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On planar functions of elementary abelian p-group type
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Abstract. We proved affine planes corresponding to quadratic planar functions over

Fpn are semifield planes, and we determined affine planes corresponding to planar func-

tions f(x) = x10 − αx6 − α2x2 by Ding and Yuan. Moreover we calculated explicit

shapes of planar functions from the square mappings of almost all known finite commu-

tative semifields.

Key words: planar function, projective plane, finite field, finite semifield, relative differ-

ence set, collineation group.

1. Introduction

Planar functions have been researched for long years by many mathe-
maticians as an interesting problem related to affine planes admitting reg-
ular collineation groups (cf. [1], [3], [5], [6], [7], [8], [9], [11], [12], [13], [14],
[18], [19], [20], [21], [22], [24]). Let G and H be finite groups of the same
order n and f be a function from G into H. Moreover let fa be a function
from G into H defined by fa(x) = f(ax)f(x)−1 for an element a of G. Then
f is named a planar function from G into H of degree n if and only if fa is
bijective for every element a of G except a = 1. Suppose that f is a planar
function from G into H, and put D = {(x, f(x)) | x ∈ G}. Then D is a
relative difference set in G × H relative to H with parameters (n, n, n, 1).
Moreover if we take P := G × H as the set of points and L := {Hx | x ∈
G} ∪ {Dv | v ∈ G × H} as the set of lines, then I(G, H; f) := (P, L, ∈)
is an affine plane in which G × H acts regularly on P. Then H is the ela-
tion subgroup with the center (∞) and the axis l∞ of the projective plane
extended from this affine plane, and G acts transitively on the points of
l∞ except (∞). Conversely we can construct a planar function from G to
H if G × H acts on an affine plane as the above action. Thus the planar
functions problem is a special case of the classification problem of affine
planes admitting regular collineation groups.

2000 Mathematics Subject Classification : 51E20.
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Example 1.1 f : Fq −→ Fq : x 7−→ x2

where Fq is the additive group of a finite field of cardinality q for an odd
prime power q. An affine plane corresponding to this function is desargue-
sian.

Example 1.2 f : Fp2n −→ Fp2n

x 7−→ x2 + 4−1j1−pr
(x2pr

+ x2p(n+r) − 2xpr+p(n+r)
)

− 4−1(x2 + x2pn − 2xpn+1)
where p is an odd prime and 1 ≤ r < n and let j be any element of
Fpn which is not square. An affine plane corresponding to this function is a
semifield plane (not desarguesian). These examples are the square mappings
on Dickson semifields in section 4.

The following example was given by R.S. Coulter and R.W. Matthews
([3]).

Example 1.3 f : F3e −→ F3e : x 7−→ x(3α+1)/2

where gcd(α, 2e) = 1. Affine planes corresponding to these functions are
not translation planes if 1 < α < 2e.

Examples of such planar functions as G or H is not an elementary
abelian p-group are not known.

After reviewing known main results concerning planar functions in Sec-
tion 2 it is discussed that affine planes corresponding to quadratic planar
functions over finite fields become semifield planes and we determined affine
planes corresponding to planar functions f(x) = x10 − αx6 − α2x2 by Ding
and Yuan in Section 3. In Section 4 it is proved that square mappings
of finite commutative semifields are planar functions of elementary abelian
p-group type in the background of relative difference sets with parameters
(q, q, q, 1). Moreover we will calculate explicit shapes of planar functions
from the square mappings of almost all known finite commutative semifields.

2. Known results

The following theorems are known.

Theorem 2.1 (Dembowski and Ostrom [5]) Suppose that there exists a
planar function of degree n. Then n is odd.
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Theorem 2.2 (Gluck, Hiramine, Ronyai and Szonyi, [9] [11] [24]) Sup-
pose that there exists a planar function of degree p for an odd prime p. Then
f is a quadratic polynomial on Fp and an affine plane corresponding to f is
desarguesian.

Theorem 2.3 (Nakagawa [19] [20]) Suppose that G and H are finite
abelian groups of order pn for an odd prime p, and there exists a planar
function from G into H. Then

exp(H) ≤
{

p(n+1)/2 (n : odd)
pn/2 (n : even).

Moreover G is not cyclic if n ≥ 2.

