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C`-G-triviality of map germs and Newton polyhedra,

G = R, C and K
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Abstract. We provide estimates for the C`-G-triviality, for 0 ≤ ` < ∞ and G is one of

Mather’s groups R, C or K, of deformations of analytic map germs f : (Rn, 0) → (Rp, 0)

of type ft(x) = f(x) + θ(x, t) which satisfy a non-degeneracy condition with respect to

some Newton polyhedron. We apply the method of construction of controlled vector fields

and, for each group G, the control function is determined from the choice of a convenient

Newton filtration in the ring of real analytic germs. The results are given in terms of the

filtration of the coordinate function germs f1, . . . , fp of f .
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1. Introduction

A classical problem in singularity theory is the classification of families
of analytic map germs which are equivalent with respect to some equivalence
relation. In general, this classification is done in terms of the orbits of some
group action in such a way that, the elements of one orbit preserve the
desired properties.

Following the original ideas of Thom and Mather, several authors stud-
ied the action of Mather’s groups R, C and K, see section 3 for these defi-
nitions. However, in several situations these group actions are too strong,
giving rise to a very large quantity of orbits, therefore the action by weaker
groups which could give a nice ”stratification by its orbits” for the set of
map germs becomes interesting.

In real case there exists an special interest in the C`-G-actions, where
G is one of the groups above, and the diffeomorphisms are of class C` with
0 ≤ ` < ∞. Many works are devoted to the characterization of topological
classification, given by diffeomorphisms of class C0, with respect to various
equivalence relations, see [4], [5] or [8], for example.

Concerning the C`-classification for 0 < ` < ∞, we see the work of

2000 Mathematics Subject Classification : 58C27.

The first named author is partially supported by CNPq-Grant 300556/92-6.



332 M.J. Saia and C.H.S. Júnior

Bromberg and Lopes de Medrano in [3]. They consider families of germs
of real analytic functions and gave estimates for the C`-R-triviality in the
semi-weighted homogeneous case. Kuiper in [9] gave estimates for the C1-
R-equivalence of isolated singularities. In these articles this estimation was
made using the Lojasiewicz exponent of the Jacobian ideal of the germ.

More recently, Abderrahmane in [1] studies the C0-R-triviality in func-
tion germs which satisfy a non-degeneracy condition which depends of a
convenient Newton filtration, extending the results of Kuo in [8]. The ex-
tension made by Abderrahmane refers to an estimation of the degree of
determinacy, using a suitable Lojasiewicz exponent, with respect to a given
Newton polyhedron of a given function germ. Moreover, in this paper it
is also proved a version for Newton filtrations, of the results given by J.
Bochnak and S. Lojasiewicz in [2]. We remark that the results of Abder-
rahmane also extend the results given by L. Paunescu in [10] for the weighted
homogeneous case.

Considering families of real analytic semi-weighted homogeneous map
germs, in [11] there are given estimates for the C`-G-triviality, where 0 ≤
` < ∞ and G is one of Mather’s groups R, C or K.

In this paper we investigate the C`-G-triviality of families of real ana-
lytic map germs which satisfy a non-degeneracy condition with respect to
some fixed Newton polyhedron, for 0 ≤ ` < ∞ and G is one of Mather’s
groups R, C or K. We give explicit orders such that the C` geometrical
structure of a non-degenerate map germ is preserved after higher order per-
turbations. Our method consists of constructing controlled vector fields,
where the control functions are determined from an appropriate choice of a
Newton polyhedron.

2. Newton polyhedra and functions of class C`

The main tool to provide estimates for the C`-triviality of analytic map
germs f : (Rn, 0) → (Rp, 0) is the determinacy of the class of differentiabil-
ity of functions of type h(x)/g(x), with g(x) satisfying some non-degeneracy
condition with respect to a convenient filtration in the ring of analytic germs
f : (Rn, 0) → R. Here we consider a Newton filtration, which is determined
from a Newton polyhedron.

To construct a Newton polyhedron we fix an n × m matrix A = (aj
i ),

with i = 1, . . . , n, j = 1, . . . , m, aj = (aj
1, . . . , aj

n) ∈ Qn
+ and m ≥ n, such
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that the first n columns of A are (0, . . . , 0, aj
j , 0, . . . , 0) with aj

j > 0, for
all j = 1, . . . , n.

Definition 2.1 The Newton polyhedron Γ+(A) is the convex hull in Rn
+ of

Supp(A)+Rn
+, where Supp(A) = {aj , j = 1, . . . , m}. The Newton diagram

of A, denoted Γ(A), is the union of the compact faces of Γ+(A).

Associated to a Newton polyhedron Γ+(A) we define a control func-
tion, which is fundamental to describe the class of differentiability of the
controlled vector fields which guarantee the C`-triviality.

