze Applicate
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