Theorem 2.4 (Blokhuis, Jungnickel and Schmidt [1]) If there exists a
planar function of degree n between abelian groups G and H, then n is an
odd prime power, say n = pm then the p-rank of G × H is at least m + 1.

Given two primes p and q, ordp(q) denotes the order of q in the multi-
plicative group of Fp.

Theorem 2.5 (Hiramine [12]) Let f be a planar function of degree n from
a group G into an abelian group H. Let p and q be distinct prime factors
of n. If ordp(q) is even, then the square free part of n is not divisible by q.

Suppose that ϕ is a function from Fpn into Fp for a prime p and ω be
a primitive p-th root of unity. We define a mapping ϕ̂ from Fpn into the
complex number field C as

ϕ̂(x) :=
∑

y∈Fpn

ω(Tr(xy)+ϕ(y)).

Here Tr is the absolute trace mapping. Then ϕ is named bent functions if
and only if |ϕ̂(u)| = pn/2 for any u ∈ Fpn . Bent functions are important
ones in the cryptography theory and the coding theory.

Theorem 2.6 (Nakagawa [20]) We assume G ∼= H ∼= Zn
p , and f(X) =

(f1(X), . . . , fn(X)) is a function from G into H for X = (u1, . . . , un). Then
f is planar if and only if

s1f1 + · · · + snfn
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is a bent function for each (s1, . . . , sn) ∈ Zn
p such that (s1, . . . , sn) 6=

(0, . . . , 0).

In the following theorem, we consider that Fpn is a n dimensional vector
space over Fp.

Theorem 2.7 (Nakagawa [22]) Suppose that f is a planar function from
Fpn into Fpn such that f(0) = 0 and gcd(n, p) = 1 for an odd prime p.
Then the following (i) and (ii) are equivalent.
( i ) The affine plane corresponding to f is desarguesian.
(ii) There are bijective linear mappings `, α, and β from Fpn into Fpn such

that

`(f(x + y)) = `(f(x) + f(y)) + α(x)β(y), and

α(x)β(y) = α(y)β(x) for any x, y ∈ Fpn .

Example 2.8 Let θ be an element of F9 such that θ2 = −1 and f(X) be
a planar function on F9 such that f(X) = θX2 + X4 + X6. Set `(x + yθ) =
(x− y)+ yθ, α(x+ yθ) = (x− y)−xθ and β(x+ yθ) = −y +(x+ y)θ where
x, y ∈ F3. Then α(X)β(Y ) = β(X)α(Y ) for ∀X, Y ∈ F9 and they satisfy
`(f(X + Y )) = `(f(X)) + `(f(Y )) − α(Y )β(X). Therefore I(F9, F9; f) is
desarguesian from the Theorem 2.7.

3. Planar functions of quadratic polynomials

A finite algebraic structure G(+, ◦) which is a group with respect to
addition, and whose nonzero elements form a loop with respect to multipli-
cation, such that the mappings

x 7→ −xa + xb and x 7→ ax − bx

are permutations of G whenever a 6= b is called a cartesian group. A
cartesian group T (+, ◦) satisfying the left distribution law is called a finite
left quasifield which correspond to a translation plane and a left quasifield
E(+, ◦) satisfying also the right distribution law is called a finite semifield
which correspond to a semifield plane. We note a left quasifield is always
commutative with addition (see, [2], [15], [16], [17]).
Let g be a planar function over Fpn . If we put f(x) := g(x−a)+ b we see f

is also planar and I(Fpn , Fpn ; f) = I(Fpn , Fpn ; g). We can choose elements
a, b such that f(0) = 0 and f(1) = 0. Then we call f is the normed function
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of g. We define xµ := −f(x)+f(x+1) where x ∈ Fpn and consider ϕ = µ−1.
Now we introduce a new multiplication (◦) in the additive group Fpn by P.
Dembowski and T.G. Ostrom.

Theorem 3.1 (Dembowski and Ostrom, Th. 6 and Cor. 4 in [5]) Let f

be a normed planar function from Fpn to Fpn, and define a multiplication
in Fpn by the rule

u ◦ v = −f(uϕ) + f(uϕ + vϕ) − f(vϕ).