For any vector aj of the matrix A and k ∈ R+, we denote kaj =
(kaj

1, kaj
2, . . . , kaj

n). We fix the smallest integer p such that paj
i is integer

for all i, j and for any non-negative rational number d define the function
ρd : Rn → R as:

ρd(x) =
( m∑

j=1

x
2paj

1
1 x

2paj
2

2 · · ·x2paj
n

n

)d/(2p)

. (1)

We remark that the function ρ2p(x) =
∑m

j=1 x
2paj

1
1 x

2paj
2

2 · · ·x2paj
n

n is a
polynomial.

We call ρd control of Γ+(dA), where dA denotes the matrix dA = (daj
i )

and denote by Γ+(ρd), the Newton polyhedron of the matrix dA = (daj
i ),

i.e. Γ+(ρd) = Γ+(dA).

Example 2.2 For n = 2, such an A is written as A =
(

a1
1 0 a3

1 · · · am
1

0 a2
2 a3

2 · · · am
2

)
.

Let A =
(

1/b 0 (b − 1)/{(b + 1)b}
0 1/(b + 1) 1/{(b + 1)b}

)
where b is a positive

integer.
Then, we obtain p = b(b + 1) and the control function ρ of Γ+(A) is

given as

ρ(x, y) = (x2b+2 + y2b + x2b−2y2)1/{2b(b+1)}.

The corresponding Newton polyhedron Γ+(ρ2b(b+1)) has two faces with
vertices {(2b + 2, 0), (2b − 2, 1), (0, 2b)}.

Let f : (Rn, 0) → (R, 0) be an analytic function germ written as f(x) =∑
aγxγ , where xγ denotes the monomial xγ = xγ1

1 . . . xγn
n . For any fixed

germ f , call d the biggest rational integer such that γ = (γ1, . . . , γn) ∈
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Γ+(ρd) for all aγ 6= 0.
Abderrahmane shows that the control function ρd satisfies a Lojasiewicz

condition with respect to such germs.

Lemma 2.3 ([1], p. 524) There exists a constant c1 > 0 and a neighbor-
hood V of the origin such that, for all x ∈ V , ‖f(x)‖ ≤ c1ρ

d(x).

The main condition to guarantee the class of differentiability of function
germs of type h(x)/g(x) is given in terms of a non-degeneracy condition,
called A-isolated, which we describe here.

For any germ g with Taylor series g(x) =
∑

aαxα, if ∆ is a subset of a
Newton polyhedron Γ+(A), call g∆ the germ g∆(x) =

∑
α∈∆ aαxα.

Definition 2.4 ([1], p. 525) The origin is an A-isolated point of a germ f

if for each compact face ∆ of Γ(ρd), the equation f∆(x) = 0 does not have
solution in (R − {0})n.

In this case we say that the germ f is A-isolated. For any germ satisfying
this condition, it is possible to obtain a Lojasiewicz condition with respect
to the control function ρd.

Lemma 2.5 ([1], p. 525) Suppose that f is A-isolated for some matrix
A, then there exists a real c > 0 such that cρd(x) ≤ ‖f(x)‖ for all x in a
neighborhood of the origin.

For a Newton polyhedron Γ+(A) and for each w = (w1, . . . , wn) ∈ Rn
+

define:

Definition 2.6
(a) `(w) = min{〈w, k〉 : k ∈ Γ+(g)}, 〈w, k〉 =

∑n
i=1 wiki.

(b) ∆(w) = {k ∈ Γ+(g) : 〈w, k〉 = `(w)}.
(c) Two vectors a, a′ ∈ Rn∗

+ are equivalent if ∆(a) = ∆(a′).

The next lemmas form the key tools that determine the class of differ-
entiability of the controlled vector fields.

Lemma 2.7 For any germ h(x) =
∑

aγxγ, with γ in the interior of
Γ+(ρd) for all aγ 6= 0, then limx→0 h(x)/ρd(x) = 0.

Proof. It is sufficient to prove that for all a = (a1, . . . , an) in the interior
of Γ+(ρd), limx→0 xa/ρd(x) = 0.

If we suppose by contradiction that there exists a monomial xa with



C`-G-triviality and Newton polyhedra 335

a = (a1, . . . , an) in the interior of Γ+(ρd) and limx→0 xa/ρd(x) 6= 0, then
for each neighborhood V of the origin there exists a constant c > 0 such
that ‖xa/ρd(x)‖ ≥ c, for some x in V .

Therefore the origin is in the closure of the set X := {x ∈ Rn | ‖x‖ ≥
cρd(x)}.

Since X is semi-analytic, from the Curve Selection Lemma we conclude
that there exists an analytic curve λ : (0, ε] → X, λ := (λ1, . . . , λn), with
λ(0) = 0 and

λ1(t) = tα1 + o(α1), . . . , λn(t) = tαn + o(αn),

where o(αi) denotes the terms of order higher than αi in the Taylor series
of λi(t).

Call α = (α1, . . . , αn) and as ρd(λ(t)) ≤ (1/c)‖λ(t)a‖, we obtain
infj{〈daj , α〉} ≥ 〈a, α〉.

But ∆(α) := {b ∈ Γ+(ρd) | 〈b, α〉 = `(α)} is a face of Γ+(ρd) with

`(α) := min{〈c, α〉 | c ∈ Γ+(ρd)}.

Since each daj is one of the vertices of ∆(α), we have 〈daj , α〉 = `(α),
however, 〈a, α〉 ≤ 〈daj , α〉 = `(α), hence a ∈ Γ(ρd) and we obtain a contra-
diction to the hypothesis. ¤

Now we fix a Newton polyhedron Γ+(A) and for each (n−1)-dimensional
compact face ∆k of Γ(A) we denote by vk = (vk

1 , . . . , vk
n), the vector in Zn

+−
{0} with minimum length which is associated to ∆k i.e. ∆k = ∆(vk).

Call

M = l.c.m.{`(vk)}, R = max
j

max
i

{ M

`(vk)
vk
i

}
and

r = min
j

min
i

{ M

`(vk)
vk
i

}
.

Definition 2.8 For an analytic real germ f(x) =
∑

aγxγ call

fil(f) := inf{fil(γ) | aγ 6= 0}, where fil(γ) = min
k

{ M

`(vk)
〈γ, vk〉

}
.
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Lemma 2.9 Let h : (Rn, 0) → (R, 0) be an analytic function germ satis-
fying

fil(h) ≥ fil(ρd) + `R + 1.

Then h/ρd is differentiable of class C`.

Proof. The proof is done by induction on `.
Then we first consider ` = 1, and if fil(h) ≥ fil(ρd) + R + 1, we show

that h/ρd is of class C1. To do it we show that the gradient map ∇(h/ρd)
is continuous.

Since ∇(h/ρd) = (1/ρ2d)(ρd.∇h−h.∇ρd), in order to apply the Lemma
2.7 we need to show that fil(ρd(∂h/∂xi) − h.(∂ρd/∂xi)) > fil(ρ2d), for all
i = 1, . . . , n.

But, for ` = 1, fil(h) ≥ fil(ρd) + R + 1, then

fil
(
ρd ∂h

∂xi
− h.

∂ρd

∂xi

)
≥fil(h) + fil(ρd) − R

≥2 fil(ρd) + 1

=fil(ρ2d) + 1.

Therefore, from the Lemma 2.7 we see that limx→0 ∇(h/ρd)(x) = 0.
Then ∇(h/ρd) is continuous and h/ρd is of class C1.

Suppose now that for h1, with fil(h1) ≥ fil(ρd)+(`−1)R+1, the function
h1/ρd is of class C`−1.

For any h/ρd with fil(h) ≥ fil(ρd) + `R + 1, we obtain that ∇(h/ρd) =
H/ρd, where H = (1/ρd)(ρd.∇h − h.∇ρd), hence

fil(H) ≥ fil(ρd) + (` − 1)R + 1

and by the induction hypothesis, we have that H/ρd is of class C`−1. There-
fore f is of class C`. ¤

3. C`-G-triviality

Two map germs f : (Rn, 0) → (Rp, 0) and g are R-equivalent if there
exists a germ of diffeomorphism h : (Rn, 0) → (Rn, 0) such that g = f ◦
h−1. Two map germs f and g are K-equivalent if there exists a pair of
diffeomorphisms (h, H), with h : (Rn, 0) → (Rn, 0), H : (Rn × Rp, 0) →
(Rn × Rp, 0) for which H(Rn × 0) = Rn × 0 and H ◦ (Id, f) = (Id, g) ◦ h,
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where Id denotes the germ of the identity in Rn. We remark that the K-
equivalence can be seen as the decomposition of the R-equivalence and the
finer notion called C-equivalence, defined as the K-equivalence, but the germ
h has the special property that it is the germ at 0 of the identity mapping
on Rn.

The groups C`-G, for G = R, C or K, with 0 ≤ ` < ∞ are defined as
the groups G = R, C or K, taking diffeomorphisms of class C`, if ` ≥ 1
or homeomorphisms when ` = 0. These groups act on the space of map
germs of class C`. Our interest however is rather in the induced equiva-
lence relation, the C`-G-equivalence, in the space of analytic map germs
f : (Rn, 0) → (Rp, 0).

Ruas and Saia in [11] determined conditions for the C`-G-triviality,
with ` ≥ 0, G = R, C or K of families f + tθ, where f is a weighted
homogeneous map germ with isolated singularity, in terms of the weights
and degrees. Here we generalize these results for the class of map germs
that are A-homogenous for some fixed matrix A.