Then
( i ) Fpn becomes, with the original addition and this multiplication, a carte-

sian group coordinatizing the affine plane I(Fpn , Fpn ; f).
(ii) The affine plane I(Fpn , Fpn ; f) is a translation plane if and only if

− f(x) + f(x + z) − f(z) − f(y) + f(y + z)

= −f((xµ + yµ)ϕ) + f((xµ + yµ)ϕ + z)

for all x, y, z ∈ Fpn.

We define a quadratic planar function over Fpn as a planar function
such that

g(x) =
∑

0≤i≤j≤n−1

αi,jx
pi

xpj
,

regarded a function between the additive group Fpn for αi,j ∈ Fpn . We
obtain the following theorem.

Theorem 3.2 Suppose that g is a quadratic planar function over Fpn.
Then I(Fpn , Fpn ; g) is a semifield plane.

Proof. Suppose that g is a quadratic planar function over Fpn . We consider
the normed planar function f of g and µ and ϕ as above. Then we have the
following.

f(x) =
∑

0≤i≤j≤n−1

αi,j(x − a)pi
(x − a)pj

+ b

where
∑

0≤i≤j≤n−1 αi,ja
pi

apj
+b = 0 and

∑
0≤i≤j≤n−1 αi,j(1−a)pi

(1−a)pj
+

b = 0, and

xµ =
∑

0≤i≤j≤n−1

αi,j(xpi
+ xpj

).
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Therefore µ is additive. Hence we obtain the following equation from (ii)
in Theorem 3.1.

− f(x) + f(x + z) − f(z) − f(y) + f(y + z)

= −f(x + y) + f(x + y + z)

This equation is easily verified. Hence I(Fpn , Fpn ; f) is a translation plane
by Theorem 3.1. Then since (Fpn , +, ◦) is commutative with respect to
addition, it is also commutative with respect to multiplication by the defi-
nition of multiplication. Thus left and right distribution laws are satisfied
in it. Hence (Fpn , +, ◦) is a commutative semifield and the affine plane
I(Fpn , Fpn ; g) is a semifield plane. ¤

Theorem 3.3 Suppose that n is odd with n ≥ 3 and α is an element of
F∗

3n. For the function g(x) = x10 − αx6 − α2x2 over F3n, the following
statements are equivalent.
( i ) I(F3n , F3n ; g) is the desarguesian plane.
(ii) n = 3 and α is square of F33

Proof. We argue in the general form of a quadratic planar function g over
Fpn and from a half of the proof we shall specify g to be one of Ding and
Yuan. Let g be a quadratic planar function and f be the normed planar
function of g for αi,j ∈ Fpn .

g(x)=
∑

0≤i≤j≤n−1

αi,jx
pi

xpj
(1)

f(x)=
∑

0≤i≤j≤n−1

αi,j(xpi
xpj − api

xpj − xpi
apj

) (2)

xµ=
∑

0≤i≤j≤n−1

αi,j(xpi
+ xpj

)

=
∑

0≤k≤n−1

αkx
pk

(3)

Since µ is bijective and linear over Fp, ϕ = µ−1 is also written as

xϕ =
∑

0≤k≤n−1

βkx
pk

where βk ∈ Fpn . We get the following equation because of (xµ)ϕ = x.
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α0 αn−1
p · · · · · · α2

pn−2
α1

pn−1

α1 α0
p · · · · · · α3

pn−2
α2

pn−1

...
. . . . . . . . .

...
...

...
. . . . . . . . .

...
...

...
. . . . . . . . .

...
...

αn−1 · · · · · · · · · α1
pn−2

α0
pn−1





β0

β1
...
...

βn−2

βn−1


=



1
0
...
...
0
0


(4)

We denote the square matrix of (4) by M , and the matrix giving p-power
to each component of M by Mp. We permute rows and columns of M

respectively by the permutation (n, n − 1, . . . , 2, 1). Then we obtain the
matrix Mp. Therefore |M | = |Mp|. However |M |p = |Mp| by the definition
of the determinant of the matrix. Therefore |M | = |M |p. Hence we have
|M | ∈ Fp.