Definition 3.1 For a fixed matrix A, a germ f is called A-homogeneous
of degree d if f(x) =

∑
ν∈Γ(ρd) cνx

ν .

Example 3.2 The germ f(x, y) = x2b+2−y2b+x2(b−1)y2 is A-homogeneous
of degree 2b(b + 1) if we consider the matrix A of the Example 2.2.

We remark that when the matrix A is diagonal, we obtain that any
A-homogeneous germ of degree d is in fact, a weighted homogenous germ of
degree d, whose weights are determined by the elements of the matrix A.

Definition 3.3 An analytic map germ f : (Rn, 0) → (Rp, 0); f = (f1, . . .,
fp) is a A-homogenous of degree d = (d1, . . . , dp) if each fi is A-homogenous
of degree di.

The main idea is to choose, for each group G = R, C or K, a conve-
nient A-isolated function germ which is equivalent to a control function ρ(x)
associated to Γ+(A). First we shall do it for the group R.

3.1. The group R
For a polynomial map germ f : (Rn, 0) → (Rp, 0) and each I = {i1, . . .,

ip} ⊂ {1, . . . , n} denote by MI the corresponding minor of order p of the
Jacobian matrix df .

For a fixed matrix A, we denote sI := fil(MI), call α := l.c.m.{sI}
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and define NRf :=
∑

I M2αI
I where αI = α/sI . As we shall see in the

main result of this section, the condition of the function germ NRf to be
A-isolated is the key tool to get the estimates for the C`-R-triviality.

Write NRf as the sum of its A-homogeneous parts Hi of degree i, that
is

NRf = HD + · · · + HD+e

with e > 0 and each function germ Hi is A-homogenous of degree i.
From the Lemma 2.3, there exist constants cD, . . . , cD+e and a neigh-

borhood V1 of the origin such that for all x ∈ V1:

NRf(x) ≤ ‖HD(x)‖ + · · · + ‖HD+e(x)‖
≤ cDρD(x) + · · · + cD+eρ

D+e(x) ≤ kρD(x),

where cD + · · · + cD+e = k.
If we suppose that NRf is A-isolated, from the Lemma 2.5 there exist

constants k1 and k2 > 0 and a neighborhood V of the origin such for all
x ∈ V :

k1ρ
D(x) ≤ NRf(x) ≤ k2ρ

D(x).

From now on we shall consider ft(x) = f(x) + θ(x, t) be a deformation
of a map germ f : (Rn, 0) → (Rp, 0), where θ = (θ1, . . . , θp), and θi(x, t) =∑`s

s=1 δi
s(t)θ

i
s(x), where δi

s : (R, 0) → (R, 0) and θi
s : (Rn, 0) → (R, 0) are

polynomial germs of functions with δi
s 6= 0.

Define NRft :=
∑

I M2αI
tI

, where MtI denotes the minor of order p of
the Jacobian matrix dft and αI is as above.

Lemma 3.4 Suppose that for some matrix A, NRf =
∑

I M2αI
I = HD +

· · · + HD+e is A-isolated. If fil(θi
s) > fil(fi) for all i = 1, . . . , p, then there

exist constants k1 and k2 > 0 and a neighborhood V of 0 such that for all
x ∈ V

k1ρ
D(x) ≤ NRft(x) ≤ k2ρ

D(x).

Proof. Since NRft = NRf + tΘ where Θ satisfies fil(Θ) > fil(NRf), we
can write

NRf ≤ NRft + ‖Θ‖, for all 0 ≤ t ≤ 1.

From the Lemma 2.5 there exist a constant k1 > 0 and a neighborhood
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V1 of 0 such that for all x ∈ V1,

k1ρ
D(x) ≤ NRf(x) ≤ NRft(x) + ‖Θ(x, t)‖.

Since fil(Θ) > fil(NRf), limx→0 Θ(x, t)/ρD(x) = 0, therefore k1ρ
D(x) ≤

NRft(x).
On the other hand, since fil(Θ) > fil(NRf) it follows from the Lemma 2.3

that there exists a constant c3 and a neighborhood V2 of 0 such that
|Θ(x, t)‖ ≤ c3ρ

D(x) for all x ∈ V2, hence if k2 = c2 + c3, for all x ∈
V2 ∩ V1:

NRft(x) ≤ NRf(x) + ‖Θ(x, t)‖ ≤ c2ρ
D(x) + ‖Θ(x, t)‖ ≤ k2ρ

D(x).

¤

We show now the main result of this section:

Theorem 3.5 Suppose that NRf :=
∑

i M
2αI
I is A-isolated for some ma-

trix A.
(a) If fil(θi

s) ≥ fil(fi) + `R − r + 1, then for ` ≥ 1 and t ∈ [0, 1], ft is
C`-R-trivial;

(b) If fil(θi
s) ≥ fil(fi), then ft is C0-R-trivial for small values of t.