If it is satisfied the associative law of multiplication in the commuta-
tive semifield (Fpn , +, ◦) with the multiplication in Theorem 3.1, the corre-
sponding semifield plane become desarguesian. Suppose that the associative
law holds in (Fpn , +, ◦). Now u◦v = f(x+y)−f(x)−f(y) where x = uϕ and
y = vϕ. We put u ◦ v = `(x, y). Then `(x, y) =

∑
0≤i≤j≤n−1 αi,j(xpi

ypj
+

xpj
ypi

). Then the following equivalence holds.

(u ◦ v) ◦ w = u ◦ (v ◦ w) ⇐⇒ `(`(x, y)ϕ, z) = `(x, `(y, z)ϕ)

where wϕ = z.

`(`(x, y)ϕ, z) =
∑

0≤h≤k≤n−1

n−1∑
t=0

∑
0≤i≤j≤n−1

(
αh,kβ

ph

t

×αpt+h

i,j (xpi+t+h
ypj+t+h

zpk
+ xpj+t+h

ypi+t+h
zpk

)

+αh,kβ
pk

t αpt+k

i,j (xpi+t+k
ypj+t+k

zph
+ xpj+t+k

ypi+t+k
zph

)
)

(5)

`(x, `(y, z)ϕ) =
∑

0≤h≤k≤n−1

n−1∑
t=0

∑
0≤i≤j≤n−1

(
αh,kβ

pk

t

×αpt+k

i,j (xph
ypi+t+k

zpj+t+k
+ xph

ypj+t+k
zpi+t+k

)

+αh,kβ
ph

t αpt+h

i,j (xpk
ypi+t+h

zpj+t+h
+ xpk

ypj+t+h
zpi+t+h

)
)

(6)

From now on we consider the planar functions g(x) = x10 − αx6 − α2x2

by Ding and Yuan for p = 3. Then we put α0,2 = 1, α1,1 = −α, α0,0 =
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−α2, and the others αi,j = 0. Suppose that n ≥ 5. We compare with the
coefficient of x3y32

z in (5) and (6). Then we have the coefficient of x3y32
z

in (5) is zero because of n ≥ 5 and the coefficient of x3y32
z in (6) is αβ3

n−1,
thus βn−1 = 0. Next the coefficient of xyz3 in (5) is α3β3

n−1 + α3n−1+1β3
n−2

and the coefficient of xyz3 in (6) is zero. Therefore βn−2 = 0. Now we write
down simultaneous equations of (4) as the following.

(1 + α2)β0 + βn−2 + α3n−1
βn−1 = 1

αβ0 + (1 + α2)3β1 + βn−1 = 0

β0 + α3β1 + (1 + α2)3
2
β2 = 0

β1 + α32
β2 + (1 + α2)3

3
β3 = 0

· · ·
βn−3 + α3n−2

βn−2 + (1 + α2)3
n−1

βn−1 = 0

Therefore we have βn−3 = 0 from βn−1 = βn−2 = 0 and βn−4 = 0
from βn−2 = βn−3 = 0. Repeating these we obtain βi = 0 for any i =
0, 1, 2, . . . , n − 1. However it contradicts to the first equation. Thus if
n ≥ 5 then I(F3n , F3n ; g) is not desarguesian. Suppose that n = 3 and
`(`(x, y)ϕ, z) = `(x, `(y, z)ϕ) for any elements x, y and z of F33 . Then we
have α13 = 1 by comparing the corresponding coefficients of right sides of
(5) and (6). For example coefficients of xyz3 are the following

ε(−α3 − α21 + α10 − α13) in `(`(x, y)ϕ, z)

ε(−1 + α10 − α3 − α21) in `(x, `(y, z)ϕ)

where ε = 1 or ε = −1. Here we used the fact |M | = ε ∈ {±1} which is ob-
tained by the previous comments. Conversely `(`(x, y)ϕ, z) = `(x, `(y, z)ϕ)
holds if α13 = 1. We note α13 = 1 iff α is square. Thus the theorem is
proved. ¤

4. Planar functions and commutative semifields

The square mapping of a finite commutative semifield E of the charac-
teristic p (p 6= 2) is a planar function on the additive group E (see pp. 245 in
[4]). Now we state this fact against the background of a relative difference
set in an automorphism group of E.

Theorem 4.1 (cf. [23]) Let G and H be finite groups of same order n.
Then the following (i) and (ii) are equivalent.
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( i ) f is a planar function from G into H.
(ii) {(x, f(x)) | x ∈ G} is a relative difference set in G × H with respect

to H with parameters (n, n, n, 1).

Let E(+, ◦) be a commutative semifield of order q = pe where p is an
odd prime. Naturally an affine plane A(E) is defined by taking E × E =
{(x, y) | x, y ∈ E} as the set of points and a second copy E ×E = {[x, y] |
x, y ∈ E} as the set of lines. The point (x, y) lies on the line [a, b] if and
only if

y = a ◦ x + b.

Moreover we adjoin to them lines with slope ∞, namely the line consisting
of the points

(c, y) (y ∈ E)

for each c in E. Then we consider following two groups of order q2.

T := {Ta,b | a, b ∈ E} where Ta,b(x, y) = (x + a, y + b)

S := {Su,v | u, v ∈ E} where Su.v(x, y) = (x, y + u ◦ x + v)

We note the group T acts regularly on points, and the group S acts regularly
on the lines except lines with slope ∞. Set Hu,b := Tu,bSu,0. Then G :=
{Hu,b | u, b ∈ E} is an abelian group. Moreover set

D := {Hu,0 | u ∈ E}, H := {H0,b | b ∈ E}, K := {Hu,g(u) | u ∈ E}

where g satisfies g(u + v) = g(u) + g(v) + u ◦ v. Then H, K are subgroups
of G and D is a subset of G, and the following theorem is known.

Theorem 4.2 (C. Godsil and A. Roy [10]) Let E be a commutative semi-
field of order q, where q is a prime power. Then the group G is abelian with
order q2, and the subset D is a relative difference set in G with parameters
(q, q, q, 1).

We note G = K×H. Hence this theorem and Theorem 4.1 implies that
there is a planar function f from K into H. The semifield E and the group
K are isomorphic as additive groups by a corresponding from u to Hu,g(u),
E and the group H are isomorphic as additive groups by a corresponding
from b to H0,b. The map f can be regarded as a function on E such that
f(u) = b = −(1/2)u ◦ u. Then f(u) = −(1/2)u ◦ u is planar. Therefore
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if E is a commutative semifield of order q, then the function f defined by
f(x) = x ◦ x (x ∈ E) is a planar function on the additive group E.

We note that I(Fq, Fq; f) is isomorphic to the plane coming from the
original semifield E. We calculated explicit forms of the square mappings
of known finite commutative semifields as polynomials on finite fields in the
following.

Dickson semifields Assume that q = pn where p is an odd prime and
n > 1 and let α be any element of Fq which is not square. The semifield
E can be identified with the additive group Fq2 and be constituted as two
dimensional vector space over Fq with basis 1 and λ where λ2 = α. Let
σ be an automorphism of Fq given by xσ = xpr

, 1 ≤ r < n, we define a
multiplication in E by

(a + λb) ◦ (c + λd) := ac + α(bd)σ + λ(ad + bc).

We consider planar functions of quadratic polynomials and express them in
the finite field, and put X = x + λy ∈ Fq2 .

Fq2 −→ Fq2

f : X 7−→ X ◦ X = x2 + αy2pr
+ 2λxy

g1 : X 7−→ X2 = x2 + αy2 + 2λxy

g2 : X 7−→ X1+pn
= x2 − αy2

g3 : X 7−→ X2pn
= x2 + αy2 − 2λxy

Consequently,

(g1 + g3 − 2g2)(X) = X2 + X2pn − 2X1+pn
= 4αy2.

Therefore

y2 = 4−1α−1(X2 + X2pn − 2X1+pn
),

(y2)pr
= 4−1α−pr

(X2 + X2pn − 2X1+pn
)pr

,

= 4−1α−pr
(X2pr

+ X2p(n+r) − 2Xpr+p(n+r)
).

On the other hand

(f − g1)(X) = X ◦ X − X2 = α(y2pr − y2).

Hence

f(X) − g1(X) = 4−1α1−pr
(X2pr

+ X2p(n+r) − 2Xpr+p(n+r)
)
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− 4−1(X2 + X2pn − 2X1+pn
).

Therefore

f(X) = X2 + 4−1α1−pr
(X2pr

+ X2p(n+r) − 2Xpr+p(n+r)
)

− 4−1(X2 + X2pn − 2X1+pn
).