In order to better discuss the hypothesis given here, we show some
examples.

In the first example we show that the A-isolated condition of the func-
tion NRf with respect to some matrix A is essential for the estimates.

Example 3.6 Let ft(x, y) = x8 + y6 + y2x4 − y4x2 + txayb.
Here NRf =

(
8x7 +4xy2(x2 − y2)

)2α +4y4(x2 − 3y2)2(x2 − y2)2β is not
A-isolated, for any matrix A. From the calculation of the Milnor numbers
µ(ft) for small values of t, we obtain that a necessary condition for the
C0-triviality of such family is a + b ≥ 8. If we fix, for example ft(x, y) =

f(x, y)+tx4y3 and consider the matrix A =
(

7 0 1
0 5 1

)
, we have fil(x4y3) >

fil(f), but ft is not C0-R-trivial, since for t 6= 0 the Milnor number of ft is
smaller than the Milnor number of f .

We remark that in this example we are using the fact that, even in the
real case, which is our subject here, the constancy of the Milnor number is
a necessary condition for the C0-R-triviality.
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Now we show that these estimates can not be improved.

Example 3.7 Let ft(x, y) = (x2 + y2)2 + txayb, we consider in this case

A =
(

1 0
0 1

)
, which gives the usual filtration by the degree, then fil(f0) = 4

and R = r = 1. From the Theorem 3.5 we see that the family is C`-R-trivial
if

fil(xayb) = a + b ≥ fil(f0) + ` = 4 + `.

If we consider the monomial xp+5, for all p ≥ 0, Kuiper showed in the
Theorem 5B of [9] that the family ft(x, y) = (x2 +y2)2 +txp+5 is C1-trivial.
As a consequence of our Theorem 3.5 we improve this result to get that the
family is Cp+1-trivial, since fil(x5+p) = p + 5.

We remark that in this example, this estimate is the best possible, since
Kuiper also showed that this family is not Cp+2-R-trivial. Kuiper showed
this by contradiction on the hypothesis of Cp+2-R-triviality of the family,
a direct analysis of the Taylor series of the composition of the function f

with a Cp+2-diffeomorphism shows the contradiction on the term of degree
p + 7.

Example 3.8 Let f : (R2, 0) → (R, 0), f(x, y) = y7 + x4y + x9. Then
df(x, y) = (4x3y + 9x8, 7y6 + x4), with minors M1(x, y) = 4x3y + 9x8 and
M2(x, y) = 7y6 + x4.

Consider A =
(

4 0 3
0 6 1

)
, with the associate control ρ(x, y) = y12 +

x6y2 + x8.
Call ∆1 and ∆2 the 1-dimensional compact faces of Γ+(ρ2), then

NRf(x, y) = M2
1 (x, y)+M2

2 (x, y) = (4x3y+9x8)2+(7y6+x4)2 is A-isolated,
since NRf |∆1(x, y) = (4x3y)2+(7y6)2 and NRf |∆2(x, y) = (4x3y)2+(x4)2.

Now, for any monomial xayb, we have ϕ(xayb) = min{2(5a+3b), 9(a+
b)}.

Then fil(f) = min{ϕ(y7), ϕ(x4y), ϕ(x9)} = 42, with R = 10 and r = 6.
Consider the family ft(x, y) = y7+x4y+x9+tx2y5, since fil(x2y5) = 50

from the Theorem 3.5 we conclude that ft is C1-R-trivial.
We remark that if we consider the family gt(x, y) = y7 + x4y + x9 +

tx5y7, as fil(x5y7) = 92 from the Theorem 3.5 we only can conclude that
gt is C5-R-trivial, however the monomial x5y7 is in the R-tangent space of
the germ f , therefore this family is in fact Cω-R-trivial.
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Example 3.9 Let f : (R2, 0) → (R2, 0); f(x, y) = (xy, x2b+2 − y2b +
x2b−2y2), with b > 2 and fix the matrix

A =
(

1/b 0 (b − 1)/{(b + 1)b}
0 1/(b + 1) 1/{(b + 1)b}

)
.

Since l.c.m.{`(v1), `(v2)} = 2b(b + 1), fil(xy) = 2b + 2, fil(y2b) = 2b(b +
1), fil(x2b−2y2) = 2b(b+1) and fil(x2b+2) = 2b(b+1), then we obtain R = 2b

and r = b.
The 2× 2 minor of df , M(x, y) = −2

(
(b + 1)x2b+2 + by2b + bx2b−2y2

)
is

A-homogenous of degree 2b(b + 1) and also A-isolated.
From the Theorem 3.5 we see that a family f + tθ with θ = (θ1, θ2) is

C`-trivial if fil(θ1) ≥ b + 2b` + 3 and fil(θ2) ≥ 2b2 + b + 2b` + 1.
Fixing (θ1, θ2)(x, y) = (x5y9, y4(b+1)), fil(θ1) = 14b + 14 and fil(θ2) =

4b2 + 8b + 4.
Therefore, for b ≥ 3 the family ft(x, y) = (xy + tx5y9, x2b+2 − y2b +

x2b−2y2 + ty4(b+1)) is C6-R-trivial.