We calculate the square mappings of other known several semifields as func-
tions over finite fields in the similar way.

Cohen-Ganley semifields A multiplication in (Fq2 , +) is defined as

(a + λb) ◦ (c + λd) := (ac + αbd + α3(bd)9) + λ(ad + bc + α(bd)3)

with q = 3n (n ≥ 2) and α is nonsquare in Fq and {1, λ} is a basis over Fq

where λ2 = α.
Then f(X) = X ◦ X is expressed as the following.

f(X) = X2 + α−2λ(X6 + X2·3n+1
+ X3+3n+1

)

+ α−6(X18 + X2·3n+2
+ X9+3n+2

)

Ganley semifields Consider (Fq2 , +) where q = 3n, n ≥ 3 where n is
odd and α is nonsquare in Fq and {1, λ} is a basis over Fq where λ2 = α.
A multiplication is defined as

(a + λb) ◦ (c + λd) := (ac − b9d − bd9) + λ(ad + bc + b3d3).

Then we have

f(X) = X2 + λ−10(X10 + X3n+3n+2 − X9+3n − X1+3n+2
)

+ α−3λ(X6 + X2·3n+1
+ X3+3n+1

)

− (X2 + X2·3n
+ X1+3n

).

Penttila-Williams semifields Consider (Fq2 , +) where q = 35 and α is
nonsquare in Fq and {1, λ} is a basis over Fq where λ2 = α. A multiplication
is defined as

(a + λb) ◦ (c + λd) := (ac + (bd)9) + λ(ad + bc + (bd)27).

Then we have

f(X) = X2 + α−9(X18 + X2·37
+ X9(1+35))

+ α−27λ(X54 + X2·38
+ X27(1+35))
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− (X2 + X2·35
+ X1+35

).

Coulter-Matthews semifields Consider (Fq, +) where q = 3n, and n is
odd with n ≥ 3. A multiplication is defined as x◦y := x9y+xy9+x3y3−xy.
Then we have

f(x) = −x10 + x6 − x2.

Ding-Yuan semifields Consider (Fq, +) where q = 3n and n is odd with
n ≥ 3. A multiplication is defined as x ◦ y := x9y + xy9 − x3y3 − xy. We
have

f(x) = −x10 − x6 − x2.

5. Discussion

It is a difficult problem to determine whether planar functions coming
from commutative semifields as square mappings are quadratic planar func-
tions or not. This problem is related to the classification problem of finite
commutative semifields. Let V be a n dimensional vector space over the
prime field Fp for an odd prime p, and {v1, . . . , vn} be a basis of V . Now
we give a set Ω of n symmetric square matrices of degree n where every
entry is an element of Fp, say Ω = {A1, . . . , An}. Moreover we define a
multiplication of V as the following

u ◦ v :=
n∑

i=1

(α1, . . . , αn)Ai

β1
...

βn

 vi

for u =
∑n

i=1 αivi and v =
∑n

i=1 βivi.
If V has no zero factors with respect to this multiplication, then (V, +, ◦)
is a commutative semifield.
Here the addition is that of the vector space V . We consider the following
condition (♣)

(♣): det

(
A1

x1
...

xn

 , · · · , An

x1
...

xn

)
6= 0

for any (x1, . . . , xn) ∈ (Fp)n except (x1, . . . , xn) = 0.
Obviously V has no zero factors iff the condition (♣) holds. We can write
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down the determinant above as

F (x1, . . . , xn) =
∑

i1+···+in=n

ai1···inx1
i1 · · ·xn

in .

Thus F (x1, . . . , xn) = 0 is a hyper surface in the n − 1 dimensional pro-
jective space over Fpn . Suppose that the hyper surface has no zero points
over Fp. Then the condition (♣) holds, and the converse is also true. Hence
a construction problem of commutative semifields results in the problem
whether a suitable hyper surface of the projective space over a finite field
has rational points or not over the prime field. For example

x3 + y3 + z3 + x2y + x2z − 2xz2 + y2z − 3xyz = 0

is a hyper surface in PG(2, 53) and it has no rational points over F5, though
this example is one which comes from the F53 , not a proper commutative
semifield.
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