3.1.1. C`-R and bi-Lipschitz-R-equivalence Recently in the The-
orem 3.5 of [6], a similar result of the Theorem 3.5 is shown for the case of
bi-Lipschitz R-triviality of map germs, using the same method. In order to
compare these two results, we recover this theorem here.

Theorem 3.10 ([6]) Let f : (Rn, 0) → (Rp, 0) be a polynomial map-germ.
Suppose that NRf :=

∑
i M

2αI
I is A-isolated for some matrix A. If ft = f +

tθ is a deformation of f with fil(θi) ≥ fil(fi) + R− r, then ft is bi-Lipschitz
R-trivial.

We remark that the bi-Lipschitz equivalence is stronger than the C0-
equivalence and weaker than the C1-equivalence, and these conditions
clearly appear in these results, we can also see that the bi-Lipschitz equiv-
alence is ”closer” to the C0-equivalence than the C1 equivalence. It is
interesting to remark that in the homogenous case, or when R = r, we
obtain equal estimates for the C0 and bi-Lipschitz equivalences.

Next, we give another example to show that the appropriate choice of
the matrix A to get the A-isolated condition is also essential.

Example 3.11 Consider the family ft(x, y) = f(x, y)+tx2y2, with f(x, y)
= x3 + y6. Since ft is weighted homogeneous, we can fix the matrix A =
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(
2 0
0 5

)
to conclude that this family is C0-R-trivial.

We can ask now about the C1-R-triviality of this family. For this,

consider the matrix A =
(

2 0 1
0 5 1

)
. We see that for this matrix, NRf =

9x4 + 36y10 is not A-isolated, fil(f) = 12 and fil(x2y2) = 20, hence for
` = 1, fil(x2y2) > fil(f) + 8` − 2 + 1. Therefore if this hypothesis should
be not necessary, we could obtain that the family ft should be C1-trivial.
On the other side if we do the following exchange in the coordinate system
x = X − ty2/3 and y = Y , we see that ft is Cω-equivalent to x3 + y6 + sxy4

and in [7] Henry and Parusiński showed that this family is not bi-Lipschitz
trivial, hence not C1-trivial.

3.1.2. Proof of the Theorem 3.5
(a) For each p × p minor MtI of dft, we construct the vector field WI

defined by the co-factors of MtI :

WI =
n∑

i=1

wi
∂

∂xi
, with


wi = 0, if i 6∈ I

wim =
p∑

j=1

Njim

(∂ft

∂t

)
j
, if im ∈ I,

where Njim denotes the (p − 1) × (p − 1) minor cofactor of the element
∂fj/∂xim in the matrix df and (∂ft/∂t)j is the j-coordinate of the map
germ ∂ft/∂t.

Therefore (∂ft/∂t)MtI = df(WI) and (∂ft/∂t)NRft = dft(WR), where
WR is the vector field WR :=

∑
I M2αI−1

I WI .
We remark here that for all i = 1, . . . , n we have

fil
(
wi

∑
I

M2αI−1
I

)
= min

I
{fil(M2αI−1

I ) + fil(wi)}

≥ min{2α − fil(MI) + fil(Njim) + fil(θj)}

≥ min
{

2α − fil(MI) + fil(MI) − fil
( ∂fj

∂xim

)
+ fil(θj)

}
≥ min{2α − (fil(fj) − r) + fil(θj)}
≥ 2α + `R + 1.

Now consider the vector field V : (Rn × R, 0) → (Rn × R, 0), V :=
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WR/NRft.
Since WR =

∑n
i=1(wi

∑
I M2αI−1

I )∂/∂xi, it follows from the equiva-
lence between NRft and ρd given in the Lemma 3.4 that we can apply the
Lemma 2.9 to conclude that the vector field V is of class C`.

Then the C`-R-triviality, for small values of t, follows from the equation

∂ft

∂t
(x, t) = (dft)x(V (x, t)).

A similar argument shows that the result follows for all t0 ∈ [0, 1].
(b) Since for all i = 1, . . . , n,

fil
(
wi

∑
I

M2αI−1
I

)
≥ min

I

{
2α − fil(MI) + fil(MI) − fil

( ∂fj

∂xim

)
+ fil(θj)

}
≥ min{2α − (fil(fj) − r) + fil(fj) + R − r}
= 2α + r = fil(ρD) + r

then fil(wi
∑

I M2αI−1
I ) ≥ fil(ρD) + r = fil(ρD‖x‖) and we conclude that

WR/(ρD‖x‖) is limited. Therefore, from the Lemma 3.4 we obtain the
inequalities∥∥∥ WR

NRft

∥∥∥ ≤ c
∥∥∥WR

ρD

∥∥∥ ≤ c′‖x‖

to get that the vector field WR/NRft is integrable and the C0-R-triviality
follows. ¤

3.2. The group C
For a map germ f : (Rn, 0) → (Rp, 0); with f = (f1, . . . , fp) and a

fixed matrix A, we call βi := l.c.m.{fil(fj), j = 1, . . . , p}/fil(fi).
In this case we consider the coordinate functions {f1, . . . , fp} and define

the function germ NCf :=
∑p

i=1(fi)2βi . Here the condition of the function
NCf to be A-isolated is the key tool to get the estimates for the C`-C-
triviality.

Then we write NCf = HD + · · · + HD+e with e > 0 and from the
Lemma 2.3 we conclude that there exists constants cD, . . . , cD+e and a
neighborhood V of the origin such that

NCf(x) ≤ cDρD(x) + · · ·+ cD+eρ
D+e(x) ≤ (cD + · · ·+ cD+e)ρD(x).
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Therefore if NCf is A-isolated, from the Lemma 2.5 there exist constants
k1 and k2 > 0 such that k1ρ

D ≤ NCf ≤ k2ρ
D in a neighborhood of the

origin.
Consider now a deformation ft = f + θ(x, t) of f with fil(θi

s) > fil(fi)
and define NCft :=

∑p
i=1(fti)2βi .

Lemma 3.12 Suppose that NCf is A-isolated for some matrix A. If ft is
a deformation of f with fil(θi

s) > fil(fi), there exist constants k1 and k2 > 0
and a neighborhood V of 0 such that for all x ∈ V ,

k1ρ
D1(x) ≤ NCft(x) ≤ k2ρ

D1(x).

Proof. We can write NCft = NCf + tΘ(x, t), with fil(Θ) > fil(NCf), then
NCf ≤ NCft + ‖Θ‖ for all t with 0 ≤ t ≤ 1.

As NCf = HD + · · · + HD+e is A-isolated there exist constants k1 and
k2 > 0 and a neighborhood V of 0 such that for all x ∈ V : k1ρ

D(x) ≤
NCf(x) ≤ k2ρ

D(x).
Therefore

k1ρ
D(x) ≤ NCf(x) ≤ NCft(x) + ‖Θ(x, t)‖,

since fil(Θ) > fil(NCf) and limx→0 Θ(x, t)/ρD1(x) = 0 this implies that
k1ρ

D1(x) ≤ NCft(x).
On the other hand, NCft(x) ≤ NCf(x) ≤ k2ρ

D(x) and the result follows.
¤

We show now the main result of this section.

Theorem 3.13 Let ft(x) = f(x) + θ(x, t), be a deformation of a polyno-
mial map germ f : (Rn, 0) → (Rp, 0). Suppose that NCf is A-isolated for
some matrix A. Then, if fil(θi

s) ≥ d + `R + 1 for all s, all i = 1, . . . , n and
` ≥ 1 with d := max{fil(fi)}, the family ft is C`-C-trivial for all t ∈ [0, 1].

Example 3.14 Let f : (R2, 0) → (R2, 0); f(x, y) = (xy + x2y2, x2(c+1) +
xy − y2c) with c ≥ 2.

Fix A =
(

2(c + 1) 0 1
0 2c 1

)
, then l.c.m.{`(v1), `(v2)} = 2c(c + 1), R =

2c2 + c and ϕ(a, b) = min{(c + 1)〈(a, b), (2c− 1, 1)〉, c〈(a, b), (1, 2c + 1)〉}.
Since NCf is A-isolated, we apply the Theorem 3.13 to obtain that

ft(x, y) = (xy + x2y2 + txy2c+1, x2(c+1) + xy − y2c)
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is C1-C-trivial, for c ≥ 3.

Example 3.15 Let f : (R2, 0) → (R2, 0); f(x, y) = (x4y4, x8 + x3y5 +
y11).

Fix A =
(

8 0 3
0 11 2

)
, then l.c.m.{`(v1), `(v2)} = 88, R = 16 and for

any monomial xayb, ϕ(a, b) = min{16a + 8b, 11a + 11b}, hence fil(f1) =
fil(f2) = 88.

Since NCf is A-isolated, we can apply the Theorem 3.13. If we con-
sider monomials of type xky2 with 8 ≤ k ≤ 11 we obtain that ft(x, y) =
(x4y4, x8 + x3y5 + y11 + txky2) is C1-C-trivial for k = 8, C2-C-trivial for
k = 9 or k = 10 and C3-C-trivial for k = 11.

Proof of the Theorem 3.13. To show the C`-C-triviality of ft we consider
the germs of vector fields Vi : (Rn×R, 0) → (Rp×R, 0); Vi = (Vi1, . . . , Vip)
of class C`, where Vij(x, 0) = δij(x), in such a way that

∂ft

∂t
=

p∑
i=1

Vi(x, t)(fti).

Write ∂ft/∂t = ∂ft/∂t·(
∑p

i=1 f2βi−1
ti fti/NCft) and define Wi = (∂ft/∂t)·

f2βi−1
ti , therefore

∂ft

∂t
(x, t) =

p∑
i=1

Wi

NCft
(fti)(x, t).

Since B := l.c.m.{fil(fj), j = 1, . . . , p} we obtain

fil(Wi) = min
j

{fil(f2βi−1
i ) + fil(θj)}

≥ 2B − d + d + `R + 1

= 2B + `R + 1, ∀i.

Let V : (Rn×Rp×R, 0) → (Rn×Rp×R, 0) the germ of vector field defined
as (0, Vp, 0), where

Vp(x, y, t) :=
p∑

i=1

Wi(x, t)
NCft

yi.

Therefore, from the inequalities given in the Lemma 3.12 we see that
we can apply the Lemma 2.9 to conclude that V is of class C` and the result
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follows by integrating the vector field V . ¤

3.3. The group K
To define the germ of function NKf with respect to the group K we fix

a matrix A and use the functions NRf and NCf to consider the smallest
integer numbers a and b such that fil([NRf ]a) = fil([NCf ]b).

Then we define NKf = [NRf ]a + [NCf ]b and show the following:

Theorem 3.16 Suppose that NKf is A-isolated for some matrix A. Then
deformations ft(x) = f(x) + θ(x, t), with fil(θi

s) ≥ d + `R + 1 for all i and
` ≥ 1, are C`-K-trivial for all t ∈ [0, 1].

We remember that if for some map germ f the function NR(f) is A-
isolated, it is better to apply the Theorem 3.5, since it gives a better estimate
and as the group R is a subgroup of the group K, the C`-R-triviality implies
the C`-K-triviality. On the other side, if NC(f) is A-isolated we obtain the
same estimates for the C`-K-triviality. However there exist map germs
which NR(f) and NC(f) are not A-isolated for any matrix A and NK(f) is
A-isolated for some matrix A, as we can see in the example below, in these
cases we are only able to compute estimates for the C`-K-triviality of the
family.

Example 3.17 Let f : (R3, 0) → (R2, 0), f(x, y, z) = (3x6 + 2y6 + xz4,
x6 + y6 + yz3).

Then df =
[

18x5 + z4 12y5 4xz3

6x5 6y5 + z3 3yz2

]
with minors M12 = 36x5y5 +

18x5z3 + 6y5z4 + z7, M13 = 54x5yz2 + 3yz6 − 24x6z3, and M23 = 36y6z2 −
24xy5z3 − 4xz6.

Here NR(f) and NC(f) are not A-isolated for any matrix A and NK(f)

is A-isolated for the matrix A =

6 0 0 1 0
0 6 0 0 1
0 0 7 4 3

, then we obtain R = 288

and fil(f1) = fil(f2) = 504.
Now, if we consider the monomial y5z3 we get fil(y5z3) = 840, therefore

ft(x, y, z) = (3x6 + 2y6 + xz4, x6 + y6 + yz3 + ty5z3) is C1-K-trivial.
We remark here that the vector (0, y5z3) is not in the K-tangent space

of the germ f , hence ft is not Cω-K-trivial.
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Proof of the Theorem 3.16. Define NKft := [NRft]a + [NCft]b, then

NKft ·
∂ft

∂t
= [NRft]a ·

∂ft

∂t
+ [NCft]b ·

∂ft

∂t

= [NRft]a−1 · [dft]x(WR) + [NCft]b−1 ·
∑

Wi(fti)

= [dft]x([NRft]a−1WR) +
∑

([NCft]b−1Wi)(fti).

Hence ∂ft/∂t = [dft]x(ξ)+
∑

(ηi)(fti) where ξ is the vector field defined
as ξ := ([NRft]a−1/NKft)WR, where WR is the vector field defined in the
case of the group R, and ηi := ([NCft]b−1/NKft)Wi, where Wi is the vector
field defined in the case of the group C.

Since

fil([NRft]a−1WR)≥ (a − 1) · 2α + 2α + `R + 1

= 2αa + `R + 1, with α := l.c.m.{fil(MI)};
fil([NCft]b−1Wi)≥ (b − 1) · 2B + 2B + `R + 1

= 2Bb + `R + 1, with B := l.c.m.{fil(fi)};

and

fil(NKft) = fil([NRft]a) = fil([NCft]b)

= 2αa = 2Bb,

we obtain from the Lemma 2.9 that the vector fields ξ and η = (η1, . . . , ηp)
are of class C` and the result follows. ¤
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